 5fcabe628b
			
		
	
	
		5fcabe628b
		
	
	
	
	
		
			
			Now that all of the Property arrays are counted, we can remove the terminator object from each array. Update the assertions in device_class_set_props to match. With struct Property being 88 bytes, this was a rather large form of terminator. Saves 30k from qemu-system-aarch64. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Tested-by: Lei Yang <leiyang@redhat.com> Link: https://lore.kernel.org/r/20241218134251.4724-21-richard.henderson@linaro.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			471 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			471 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Arm SSE Subsystem System Timer
 | |
|  *
 | |
|  * Copyright (c) 2020 Linaro Limited
 | |
|  * Written by Peter Maydell
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 or
 | |
|  * (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This is a model of the "System timer" which is documented in
 | |
|  * the Arm SSE-123 Example Subsystem Technical Reference Manual:
 | |
|  * https://developer.arm.com/documentation/101370/latest/
 | |
|  *
 | |
|  * The timer is based around a simple 64-bit incrementing counter
 | |
|  * (readable from CNTPCT_HI/LO). The timer fires when
 | |
|  *  Counter - CompareValue >= 0.
 | |
|  * The CompareValue is guest-writable, via CNTP_CVAL_HI/LO.
 | |
|  * CNTP_TVAL is an alternative view of the CompareValue defined by
 | |
|  *  TimerValue = CompareValue[31:0] - Counter[31:0]
 | |
|  * which can be both read and written.
 | |
|  * This part is similar to the generic timer in an Arm A-class CPU.
 | |
|  *
 | |
|  * The timer also has a separate auto-increment timer. When this
 | |
|  * timer is enabled, then the AutoIncrValue is set to:
 | |
|  *  AutoIncrValue = Reload + Counter
 | |
|  * and this timer fires when
 | |
|  *  Counter - AutoIncrValue >= 0
 | |
|  * at which point, an interrupt is generated and the new AutoIncrValue
 | |
|  * is calculated.
 | |
|  * When the auto-increment timer is enabled, interrupt generation
 | |
|  * via the compare/timervalue registers is disabled.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qapi/error.h"
 | |
| #include "trace.h"
 | |
| #include "hw/timer/sse-timer.h"
 | |
| #include "hw/timer/sse-counter.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/irq.h"
 | |
| #include "hw/registerfields.h"
 | |
| #include "hw/clock.h"
 | |
| #include "hw/qdev-clock.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "migration/vmstate.h"
 | |
| 
 | |
| REG32(CNTPCT_LO, 0x0)
 | |
| REG32(CNTPCT_HI, 0x4)
 | |
| REG32(CNTFRQ, 0x10)
 | |
| REG32(CNTP_CVAL_LO, 0x20)
 | |
| REG32(CNTP_CVAL_HI, 0x24)
 | |
| REG32(CNTP_TVAL, 0x28)
 | |
| REG32(CNTP_CTL, 0x2c)
 | |
|     FIELD(CNTP_CTL, ENABLE, 0, 1)
 | |
|     FIELD(CNTP_CTL, IMASK, 1, 1)
 | |
|     FIELD(CNTP_CTL, ISTATUS, 2, 1)
 | |
| REG32(CNTP_AIVAL_LO, 0x40)
 | |
| REG32(CNTP_AIVAL_HI, 0x44)
 | |
| REG32(CNTP_AIVAL_RELOAD, 0x48)
 | |
| REG32(CNTP_AIVAL_CTL, 0x4c)
 | |
|     FIELD(CNTP_AIVAL_CTL, EN, 0, 1)
 | |
|     FIELD(CNTP_AIVAL_CTL, CLR, 1, 1)
 | |
| REG32(CNTP_CFG, 0x50)
 | |
|     FIELD(CNTP_CFG, AIVAL, 0, 4)
 | |
| #define R_CNTP_CFG_AIVAL_IMPLEMENTED 1
 | |
| REG32(PID4, 0xFD0)
 | |
| REG32(PID5, 0xFD4)
 | |
| REG32(PID6, 0xFD8)
 | |
| REG32(PID7, 0xFDC)
 | |
| REG32(PID0, 0xFE0)
 | |
| REG32(PID1, 0xFE4)
 | |
| REG32(PID2, 0xFE8)
 | |
| REG32(PID3, 0xFEC)
 | |
| REG32(CID0, 0xFF0)
 | |
| REG32(CID1, 0xFF4)
 | |
| REG32(CID2, 0xFF8)
 | |
| REG32(CID3, 0xFFC)
 | |
| 
 | |
| /* PID/CID values */
 | |
| static const int timer_id[] = {
 | |
