Add both SVE exception state and vector length. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 20180123035349.24538-6-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			12144 lines
		
	
	
		
			434 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			12144 lines
		
	
	
		
			434 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
#include "qemu/osdep.h"
 | 
						|
#include "trace.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "internals.h"
 | 
						|
#include "exec/gdbstub.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "qemu/host-utils.h"
 | 
						|
#include "sysemu/arch_init.h"
 | 
						|
#include "sysemu/sysemu.h"
 | 
						|
#include "qemu/bitops.h"
 | 
						|
#include "qemu/crc32c.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "arm_ldst.h"
 | 
						|
#include <zlib.h> /* For crc32 */
 | 
						|
#include "exec/semihost.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
 | 
						|
#define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
/* Cacheability and shareability attributes for a memory access */
 | 
						|
typedef struct ARMCacheAttrs {
 | 
						|
    unsigned int attrs:8; /* as in the MAIR register encoding */
 | 
						|
    unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
 | 
						|
} ARMCacheAttrs;
 | 
						|
 | 
						|
static bool get_phys_addr(CPUARMState *env, target_ulong address,
 | 
						|
                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | 
						|
                          target_ulong *page_size,
 | 
						|
                          ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
 | 
						|
 | 
						|
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
 | 
						|
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
 | 
						|
                               target_ulong *page_size_ptr,
 | 
						|
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs);
 | 
						|
 | 
						|
/* Security attributes for an address, as returned by v8m_security_lookup. */
 | 
						|
typedef struct V8M_SAttributes {
 | 
						|
    bool ns;
 | 
						|
    bool nsc;
 | 
						|
    uint8_t sregion;
 | 
						|
    bool srvalid;
 | 
						|
    uint8_t iregion;
 | 
						|
    bool irvalid;
 | 
						|
} V8M_SAttributes;
 | 
						|
 | 
						|
static void v8m_security_lookup(CPUARMState *env, uint32_t address,
 | 
						|
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                                V8M_SAttributes *sattrs);
 | 
						|
 | 
						|
/* Definitions for the PMCCNTR and PMCR registers */
 | 
						|
#define PMCRD   0x8
 | 
						|
#define PMCRC   0x4
 | 
						|
#define PMCRE   0x1
 | 
						|
#endif
 | 
						|
 | 
						|
static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
 | 
						|
{
 | 
						|
    int nregs;
 | 
						|
 | 
						|
    /* VFP data registers are always little-endian.  */
 | 
						|
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | 
						|
    if (reg < nregs) {
 | 
						|
        stq_le_p(buf, *aa32_vfp_dreg(env, reg));
 | 
						|
        return 8;
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_NEON)) {
 | 
						|
        /* Aliases for Q regs.  */
 | 
						|
        nregs += 16;
 | 
						|
        if (reg < nregs) {
 | 
						|
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
 | 
						|
            stq_le_p(buf, q[0]);
 | 
						|
            stq_le_p(buf + 8, q[1]);
 | 
						|
            return 16;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    switch (reg - nregs) {
 | 
						|
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
 | 
						|
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
 | 
						|
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | 
						|
{
 | 
						|
    int nregs;
 | 
						|
 | 
						|
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | 
						|
    if (reg < nregs) {
 | 
						|
        *aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
 | 
						|
        return 8;
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_NEON)) {
 | 
						|
        nregs += 16;
 | 
						|
        if (reg < nregs) {
 | 
						|
            uint64_t *q = aa32_vfp_qreg(env, reg - 32);
 | 
						|
            q[0] = ldq_le_p(buf);
 | 
						|
            q[1] = ldq_le_p(buf + 8);
 | 
						|
            return 16;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    switch (reg - nregs) {
 | 
						|
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 | 
						|
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
 | 
						|
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
 | 
						|
{
 | 
						|
    switch (reg) {
 | 
						|
    case 0 ... 31:
 | 
						|
        /* 128 bit FP register */
 | 
						|
        {
 | 
						|
            uint64_t *q = aa64_vfp_qreg(env, reg);
 | 
						|
            stq_le_p(buf, q[0]);
 | 
						|
            stq_le_p(buf + 8, q[1]);
 | 
						|
            return 16;
 | 
						|
        }
 | 
						|
    case 32:
 | 
						|
        /* FPSR */
 | 
						|
        stl_p(buf, vfp_get_fpsr(env));
 | 
						|
        return 4;
 | 
						|
    case 33:
 | 
						|
        /* FPCR */
 | 
						|
        stl_p(buf, vfp_get_fpcr(env));
 | 
						|
        return 4;
 | 
						|
    default:
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | 
						|
{
 | 
						|
    switch (reg) {
 | 
						|
    case 0 ... 31:
 | 
						|
        /* 128 bit FP register */
 | 
						|
        {
 | 
						|
            uint64_t *q = aa64_vfp_qreg(env, reg);
 | 
						|
            q[0] = ldq_le_p(buf);
 | 
						|
            q[1] = ldq_le_p(buf + 8);
 | 
						|
            return 16;
 | 
						|
        }
 | 
						|
    case 32:
 | 
						|
        /* FPSR */
 | 
						|
        vfp_set_fpsr(env, ldl_p(buf));
 | 
						|
        return 4;
 | 
						|
    case 33:
 | 
						|
        /* FPCR */
 | 
						|
        vfp_set_fpcr(env, ldl_p(buf));
 | 
						|
        return 4;
 | 
						|
    default:
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    assert(ri->fieldoffset);
 | 
						|
    if (cpreg_field_is_64bit(ri)) {
 | 
						|
        return CPREG_FIELD64(env, ri);
 | 
						|
    } else {
 | 
						|
        return CPREG_FIELD32(env, ri);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                      uint64_t value)
 | 
						|
{
 | 
						|
    assert(ri->fieldoffset);
 | 
						|
    if (cpreg_field_is_64bit(ri)) {
 | 
						|
        CPREG_FIELD64(env, ri) = value;
 | 
						|
    } else {
 | 
						|
        CPREG_FIELD32(env, ri) = value;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return (char *)env + ri->fieldoffset;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    /* Raw read of a coprocessor register (as needed for migration, etc). */
 | 
						|
    if (ri->type & ARM_CP_CONST) {
 | 
						|
        return ri->resetvalue;
 | 
						|
    } else if (ri->raw_readfn) {
 | 
						|
        return ri->raw_readfn(env, ri);
 | 
						|
    } else if (ri->readfn) {
 | 
						|
        return ri->readfn(env, ri);
 | 
						|
    } else {
 | 
						|
        return raw_read(env, ri);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t v)
 | 
						|
{
 | 
						|
    /* Raw write of a coprocessor register (as needed for migration, etc).
 | 
						|
     * Note that constant registers are treated as write-ignored; the
 | 
						|
     * caller should check for success by whether a readback gives the
 | 
						|
     * value written.
 | 
						|
     */
 | 
						|
    if (ri->type & ARM_CP_CONST) {
 | 
						|
        return;
 | 
						|
    } else if (ri->raw_writefn) {
 | 
						|
        ri->raw_writefn(env, ri, v);
 | 
						|
    } else if (ri->writefn) {
 | 
						|
        ri->writefn(env, ri, v);
 | 
						|
    } else {
 | 
						|
        raw_write(env, ri, v);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
   /* Return true if the regdef would cause an assertion if you called
 | 
						|
    * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 | 
						|
    * program bug for it not to have the NO_RAW flag).
 | 
						|
    * NB that returning false here doesn't necessarily mean that calling
 | 
						|
    * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 | 
						|
    * read/write access functions which are safe for raw use" from "has
 | 
						|
    * read/write access functions which have side effects but has forgotten
 | 
						|
    * to provide raw access functions".
 | 
						|
    * The tests here line up with the conditions in read/write_raw_cp_reg()
 | 
						|
    * and assertions in raw_read()/raw_write().
 | 
						|
    */
 | 
						|
    if ((ri->type & ARM_CP_CONST) ||
 | 
						|
        ri->fieldoffset ||
 | 
						|
        ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool write_cpustate_to_list(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* Write the coprocessor state from cpu->env to the (index,value) list. */
 | 
						|
    int i;
 | 
						|
    bool ok = true;
 | 
						|
 | 
						|
    for (i = 0; i < cpu->cpreg_array_len; i++) {
 | 
						|
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 | 
						|
        const ARMCPRegInfo *ri;
 | 
						|
 | 
						|
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | 
						|
        if (!ri) {
 | 
						|
            ok = false;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        if (ri->type & ARM_CP_NO_RAW) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
 | 
						|
    }
 | 
						|
    return ok;
 | 
						|
}
 | 
						|
 | 
						|
bool write_list_to_cpustate(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    bool ok = true;
 | 
						|
 | 
						|
    for (i = 0; i < cpu->cpreg_array_len; i++) {
 | 
						|
        uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 | 
						|
        uint64_t v = cpu->cpreg_values[i];
 | 
						|
        const ARMCPRegInfo *ri;
 | 
						|
 | 
						|
        ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | 
						|
        if (!ri) {
 | 
						|
            ok = false;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        if (ri->type & ARM_CP_NO_RAW) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        /* Write value and confirm it reads back as written
 | 
						|
         * (to catch read-only registers and partially read-only
 | 
						|
         * registers where the incoming migration value doesn't match)
 | 
						|
         */
 | 
						|
        write_raw_cp_reg(&cpu->env, ri, v);
 | 
						|
        if (read_raw_cp_reg(&cpu->env, ri) != v) {
 | 
						|
            ok = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ok;
 | 
						|
}
 | 
						|
 | 
						|
static void add_cpreg_to_list(gpointer key, gpointer opaque)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = opaque;
 | 
						|
    uint64_t regidx;
 | 
						|
    const ARMCPRegInfo *ri;
 | 
						|
 | 
						|
    regidx = *(uint32_t *)key;
 | 
						|
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | 
						|
 | 
						|
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 | 
						|
        cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 | 
						|
        /* The value array need not be initialized at this point */
 | 
						|
        cpu->cpreg_array_len++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void count_cpreg(gpointer key, gpointer opaque)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = opaque;
 | 
						|
    uint64_t regidx;
 | 
						|
    const ARMCPRegInfo *ri;
 | 
						|
 | 
						|
    regidx = *(uint32_t *)key;
 | 
						|
    ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | 
						|
 | 
						|
    if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 | 
						|
        cpu->cpreg_array_len++;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 | 
						|
{
 | 
						|
    uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 | 
						|
    uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 | 
						|
 | 
						|
    if (aidx > bidx) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
    if (aidx < bidx) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void init_cpreg_list(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 | 
						|
     * Note that we require cpreg_tuples[] to be sorted by key ID.
 | 
						|
     */
 | 
						|
    GList *keys;
 | 
						|
    int arraylen;
 | 
						|
 | 
						|
    keys = g_hash_table_get_keys(cpu->cp_regs);
 | 
						|
    keys = g_list_sort(keys, cpreg_key_compare);
 | 
						|
 | 
						|
    cpu->cpreg_array_len = 0;
 | 
						|
 | 
						|
    g_list_foreach(keys, count_cpreg, cpu);
 | 
						|
 | 
						|
    arraylen = cpu->cpreg_array_len;
 | 
						|
    cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 | 
						|
    cpu->cpreg_values = g_new(uint64_t, arraylen);
 | 
						|
    cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 | 
						|
    cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 | 
						|
    cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 | 
						|
    cpu->cpreg_array_len = 0;
 | 
						|
 | 
						|
    g_list_foreach(keys, add_cpreg_to_list, cpu);
 | 
						|
 | 
						|
    assert(cpu->cpreg_array_len == arraylen);
 | 
						|
 | 
						|
    g_list_free(keys);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 | 
						|
 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 | 
						|
 *
 | 
						|
 * access_el3_aa32ns: Used to check AArch32 register views.
 | 
						|
 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 | 
						|
 */
 | 
						|
static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 | 
						|
                                        const ARMCPRegInfo *ri,
 | 
						|
                                        bool isread)
 | 
						|
{
 | 
						|
    bool secure = arm_is_secure_below_el3(env);
 | 
						|
 | 
						|
    assert(!arm_el_is_aa64(env, 3));
 | 
						|
    if (secure) {
 | 
						|
        return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
 | 
						|
                                                const ARMCPRegInfo *ri,
 | 
						|
                                                bool isread)
 | 
						|
{
 | 
						|
    if (!arm_el_is_aa64(env, 3)) {
 | 
						|
        return access_el3_aa32ns(env, ri, isread);
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Some secure-only AArch32 registers trap to EL3 if used from
 | 
						|
 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 | 
						|
 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 | 
						|
 * We assume that the .access field is set to PL1_RW.
 | 
						|
 */
 | 
						|
static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 | 
						|
                                            const ARMCPRegInfo *ri,
 | 
						|
                                            bool isread)
 | 
						|
{
 | 
						|
    if (arm_current_el(env) == 3) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
    if (arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
    /* This will be EL1 NS and EL2 NS, which just UNDEF */
 | 
						|
    return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
}
 | 
						|
 | 
						|
/* Check for traps to "powerdown debug" registers, which are controlled
 | 
						|
 * by MDCR.TDOSA
 | 
						|
 */
 | 
						|
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   bool isread)
 | 
						|
{
 | 
						|
    int el = arm_current_el(env);
 | 
						|
 | 
						|
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Check for traps to "debug ROM" registers, which are controlled
 | 
						|
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 | 
						|
 */
 | 
						|
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  bool isread)
 | 
						|
{
 | 
						|
    int el = arm_current_el(env);
 | 
						|
 | 
						|
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Check for traps to general debug registers, which are controlled
 | 
						|
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 | 
						|
 */
 | 
						|
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  bool isread)
 | 
						|
{
 | 
						|
    int el = arm_current_el(env);
 | 
						|
 | 
						|
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* Check for traps to performance monitor registers, which are controlled
 | 
						|
 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
 | 
						|
 */
 | 
						|
static CPAccessResult access_tpm(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 bool isread)
 | 
						|
{
 | 
						|
    int el = arm_current_el(env);
 | 
						|
 | 
						|
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    tlb_flush(CPU(cpu)); /* Flush TLB as domain not tracked in TLB */
 | 
						|
}
 | 
						|
 | 
						|
static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    if (raw_read(env, ri) != value) {
 | 
						|
        /* Unlike real hardware the qemu TLB uses virtual addresses,
 | 
						|
         * not modified virtual addresses, so this causes a TLB flush.
 | 
						|
         */
 | 
						|
        tlb_flush(CPU(cpu));
 | 
						|
        raw_write(env, ri, value);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_PMSA)
 | 
						|
        && !extended_addresses_enabled(env)) {
 | 
						|
        /* For VMSA (when not using the LPAE long descriptor page table
 | 
						|
         * format) this register includes the ASID, so do a TLB flush.
 | 
						|
         * For PMSA it is purely a process ID and no action is needed.
 | 
						|
         */
 | 
						|
        tlb_flush(CPU(cpu));
 | 
						|
    }
 | 
						|
    raw_write(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                          uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate all (TLBIALL) */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    tlb_flush(CPU(cpu));
 | 
						|
}
 | 
						|
 | 
						|
static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                          uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                           uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate by ASID (TLBIASID) */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    tlb_flush(CPU(cpu));
 | 
						|
}
 | 
						|
 | 
						|
static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                           uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 | 
						|
}
 | 
						|
 | 
						|
/* IS variants of TLB operations must affect all cores */
 | 
						|
static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_all_cpus_synced(cs);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_all_cpus_synced(cs);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_page_all_cpus_synced(cs, value & TARGET_PAGE_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiall_nsnh_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx(cs,
 | 
						|
                        ARMMMUIdxBit_S12NSE1 |
 | 
						|
                        ARMMMUIdxBit_S12NSE0 |
 | 
						|
                        ARMMMUIdxBit_S2NS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiall_nsnh_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | 
						|
                                        ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                        ARMMMUIdxBit_S12NSE0 |
 | 
						|
                                        ARMMMUIdxBit_S2NS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiipas2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate by IPA. This has to invalidate any structures that
 | 
						|
     * contain only stage 2 translation information, but does not need
 | 
						|
     * to apply to structures that contain combined stage 1 and stage 2
 | 
						|
     * translation information.
 | 
						|
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
 | 
						|
     */
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr;
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    pageaddr = sextract64(value << 12, 0, 40);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiipas2_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr;
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    pageaddr = sextract64(value << 12, 0, 40);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                             ARMMMUIdxBit_S2NS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiall_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbiall_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbimva_hyp_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbimva_hyp_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr = value & ~MAKE_64BIT_MASK(0, 12);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                             ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo cp_reginfo[] = {
 | 
						|
    /* Define the secure and non-secure FCSE identifier CP registers
 | 
						|
     * separately because there is no secure bank in V8 (no _EL3).  This allows
 | 
						|
     * the secure register to be properly reset and migrated. There is also no
 | 
						|
     * v8 EL1 version of the register so the non-secure instance stands alone.