|     0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
 | |
|     0xb7, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
 | |
|     0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
 | |
| };
 | |
| 
 | |
| static bool sse_is_autoinc(SSETimer *s)
 | |
| {
 | |
|     return (s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_EN_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static bool sse_enabled(SSETimer *s)
 | |
| {
 | |
|     return (s->cntp_ctl & R_CNTP_CTL_ENABLE_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static uint64_t sse_cntpct(SSETimer *s)
 | |
| {
 | |
|     /* Return the CNTPCT value for the current time */
 | |
|     return sse_counter_for_timestamp(s->counter,
 | |
|                                      qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
 | |
| }
 | |
| 
 | |
| static bool sse_timer_status(SSETimer *s)
 | |
| {
 | |
|     /*
 | |
|      * Return true if timer condition is met. This is used for both
 | |
|      * the CNTP_CTL.ISTATUS bit and for whether (unless masked) we
 | |
|      * assert our IRQ.
 | |
|      * The documentation is unclear about the behaviour of ISTATUS when
 | |
|      * in autoincrement mode; we assume that it follows CNTP_AIVAL_CTL.CLR
 | |
|      * (ie whether the autoincrement timer is asserting the interrupt).
 | |
|      */
 | |
|     if (!sse_enabled(s)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (sse_is_autoinc(s)) {
 | |
|         return s->cntp_aival_ctl & R_CNTP_AIVAL_CTL_CLR_MASK;
 | |
|     } else {
 | |
|         return sse_cntpct(s) >= s->cntp_cval;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sse_update_irq(SSETimer *s)
 | |
| {
 | |
|     bool irqstate = (!(s->cntp_ctl & R_CNTP_CTL_IMASK_MASK) &&
 | |
|                      sse_timer_status(s));
 | |
| 
 | |
|     qemu_set_irq(s->irq, irqstate);
 | |
| }
 | |
| 
 | |
| static void sse_set_timer(SSETimer *s, uint64_t nexttick)
 | |
| {
 | |
|     /* Set the timer to expire at nexttick */
 | |
|     uint64_t expiry = sse_counter_tick_to_time(s->counter, nexttick);
 | |
| 
 | |
|     if (expiry <= INT64_MAX) {
 | |
|         timer_mod_ns(&s->timer, expiry);
 | |
|     } else {
 | |
|         /*
 | |
|          * nexttick is so far in the future that it would overflow the
 | |
|          * signed 64-bit range of a QEMUTimer. Since timer_mod_ns()
 | |
|          * expiry times are absolute, not relative, we are never going
 | |
|          * to be able to set the timer to this value, so we must just
 | |
|          * assume that guest execution can never run so long that it
 | |
|          * reaches the theoretical point when the timer fires.
 | |
|          * This is also the code path for "counter is not running",
 | |
|          * which is signalled by expiry == UINT64_MAX.
 | |
|          */
 | |
|         timer_del(&s->timer);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sse_recalc_timer(SSETimer *s)
 | |
| {
 | |
|     /* Recalculate the normal timer */
 | |
|     uint64_t count, nexttick;
 | |
| 
 | |
|     if (sse_is_autoinc(s)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!sse_enabled(s)) {
 | |
|         timer_del(&s->timer);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     count = sse_cntpct(s);
 | |
| 
 | |
|     if (count >= s->cntp_cval) {
 | |
|         /*
 | |
|          * Timer condition already met. In theory we have a transition when
 | |
|          * the count rolls back over to 0, but that is so far in the future
 | |
|          * that it is not representable as a timer_mod() expiry, so in
 | |
|          * fact sse_set_timer() will always just delete the timer.