 | 
						|
     */
 | 
						|
    { .name = "FCSEIDR(NS)",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 | 
						|
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 | 
						|
    { .name = "FCSEIDR(S)",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 | 
						|
      .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 | 
						|
    /* Define the secure and non-secure context identifier CP registers
 | 
						|
     * separately because there is no secure bank in V8 (no _EL3).  This allows
 | 
						|
     * the secure register to be properly reset and migrated.  In the
 | 
						|
     * non-secure case, the 32-bit register will have reset and migration
 | 
						|
     * disabled during registration as it is handled by the 64-bit instance.
 | 
						|
     */
 | 
						|
    { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 | 
						|
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 | 
						|
    { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 | 
						|
      .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 | 
						|
    /* NB: Some of these registers exist in v8 but with more precise
 | 
						|
     * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 | 
						|
     */
 | 
						|
    /* MMU Domain access control / MPU write buffer control */
 | 
						|
    { .name = "DACR",
 | 
						|
      .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .writefn = dacr_write, .raw_writefn = raw_write,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 | 
						|
    /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 | 
						|
     * For v6 and v5, these mappings are overly broad.
 | 
						|
     */
 | 
						|
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 | 
						|
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 | 
						|
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 | 
						|
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 | 
						|
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    /* Cache maintenance ops; some of this space may be overridden later. */
 | 
						|
    { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | 
						|
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | 
						|
      .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 | 
						|
    /* Not all pre-v6 cores implemented this WFI, so this is slightly
 | 
						|
     * over-broad.
 | 
						|
     */
 | 
						|
    { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_WFI },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 | 
						|
    /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 | 
						|
     * is UNPREDICTABLE; we choose to NOP as most implementations do).
 | 
						|
     */
 | 
						|
    { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | 
						|
      .access = PL1_W, .type = ARM_CP_WFI },
 | 
						|
    /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 | 
						|
     * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 | 
						|
     * OMAPCP will override this space.
 | 
						|
     */
 | 
						|
    { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 | 
						|
    { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 | 
						|
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 | 
						|
     * implementing it as RAZ means the "debug architecture version" bits
 | 
						|
     * will read as a reserved value, which should cause Linux to not try
 | 
						|
     * to use the debug hardware.
 | 
						|
     */
 | 
						|
    { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    /* MMU TLB control. Note that the wildcarding means we cover not just
 | 
						|
     * the unified TLB ops but also the dside/iside/inner-shareable variants.
 | 
						|
     */
 | 
						|
    { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 | 
						|
      .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 | 
						|
      .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | 
						|
      .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 | 
						|
      .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 | 
						|
      .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 | 
						|
      .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | 
						|
      .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 | 
						|
      .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 | 
						|
      .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 | 
						|
      .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    uint32_t mask = 0;
 | 
						|
 | 
						|
    /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 | 
						|
         * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 | 
						|
         * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_VFP)) {
 | 
						|
            /* VFP coprocessor: cp10 & cp11 [23:20] */
 | 
						|
            mask |= (1 << 31) | (1 << 30) | (0xf << 20);
 | 
						|
 | 
						|
            if (!arm_feature(env, ARM_FEATURE_NEON)) {
 | 
						|
                /* ASEDIS [31] bit is RAO/WI */
 | 
						|
                value |= (1 << 31);
 | 
						|
            }
 | 
						|
 | 
						|
            /* VFPv3 and upwards with NEON implement 32 double precision
 | 
						|
             * registers (D0-D31).
 | 
						|
             */
 | 
						|
            if (!arm_feature(env, ARM_FEATURE_NEON) ||
 | 
						|
                    !arm_feature(env, ARM_FEATURE_VFP3)) {
 | 
						|
                /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 | 
						|
                value |= (1 << 30);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        value &= mask;
 | 
						|
    }
 | 
						|
    env->cp15.cpacr_el1 = value;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   bool isread)
 | 
						|
{
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        /* Check if CPACR accesses are to be trapped to EL2 */
 | 
						|
        if (arm_current_el(env) == 1 &&
 | 
						|
            (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
 | 
						|
            return CP_ACCESS_TRAP_EL2;
 | 
						|
        /* Check if CPACR accesses are to be trapped to EL3 */
 | 
						|
        } else if (arm_current_el(env) < 3 &&
 | 
						|
                   (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 | 
						|
            return CP_ACCESS_TRAP_EL3;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  bool isread)
 | 
						|
{
 | 
						|
    /* Check if CPTR accesses are set to trap to EL3 */
 | 
						|
    if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo v6_cp_reginfo[] = {
 | 
						|
    /* prefetch by MVA in v6, NOP in v7 */
 | 
						|
    { .name = "MVA_prefetch",
 | 
						|
      .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    /* We need to break the TB after ISB to execute self-modifying code
 | 
						|
     * correctly and also to take any pending interrupts immediately.
 | 
						|
     * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 | 
						|
     */
 | 
						|
    { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 | 
						|
    { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
 | 
						|
                             offsetof(CPUARMState, cp15.ifar_ns) },
 | 
						|
      .resetvalue = 0, },
 | 
						|
    /* Watchpoint Fault Address Register : should actually only be present
 | 
						|
     * for 1136, 1176, 11MPCore.
 | 
						|
     */
 | 
						|
    { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 | 
						|
    { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
 | 
						|
      .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
 | 
						|
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
 | 
						|
      .resetvalue = 0, .writefn = cpacr_write },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   bool isread)
 | 
						|
{
 | 
						|
    /* Performance monitor registers user accessibility is controlled
 | 
						|
     * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
 | 
						|
     * trapping to EL2 or EL3 for other accesses.
 | 
						|
     */
 | 
						|
    int el = arm_current_el(env);
 | 
						|
 | 
						|
    if (el == 0 && !(env->cp15.c9_pmuserenr & 1)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TPM)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TPM)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult pmreg_access_xevcntr(CPUARMState *env,
 | 
						|
                                           const ARMCPRegInfo *ri,
 | 
						|
                                           bool isread)
 | 
						|
{
 | 
						|
    /* ER: event counter read trap control */
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)
 | 
						|
        && arm_current_el(env) == 0
 | 
						|
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0
 | 
						|
        && isread) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    return pmreg_access(env, ri, isread);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult pmreg_access_swinc(CPUARMState *env,
 | 
						|
                                         const ARMCPRegInfo *ri,
 | 
						|
                                         bool isread)
 | 
						|
{
 | 
						|
    /* SW: software increment write trap control */
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)
 | 
						|
        && arm_current_el(env) == 0
 | 
						|
        && (env->cp15.c9_pmuserenr & (1 << 1)) != 0
 | 
						|
        && !isread) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    return pmreg_access(env, ri, isread);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
 | 
						|
static CPAccessResult pmreg_access_selr(CPUARMState *env,
 | 
						|
                                        const ARMCPRegInfo *ri,
 | 
						|
                                        bool isread)
 | 
						|
{
 | 
						|
    /* ER: event counter read trap control */
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)
 | 
						|
        && arm_current_el(env) == 0
 | 
						|
        && (env->cp15.c9_pmuserenr & (1 << 3)) != 0) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    return pmreg_access(env, ri, isread);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult pmreg_access_ccntr(CPUARMState *env,
 | 
						|
                                         const ARMCPRegInfo *ri,
 | 
						|
                                         bool isread)
 | 
						|
{
 | 
						|
    /* CR: cycle counter read trap control */
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)
 | 
						|
        && arm_current_el(env) == 0
 | 
						|
        && (env->cp15.c9_pmuserenr & (1 << 2)) != 0
 | 
						|
        && isread) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
 | 
						|
    return pmreg_access(env, ri, isread);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool arm_ccnt_enabled(CPUARMState *env)
 | 
						|
{
 | 
						|
    /* This does not support checking PMCCFILTR_EL0 register */
 | 
						|
 | 
						|
    if (!(env->cp15.c9_pmcr & PMCRE)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
void pmccntr_sync(CPUARMState *env)
 | 
						|
{
 | 
						|
    uint64_t temp_ticks;
 | 
						|
 | 
						|
    temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | 
						|
                          ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | 
						|
 | 
						|
    if (env->cp15.c9_pmcr & PMCRD) {
 | 
						|
        /* Increment once every 64 processor clock cycles */
 | 
						|
        temp_ticks /= 64;
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_ccnt_enabled(env)) {
 | 
						|
        env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                       uint64_t value)
 | 
						|
{
 | 
						|
    pmccntr_sync(env);
 | 
						|
 | 
						|
    if (value & PMCRC) {
 | 
						|
        /* The counter has been reset */
 | 
						|
        env->cp15.c15_ccnt = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* only the DP, X, D and E bits are writable */
 | 
						|
    env->cp15.c9_pmcr &= ~0x39;
 | 
						|
    env->cp15.c9_pmcr |= (value & 0x39);
 | 
						|
 | 
						|
    pmccntr_sync(env);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    uint64_t total_ticks;
 | 
						|
 | 
						|
    if (!arm_ccnt_enabled(env)) {
 | 
						|
        /* Counter is disabled, do not change value */
 | 
						|
        return env->cp15.c15_ccnt;
 | 
						|
    }
 | 
						|
 | 
						|
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | 
						|
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | 
						|
 | 
						|
    if (env->cp15.c9_pmcr & PMCRD) {
 | 
						|
        /* Increment once every 64 processor clock cycles */
 | 
						|
        total_ticks /= 64;
 | 
						|
    }
 | 
						|
    return total_ticks - env->cp15.c15_ccnt;
 | 
						|
}
 | 
						|
 | 
						|
static void pmselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
 | 
						|
     * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
 | 
						|
     * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
 | 
						|
     * accessed.
 | 
						|
     */
 | 
						|
    env->cp15.c9_pmselr = value & 0x1f;
 | 
						|
}
 | 
						|
 | 
						|
static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    uint64_t total_ticks;
 | 
						|
 | 
						|
    if (!arm_ccnt_enabled(env)) {
 | 
						|
        /* Counter is disabled, set the absolute value */
 | 
						|
        env->cp15.c15_ccnt = value;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | 
						|
                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | 
						|
 | 
						|
    if (env->cp15.c9_pmcr & PMCRD) {
 | 
						|
        /* Increment once every 64 processor clock cycles */
 | 
						|
        total_ticks /= 64;
 | 
						|
    }
 | 
						|
    env->cp15.c15_ccnt = total_ticks - value;
 | 
						|
}
 | 
						|
 | 
						|
static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    uint64_t cur_val = pmccntr_read(env, NULL);
 | 
						|
 | 
						|
    pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
 | 
						|
}
 | 
						|
 | 
						|
#else /* CONFIG_USER_ONLY */
 | 
						|
 | 
						|
void pmccntr_sync(CPUARMState *env)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    pmccntr_sync(env);
 | 
						|
    env->cp15.pmccfiltr_el0 = value & 0x7E000000;
 | 
						|
    pmccntr_sync(env);
 | 
						|
}
 | 
						|
 | 
						|
static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    value &= (1 << 31);
 | 
						|
    env->cp15.c9_pmcnten |= value;
 | 
						|
}
 | 
						|
 | 
						|
static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    value &= (1 << 31);
 | 
						|
    env->cp15.c9_pmcnten &= ~value;
 | 
						|
}
 | 
						|
 | 
						|
static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.c9_pmovsr &= ~value;
 | 
						|
}
 | 
						|
 | 
						|
static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
 | 
						|
     * PMSELR value is equal to or greater than the number of implemented
 | 
						|
     * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
 | 
						|
     */
 | 
						|
    if (env->cp15.c9_pmselr == 0x1f) {
 | 
						|
        pmccfiltr_write(env, ri, value);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t pmxevtyper_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
 | 
						|
     * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
 | 
						|
     */
 | 
						|
    if (env->cp15.c9_pmselr == 0x1f) {
 | 
						|
        return env->cp15.pmccfiltr_el0;
 | 
						|
    } else {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        env->cp15.c9_pmuserenr = value & 0xf;
 | 
						|
    } else {
 | 
						|
        env->cp15.c9_pmuserenr = value & 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    /* We have no event counters so only the C bit can be changed */
 | 
						|
    value &= (1 << 31);
 | 
						|
    env->cp15.c9_pminten |= value;
 | 
						|
}
 | 
						|
 | 
						|
static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    value &= (1 << 31);
 | 
						|
    env->cp15.c9_pminten &= ~value;
 | 
						|
}
 | 
						|
 | 
						|
static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                       uint64_t value)
 | 
						|
{
 | 
						|
    /* Note that even though the AArch64 view of this register has bits
 | 
						|
     * [10:0] all RES0 we can only mask the bottom 5, to comply with the
 | 
						|
     * architectural requirements for bits which are RES0 only in some
 | 
						|
     * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
 | 
						|
     * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
 | 
						|
     */
 | 
						|
    raw_write(env, ri, value & ~0x1FULL);
 | 
						|
}
 | 
						|
 | 
						|
static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | 
						|
{
 | 
						|
    /* We only mask off bits that are RES0 both for AArch64 and AArch32.
 | 
						|
     * For bits that vary between AArch32/64, code needs to check the
 | 
						|
     * current execution mode before directly using the feature bit.
 | 
						|
     */
 | 
						|
    uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
        valid_mask &= ~SCR_HCE;
 | 
						|
 | 
						|
        /* On ARMv7, SMD (or SCD as it is called in v7) is only
 | 
						|
         * supported if EL2 exists. The bit is UNK/SBZP when
 | 
						|
         * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
 | 
						|
         * when EL2 is unavailable.
 | 
						|
         * On ARMv8, this bit is always available.