 | |
|          */
 | |
|         nexttick = UINT64_MAX;
 | |
|     } else {
 | |
|         /* Next transition is when count hits cval */
 | |
|         nexttick = s->cntp_cval;
 | |
|     }
 | |
|     sse_set_timer(s, nexttick);
 | |
|     sse_update_irq(s);
 | |
| }
 | |
| 
 | |
| static void sse_autoinc(SSETimer *s)
 | |
| {
 | |
|     /* Auto-increment the AIVAL, and set the timer accordingly */
 | |
|     s->cntp_aival = sse_cntpct(s) + s->cntp_aival_reload;
 | |
|     sse_set_timer(s, s->cntp_aival);
 | |
| }
 | |
| 
 | |
| static void sse_timer_cb(void *opaque)
 | |
| {
 | |
|     SSETimer *s = SSE_TIMER(opaque);
 | |
| 
 | |
|     if (sse_is_autoinc(s)) {
 | |
|         uint64_t count = sse_cntpct(s);
 | |
| 
 | |
|         if (count >= s->cntp_aival) {
 | |
|             /* Timer condition met, set CLR and do another autoinc */
 | |
|             s->cntp_aival_ctl |= R_CNTP_AIVAL_CTL_CLR_MASK;
 | |
|             s->cntp_aival = count + s->cntp_aival_reload;
 | |
|         }
 | |
|         sse_set_timer(s, s->cntp_aival);
 | |
|         sse_update_irq(s);
 | |
|     } else {
 | |
|         sse_recalc_timer(s);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t sse_timer_read(void *opaque, hwaddr offset, unsigned size)
 | |
| {
 | |
|     SSETimer *s = SSE_TIMER(opaque);
 | |
|     uint64_t r;
 | |
| 
 | |
|     switch (offset) {
 | |
|     case A_CNTPCT_LO:
 | |
|         r = extract64(sse_cntpct(s), 0, 32);
 | |
|         break;
 | |
|     case A_CNTPCT_HI:
 | |
|         r = extract64(sse_cntpct(s), 32, 32);
 | |
|         break;
 | |
|     case A_CNTFRQ:
 | |
|         r = s->cntfrq;
 | |
|         break;
 | |
|     case A_CNTP_CVAL_LO:
 | |
|         r = extract64(s->cntp_cval, 0, 32);
 | |
|         break;
 | |
|     case A_CNTP_CVAL_HI:
 | |
|         r = extract64(s->cntp_cval, 32, 32);
 | |
|         break;
 | |
|     case A_CNTP_TVAL:
 | |
|         r = extract64(s->cntp_cval - sse_cntpct(s), 0, 32);
 | |
|         break;
 | |
|     case A_CNTP_CTL:
 | |
|         r = s->cntp_ctl;
 | |
|         if (sse_timer_status(s)) {
 | |
|             r |= R_CNTP_CTL_ISTATUS_MASK;
 | |
|         }
 | |
|         break;
 | |
|     case A_CNTP_AIVAL_LO:
 | |
|         r = extract64(s->cntp_aival, 0, 32);
 | |
|         break;
 | |
|     case A_CNTP_AIVAL_HI:
 | |
|         r = extract64(s->cntp_aival, 32, 32);
 | |
|         break;
 | |
|     case A_CNTP_AIVAL_RELOAD:
 | |
|         r = s->cntp_aival_reload;
 | |
|         break;
 | |
|     case A_CNTP_AIVAL_CTL:
 | |
|         /*
 | |
|          * All the bits of AIVAL_CTL are documented as WO, but this is probably
 | |
|          * a documentation error. We implement them as readable.