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V7) &&
 | 
						|
            !arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
            valid_mask &= ~SCR_SMD;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clear all-context RES0 bits.  */
 | 
						|
    value &= valid_mask;
 | 
						|
    raw_write(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
 | 
						|
     * bank
 | 
						|
     */
 | 
						|
    uint32_t index = A32_BANKED_REG_GET(env, csselr,
 | 
						|
                                        ri->secure & ARM_CP_SECSTATE_S);
 | 
						|
 | 
						|
    return cpu->ccsidr[index];
 | 
						|
}
 | 
						|
 | 
						|
static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    raw_write(env, ri, value & 0xf);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t ret = 0;
 | 
						|
 | 
						|
    if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
 | 
						|
        ret |= CPSR_I;
 | 
						|
    }
 | 
						|
    if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
 | 
						|
        ret |= CPSR_F;
 | 
						|
    }
 | 
						|
    /* External aborts are not possible in QEMU so A bit is always clear */
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo v7_cp_reginfo[] = {
 | 
						|
    /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
 | 
						|
    { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    /* Performance monitors are implementation defined in v7,
 | 
						|
     * but with an ARM recommended set of registers, which we
 | 
						|
     * follow (although we don't actually implement any counters)
 | 
						|
     *
 | 
						|
     * Performance registers fall into three categories:
 | 
						|
     *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
 | 
						|
     *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
 | 
						|
     *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
 | 
						|
     * For the cases controlled by PMUSERENR we must set .access to PL0_RW
 | 
						|
     * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
 | 
						|
     */
 | 
						|
    { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL0_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
 | 
						|
      .writefn = pmcntenset_write,
 | 
						|
      .accessfn = pmreg_access,
 | 
						|
      .raw_writefn = raw_write },
 | 
						|
    { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
 | 
						|
      .access = PL0_RW, .accessfn = pmreg_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
 | 
						|
      .writefn = pmcntenset_write, .raw_writefn = raw_write },
 | 
						|
    { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL0_RW,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
 | 
						|
      .accessfn = pmreg_access,
 | 
						|
      .writefn = pmcntenclr_write,
 | 
						|
      .type = ARM_CP_ALIAS },
 | 
						|
    { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
 | 
						|
      .access = PL0_RW, .accessfn = pmreg_access,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 | 
						|
      .writefn = pmcntenclr_write },
 | 
						|
    { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
 | 
						|
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | 
						|
      .accessfn = pmreg_access,
 | 
						|
      .writefn = pmovsr_write,
 | 
						|
      .raw_writefn = raw_write },
 | 
						|
    { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
 | 
						|
      .access = PL0_RW, .accessfn = pmreg_access,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | 
						|
      .writefn = pmovsr_write,
 | 
						|
      .raw_writefn = raw_write },
 | 
						|
    /* Unimplemented so WI. */
 | 
						|
    { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
 | 
						|
      .access = PL0_W, .accessfn = pmreg_access_swinc, .type = ARM_CP_NOP },
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
 | 
						|
      .access = PL0_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmselr),
 | 
						|
      .accessfn = pmreg_access_selr, .writefn = pmselr_write,
 | 
						|
      .raw_writefn = raw_write},
 | 
						|
    { .name = "PMSELR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 5,
 | 
						|
      .access = PL0_RW, .accessfn = pmreg_access_selr,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmselr),
 | 
						|
      .writefn = pmselr_write, .raw_writefn = raw_write, },
 | 
						|
    { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
 | 
						|
      .readfn = pmccntr_read, .writefn = pmccntr_write32,
 | 
						|
      .accessfn = pmreg_access_ccntr },
 | 
						|
    { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
 | 
						|
      .access = PL0_RW, .accessfn = pmreg_access_ccntr,
 | 
						|
      .type = ARM_CP_IO,
 | 
						|
      .readfn = pmccntr_read, .writefn = pmccntr_write, },
 | 
						|
#endif
 | 
						|
    { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
 | 
						|
      .writefn = pmccfiltr_write,
 | 
						|
      .access = PL0_RW, .accessfn = pmreg_access,
 | 
						|
      .type = ARM_CP_IO,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
 | 
						|
      .resetvalue = 0, },
 | 
						|
    { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
 | 
						|
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
 | 
						|
    { .name = "PMXEVTYPER_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 1,
 | 
						|
      .access = PL0_RW, .type = ARM_CP_NO_RAW, .accessfn = pmreg_access,
 | 
						|
      .writefn = pmxevtyper_write, .readfn = pmxevtyper_read },
 | 
						|
    /* Unimplemented, RAZ/WI. */
 | 
						|
    { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
 | 
						|
      .accessfn = pmreg_access_xevcntr },
 | 
						|
    { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL0_R | PL1_RW, .accessfn = access_tpm,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
 | 
						|
    { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
 | 
						|
      .access = PL0_R | PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = pmuserenr_write, .raw_writefn = raw_write },
 | 
						|
    { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .accessfn = access_tpm,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pminten),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = pmintenset_write, .raw_writefn = raw_write },
 | 
						|
    { .name = "PMINTENSET_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .accessfn = access_tpm,
 | 
						|
      .type = ARM_CP_IO,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | 
						|
      .writefn = pmintenset_write, .raw_writefn = raw_write,
 | 
						|
      .resetvalue = 0x0 },
 | 
						|
    { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | 
						|
      .writefn = pmintenclr_write, },
 | 
						|
    { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
 | 
						|
      .access = PL1_RW, .accessfn = access_tpm, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | 
						|
      .writefn = pmintenclr_write },
 | 
						|
    { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
 | 
						|
      .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
 | 
						|
                             offsetof(CPUARMState, cp15.csselr_ns) } },
 | 
						|
    /* Auxiliary ID register: this actually has an IMPDEF value but for now
 | 
						|
     * just RAZ for all cores:
 | 
						|
     */
 | 
						|
    { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
 | 
						|
      .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    /* Auxiliary fault status registers: these also are IMPDEF, and we
 | 
						|
     * choose to RAZ/WI for all cores.
 | 
						|
     */
 | 
						|
    { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    /* MAIR can just read-as-written because we don't implement caches
 | 
						|
     * and so don't need to care about memory attributes.
 | 
						|
     */
 | 
						|
    { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* For non-long-descriptor page tables these are PRRR and NMRR;
 | 
						|
     * regardless they still act as reads-as-written for QEMU.
 | 
						|
     */
 | 
						|
     /* MAIR0/1 are defined separately from their 64-bit counterpart which
 | 
						|
      * allows them to assign the correct fieldoffset based on the endianness
 | 
						|
      * handled in the field definitions.
 | 
						|
      */
 | 
						|
    { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
 | 
						|
                             offsetof(CPUARMState, cp15.mair0_ns) },
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
 | 
						|
                             offsetof(CPUARMState, cp15.mair1_ns) },
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
 | 
						|
    /* 32 bit ITLB invalidates */
 | 
						|
    { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
 | 
						|
    { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | 
						|
    { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
 | 
						|
    /* 32 bit DTLB invalidates */
 | 
						|
    { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
 | 
						|
    { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | 
						|
    { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
 | 
						|
    /* 32 bit TLB invalidates */
 | 
						|
    { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
 | 
						|
    { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | 
						|
    { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
 | 
						|
    { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo v7mp_cp_reginfo[] = {
 | 
						|
    /* 32 bit TLB invalidates, Inner Shareable */
 | 
						|
    { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
 | 
						|
    { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
 | 
						|
    { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W,
 | 
						|
      .writefn = tlbiasid_is_write },
 | 
						|
    { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W,
 | 
						|
      .writefn = tlbimvaa_is_write },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    value &= 1;
 | 
						|
    env->teecr = value;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    bool isread)
 | 
						|
{
 | 
						|
    if (arm_current_el(env) == 0 && (env->teecr & 1)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo t2ee_cp_reginfo[] = {
 | 
						|
    { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = teecr_write },
 | 
						|
    { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
 | 
						|
      .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
 | 
						|
      .accessfn = teehbr_access, .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo v6k_cp_reginfo[] = {
 | 
						|
    { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
 | 
						|
      .access = PL0_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
 | 
						|
    { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL0_RW,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
 | 
						|
      .access = PL0_R|PL1_W,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
 | 
						|
      .resetvalue = 0},
 | 
						|
    { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
 | 
						|
      .access = PL0_R|PL1_W,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
 | 
						|
    { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
 | 
						|
      .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
 | 
						|
static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                       bool isread)
 | 
						|
{
 | 
						|
    /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
 | 
						|
     * Writable only at the highest implemented exception level.
 | 
						|
     */
 | 
						|
    int el = arm_current_el(env);
 | 
						|
 | 
						|
    switch (el) {
 | 
						|
    case 0:
 | 
						|
        if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
 | 
						|
            return CP_ACCESS_TRAP;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        if (!isread && ri->state == ARM_CP_STATE_AA32 &&
 | 
						|
            arm_is_secure_below_el3(env)) {
 | 
						|
            /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
 | 
						|
            return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
    case 3:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!isread && el < arm_highest_el(env)) {
 | 
						|
        return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
    }
 | 
						|
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
 | 
						|
                                        bool isread)
 | 
						|
{
 | 
						|
    unsigned int cur_el = arm_current_el(env);
 | 
						|
    bool secure = arm_is_secure(env);
 | 
						|
 | 
						|
    /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
 | 
						|
    if (cur_el == 0 &&
 | 
						|
        !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL2) &&
 | 
						|
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
 | 
						|
        !extract32(env->cp15.cnthctl_el2, 0, 1)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
 | 
						|
                                      bool isread)
 | 
						|
{
 | 
						|
    unsigned int cur_el = arm_current_el(env);
 | 
						|
    bool secure = arm_is_secure(env);
 | 
						|
 | 
						|
    /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
 | 
						|
     * EL0[PV]TEN is zero.
 | 
						|
     */
 | 
						|
    if (cur_el == 0 &&
 | 
						|
        !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL2) &&
 | 
						|
        timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
 | 
						|
        !extract32(env->cp15.cnthctl_el2, 1, 1)) {
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_pct_access(CPUARMState *env,
 | 
						|
                                    const ARMCPRegInfo *ri,
 | 
						|
                                    bool isread)
 | 
						|
{
 | 
						|
    return gt_counter_access(env, GTIMER_PHYS, isread);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_vct_access(CPUARMState *env,
 | 
						|
                                    const ARMCPRegInfo *ri,
 | 
						|
                                    bool isread)
 | 
						|
{
 | 
						|
    return gt_counter_access(env, GTIMER_VIRT, isread);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                       bool isread)
 | 
						|
{
 | 
						|
    return gt_timer_access(env, GTIMER_PHYS, isread);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                       bool isread)
 | 
						|
{
 | 
						|
    return gt_timer_access(env, GTIMER_VIRT, isread);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult gt_stimer_access(CPUARMState *env,
 | 
						|
                                       const ARMCPRegInfo *ri,
 | 
						|
                                       bool isread)
 | 
						|
{
 | 
						|
    /* The AArch64 register view of the secure physical timer is
 | 
						|
     * always accessible from EL3, and configurably accessible from
 | 
						|
     * Secure EL1.
 | 
						|
     */
 | 
						|
    switch (arm_current_el(env)) {
 | 
						|
    case 1:
 | 
						|
        if (!arm_is_secure(env)) {
 | 
						|
            return CP_ACCESS_TRAP;
 | 
						|
        }
 | 
						|
        if (!(env->cp15.scr_el3 & SCR_ST)) {
 | 
						|
            return CP_ACCESS_TRAP_EL3;
 | 
						|
        }
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    case 0:
 | 
						|
    case 2:
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    case 3:
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_get_countervalue(CPUARMState *env)
 | 
						|
{
 | 
						|
    return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
 | 
						|
}
 | 
						|
 | 
						|
static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
 | 
						|
{
 | 
						|
    ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
 | 
						|
 | 
						|
    if (gt->ctl & 1) {
 | 
						|
        /* Timer enabled: calculate and set current ISTATUS, irq, and
 | 
						|
         * reset timer to when ISTATUS next has to change
 | 
						|
         */
 | 
						|
        uint64_t offset = timeridx == GTIMER_VIRT ?
 | 
						|
                                      cpu->env.cp15.cntvoff_el2 : 0;
 | 
						|
        uint64_t count = gt_get_countervalue(&cpu->env);
 | 
						|
        /* Note that this must be unsigned 64 bit arithmetic: */
 | 
						|
        int istatus = count - offset >= gt->cval;
 | 
						|
        uint64_t nexttick;
 | 
						|
        int irqstate;
 | 
						|
 | 
						|
        gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
 | 
						|
 | 
						|
        irqstate = (istatus && !(gt->ctl & 2));
 | 
						|
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
 | 
						|
 | 
						|
        if (istatus) {
 | 
						|
            /* Next transition is when count rolls back over to zero */
 | 
						|
            nexttick = UINT64_MAX;
 | 
						|
        } else {
 | 
						|
            /* Next transition is when we hit cval */
 | 
						|
            nexttick = gt->cval + offset;
 | 
						|
        }
 | 
						|
        /* Note that the desired next expiry time might be beyond the
 | 
						|
         * signed-64-bit range of a QEMUTimer -- in this case we just
 | 
						|
         * set the timer for as far in the future as possible. When the
 | 
						|
         * timer expires we will reset the timer for any remaining period.
 | 
						|
         */
 | 
						|
        if (nexttick > INT64_MAX / GTIMER_SCALE) {
 | 
						|
            nexttick = INT64_MAX / GTIMER_SCALE;
 | 
						|
        }
 | 
						|
        timer_mod(cpu->gt_timer[timeridx], nexttick);
 | 
						|
        trace_arm_gt_recalc(timeridx, irqstate, nexttick);
 | 
						|
    } else {
 | 
						|
        /* Timer disabled: ISTATUS and timer output always clear */
 | 
						|
        gt->ctl &= ~4;
 | 
						|
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
 | 
						|
        timer_del(cpu->gt_timer[timeridx]);
 | 
						|
        trace_arm_gt_recalc_disabled(timeridx);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                           int timeridx)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    timer_del(cpu->gt_timer[timeridx]);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return gt_get_countervalue(env);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
 | 
						|
}
 | 
						|
 | 
						|
static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                          int timeridx,
 | 
						|
                          uint64_t value)
 | 
						|
{
 | 
						|
    trace_arm_gt_cval_write(timeridx, value);
 | 
						|
    env->cp15.c14_timer[timeridx].cval = value;
 | 
						|
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             int timeridx)
 | 
						|
{
 | 
						|
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
 | 
						|
 | 
						|
    return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
 | 
						|
                      (gt_get_countervalue(env) - offset));
 | 
						|
}
 | 
						|
 | 
						|
static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                          int timeridx,
 | 
						|
                          uint64_t value)
 | 
						|
{
 | 
						|
    uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
 | 
						|
 | 
						|
    trace_arm_gt_tval_write(timeridx, value);
 | 
						|
    env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
 | 
						|
                                         sextract64(value, 0, 32);
 | 
						|
    gt_recalc_timer(arm_env_get_cpu(env), timeridx);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         int timeridx,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
 | 
						|
 | 
						|
    trace_arm_gt_ctl_write(timeridx, value);
 | 
						|
    env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
 | 
						|
    if ((oldval ^ value) & 1) {
 | 
						|
        /* Enable toggled */
 | 
						|
        gt_recalc_timer(cpu, timeridx);
 | 
						|
    } else if ((oldval ^ value) & 2) {
 | 
						|
        /* IMASK toggled: don't need to recalculate,
 | 
						|
         * just set the interrupt line based on ISTATUS
 | 
						|
         */
 | 
						|
        int irqstate = (oldval & 4) && !(value & 2);
 | 
						|
 | 
						|
        trace_arm_gt_imask_toggle(timeridx, irqstate);
 | 
						|
        qemu_set_irq(cpu->gt_timer_outputs[timeridx], irqstate);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    gt_timer_reset(env, ri, GTIMER_PHYS);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    gt_cval_write(env, ri, GTIMER_PHYS, value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return gt_tval_read(env, ri, GTIMER_PHYS);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    gt_tval_write(env, ri, GTIMER_PHYS, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_ctl_write(env, ri, GTIMER_PHYS, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    gt_timer_reset(env, ri, GTIMER_VIRT);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    gt_cval_write(env, ri, GTIMER_VIRT, value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return gt_tval_read(env, ri, GTIMER_VIRT);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    gt_tval_write(env, ri, GTIMER_VIRT, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_ctl_write(env, ri, GTIMER_VIRT, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    trace_arm_gt_cntvoff_write(value);
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    gt_recalc_timer(cpu, GTIMER_VIRT);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    gt_timer_reset(env, ri, GTIMER_HYP);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_cval_write(env, ri, GTIMER_HYP, value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return gt_tval_read(env, ri, GTIMER_HYP);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_tval_write(env, ri, GTIMER_HYP, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_ctl_write(env, ri, GTIMER_HYP, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    gt_timer_reset(env, ri, GTIMER_SEC);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_cval_write(env, ri, GTIMER_SEC, value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return gt_tval_read(env, ri, GTIMER_SEC);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_tval_write(env, ri, GTIMER_SEC, value);
 | 
						|
}
 | 
						|
 | 
						|
static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    gt_ctl_write(env, ri, GTIMER_SEC, value);
 | 
						|
}
 | 
						|
 | 
						|
void arm_gt_ptimer_cb(void *opaque)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = opaque;
 | 
						|
 | 
						|
    gt_recalc_timer(cpu, GTIMER_PHYS);
 | 
						|
}
 | 
						|
 | 
						|
void arm_gt_vtimer_cb(void *opaque)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = opaque;
 | 
						|
 | 
						|
    gt_recalc_timer(cpu, GTIMER_VIRT);
 | 
						|
}
 | 
						|
 | 
						|
void arm_gt_htimer_cb(void *opaque)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = opaque;
 | 
						|
 | 
						|
    gt_recalc_timer(cpu, GTIMER_HYP);
 | 
						|
}
 | 
						|
 | 
						|
void arm_gt_stimer_cb(void *opaque)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = opaque;
 | 
						|
 | 
						|
    gt_recalc_timer(cpu, GTIMER_SEC);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | 
						|
    /* Note that CNTFRQ is purely reads-as-written for the benefit
 | 
						|
     * of software; writing it doesn't actually change the timer frequency.
 | 
						|
     * Our reset value matches the fixed frequency we implement the timer at.
 | 
						|
     */
 | 
						|
    { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
 | 
						|
    },
 | 
						|
    { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
 | 
						|
      .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
 | 
						|
    },
 | 
						|
    /* overall control: mostly access permissions */
 | 
						|
    { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
 | 
						|
      .resetvalue = 0,
 | 
						|
    },
 | 
						|
    /* per-timer control */
 | 
						|
    { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
 | 
						|
      .secure = ARM_CP_SECSTATE_NS,
 | 
						|
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState,
 | 
						|
                                   cp15.c14_timer[GTIMER_PHYS].ctl),
 | 
						|
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTP_CTL(S)",
 | 
						|
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
 | 
						|
      .secure = ARM_CP_SECSTATE_S,
 | 
						|
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState,
 | 
						|
                                   cp15.c14_timer[GTIMER_SEC].ctl),
 | 
						|
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
 | 
						|
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
 | 
						|
      .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_vtimer_access,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState,
 | 
						|
                                   cp15.c14_timer[GTIMER_VIRT].ctl),
 | 
						|
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
 | 
						|
      .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_vtimer_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    /* TimerValue views: a 32 bit downcounting view of the underlying state */
 | 
						|
    { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
 | 
						|
      .secure = ARM_CP_SECSTATE_NS,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTP_TVAL(S)",
 | 
						|
      .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
 | 
						|
      .secure = ARM_CP_SECSTATE_S,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
 | 
						|
      .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_vtimer_access,
 | 
						|
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | 
						|
      .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
 | 
						|
      .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
 | 
						|
    },
 | 
						|
    /* The counter itself */
 | 
						|
    { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
 | 
						|
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
 | 
						|
      .accessfn = gt_pct_access,
 | 
						|
      .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
 | 
						|
    },
 | 
						|
    { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | 
						|
      .accessfn = gt_pct_access, .readfn = gt_cnt_read,
 | 
						|
    },
 | 
						|
    { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
 | 
						|
      .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
 | 
						|
      .accessfn = gt_vct_access,
 | 
						|
      .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
 | 
						|
    },
 | 
						|
    { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | 
						|
      .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
 | 
						|
    },
 | 
						|
    /* Comparison value, indicating when the timer goes off */
 | 
						|
    { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
 | 
						|
      .secure = ARM_CP_SECSTATE_NS,
 | 
						|
      .access = PL1_RW | PL0_R,
 | 
						|
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
 | 
						|
      .secure = ARM_CP_SECSTATE_S,
 | 
						|
      .access = PL1_RW | PL0_R,
 | 
						|
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
 | 
						|
      .accessfn = gt_ptimer_access,
 | 
						|
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
 | 
						|
      .access = PL1_RW | PL0_R,
 | 
						|
      .type = ARM_CP_IO,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | 
						|
      .resetvalue = 0, .accessfn = gt_ptimer_access,
 | 
						|
      .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
 | 
						|
      .access = PL1_RW | PL0_R,
 | 
						|
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | 
						|
      .accessfn = gt_vtimer_access,
 | 
						|
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
 | 
						|
      .access = PL1_RW | PL0_R,
 | 
						|
      .type = ARM_CP_IO,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | 
						|
      .resetvalue = 0, .accessfn = gt_vtimer_access,
 | 
						|
      .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    /* Secure timer -- this is actually restricted to only EL3
 | 
						|
     * and configurably Secure-EL1 via the accessfn.
 | 
						|
     */
 | 
						|
    { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
 | 
						|
      .accessfn = gt_stimer_access,
 | 
						|
      .readfn = gt_sec_tval_read,
 | 
						|
      .writefn = gt_sec_tval_write,
 | 
						|
      .resetfn = gt_sec_timer_reset,
 | 
						|
    },
 | 
						|
    { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
 | 
						|
      .type = ARM_CP_IO, .access = PL1_RW,
 | 
						|
      .accessfn = gt_stimer_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
 | 
						|
      .type = ARM_CP_IO, .access = PL1_RW,
 | 
						|
      .accessfn = gt_stimer_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
 | 
						|
      .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
 | 
						|
    },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
#else
 | 
						|
/* In user-mode none of the generic timer registers are accessible,
 | 
						|
 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
 | 
						|
 * so instead just don't register any of them.
 | 
						|
 */
 | 
						|
static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | 
						|
{
 | 
						|
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | 
						|
        raw_write(env, ri, value);
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
        raw_write(env, ri, value & 0xfffff6ff);
 | 
						|
    } else {
 | 
						|
        raw_write(env, ri, value & 0xfffff1ff);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
/* get_phys_addr() isn't present for user-mode-only targets */
 | 
						|
 | 
						|
static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 bool isread)
 | 
						|
{
 | 
						|
    if (ri->opc2 & 4) {
 | 
						|
        /* The ATS12NSO* operations must trap to EL3 if executed in
 | 
						|
         * Secure EL1 (which can only happen if EL3 is AArch64).
 | 
						|
         * They are simply UNDEF if executed from NS EL1.
 | 
						|
         * They function normally from EL2 or EL3.
 | 
						|
         */
 | 
						|
        if (arm_current_el(env) == 1) {
 | 
						|
            if (arm_is_secure_below_el3(env)) {
 | 
						|
                return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
 | 
						|
            }
 | 
						|
            return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
 | 
						|
                             MMUAccessType access_type, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    hwaddr phys_addr;
 | 
						|
    target_ulong page_size;
 | 
						|
    int prot;
 | 
						|
    bool ret;
 | 
						|
    uint64_t par64;
 | 
						|
    bool format64 = false;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    ARMMMUFaultInfo fi = {};
 | 
						|
    ARMCacheAttrs cacheattrs = {};
 | 
						|
 | 
						|
    ret = get_phys_addr(env, value, access_type, mmu_idx, &phys_addr, &attrs,
 | 
						|
                        &prot, &page_size, &fi, &cacheattrs);
 | 
						|
 | 
						|
    if (is_a64(env)) {
 | 
						|
        format64 = true;
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | 
						|
        /*
 | 
						|
         * ATS1Cxx:
 | 
						|
         * * TTBCR.EAE determines whether the result is returned using the
 | 
						|
         *   32-bit or the 64-bit PAR format
 | 
						|
         * * Instructions executed in Hyp mode always use the 64bit format
 | 
						|
         *
 | 
						|
         * ATS1S2NSOxx uses the 64bit format if any of the following is true:
 | 
						|
         * * The Non-secure TTBCR.EAE bit is set to 1
 | 
						|
         * * The implementation includes EL2, and the value of HCR.VM is 1
 | 
						|
         *
 | 
						|
         * ATS1Hx always uses the 64bit format (not supported yet).
 | 
						|
         */
 | 
						|
        format64 = arm_s1_regime_using_lpae_format(env, mmu_idx);
 | 
						|
 | 
						|
        if (arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
            if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
 | 
						|
                format64 |= env->cp15.hcr_el2 & HCR_VM;
 | 
						|
            } else {
 | 
						|
                format64 |= arm_current_el(env) == 2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (format64) {
 | 
						|
        /* Create a 64-bit PAR */
 | 
						|
        par64 = (1 << 11); /* LPAE bit always set */
 | 
						|
        if (!ret) {
 | 
						|
            par64 |= phys_addr & ~0xfffULL;
 | 
						|
            if (!attrs.secure) {
 | 
						|
                par64 |= (1 << 9); /* NS */
 | 
						|
            }
 | 
						|
            par64 |= (uint64_t)cacheattrs.attrs << 56; /* ATTR */
 | 
						|
            par64 |= cacheattrs.shareability << 7; /* SH */
 | 
						|
        } else {
 | 
						|
            uint32_t fsr = arm_fi_to_lfsc(&fi);
 | 
						|
 | 
						|
            par64 |= 1; /* F */
 | 
						|
            par64 |= (fsr & 0x3f) << 1; /* FS */
 | 
						|
            /* Note that S2WLK and FSTAGE are always zero, because we don't
 | 
						|
             * implement virtualization and therefore there can't be a stage 2
 | 
						|
             * fault.
 | 
						|
             */
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* fsr is a DFSR/IFSR value for the short descriptor
 | 
						|
         * translation table format (with WnR always clear).
 | 
						|
         * Convert it to a 32-bit PAR.
 | 
						|
         */
 | 
						|
        if (!ret) {
 | 
						|
            /* We do not set any attribute bits in the PAR */
 | 
						|
            if (page_size == (1 << 24)
 | 
						|
                && arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
                par64 = (phys_addr & 0xff000000) | (1 << 1);
 | 
						|
            } else {
 | 
						|
                par64 = phys_addr & 0xfffff000;
 | 
						|
            }
 | 
						|
            if (!attrs.secure) {
 | 
						|
                par64 |= (1 << 9); /* NS */
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            uint32_t fsr = arm_fi_to_sfsc(&fi);
 | 
						|
 | 
						|
            par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
 | 
						|
                    ((fsr & 0xf) << 1) | 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return par64;
 | 
						|
}
 | 
						|
 | 
						|
static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | 
						|
{
 | 
						|
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | 
						|
    uint64_t par64;
 | 
						|
    ARMMMUIdx mmu_idx;
 | 
						|
    int el = arm_current_el(env);
 | 
						|
    bool secure = arm_is_secure_below_el3(env);
 | 
						|
 | 
						|
    switch (ri->opc2 & 6) {
 | 
						|
    case 0:
 | 
						|
        /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
 | 
						|
        switch (el) {
 | 
						|
        case 3:
 | 
						|
            mmu_idx = ARMMMUIdx_S1E3;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            mmu_idx = ARMMMUIdx_S1NSE1;
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
 | 
						|
        switch (el) {
 | 
						|
        case 3:
 | 
						|
            mmu_idx = ARMMMUIdx_S1SE0;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            mmu_idx = ARMMMUIdx_S1NSE0;
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 4:
 | 
						|
        /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
 | 
						|
        mmu_idx = ARMMMUIdx_S12NSE1;
 | 
						|
        break;
 | 
						|
    case 6:
 | 
						|
        /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
 | 
						|
        mmu_idx = ARMMMUIdx_S12NSE0;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    par64 = do_ats_write(env, value, access_type, mmu_idx);
 | 
						|
 | 
						|
    A32_BANKED_CURRENT_REG_SET(env, par, par64);
 | 
						|
}
 | 
						|
 | 
						|
static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | 
						|
    uint64_t par64;
 | 
						|
 | 
						|
    par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
 | 
						|
 | 
						|
    A32_BANKED_CURRENT_REG_SET(env, par, par64);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                     bool isread)
 | 
						|
{
 | 
						|
    if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    MMUAccessType access_type = ri->opc2 & 1 ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | 
						|
    ARMMMUIdx mmu_idx;
 | 
						|
    int secure = arm_is_secure_below_el3(env);
 | 
						|
 | 
						|
    switch (ri->opc2 & 6) {
 | 
						|
    case 0:
 | 
						|
        switch (ri->opc1) {
 | 
						|
        case 0: /* AT S1E1R, AT S1E1W */
 | 
						|
            mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
 | 
						|
            break;
 | 
						|
        case 4: /* AT S1E2R, AT S1E2W */
 | 
						|
            mmu_idx = ARMMMUIdx_S1E2;
 | 
						|
            break;
 | 
						|
        case 6: /* AT S1E3R, AT S1E3W */
 | 
						|
            mmu_idx = ARMMMUIdx_S1E3;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 2: /* AT S1E0R, AT S1E0W */
 | 
						|
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
 | 
						|
        break;
 | 
						|
    case 4: /* AT S12E1R, AT S12E1W */
 | 
						|
        mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
 | 
						|
        break;
 | 
						|
    case 6: /* AT S12E0R, AT S12E0W */
 | 
						|
        mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static const ARMCPRegInfo vapa_cp_reginfo[] = {
 | 
						|
    { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.par_ns) },
 | 
						|
      .writefn = par_write },
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    /* This underdecoding is safe because the reginfo is NO_RAW. */
 | 
						|
    { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
      .access = PL1_W, .accessfn = ats_access,
 | 
						|
      .writefn = ats_write, .type = ARM_CP_NO_RAW },
 | 
						|
#endif
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
/* Return basic MPU access permission bits.  */
 | 
						|
static uint32_t simple_mpu_ap_bits(uint32_t val)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
    uint32_t mask;
 | 
						|
    int i;
 | 
						|
    ret = 0;
 | 
						|
    mask = 3;
 | 
						|
    for (i = 0; i < 16; i += 2) {
 | 
						|
        ret |= (val >> i) & mask;
 | 
						|
        mask <<= 2;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Pad basic MPU access permission bits to extended format.  */
 | 
						|
static uint32_t extended_mpu_ap_bits(uint32_t val)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
    uint32_t mask;
 | 
						|
    int i;
 | 
						|
    ret = 0;
 | 
						|
    mask = 3;
 | 
						|
    for (i = 0; i < 16; i += 2) {
 | 
						|
        ret |= (val & mask) << i;
 | 
						|
        mask <<= 2;
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
 | 
						|
}
 | 
						|
 | 
						|
static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | 
						|
 | 
						|
    if (!u32p) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    u32p += env->pmsav7.rnr[M_REG_NS];
 | 
						|
    return *u32p;
 | 
						|
}
 | 
						|
 | 
						|
static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | 
						|
 | 
						|
    if (!u32p) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    u32p += env->pmsav7.rnr[M_REG_NS];
 | 
						|
    tlb_flush(CPU(cpu)); /* Mappings may have changed - purge! */
 | 
						|
    *u32p = value;
 | 
						|
}
 | 
						|
 | 
						|
static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint32_t nrgs = cpu->pmsav7_dregion;
 | 
						|
 | 
						|
    if (value >= nrgs) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "PMSAv7 RGNR write >= # supported regions, %" PRIu32
 | 
						|
                      " > %" PRIu32 "\n", (uint32_t)value, nrgs);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
 | 
						|
    /* Reset for all these registers is handled in arm_cpu_reset(),
 | 
						|
     * because the PMSAv7 is also used by M-profile CPUs, which do
 | 
						|
     * not register cpregs but still need the state to be reset.
 | 
						|
     */
 | 
						|
    { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
 | 
						|
      .readfn = pmsav7_read, .writefn = pmsav7_write,
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
 | 
						|
      .readfn = pmsav7_read, .writefn = pmsav7_write,
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
 | 
						|
      .readfn = pmsav7_read, .writefn = pmsav7_write,
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, pmsav7.rnr[M_REG_NS]),
 | 
						|
      .writefn = pmsav7_rgnr_write,
 | 
						|
      .resetfn = arm_cp_reset_ignore },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
 | 
						|
    { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
 | 
						|
      .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
 | 
						|
    { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
 | 
						|
      .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
 | 
						|
    { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
 | 
						|
      .resetvalue = 0, },
 | 
						|
    { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
 | 
						|
      .resetvalue = 0, },
 | 
						|
    { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
 | 
						|
    { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
 | 
						|
    /* Protection region base and size registers */
 | 
						|
    { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
 | 
						|
    { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
 | 
						|
    { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
 | 
						|
    { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
 | 
						|
    { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
 | 
						|
    { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
 | 
						|
    { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
 | 
						|
    { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
 | 
						|
      .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    TCR *tcr = raw_ptr(env, ri);
 | 
						|
    int maskshift = extract32(value, 0, 3);
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
 | 
						|
            /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
 | 
						|
             * using Long-desciptor translation table format */
 | 
						|
            value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
 | 
						|
        } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
            /* In an implementation that includes the Security Extensions
 | 
						|
             * TTBCR has additional fields PD0 [4] and PD1 [5] for
 | 
						|
             * Short-descriptor translation table format.
 | 
						|
             */
 | 
						|
            value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
 | 
						|
        } else {
 | 
						|
            value &= TTBCR_N;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Update the masks corresponding to the TCR bank being written
 | 
						|
     * Note that we always calculate mask and base_mask, but
 | 
						|
     * they are only used for short-descriptor tables (ie if EAE is 0);
 | 
						|
     * for long-descriptor tables the TCR fields are used differently
 | 
						|
     * and the mask and base_mask values are meaningless.
 | 
						|
     */
 | 
						|
    tcr->raw_tcr = value;
 | 
						|
    tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
 | 
						|
    tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
 | 
						|
}
 | 
						|
 | 
						|
static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                             uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | 
						|
        /* With LPAE the TTBCR could result in a change of ASID
 | 
						|
         * via the TTBCR.A1 bit, so do a TLB flush.
 | 
						|
         */
 | 
						|
        tlb_flush(CPU(cpu));
 | 
						|
    }
 | 
						|
    vmsa_ttbcr_raw_write(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    TCR *tcr = raw_ptr(env, ri);
 | 
						|
 | 
						|
    /* Reset both the TCR as well as the masks corresponding to the bank of
 | 
						|
     * the TCR being reset.
 | 
						|
     */
 | 
						|
    tcr->raw_tcr = 0;
 | 
						|
    tcr->mask = 0;
 | 
						|
    tcr->base_mask = 0xffffc000u;
 | 
						|
}
 | 
						|
 | 
						|
static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                               uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    TCR *tcr = raw_ptr(env, ri);
 | 
						|
 | 
						|
    /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
 | 
						|
    tlb_flush(CPU(cpu));
 | 
						|
    tcr->raw_tcr = value;
 | 
						|
}
 | 
						|
 | 
						|
static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    /* 64 bit accesses to the TTBRs can change the ASID and so we
 | 
						|
     * must flush the TLB.