 | |
|          */
 | |
|         r = s->cntp_aival_ctl;
 | |
|         break;
 | |
|     case A_CNTP_CFG:
 | |
|         r = R_CNTP_CFG_AIVAL_IMPLEMENTED << R_CNTP_CFG_AIVAL_SHIFT;
 | |
|         break;
 | |
|     case A_PID4 ... A_CID3:
 | |
|         r = timer_id[(offset - A_PID4) / 4];
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Timer read: bad offset 0x%x",
 | |
|                       (unsigned) offset);
 | |
|         r = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     trace_sse_timer_read(offset, r, size);
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void sse_timer_write(void *opaque, hwaddr offset, uint64_t value,
 | |
|                             unsigned size)
 | |
| {
 | |
|     SSETimer *s = SSE_TIMER(opaque);
 | |
| 
 | |
|     trace_sse_timer_write(offset, value, size);
 | |
| 
 | |
|     switch (offset) {
 | |
|     case A_CNTFRQ:
 | |
|         s->cntfrq = value;
 | |
|         break;
 | |
|     case A_CNTP_CVAL_LO:
 | |
|         s->cntp_cval = deposit64(s->cntp_cval, 0, 32, value);
 | |
|         sse_recalc_timer(s);
 | |
|         break;
 | |
|     case A_CNTP_CVAL_HI:
 | |
|         s->cntp_cval = deposit64(s->cntp_cval, 32, 32, value);
 | |
|         sse_recalc_timer(s);
 | |
|         break;
 | |
|     case A_CNTP_TVAL:
 | |
|         s->cntp_cval = sse_cntpct(s) + sextract64(value, 0, 32);
 | |
|         sse_recalc_timer(s);
 | |
|         break;
 | |
|     case A_CNTP_CTL:
 | |
|     {
 | |
|         uint32_t old_ctl = s->cntp_ctl;
 | |
|         value &= R_CNTP_CTL_ENABLE_MASK | R_CNTP_CTL_IMASK_MASK;
 | |
|         s->cntp_ctl = value;
 | |
|         if ((old_ctl ^ s->cntp_ctl) & R_CNTP_CTL_ENABLE_MASK) {
 | |
|             if (sse_enabled(s)) {
 | |
|                 if (sse_is_autoinc(s)) {
 | |
|                     sse_autoinc(s);
 | |
|                 } else {
 | |
|                     sse_recalc_timer(s);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         sse_update_irq(s);
 | |
|         break;
 | |
|     }
 | |
|     case A_CNTP_AIVAL_RELOAD:
 | |
|         s->cntp_aival_reload = value;
 | |
|         break;
 | |
|     case A_CNTP_AIVAL_CTL:
 | |
|     {
 | |
|         uint32_t old_ctl = s->cntp_aival_ctl;
 | |
| 
 | |
|         /* EN bit is writable; CLR bit is write-0-to-clear, write-1-ignored */
 | |
|         s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_EN_MASK;
 | |
|         s->cntp_aival_ctl |= value & R_CNTP_AIVAL_CTL_EN_MASK;
 | |
|         if (!(value & R_CNTP_AIVAL_CTL_CLR_MASK)) {
 | |
|             s->cntp_aival_ctl &= ~R_CNTP_AIVAL_CTL_CLR_MASK;
 | |
|         }
 | |
|         if ((old_ctl ^ s->cntp_aival_ctl) & R_CNTP_AIVAL_CTL_EN_MASK) {
 | |
|             /* Auto-increment toggled on/off */
 | |
|             if (sse_enabled(s)) {
 | |
|                 if (sse_is_autoinc(s)) {
 | |
|                     sse_autoinc(s);
 | |
|                 } else {
 | |
|                     sse_recalc_timer(s);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         sse_update_irq(s);
 | |
|         break;
 | |
|     }
 | |
|     case A_CNTPCT_LO:
 | |
|     case A_CNTPCT_HI:
 | |
|     case A_CNTP_CFG:
 | |
|     case A_CNTP_AIVAL_LO:
 | |
|     case A_CNTP_AIVAL_HI:
 | |
|     case A_PID4 ... A_CID3:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Timer write: write to RO offset 0x%x\n",
 | |
|                       (unsigned)offset);
 | |
|         break;
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "SSE System Timer write: bad offset 0x%x\n",
 | |