 | 
						|
     */
 | 
						|
    if (cpreg_field_is_64bit(ri)) {
 | 
						|
        ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
        tlb_flush(CPU(cpu));
 | 
						|
    }
 | 
						|
    raw_write(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
 | 
						|
    /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
 | 
						|
    if (raw_read(env, ri) != value) {
 | 
						|
        tlb_flush_by_mmuidx(cs,
 | 
						|
                            ARMMMUIdxBit_S12NSE1 |
 | 
						|
                            ARMMMUIdxBit_S12NSE0 |
 | 
						|
                            ARMMMUIdxBit_S2NS);
 | 
						|
        raw_write(env, ri, value);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
 | 
						|
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
 | 
						|
    { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
 | 
						|
    { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
 | 
						|
                             offsetof(CPUARMState, cp15.dfar_ns) } },
 | 
						|
    { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
 | 
						|
      .resetvalue = 0, },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo vmsa_cp_reginfo[] = {
 | 
						|
    { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
 | 
						|
    { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
 | 
						|
                             offsetof(CPUARMState, cp15.ttbr0_ns) } },
 | 
						|
    { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
 | 
						|
                             offsetof(CPUARMState, cp15.ttbr1_ns) } },
 | 
						|
    { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
 | 
						|
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
 | 
						|
    { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
 | 
						|
      .raw_writefn = vmsa_ttbcr_raw_write,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.c15_ticonfig = value & 0xe7;
 | 
						|
    /* The OS_TYPE bit in this register changes the reported CPUID! */
 | 
						|
    env->cp15.c0_cpuid = (value & (1 << 5)) ?
 | 
						|
        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
 | 
						|
}
 | 
						|
 | 
						|
static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.c15_threadid = value & 0xffff;
 | 
						|
}
 | 
						|
 | 
						|
static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                           uint64_t value)
 | 
						|
{
 | 
						|
    /* Wait-for-interrupt (deprecated) */
 | 
						|
    cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
 | 
						|
}
 | 
						|
 | 
						|
static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  uint64_t value)
 | 
						|
{
 | 
						|
    /* On OMAP there are registers indicating the max/min index of dcache lines
 | 
						|
     * containing a dirty line; cache flush operations have to reset these.
 | 
						|
     */
 | 
						|
    env->cp15.c15_i_max = 0x000;
 | 
						|
    env->cp15.c15_i_min = 0xff0;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo omap_cp_reginfo[] = {
 | 
						|
    { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
 | 
						|
      .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
 | 
						|
      .resetvalue = 0, },
 | 
						|
    { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
 | 
						|
      .writefn = omap_ticonfig_write },
 | 
						|
    { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
 | 
						|
    { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .resetvalue = 0xff0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
 | 
						|
    { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
 | 
						|
      .writefn = omap_threadid_write },
 | 
						|
    { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
 | 
						|
      .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | 
						|
      .type = ARM_CP_NO_RAW,
 | 
						|
      .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
 | 
						|
    /* TODO: Peripheral port remap register:
 | 
						|
     * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
 | 
						|
     * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
 | 
						|
     * when MMU is off.
 | 
						|
     */
 | 
						|
    { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | 
						|
      .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | 
						|
      .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
 | 
						|
      .writefn = omap_cachemaint_write },
 | 
						|
    { .name = "C9", .cp = 15, .crn = 9,
 | 
						|
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
 | 
						|
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                              uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.c15_cpar = value & 0x3fff;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo xscale_cp_reginfo[] = {
 | 
						|
    { .name = "XSCALE_CPAR",
 | 
						|
      .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
 | 
						|
      .writefn = xscale_cpar_write, },
 | 
						|
    { .name = "XSCALE_AUXCR",
 | 
						|
      .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
 | 
						|
      .resetvalue = 0, },
 | 
						|
    /* XScale specific cache-lockdown: since we have no cache we NOP these
 | 
						|
     * and hope the guest does not really rely on cache behaviour.
 | 
						|
     */
 | 
						|
    { .name = "XSCALE_LOCK_ICACHE_LINE",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "XSCALE_UNLOCK_ICACHE",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "XSCALE_DCACHE_LOCK",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_NOP },
 | 
						|
    { .name = "XSCALE_UNLOCK_DCACHE",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
 | 
						|
    /* RAZ/WI the whole crn=15 space, when we don't have a more specific
 | 
						|
     * implementation of this implementation-defined space.
 | 
						|
     * Ideally this should eventually disappear in favour of actually
 | 
						|
     * implementing the correct behaviour for all cores.
 | 
						|
     */
 | 
						|
    { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
 | 
						|
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
 | 
						|
    /* Cache status: RAZ because we have no cache so it's always clean */
 | 
						|
    { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
 | 
						|
      .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
 | 
						|
    /* We never have a a block transfer operation in progress */
 | 
						|
    { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
 | 
						|
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* The cache ops themselves: these all NOP for QEMU */
 | 
						|
    { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | 
						|
    { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | 
						|
    { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | 
						|
    { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | 
						|
    { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | 
						|
    { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
 | 
						|
    /* The cache test-and-clean instructions always return (1 << 30)
 | 
						|
     * to indicate that there are no dirty cache lines.
 | 
						|
     */
 | 
						|
    { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
 | 
						|
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | 
						|
      .resetvalue = (1 << 30) },
 | 
						|
    { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
 | 
						|
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | 
						|
      .resetvalue = (1 << 30) },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo strongarm_cp_reginfo[] = {
 | 
						|
    /* Ignore ReadBuffer accesses */
 | 
						|
    { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
 | 
						|
      .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    unsigned int cur_el = arm_current_el(env);
 | 
						|
    bool secure = arm_is_secure(env);
 | 
						|
 | 
						|
    if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
 | 
						|
        return env->cp15.vpidr_el2;
 | 
						|
    }
 | 
						|
    return raw_read(env, ri);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t mpidr_read_val(CPUARMState *env)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
 | 
						|
    uint64_t mpidr = cpu->mp_affinity;
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V7MP)) {
 | 
						|
        mpidr |= (1U << 31);
 | 
						|
        /* Cores which are uniprocessor (non-coherent)
 | 
						|
         * but still implement the MP extensions set
 | 
						|
         * bit 30. (For instance, Cortex-R5).
 | 
						|
         */
 | 
						|
        if (cpu->mp_is_up) {
 | 
						|
            mpidr |= (1u << 30);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return mpidr;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    unsigned int cur_el = arm_current_el(env);
 | 
						|
    bool secure = arm_is_secure(env);
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
 | 
						|
        return env->cp15.vmpidr_el2;
 | 
						|
    }
 | 
						|
    return mpidr_read_val(env);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo mpidr_cp_reginfo[] = {
 | 
						|
    { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
 | 
						|
      .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo lpae_cp_reginfo[] = {
 | 
						|
    /* NOP AMAIR0/1 */
 | 
						|
    { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
 | 
						|
    { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
 | 
						|
                             offsetof(CPUARMState, cp15.par_ns)} },
 | 
						|
    { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
 | 
						|
                             offsetof(CPUARMState, cp15.ttbr0_ns) },
 | 
						|
      .writefn = vmsa_ttbr_write, },
 | 
						|
    { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
 | 
						|
      .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | 
						|
      .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
 | 
						|
                             offsetof(CPUARMState, cp15.ttbr1_ns) },
 | 
						|
      .writefn = vmsa_ttbr_write, },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return vfp_get_fpcr(env);
 | 
						|
}
 | 
						|
 | 
						|
static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    vfp_set_fpcr(env, value);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return vfp_get_fpsr(env);
 | 
						|
}
 | 
						|
 | 
						|
static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    vfp_set_fpsr(env, value);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                       bool isread)
 | 
						|
{
 | 
						|
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                            uint64_t value)
 | 
						|
{
 | 
						|
    env->daif = value & PSTATE_DAIF;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult aa64_cacheop_access(CPUARMState *env,
 | 
						|
                                          const ARMCPRegInfo *ri,
 | 
						|
                                          bool isread)
 | 
						|
{
 | 
						|
    /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
 | 
						|
     * SCTLR_EL1.UCI is set.
 | 
						|
     */
 | 
						|
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
/* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 | 
						|
 * Page D4-1736 (DDI0487A.b)
 | 
						|
 */
 | 
						|
 | 
						|
static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    if (arm_is_secure_below_el3(env)) {
 | 
						|
        tlb_flush_by_mmuidx(cs,
 | 
						|
                            ARMMMUIdxBit_S1SE1 |
 | 
						|
                            ARMMMUIdxBit_S1SE0);
 | 
						|
    } else {
 | 
						|
        tlb_flush_by_mmuidx(cs,
 | 
						|
                            ARMMMUIdxBit_S12NSE1 |
 | 
						|
                            ARMMMUIdxBit_S12NSE0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                      uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    bool sec = arm_is_secure_below_el3(env);
 | 
						|
 | 
						|
    if (sec) {
 | 
						|
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | 
						|
                                            ARMMMUIdxBit_S1SE1 |
 | 
						|
                                            ARMMMUIdxBit_S1SE0);
 | 
						|
    } else {
 | 
						|
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | 
						|
                                            ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                            ARMMMUIdxBit_S12NSE0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  uint64_t value)
 | 
						|
{
 | 
						|
    /* Note that the 'ALL' scope must invalidate both stage 1 and
 | 
						|
     * stage 2 translations, whereas most other scopes only invalidate
 | 
						|
     * stage 1 translations.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
 | 
						|
    if (arm_is_secure_below_el3(env)) {
 | 
						|
        tlb_flush_by_mmuidx(cs,
 | 
						|
                            ARMMMUIdxBit_S1SE1 |
 | 
						|
                            ARMMMUIdxBit_S1SE0);
 | 
						|
    } else {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
            tlb_flush_by_mmuidx(cs,
 | 
						|
                                ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                ARMMMUIdxBit_S12NSE0 |
 | 
						|
                                ARMMMUIdxBit_S2NS);
 | 
						|
        } else {
 | 
						|
            tlb_flush_by_mmuidx(cs,
 | 
						|
                                ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                ARMMMUIdxBit_S12NSE0);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                  uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx(cs, ARMMMUIdxBit_S1E3);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    uint64_t value)
 | 
						|
{
 | 
						|
    /* Note that the 'ALL' scope must invalidate both stage 1 and
 | 
						|
     * stage 2 translations, whereas most other scopes only invalidate
 | 
						|
     * stage 1 translations.
 | 
						|
     */
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    bool sec = arm_is_secure_below_el3(env);
 | 
						|
    bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
 | 
						|
 | 
						|
    if (sec) {
 | 
						|
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | 
						|
                                            ARMMMUIdxBit_S1SE1 |
 | 
						|
                                            ARMMMUIdxBit_S1SE0);
 | 
						|
    } else if (has_el2) {
 | 
						|
        tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | 
						|
                                            ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                            ARMMMUIdxBit_S12NSE0 |
 | 
						|
                                            ARMMMUIdxBit_S2NS);
 | 
						|
    } else {
 | 
						|
          tlb_flush_by_mmuidx_all_cpus_synced(cs,
 | 
						|
                                              ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                              ARMMMUIdxBit_S12NSE0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
 | 
						|
    tlb_flush_by_mmuidx_all_cpus_synced(cs, ARMMMUIdxBit_S1E3);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate by VA, EL1&0 (AArch64 version).
 | 
						|
     * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
 | 
						|
     * since we don't support flush-for-specific-ASID-only or
 | 
						|
     * flush-last-level-only.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | 
						|
 | 
						|
    if (arm_is_secure_below_el3(env)) {
 | 
						|
        tlb_flush_page_by_mmuidx(cs, pageaddr,
 | 
						|
                                 ARMMMUIdxBit_S1SE1 |
 | 
						|
                                 ARMMMUIdxBit_S1SE0);
 | 
						|
    } else {
 | 
						|
        tlb_flush_page_by_mmuidx(cs, pageaddr,
 | 
						|
                                 ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                 ARMMMUIdxBit_S12NSE0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate by VA, EL2
 | 
						|
     * Currently handles both VAE2 and VALE2, since we don't support
 | 
						|
     * flush-last-level-only.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate by VA, EL3
 | 
						|
     * Currently handles both VAE3 and VALE3, since we don't support
 | 
						|
     * flush-last-level-only.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S1E3);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    bool sec = arm_is_secure_below_el3(env);
 | 
						|
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | 
						|
 | 
						|
    if (sec) {
 | 
						|
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                                 ARMMMUIdxBit_S1SE1 |
 | 
						|
                                                 ARMMMUIdxBit_S1SE0);
 | 
						|
    } else {
 | 
						|
        tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                                 ARMMMUIdxBit_S12NSE1 |
 | 
						|
                                                 ARMMMUIdxBit_S12NSE0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                             ARMMMUIdxBit_S1E2);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                             ARMMMUIdxBit_S1E3);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    uint64_t value)
 | 
						|
{
 | 
						|
    /* Invalidate by IPA. This has to invalidate any structures that
 | 
						|
     * contain only stage 2 translation information, but does not need
 | 
						|
     * to apply to structures that contain combined stage 1 and stage 2
 | 
						|
     * translation information.
 | 
						|
     * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    uint64_t pageaddr;
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    pageaddr = sextract64(value << 12, 0, 48);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdxBit_S2NS);
 | 
						|
}
 | 
						|
 | 
						|
static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                      uint64_t value)
 | 
						|
{
 | 
						|
    CPUState *cs = ENV_GET_CPU(env);
 | 
						|
    uint64_t pageaddr;
 | 
						|
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    pageaddr = sextract64(value << 12, 0, 48);
 | 
						|
 | 
						|
    tlb_flush_page_by_mmuidx_all_cpus_synced(cs, pageaddr,
 | 
						|
                                             ARMMMUIdxBit_S2NS);
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                      bool isread)
 | 
						|
{
 | 
						|
    /* We don't implement EL2, so the only control on DC ZVA is the
 | 
						|
     * bit in the SCTLR which can prohibit access for EL0.
 | 
						|
     */
 | 
						|
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int dzp_bit = 1 << 4;
 | 
						|
 | 
						|
    /* DZP indicates whether DC ZVA access is allowed */
 | 
						|
    if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
 | 
						|
        dzp_bit = 0;
 | 
						|
    }
 | 
						|
    return cpu->dcz_blocksize | dzp_bit;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                    bool isread)
 | 
						|
{
 | 
						|
    if (!(env->pstate & PSTATE_SP)) {
 | 
						|
        /* Access to SP_EL0 is undefined if it's being used as
 | 
						|
         * the stack pointer.
 | 
						|
         */
 | 
						|
        return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    return env->pstate & PSTATE_SP;
 | 
						|
}
 | 
						|
 | 
						|
static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
 | 
						|
{
 | 
						|
    update_spsel(env, val);
 | 
						|
}
 | 
						|
 | 
						|
static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    if (raw_read(env, ri) == value) {
 | 
						|
        /* Skip the TLB flush if nothing actually changed; Linux likes
 | 
						|
         * to do a lot of pointless SCTLR writes.
 | 
						|
         */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_PMSA) && !cpu->has_mpu) {
 | 
						|
        /* M bit is RAZ/WI for PMSA with no MPU implemented */
 | 
						|
        value &= ~SCTLR_M;
 | 
						|
    }
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    /* ??? Lots of these bits are not implemented.  */
 | 
						|
    /* This may enable/disable the MMU, so do a TLB flush.  */
 | 
						|
    tlb_flush(CPU(cpu));
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                     bool isread)
 | 
						|
{
 | 
						|
    if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
 | 
						|
        return CP_ACCESS_TRAP_FP_EL2;
 | 
						|
    }
 | 
						|
    if (env->cp15.cptr_el[3] & CPTR_TFP) {
 | 
						|
        return CP_ACCESS_TRAP_FP_EL3;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void sdcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                       uint64_t value)
 | 
						|
{
 | 
						|
    env->cp15.mdcr_el3 = value & SDCR_VALID_MASK;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo v8_cp_reginfo[] = {
 | 
						|
    /* Minimal set of EL0-visible registers. This will need to be expanded
 | 
						|
     * significantly for system emulation of AArch64 CPUs.
 | 
						|
     */
 | 
						|
    { .name = "NZCV", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
 | 
						|
      .access = PL0_RW, .type = ARM_CP_NZCV },
 | 
						|
    { .name = "DAIF", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
 | 
						|
      .type = ARM_CP_NO_RAW,
 | 
						|
      .access = PL0_RW, .accessfn = aa64_daif_access,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, daif),
 | 
						|
      .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
 | 
						|
    { .name = "FPCR", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
 | 
						|
      .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
 | 
						|
    { .name = "FPSR", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
 | 
						|
      .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
 | 
						|
    { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
 | 
						|
      .access = PL0_R, .type = ARM_CP_NO_RAW,
 | 
						|
      .readfn = aa64_dczid_read },
 | 
						|
    { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
 | 
						|
      .access = PL0_W, .type = ARM_CP_DC_ZVA,
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
      /* Avoid overhead of an access check that always passes in user-mode */
 | 
						|
      .accessfn = aa64_zva_access,
 | 
						|
#endif
 | 
						|
    },
 | 
						|
    { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
 | 
						|
      .access = PL1_R, .type = ARM_CP_CURRENTEL },
 | 
						|
    /* Cache ops: all NOPs since we don't emulate caches */
 | 
						|
    { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP,
 | 
						|
      .accessfn = aa64_cacheop_access },
 | 
						|
    { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP,
 | 
						|
      .accessfn = aa64_cacheop_access },
 | 
						|
    { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP,
 | 
						|
      .accessfn = aa64_cacheop_access },
 | 
						|
    { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
 | 
						|
      .access = PL0_W, .type = ARM_CP_NOP,
 | 
						|
      .accessfn = aa64_cacheop_access },
 | 
						|
    { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NOP },
 | 
						|
    /* TLBI operations */
 | 
						|
    { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vmalle1is_write },
 | 
						|
    { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1is_write },
 | 
						|
    { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vmalle1is_write },
 | 
						|
    { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1is_write },
 | 
						|
    { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1is_write },
 | 
						|
    { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1is_write },
 | 
						|
    { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vmalle1_write },
 | 
						|
    { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1_write },
 | 
						|
    { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vmalle1_write },
 | 
						|
    { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1_write },
 | 
						|
    { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1_write },
 | 
						|
    { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae1_write },
 | 
						|
    { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_ipas2e1is_write },
 | 
						|
    { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_ipas2e1is_write },
 | 
						|
    { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle1is_write },
 | 
						|
    { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle1is_write },
 | 
						|
    { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_ipas2e1_write },
 | 
						|
    { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_ipas2e1_write },
 | 
						|
    { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle1_write },
 | 
						|
    { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle1is_write },
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    /* 64 bit address translation operations */
 | 
						|
    { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
 | 
						|
    { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
 | 
						|
      .writefn = par_write },
 | 
						|
#endif
 | 
						|
    /* TLB invalidate last level of translation table walk */
 | 
						|
    { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
 | 
						|
    { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W,
 | 
						|
      .writefn = tlbimvaa_is_write },
 | 
						|
    { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | 
						|
    { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
 | 
						|
    { .name = "TLBIMVALH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbimva_hyp_write },
 | 
						|
    { .name = "TLBIMVALHIS",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbimva_hyp_is_write },
 | 
						|
    { .name = "TLBIIPAS2",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiipas2_write },
 | 
						|
    { .name = "TLBIIPAS2IS",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiipas2_is_write },
 | 
						|
    { .name = "TLBIIPAS2L",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiipas2_write },
 | 
						|
    { .name = "TLBIIPAS2LIS",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiipas2_is_write },
 | 
						|
    /* 32 bit cache operations */
 | 
						|
    { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
 | 
						|
      .type = ARM_CP_NOP, .access = PL1_W },
 | 
						|
    /* MMU Domain access control / MPU write buffer control */
 | 
						|
    { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .resetvalue = 0,
 | 
						|
      .writefn = dacr_write, .raw_writefn = raw_write,
 | 
						|
      .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 | 
						|
                             offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 | 
						|
    { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
 | 
						|
    { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
 | 
						|
    /* We rely on the access checks not allowing the guest to write to the
 | 
						|
     * state field when SPSel indicates that it's being used as the stack
 | 
						|
     * pointer.
 | 
						|
     */
 | 
						|
    { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .accessfn = sp_el0_access,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
 | 
						|
    { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
 | 
						|
    { .name = "SPSel", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW,
 | 
						|
      .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
 | 
						|
    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
 | 
						|
      .access = PL2_RW, .accessfn = fpexc32_access },
 | 
						|
    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .resetvalue = 0,
 | 
						|
      .writefn = dacr_write, .raw_writefn = raw_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
 | 
						|
    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
 | 
						|
    { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
 | 
						|
    { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
 | 
						|
    { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
 | 
						|
    { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
 | 
						|
    { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
 | 
						|
      .resetvalue = 0,
 | 
						|
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
 | 
						|
    { .name = "SDCR", .type = ARM_CP_ALIAS,
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | 
						|
      .writefn = sdcr_write,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
/* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
 | 
						|
static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
 | 
						|
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
 | 
						|
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_NO_RAW,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
 | 
						|
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | 
						|
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | 
						|
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | 
						|
      .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 6, .crm = 2,
 | 
						|
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | 
						|
      .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | 
						|
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .accessfn = access_tda,
 | 
						|
      .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | 
						|
      .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | 
						|
      .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint64_t valid_mask = HCR_MASK;
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
        valid_mask &= ~HCR_HCD;
 | 
						|
    } else if (cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
 | 
						|
        /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
 | 
						|
         * However, if we're using the SMC PSCI conduit then QEMU is
 | 
						|
         * effectively acting like EL3 firmware and so the guest at
 | 
						|
         * EL2 should retain the ability to prevent EL1 from being
 | 
						|
         * able to make SMC calls into the ersatz firmware, so in
 | 
						|
         * that case HCR.TSC should be read/write.
 | 
						|
         */
 | 
						|
        valid_mask &= ~HCR_TSC;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Clear RES0 bits.  */
 | 
						|
    value &= valid_mask;
 | 
						|
 | 
						|
    /* These bits change the MMU setup:
 | 
						|
     * HCR_VM enables stage 2 translation
 | 
						|
     * HCR_PTW forbids certain page-table setups
 | 
						|
     * HCR_DC Disables stage1 and enables stage2 translation
 | 
						|
     */
 | 
						|
    if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
 | 
						|
        tlb_flush(CPU(cpu));
 | 
						|
    }
 | 
						|
    raw_write(env, ri, value);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo el2_cp_reginfo[] = {
 | 
						|
    { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
 | 
						|
      .writefn = hcr_write },
 | 
						|
    { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
 | 
						|
    { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
 | 
						|
    { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
 | 
						|
    { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
 | 
						|
    { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .writefn = vbar_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
 | 
						|
    { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
 | 
						|
    { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | 
						|
      .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
 | 
						|
    { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
 | 
						|
    { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | 
						|
      .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL2_RW,
 | 
						|
      /* no .writefn needed as this can't cause an ASID change;
 | 
						|
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
 | 
						|
       */
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
 | 
						|
    { .name = "VTCR", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
 | 
						|
    { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | 
						|
      .access = PL2_RW,
 | 
						|
      /* no .writefn needed as this can't cause an ASID change;
 | 
						|
       * no .raw_writefn or .resetfn needed as we never use mask/base_mask
 | 
						|
       */
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
 | 
						|
    { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 6, .crm = 2,
 | 
						|
      .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | 
						|
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
 | 
						|
      .writefn = vttbr_write },
 | 
						|
    { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .writefn = vttbr_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
 | 
						|
    { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
 | 
						|
    { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL2_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
 | 
						|
    { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
 | 
						|
    { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
 | 
						|
    { .name = "TLBIALLNSNH",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiall_nsnh_write },
 | 
						|
    { .name = "TLBIALLNSNHIS",
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiall_nsnh_is_write },
 | 
						|
    { .name = "TLBIALLH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiall_hyp_write },
 | 
						|
    { .name = "TLBIALLHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbiall_hyp_is_write },
 | 
						|
    { .name = "TLBIMVAH", .cp = 15, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbimva_hyp_write },
 | 
						|
    { .name = "TLBIMVAHIS", .cp = 15, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbimva_hyp_is_write },
 | 
						|
    { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbi_aa64_alle2_write },
 | 
						|
    { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbi_aa64_vae2_write },
 | 
						|
    { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae2_write },
 | 
						|
    { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle2is_write },
 | 
						|
    { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
 | 
						|
      .type = ARM_CP_NO_RAW, .access = PL2_W,
 | 
						|
      .writefn = tlbi_aa64_vae2is_write },
 | 
						|
    { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
 | 
						|
      .access = PL2_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae2is_write },
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    /* Unlike the other EL2-related AT operations, these must
 | 
						|
     * UNDEF from EL3 if EL2 is not implemented, which is why we
 | 
						|
     * define them here rather than with the rest of the AT ops.
 | 
						|
     */
 | 
						|
    { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
 | 
						|
      .access = PL2_W, .accessfn = at_s1e2_access,
 | 
						|
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
 | 
						|
      .access = PL2_W, .accessfn = at_s1e2_access,
 | 
						|
      .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | 
						|
    /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
 | 
						|
     * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
 | 
						|
     * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
 | 
						|
     * to behave as if SCR.NS was 1.
 | 
						|
     */
 | 
						|
    { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
 | 
						|
      .access = PL2_W,
 | 
						|
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
 | 
						|
      .access = PL2_W,
 | 
						|
      .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
 | 
						|
    { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
 | 
						|
      /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
 | 
						|
       * reset values as IMPDEF. We choose to reset to 3 to comply with
 | 
						|
       * both ARMv7 and ARMv8.
 | 
						|
       */
 | 
						|
      .access = PL2_RW, .resetvalue = 3,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
 | 
						|
    { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
 | 
						|
      .writefn = gt_cntvoff_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
 | 
						|
    { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
 | 
						|
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
 | 
						|
      .writefn = gt_cntvoff_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
 | 
						|
    { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
 | 
						|
      .type = ARM_CP_IO, .access = PL2_RW,
 | 
						|
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
 | 
						|
    { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
 | 
						|
      .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
 | 
						|
      .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
 | 
						|
    { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
 | 
						|
      .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL2_RW,
 | 
						|
      .resetfn = gt_hyp_timer_reset,
 | 
						|
      .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
 | 
						|
    { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .type = ARM_CP_IO,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
 | 
						|
      .resetvalue = 0,
 | 
						|
      .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
 | 
						|
#endif
 | 
						|
    /* The only field of MDCR_EL2 that has a defined architectural reset value
 | 
						|
     * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
 | 
						|
     * don't impelment any PMU event counters, so using zero as a reset
 | 
						|
     * value for MDCR_EL2 is okay
 | 
						|
     */
 | 
						|
    { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL2_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
 | 
						|
    { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
 | 
						|
      .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | 
						|
      .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
 | 
						|
    { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
 | 
						|
    { .name = "HSTR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 15, .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 3,
 | 
						|
      .access = PL2_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.hstr_el2) },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                   bool isread)
 | 
						|
{
 | 
						|
    /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
 | 
						|
     * At Secure EL1 it traps to EL3.
 | 
						|
     */
 | 
						|
    if (arm_current_el(env) == 3) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
    if (arm_is_secure_below_el3(env)) {
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    }
 | 
						|
    /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
 | 
						|
    if (isread) {
 | 
						|
        return CP_ACCESS_OK;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_TRAP_UNCATEGORIZED;
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo el3_cp_reginfo[] = {
 | 
						|
    { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
 | 
						|
      .resetvalue = 0, .writefn = scr_write },
 | 
						|
    { .name = "SCR",  .type = ARM_CP_ALIAS,
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
 | 
						|
      .writefn = scr_write },
 | 
						|
    { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL3_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.sder) },
 | 
						|
    { .name = "SDER",
 | 
						|
      .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL3_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
 | 
						|
    { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | 
						|
      .writefn = vbar_write, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
 | 
						|
    { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
 | 
						|
    { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL3_RW,
 | 
						|
      /* no .writefn needed as this can't cause an ASID change;
 | 
						|
       * we must provide a .raw_writefn and .resetfn because we handle
 | 
						|
       * reset and migration for the AArch32 TTBCR(S), which might be
 | 
						|
       * using mask and base_mask.
 | 
						|
       */
 | 
						|
      .resetfn = vmsa_ttbcr_reset, .raw_writefn = vmsa_ttbcr_raw_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
 | 
						|
    { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
 | 
						|
      .access = PL3_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
 | 
						|
    { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
 | 
						|
    { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
 | 
						|
    { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL3_RW,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
 | 
						|
    { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .writefn = vbar_write,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
 | 
						|
      .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
 | 
						|
    { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
 | 
						|
      .access = PL3_RW, .resetvalue = 0,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
 | 
						|
    { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
 | 
						|
      .access = PL3_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
 | 
						|
      .access = PL3_RW, .type = ARM_CP_CONST,
 | 
						|
      .resetvalue = 0 },
 | 
						|
    { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle3is_write },
 | 
						|
    { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae3is_write },
 | 
						|
    { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae3is_write },
 | 
						|
    { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_alle3_write },
 | 
						|
    { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae3_write },
 | 
						|
    { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
 | 
						|
      .access = PL3_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .writefn = tlbi_aa64_vae3_write },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                     bool isread)
 | 
						|
{
 | 
						|
    /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
 | 
						|
     * but the AArch32 CTR has its own reginfo struct)
 | 
						|
     */
 | 
						|
    if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                        uint64_t value)
 | 
						|
{
 | 
						|
    /* Writes to OSLAR_EL1 may update the OS lock status, which can be
 | 
						|
     * read via a bit in OSLSR_EL1.
 | 
						|
     */
 | 
						|
    int oslock;
 | 
						|
 | 
						|
    if (ri->state == ARM_CP_STATE_AA32) {
 | 
						|
        oslock = (value == 0xC5ACCE55);
 | 
						|
    } else {
 | 
						|
        oslock = value & 1;
 | 
						|
    }
 | 
						|
 | 
						|
    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo debug_cp_reginfo[] = {
 | 
						|
    /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 | 
						|
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
 | 
						|
     * unlike DBGDRAR it is never accessible from EL0.
 | 
						|
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
 | 
						|
     * accessor.
 | 
						|
     */
 | 
						|
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL0_R, .accessfn = access_tdra,
 | 
						|
      .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | 
						|
      .access = PL1_R, .accessfn = access_tdra,
 | 
						|
      .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
      .access = PL0_R, .accessfn = access_tdra,
 | 
						|
      .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
 | 
						|
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | 
						|
      .access = PL1_RW, .accessfn = access_tda,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
 | 
						|
      .resetvalue = 0 },
 | 
						|
    /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
 | 
						|
     * We don't implement the configurable EL0 access.
 | 
						|
     */
 | 
						|
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | 
						|
      .type = ARM_CP_ALIAS,
 | 
						|
      .access = PL1_R, .accessfn = access_tda,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
 | 
						|
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
 | 
						|
      .access = PL1_W, .type = ARM_CP_NO_RAW,
 | 
						|
      .accessfn = access_tdosa,
 | 
						|
      .writefn = oslar_write },
 | 
						|
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
 | 
						|
      .access = PL1_R, .resetvalue = 10,
 | 
						|
      .accessfn = access_tdosa,
 | 
						|
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
 | 
						|
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
 | 
						|
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
 | 
						|
      .access = PL1_RW, .accessfn = access_tdosa,
 | 
						|
      .type = ARM_CP_NOP },
 | 
						|
    /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
 | 
						|
     * implement vector catch debug events yet.
 | 
						|
     */
 | 
						|
    { .name = "DBGVCR",
 | 
						|
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .accessfn = access_tda,
 | 
						|
      .type = ARM_CP_NOP },
 | 
						|
    /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
 | 
						|
     * to save and restore a 32-bit guest's DBGVCR)
 | 
						|
     */
 | 
						|
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
 | 
						|
      .access = PL2_RW, .accessfn = access_tda,
 | 
						|
      .type = ARM_CP_NOP },
 | 
						|
    /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
 | 
						|
     * Channel but Linux may try to access this register. The 32-bit
 | 
						|
     * alias is DBGDCCINT.
 | 
						|
     */
 | 
						|
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 | 
						|
      .access = PL1_RW, .accessfn = access_tda,
 | 
						|
      .type = ARM_CP_NOP },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
 | 
						|
    /* 64 bit access versions of the (dummy) debug registers */
 | 
						|
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
 | 
						|
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | 
						|
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
 | 
						|
      .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | 
						|
    REGINFO_SENTINEL
 | 
						|
};
 | 
						|
 | 
						|
/* Return the exception level to which SVE-disabled exceptions should
 | 
						|
 * be taken, or 0 if SVE is enabled.