|                       (unsigned)offset);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps sse_timer_ops = {
 | |
|     .read = sse_timer_read,
 | |
|     .write = sse_timer_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
|     .valid.min_access_size = 4,
 | |
|     .valid.max_access_size = 4,
 | |
| };
 | |
| 
 | |
| static void sse_timer_reset(DeviceState *dev)
 | |
| {
 | |
|     SSETimer *s = SSE_TIMER(dev);
 | |
| 
 | |
|     trace_sse_timer_reset();
 | |
| 
 | |
|     timer_del(&s->timer);
 | |
|     s->cntfrq = 0;
 | |
|     s->cntp_ctl = 0;
 | |
|     s->cntp_cval = 0;
 | |
|     s->cntp_aival = 0;
 | |
|     s->cntp_aival_ctl = 0;
 | |
|     s->cntp_aival_reload = 0;
 | |
| }
 | |
| 
 | |
| static void sse_timer_counter_callback(Notifier *notifier, void *data)
 | |
| {
 | |
|     SSETimer *s = container_of(notifier, SSETimer, counter_notifier);
 | |
| 
 | |
|     /* System counter told us we need to recalculate */
 | |
|     if (sse_enabled(s)) {
 | |
|         if (sse_is_autoinc(s)) {
 | |
|             sse_set_timer(s, s->cntp_aival);
 | |
|         } else {
 | |
|             sse_recalc_timer(s);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void sse_timer_init(Object *obj)
 | |
| {
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
 | |
|     SSETimer *s = SSE_TIMER(obj);
 | |
| 
 | |
|     memory_region_init_io(&s->iomem, obj, &sse_timer_ops,
 | |
|                           s, "sse-timer", 0x1000);
 | |
|     sysbus_init_mmio(sbd, &s->iomem);
 | |
|     sysbus_init_irq(sbd, &s->irq);
 | |
| }
 | |
| 
 | |
| static void sse_timer_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     SSETimer *s = SSE_TIMER(dev);
 | |
| 
 | |
|     if (!s->counter) {
 | |
|         error_setg(errp, "counter property was not set");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     s->counter_notifier.notify = sse_timer_counter_callback;
 | |
|     sse_counter_register_consumer(s->counter, &s->counter_notifier);
 | |
| 
 | |
|     timer_init_ns(&s->timer, QEMU_CLOCK_VIRTUAL, sse_timer_cb, s);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription sse_timer_vmstate = {
 | |
|     .name = "sse-timer",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (const VMStateField[]) {
 | |
|         VMSTATE_TIMER(timer, SSETimer),
 | |
|         VMSTATE_UINT32(cntfrq, SSETimer),
 | |
|         VMSTATE_UINT32(cntp_ctl, SSETimer),
 | |
|         VMSTATE_UINT64(cntp_cval, SSETimer),
 | |
|         VMSTATE_UINT64(cntp_aival, SSETimer),
 | |
|         VMSTATE_UINT32(cntp_aival_ctl, SSETimer),
 | |
|         VMSTATE_UINT32(cntp_aival_reload, SSETimer),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const Property sse_timer_properties[] = {
 | |
|     DEFINE_PROP_LINK("counter", SSETimer, counter, TYPE_SSE_COUNTER, SSECounter *),
 | |
| };
 | |
| 
 | |
| static void sse_timer_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
| 
 | |
|     dc->realize = sse_timer_realize;
 | |
|     dc->vmsd = &sse_timer_vmstate;
 | |
|     device_class_set_legacy_reset(dc, sse_timer_reset);
 | |
|     device_class_set_props(dc, sse_timer_properties);
 | |
| }
 | |
| 
 | |
| static const TypeInfo sse_timer_info = {
 | |
|     .name = TYPE_SSE_TIMER,
 | |
|     .parent = TYPE_SYS_BUS_DEVICE,
 | |
|     .instance_size = sizeof(SSETimer),
 | |
|     .instance_init = sse_timer_init,
 | |
|     .class_init = sse_timer_class_init,
 | |
| };
 | |
| 
 | |
| static void sse_timer_register_types(void)
 | |
| {
 | |
|     type_register_static(&sse_timer_info);
 | |
| }
 | |
| 
 | |
| type_init(sse_timer_register_types);
 |