 | 
						|
 */
 | 
						|
static int sve_exception_el(CPUARMState *env)
 | 
						|
{
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    unsigned current_el = arm_current_el(env);
 | 
						|
 | 
						|
    /* The CPACR.ZEN controls traps to EL1:
 | 
						|
     * 0, 2 : trap EL0 and EL1 accesses
 | 
						|
     * 1    : trap only EL0 accesses
 | 
						|
     * 3    : trap no accesses
 | 
						|
     */
 | 
						|
    switch (extract32(env->cp15.cpacr_el1, 16, 2)) {
 | 
						|
    default:
 | 
						|
        if (current_el <= 1) {
 | 
						|
            /* Trap to PL1, which might be EL1 or EL3 */
 | 
						|
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
 | 
						|
                return 3;
 | 
						|
            }
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        if (current_el == 0) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Similarly for CPACR.FPEN, after having checked ZEN.  */
 | 
						|
    switch (extract32(env->cp15.cpacr_el1, 20, 2)) {
 | 
						|
    default:
 | 
						|
        if (current_el <= 1) {
 | 
						|
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
 | 
						|
                return 3;
 | 
						|
            }
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        if (current_el == 0) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* CPTR_EL2.  Check both TZ and TFP.  */
 | 
						|
    if (current_el <= 2
 | 
						|
        && (env->cp15.cptr_el[2] & (CPTR_TFP | CPTR_TZ))
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* CPTR_EL3.  Check both EZ and TFP.  */
 | 
						|
    if (!(env->cp15.cptr_el[3] & CPTR_EZ)
 | 
						|
        || (env->cp15.cptr_el[3] & CPTR_TFP)) {
 | 
						|
        return 3;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static CPAccessResult zcr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                                 bool isread)
 | 
						|
{
 | 
						|
    switch (sve_exception_el(env)) {
 | 
						|
    case 3:
 | 
						|
        return CP_ACCESS_TRAP_EL3;
 | 
						|
    case 2:
 | 
						|
        return CP_ACCESS_TRAP_EL2;
 | 
						|
    case 1:
 | 
						|
        return CP_ACCESS_TRAP;
 | 
						|
    }
 | 
						|
    return CP_ACCESS_OK;
 | 
						|
}
 | 
						|
 | 
						|
static void zcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                      uint64_t value)
 | 
						|
{
 | 
						|
    /* Bits other than [3:0] are RAZ/WI.  */
 | 
						|
    raw_write(env, ri, value & 0xf);
 | 
						|
}
 | 
						|
 | 
						|
static const ARMCPRegInfo zcr_el1_reginfo = {
 | 
						|
    .name = "ZCR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
    .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 2, .opc2 = 0,
 | 
						|
    .access = PL1_RW, .accessfn = zcr_access, .type = ARM_CP_64BIT,
 | 
						|
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[1]),
 | 
						|
    .writefn = zcr_write, .raw_writefn = raw_write
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo zcr_el2_reginfo = {
 | 
						|
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
 | 
						|
    .access = PL2_RW, .accessfn = zcr_access, .type = ARM_CP_64BIT,
 | 
						|
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[2]),
 | 
						|
    .writefn = zcr_write, .raw_writefn = raw_write
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo zcr_no_el2_reginfo = {
 | 
						|
    .name = "ZCR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
    .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 2, .opc2 = 0,
 | 
						|
    .access = PL2_RW, .type = ARM_CP_64BIT,
 | 
						|
    .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore
 | 
						|
};
 | 
						|
 | 
						|
static const ARMCPRegInfo zcr_el3_reginfo = {
 | 
						|
    .name = "ZCR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
    .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 2, .opc2 = 0,
 | 
						|
    .access = PL3_RW, .accessfn = zcr_access, .type = ARM_CP_64BIT,
 | 
						|
    .fieldoffset = offsetof(CPUARMState, vfp.zcr_el[3]),
 | 
						|
    .writefn = zcr_write, .raw_writefn = raw_write
 | 
						|
};
 | 
						|
 | 
						|
void hw_watchpoint_update(ARMCPU *cpu, int n)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    vaddr len = 0;
 | 
						|
    vaddr wvr = env->cp15.dbgwvr[n];
 | 
						|
    uint64_t wcr = env->cp15.dbgwcr[n];
 | 
						|
    int mask;
 | 
						|
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 | 
						|
 | 
						|
    if (env->cpu_watchpoint[n]) {
 | 
						|
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
 | 
						|
        env->cpu_watchpoint[n] = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!extract64(wcr, 0, 1)) {
 | 
						|
        /* E bit clear : watchpoint disabled */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (extract64(wcr, 3, 2)) {
 | 
						|
    case 0:
 | 
						|
        /* LSC 00 is reserved and must behave as if the wp is disabled */
 | 
						|
        return;
 | 
						|
    case 1:
 | 
						|
        flags |= BP_MEM_READ;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        flags |= BP_MEM_WRITE;
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        flags |= BP_MEM_ACCESS;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Attempts to use both MASK and BAS fields simultaneously are
 | 
						|
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
 | 
						|
     * thus generating a watchpoint for every byte in the masked region.
 | 
						|
     */
 | 
						|
    mask = extract64(wcr, 24, 4);
 | 
						|
    if (mask == 1 || mask == 2) {
 | 
						|
        /* Reserved values of MASK; we must act as if the mask value was
 | 
						|
         * some non-reserved value, or as if the watchpoint were disabled.
 | 
						|
         * We choose the latter.
 | 
						|
         */
 | 
						|
        return;
 | 
						|
    } else if (mask) {
 | 
						|
        /* Watchpoint covers an aligned area up to 2GB in size */
 | 
						|
        len = 1ULL << mask;
 | 
						|
        /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
 | 
						|
         * whether the watchpoint fires when the unmasked bits match; we opt
 | 
						|
         * to generate the exceptions.
 | 
						|
         */
 | 
						|
        wvr &= ~(len - 1);
 | 
						|
    } else {
 | 
						|
        /* Watchpoint covers bytes defined by the byte address select bits */
 | 
						|
        int bas = extract64(wcr, 5, 8);
 | 
						|
        int basstart;
 | 
						|
 | 
						|
        if (bas == 0) {
 | 
						|
            /* This must act as if the watchpoint is disabled */
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (extract64(wvr, 2, 1)) {
 | 
						|
            /* Deprecated case of an only 4-aligned address. BAS[7:4] are
 | 
						|
             * ignored, and BAS[3:0] define which bytes to watch.
 | 
						|
             */
 | 
						|
            bas &= 0xf;
 | 
						|
        }
 | 
						|
        /* The BAS bits are supposed to be programmed to indicate a contiguous
 | 
						|
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
 | 
						|
         * we fire for each byte in the word/doubleword addressed by the WVR.
 | 
						|
         * We choose to ignore any non-zero bits after the first range of 1s.
 | 
						|
         */
 | 
						|
        basstart = ctz32(bas);
 | 
						|
        len = cto32(bas >> basstart);
 | 
						|
        wvr += basstart;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
 | 
						|
                          &env->cpu_watchpoint[n]);
 | 
						|
}
 | 
						|
 | 
						|
void hw_watchpoint_update_all(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
 | 
						|
    /* Completely clear out existing QEMU watchpoints and our array, to
 | 
						|
     * avoid possible stale entries following migration load.
 | 
						|
     */
 | 
						|
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
 | 
						|
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
 | 
						|
        hw_watchpoint_update(cpu, i);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int i = ri->crm;
 | 
						|
 | 
						|
    /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
 | 
						|
     * register reads and behaves as if values written are sign extended.
 | 
						|
     * Bits [1:0] are RES0.
 | 
						|
     */
 | 
						|
    value = sextract64(value, 0, 49) & ~3ULL;
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    hw_watchpoint_update(cpu, i);
 | 
						|
}
 | 
						|
 | 
						|
static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int i = ri->crm;
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    hw_watchpoint_update(cpu, i);
 | 
						|
}
 | 
						|
 | 
						|
void hw_breakpoint_update(ARMCPU *cpu, int n)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint64_t bvr = env->cp15.dbgbvr[n];
 | 
						|
    uint64_t bcr = env->cp15.dbgbcr[n];
 | 
						|
    vaddr addr;
 | 
						|
    int bt;
 | 
						|
    int flags = BP_CPU;
 | 
						|
 | 
						|
    if (env->cpu_breakpoint[n]) {
 | 
						|
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
 | 
						|
        env->cpu_breakpoint[n] = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!extract64(bcr, 0, 1)) {
 | 
						|
        /* E bit clear : watchpoint disabled */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    bt = extract64(bcr, 20, 4);
 | 
						|
 | 
						|
    switch (bt) {
 | 
						|
    case 4: /* unlinked address mismatch (reserved if AArch64) */
 | 
						|
    case 5: /* linked address mismatch (reserved if AArch64) */
 | 
						|
        qemu_log_mask(LOG_UNIMP,
 | 
						|
                      "arm: address mismatch breakpoint types not implemented");
 | 
						|
        return;
 | 
						|
    case 0: /* unlinked address match */
 | 
						|
    case 1: /* linked address match */
 | 
						|
    {
 | 
						|
        /* Bits [63:49] are hardwired to the value of bit [48]; that is,
 | 
						|
         * we behave as if the register was sign extended. Bits [1:0] are
 | 
						|
         * RES0. The BAS field is used to allow setting breakpoints on 16
 | 
						|
         * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
 | 
						|
         * a bp will fire if the addresses covered by the bp and the addresses
 | 
						|
         * covered by the insn overlap but the insn doesn't start at the
 | 
						|
         * start of the bp address range. We choose to require the insn and
 | 
						|
         * the bp to have the same address. The constraints on writing to
 | 
						|
         * BAS enforced in dbgbcr_write mean we have only four cases:
 | 
						|
         *  0b0000  => no breakpoint
 | 
						|
         *  0b0011  => breakpoint on addr
 | 
						|
         *  0b1100  => breakpoint on addr + 2
 | 
						|
         *  0b1111  => breakpoint on addr
 | 
						|
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
 | 
						|
         */
 | 
						|
        int bas = extract64(bcr, 5, 4);
 | 
						|
        addr = sextract64(bvr, 0, 49) & ~3ULL;
 | 
						|
        if (bas == 0) {
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (bas == 0xc) {
 | 
						|
            addr += 2;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    case 2: /* unlinked context ID match */
 | 
						|
    case 8: /* unlinked VMID match (reserved if no EL2) */
 | 
						|
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
 | 
						|
        qemu_log_mask(LOG_UNIMP,
 | 
						|
                      "arm: unlinked context breakpoint types not implemented");
 | 
						|
        return;
 | 
						|
    case 9: /* linked VMID match (reserved if no EL2) */
 | 
						|
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | 
						|
    case 3: /* linked context ID match */
 | 
						|
    default:
 | 
						|
        /* We must generate no events for Linked context matches (unless
 | 
						|
         * they are linked to by some other bp/wp, which is handled in
 | 
						|
         * updates for the linking bp/wp). We choose to also generate no events
 | 
						|
         * for reserved values.
 | 
						|
         */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
 | 
						|
}
 | 
						|
 | 
						|
void hw_breakpoint_update_all(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
 | 
						|
    /* Completely clear out existing QEMU breakpoints and our array, to
 | 
						|
     * avoid possible stale entries following migration load.
 | 
						|
     */
 | 
						|
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
 | 
						|
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
 | 
						|
 | 
						|
    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
 | 
						|
        hw_breakpoint_update(cpu, i);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int i = ri->crm;
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    hw_breakpoint_update(cpu, i);
 | 
						|
}
 | 
						|
 | 
						|
static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int i = ri->crm;
 | 
						|
 | 
						|
    /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
 | 
						|
     * copy of BAS[0].
 | 
						|
     */
 | 
						|
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
 | 
						|
    value = deposit64(value, 8, 1, extract64(value, 7, 1));
 | 
						|
 | 
						|
    raw_write(env, ri, value);
 | 
						|
    hw_breakpoint_update(cpu, i);
 | 
						|
}
 | 
						|
 | 
						|
static void define_debug_regs(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* Define v7 and v8 architectural debug registers.
 | 
						|
     * These are just dummy implementations for now.
 | 
						|
     */
 | 
						|
    int i;
 | 
						|
    int wrps, brps, ctx_cmps;
 | 
						|
    ARMCPRegInfo dbgdidr = {
 | 
						|
        .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
        .access = PL0_R, .accessfn = access_tda,
 | 
						|
        .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
 | 
						|
    };
 | 
						|
 | 
						|
    /* Note that all these register fields hold "number of Xs minus 1". */
 | 
						|
    brps = extract32(cpu->dbgdidr, 24, 4);
 | 
						|
    wrps = extract32(cpu->dbgdidr, 28, 4);
 | 
						|
    ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
 | 
						|
 | 
						|
    assert(ctx_cmps <= brps);
 | 
						|
 | 
						|
    /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
 | 
						|
     * of the debug registers such as number of breakpoints;
 | 
						|
     * check that if they both exist then they agree.
 | 
						|
     */
 | 
						|
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | 
						|
        assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
 | 
						|
        assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
 | 
						|
        assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
 | 
						|
    }
 | 
						|
 | 
						|
    define_one_arm_cp_reg(cpu, &dbgdidr);
 | 
						|
    define_arm_cp_regs(cpu, debug_cp_reginfo);
 | 
						|
 | 
						|
    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
 | 
						|
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < brps + 1; i++) {
 | 
						|
        ARMCPRegInfo dbgregs[] = {
 | 
						|
            { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
 | 
						|
              .access = PL1_RW, .accessfn = access_tda,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
 | 
						|
              .writefn = dbgbvr_write, .raw_writefn = raw_write
 | 
						|
            },
 | 
						|
            { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
 | 
						|
              .access = PL1_RW, .accessfn = access_tda,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
 | 
						|
              .writefn = dbgbcr_write, .raw_writefn = raw_write
 | 
						|
            },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        define_arm_cp_regs(cpu, dbgregs);
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i < wrps + 1; i++) {
 | 
						|
        ARMCPRegInfo dbgregs[] = {
 | 
						|
            { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
 | 
						|
              .access = PL1_RW, .accessfn = access_tda,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
 | 
						|
              .writefn = dbgwvr_write, .raw_writefn = raw_write
 | 
						|
            },
 | 
						|
            { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
 | 
						|
              .access = PL1_RW, .accessfn = access_tda,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
 | 
						|
              .writefn = dbgwcr_write, .raw_writefn = raw_write
 | 
						|
            },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        define_arm_cp_regs(cpu, dbgregs);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* We don't know until after realize whether there's a GICv3
 | 
						|
 * attached, and that is what registers the gicv3 sysregs.
 | 
						|
 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
 | 
						|
 * at runtime.
 | 
						|
 */
 | 
						|
static uint64_t id_pfr1_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint64_t pfr1 = cpu->id_pfr1;
 | 
						|
 | 
						|
    if (env->gicv3state) {
 | 
						|
        pfr1 |= 1 << 28;
 | 
						|
    }
 | 
						|
    return pfr1;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t id_aa64pfr0_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint64_t pfr0 = cpu->id_aa64pfr0;
 | 
						|
 | 
						|
    if (env->gicv3state) {
 | 
						|
        pfr0 |= 1 << 24;
 | 
						|
    }
 | 
						|
    return pfr0;
 | 
						|
}
 | 
						|
 | 
						|
void register_cp_regs_for_features(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* Register all the coprocessor registers based on feature bits */
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M)) {
 | 
						|
        /* M profile has no coprocessor registers */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    define_arm_cp_regs(cpu, cp_reginfo);
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        /* Must go early as it is full of wildcards that may be
 | 
						|
         * overridden by later definitions.
 | 
						|
         */
 | 
						|
        define_arm_cp_regs(cpu, not_v8_cp_reginfo);
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V6)) {
 | 
						|
        /* The ID registers all have impdef reset values */
 | 
						|
        ARMCPRegInfo v6_idregs[] = {
 | 
						|
            { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_pfr0 },
 | 
						|
            /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
 | 
						|
             * the value of the GIC field until after we define these regs.
 | 
						|
             */
 | 
						|
            { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_NO_RAW,
 | 
						|
              .readfn = id_pfr1_read,
 | 
						|
              .writefn = arm_cp_write_ignore },
 | 
						|
            { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_dfr0 },
 | 
						|
            { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_afr0 },
 | 
						|
            { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_mmfr0 },
 | 
						|
            { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_mmfr1 },
 | 
						|
            { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_mmfr2 },
 | 
						|
            { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_mmfr3 },
 | 
						|
            { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_isar0 },
 | 
						|
            { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_isar1 },
 | 
						|
            { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_isar2 },
 | 
						|
            { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_isar3 },
 | 
						|
            { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_isar4 },
 | 
						|
            { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_isar5 },
 | 
						|
            { .name = "ID_MMFR4", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_mmfr4 },
 | 
						|
            /* 7 is as yet unallocated and must RAZ */
 | 
						|
            { .name = "ID_ISAR7_RESERVED", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        define_arm_cp_regs(cpu, v6_idregs);
 | 
						|
        define_arm_cp_regs(cpu, v6_cp_reginfo);
 | 
						|
    } else {
 | 
						|
        define_arm_cp_regs(cpu, not_v6_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V6K)) {
 | 
						|
        define_arm_cp_regs(cpu, v6k_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V7MP) &&
 | 
						|
        !arm_feature(env, ARM_FEATURE_PMSA)) {
 | 
						|
        define_arm_cp_regs(cpu, v7mp_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
        /* v7 performance monitor control register: same implementor
 | 
						|
         * field as main ID register, and we implement only the cycle
 | 
						|
         * count register.
 | 
						|
         */
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
        ARMCPRegInfo pmcr = {
 | 
						|
            .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
 | 
						|
            .access = PL0_RW,
 | 
						|
            .type = ARM_CP_IO | ARM_CP_ALIAS,
 | 
						|
            .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
 | 
						|
            .accessfn = pmreg_access, .writefn = pmcr_write,
 | 
						|
            .raw_writefn = raw_write,
 | 
						|
        };
 | 
						|
        ARMCPRegInfo pmcr64 = {
 | 
						|
            .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
            .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
 | 
						|
            .access = PL0_RW, .accessfn = pmreg_access,
 | 
						|
            .type = ARM_CP_IO,
 | 
						|
            .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
 | 
						|
            .resetvalue = cpu->midr & 0xff000000,
 | 
						|
            .writefn = pmcr_write, .raw_writefn = raw_write,
 | 
						|
        };
 | 
						|
        define_one_arm_cp_reg(cpu, &pmcr);
 | 
						|
        define_one_arm_cp_reg(cpu, &pmcr64);
 | 
						|
#endif
 | 
						|
        ARMCPRegInfo clidr = {
 | 
						|
            .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
 | 
						|
            .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
 | 
						|
            .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
 | 
						|
        };
 | 
						|
        define_one_arm_cp_reg(cpu, &clidr);
 | 
						|
        define_arm_cp_regs(cpu, v7_cp_reginfo);
 | 
						|
        define_debug_regs(cpu);
 | 
						|
    } else {
 | 
						|
        define_arm_cp_regs(cpu, not_v7_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        /* AArch64 ID registers, which all have impdef reset values.
 | 
						|
         * Note that within the ID register ranges the unused slots
 | 
						|
         * must all RAZ, not UNDEF; future architecture versions may
 | 
						|
         * define new registers here.
 | 
						|
         */
 | 
						|
        ARMCPRegInfo v8_idregs[] = {
 | 
						|
            /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
 | 
						|
             * know the right value for the GIC field until after we
 | 
						|
             * define these regs.
 | 
						|
             */
 | 
						|
            { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_NO_RAW,
 | 
						|
              .readfn = id_aa64pfr0_read,
 | 
						|
              .writefn = arm_cp_write_ignore },
 | 
						|
            { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64pfr1},
 | 
						|
            { .name = "ID_AA64PFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64PFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64PFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64PFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64PFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64PFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64dfr0 },
 | 
						|
            { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64dfr1 },
 | 
						|
            { .name = "ID_AA64DFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64DFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64afr0 },
 | 
						|
            { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64afr1 },
 | 
						|
            { .name = "ID_AA64AFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64AFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64isar0 },
 | 
						|
            { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64isar1 },
 | 
						|
            { .name = "ID_AA64ISAR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64ISAR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64ISAR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64ISAR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64ISAR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64ISAR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64mmfr0 },
 | 
						|
            { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->id_aa64mmfr1 },
 | 
						|
            { .name = "ID_AA64MMFR2_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64MMFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64MMFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64MMFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64MMFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ID_AA64MMFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->mvfr0 },
 | 
						|
            { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->mvfr1 },
 | 
						|
            { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->mvfr2 },
 | 
						|
            { .name = "MVFR3_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "MVFR4_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "MVFR5_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 5,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "MVFR6_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "MVFR7_EL1_RESERVED", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 7,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
 | 
						|
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
 | 
						|
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->pmceid0 },
 | 
						|
            { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
 | 
						|
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->pmceid0 },
 | 
						|
            { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
 | 
						|
              .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
 | 
						|
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->pmceid1 },
 | 
						|
            { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
 | 
						|
              .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->pmceid1 },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
 | 
						|
        if (!arm_feature(env, ARM_FEATURE_EL3) &&
 | 
						|
            !arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
            ARMCPRegInfo rvbar = {
 | 
						|
                .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
                .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
 | 
						|
                .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
 | 
						|
            };
 | 
						|
            define_one_arm_cp_reg(cpu, &rvbar);
 | 
						|
        }
 | 
						|
        define_arm_cp_regs(cpu, v8_idregs);
 | 
						|
        define_arm_cp_regs(cpu, v8_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
        uint64_t vmpidr_def = mpidr_read_val(env);
 | 
						|
        ARMCPRegInfo vpidr_regs[] = {
 | 
						|
            { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
 | 
						|
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | 
						|
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | 
						|
              .resetvalue = cpu->midr,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | 
						|
            { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | 
						|
              .access = PL2_RW, .resetvalue = cpu->midr,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | 
						|
            { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
 | 
						|
              .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | 
						|
              .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | 
						|
              .resetvalue = vmpidr_def,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
 | 
						|
            { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | 
						|
              .access = PL2_RW,
 | 
						|
              .resetvalue = vmpidr_def,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        define_arm_cp_regs(cpu, vpidr_regs);
 | 
						|
        define_arm_cp_regs(cpu, el2_cp_reginfo);
 | 
						|
        /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
 | 
						|
        if (!arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
            ARMCPRegInfo rvbar = {
 | 
						|
                .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
 | 
						|
                .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
 | 
						|
                .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
 | 
						|
            };
 | 
						|
            define_one_arm_cp_reg(cpu, &rvbar);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* If EL2 is missing but higher ELs are enabled, we need to
 | 
						|
         * register the no_el2 reginfos.
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
            /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
 | 
						|
             * of MIDR_EL1 and MPIDR_EL1.
 | 
						|
             */
 | 
						|
            ARMCPRegInfo vpidr_regs[] = {
 | 
						|
                { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | 
						|
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | 
						|
                  .type = ARM_CP_CONST, .resetvalue = cpu->midr,
 | 
						|
                  .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | 
						|
                { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
                  .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | 
						|
                  .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | 
						|
                  .type = ARM_CP_NO_RAW,
 | 
						|
                  .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
 | 
						|
                REGINFO_SENTINEL
 | 
						|
            };
 | 
						|
            define_arm_cp_regs(cpu, vpidr_regs);
 | 
						|
            define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
        define_arm_cp_regs(cpu, el3_cp_reginfo);
 | 
						|
        ARMCPRegInfo el3_regs[] = {
 | 
						|
            { .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
 | 
						|
              .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar },
 | 
						|
            { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
 | 
						|
              .access = PL3_RW,
 | 
						|
              .raw_writefn = raw_write, .writefn = sctlr_write,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]),
 | 
						|
              .resetvalue = cpu->reset_sctlr },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
 | 
						|
        define_arm_cp_regs(cpu, el3_regs);
 | 
						|
    }
 | 
						|
    /* The behaviour of NSACR is sufficiently various that we don't
 | 
						|
     * try to describe it in a single reginfo:
 | 
						|
     *  if EL3 is 64 bit, then trap to EL3 from S EL1,
 | 
						|
     *     reads as constant 0xc00 from NS EL1 and NS EL2
 | 
						|
     *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
 | 
						|
     *  if v7 without EL3, register doesn't exist
 | 
						|
     *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
 | 
						|
     */
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | 
						|
            ARMCPRegInfo nsacr = {
 | 
						|
                .name = "NSACR", .type = ARM_CP_CONST,
 | 
						|
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | 
						|
                .access = PL1_RW, .accessfn = nsacr_access,
 | 
						|
                .resetvalue = 0xc00
 | 
						|
            };
 | 
						|
            define_one_arm_cp_reg(cpu, &nsacr);
 | 
						|
        } else {
 | 
						|
            ARMCPRegInfo nsacr = {
 | 
						|
                .name = "NSACR",
 | 
						|
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | 
						|
                .access = PL3_RW | PL1_R,
 | 
						|
                .resetvalue = 0,
 | 
						|
                .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
 | 
						|
            };
 | 
						|
            define_one_arm_cp_reg(cpu, &nsacr);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
            ARMCPRegInfo nsacr = {
 | 
						|
                .name = "NSACR", .type = ARM_CP_CONST,
 | 
						|
                .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | 
						|
                .access = PL1_R,
 | 
						|
                .resetvalue = 0xc00
 | 
						|
            };
 | 
						|
            define_one_arm_cp_reg(cpu, &nsacr);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V6)) {
 | 
						|
            /* PMSAv6 not implemented */
 | 
						|
            assert(arm_feature(env, ARM_FEATURE_V7));
 | 
						|
            define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
 | 
						|
            define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
 | 
						|
        } else {
 | 
						|
            define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
 | 
						|
        define_arm_cp_regs(cpu, vmsa_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
 | 
						|
        define_arm_cp_regs(cpu, t2ee_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 | 
						|
        define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_VAPA)) {
 | 
						|
        define_arm_cp_regs(cpu, vapa_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
 | 
						|
        define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
 | 
						|
        define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
 | 
						|
        define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
 | 
						|
        define_arm_cp_regs(cpu, omap_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | 
						|
        define_arm_cp_regs(cpu, strongarm_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | 
						|
        define_arm_cp_regs(cpu, xscale_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
 | 
						|
        define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | 
						|
        define_arm_cp_regs(cpu, lpae_cp_reginfo);
 | 
						|
    }
 | 
						|
    /* Slightly awkwardly, the OMAP and StrongARM cores need all of
 | 
						|
     * cp15 crn=0 to be writes-ignored, whereas for other cores they should
 | 
						|
     * be read-only (ie write causes UNDEF exception).
 | 
						|
     */
 | 
						|
    {
 | 
						|
        ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
 | 
						|
            /* Pre-v8 MIDR space.
 | 
						|
             * Note that the MIDR isn't a simple constant register because
 | 
						|
             * of the TI925 behaviour where writes to another register can
 | 
						|
             * cause the MIDR value to change.
 | 
						|
             *
 | 
						|
             * Unimplemented registers in the c15 0 0 0 space default to
 | 
						|
             * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
 | 
						|
             * and friends override accordingly.
 | 
						|
             */
 | 
						|
            { .name = "MIDR",
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
              .access = PL1_R, .resetvalue = cpu->midr,
 | 
						|
              .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
 | 
						|
              .readfn = midr_read,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
 | 
						|
              .type = ARM_CP_OVERRIDE },
 | 
						|
            /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
 | 
						|
            { .name = "DUMMY",
 | 
						|
              .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
            { .name = "DUMMY",
 | 
						|
              .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
            { .name = "DUMMY",
 | 
						|
              .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
            { .name = "DUMMY",
 | 
						|
              .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
            { .name = "DUMMY",
 | 
						|
              .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
 | 
						|
            { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
 | 
						|
              .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
 | 
						|
              .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
 | 
						|
              .readfn = midr_read },
 | 
						|
            /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
 | 
						|
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
 | 
						|
              .access = PL1_R, .resetvalue = cpu->midr },
 | 
						|
            { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
 | 
						|
              .access = PL1_R, .resetvalue = cpu->midr },
 | 
						|
            { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        ARMCPRegInfo id_cp_reginfo[] = {
 | 
						|
            /* These are common to v8 and pre-v8 */
 | 
						|
            { .name = "CTR",
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | 
						|
            { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
 | 
						|
              .access = PL0_R, .accessfn = ctr_el0_access,
 | 
						|
              .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | 
						|
            /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
 | 
						|
            { .name = "TCMTR",
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        /* TLBTR is specific to VMSA */
 | 
						|
        ARMCPRegInfo id_tlbtr_reginfo = {
 | 
						|
              .name = "TLBTR",
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
 | 
						|
        };
 | 
						|
        /* MPUIR is specific to PMSA V6+ */
 | 
						|
        ARMCPRegInfo id_mpuir_reginfo = {
 | 
						|
              .name = "MPUIR",
 | 
						|
              .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
 | 
						|
              .access = PL1_R, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->pmsav7_dregion << 8
 | 
						|
        };
 | 
						|
        ARMCPRegInfo crn0_wi_reginfo = {
 | 
						|
            .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
 | 
						|
            .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
 | 
						|
            .type = ARM_CP_NOP | ARM_CP_OVERRIDE
 | 
						|
        };
 | 
						|
        if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
 | 
						|
            arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | 
						|
            ARMCPRegInfo *r;
 | 
						|
            /* Register the blanket "writes ignored" value first to cover the
 | 
						|
             * whole space. Then update the specific ID registers to allow write
 | 
						|
             * access, so that they ignore writes rather than causing them to
 | 
						|
             * UNDEF.
 | 
						|
             */
 | 
						|
            define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
 | 
						|
            for (r = id_pre_v8_midr_cp_reginfo;
 | 
						|
                 r->type != ARM_CP_SENTINEL; r++) {
 | 
						|
                r->access = PL1_RW;
 | 
						|
            }
 | 
						|
            for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
 | 
						|
                r->access = PL1_RW;
 | 
						|
            }
 | 
						|
            id_tlbtr_reginfo.access = PL1_RW;
 | 
						|
            id_tlbtr_reginfo.access = PL1_RW;
 | 
						|
        }
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
            define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
 | 
						|
        } else {
 | 
						|
            define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
 | 
						|
        }
 | 
						|
        define_arm_cp_regs(cpu, id_cp_reginfo);
 | 
						|
        if (!arm_feature(env, ARM_FEATURE_PMSA)) {
 | 
						|
            define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
 | 
						|
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
            define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_MPIDR)) {
 | 
						|
        define_arm_cp_regs(cpu, mpidr_cp_reginfo);
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_AUXCR)) {
 | 
						|
        ARMCPRegInfo auxcr_reginfo[] = {
 | 
						|
            { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
 | 
						|
              .access = PL1_RW, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = cpu->reset_auxcr },
 | 
						|
            { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
 | 
						|
              .access = PL2_RW, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
 | 
						|
              .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
 | 
						|
              .access = PL3_RW, .type = ARM_CP_CONST,
 | 
						|
              .resetvalue = 0 },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        define_arm_cp_regs(cpu, auxcr_reginfo);
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_CBAR)) {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | 
						|
            /* 32 bit view is [31:18] 0...0 [43:32]. */
 | 
						|
            uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
 | 
						|
                | extract64(cpu->reset_cbar, 32, 12);
 | 
						|
            ARMCPRegInfo cbar_reginfo[] = {
 | 
						|
                { .name = "CBAR",
 | 
						|
                  .type = ARM_CP_CONST,
 | 
						|
                  .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
 | 
						|
                  .access = PL1_R, .resetvalue = cpu->reset_cbar },
 | 
						|
                { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
 | 
						|
                  .type = ARM_CP_CONST,
 | 
						|
                  .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
 | 
						|
                  .access = PL1_R, .resetvalue = cbar32 },
 | 
						|
                REGINFO_SENTINEL
 | 
						|
            };
 | 
						|
            /* We don't implement a r/w 64 bit CBAR currently */
 | 
						|
            assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
 | 
						|
            define_arm_cp_regs(cpu, cbar_reginfo);
 | 
						|
        } else {
 | 
						|
            ARMCPRegInfo cbar = {
 | 
						|
                .name = "CBAR",
 | 
						|
                .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
 | 
						|
                .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
 | 
						|
                .fieldoffset = offsetof(CPUARMState,
 | 
						|
                                        cp15.c15_config_base_address)
 | 
						|
            };
 | 
						|
            if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
 | 
						|
                cbar.access = PL1_R;
 | 
						|
                cbar.fieldoffset = 0;
 | 
						|
                cbar.type = ARM_CP_CONST;
 | 
						|
            }
 | 
						|
            define_one_arm_cp_reg(cpu, &cbar);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_VBAR)) {
 | 
						|
        ARMCPRegInfo vbar_cp_reginfo[] = {
 | 
						|
            { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
 | 
						|
              .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
 | 
						|
              .access = PL1_RW, .writefn = vbar_write,
 | 
						|
              .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
 | 
						|
                                     offsetof(CPUARMState, cp15.vbar_ns) },
 | 
						|
              .resetvalue = 0 },
 | 
						|
            REGINFO_SENTINEL
 | 
						|
        };
 | 
						|
        define_arm_cp_regs(cpu, vbar_cp_reginfo);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Generic registers whose values depend on the implementation */
 | 
						|
    {
 | 
						|
        ARMCPRegInfo sctlr = {
 | 
						|
            .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
 | 
						|
            .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | 
						|
            .access = PL1_RW,
 | 
						|
            .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
 | 
						|
                                   offsetof(CPUARMState, cp15.sctlr_ns) },
 | 
						|
            .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
 | 
						|
            .raw_writefn = raw_write,
 | 
						|
        };
 | 
						|
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | 
						|
            /* Normally we would always end the TB on an SCTLR write, but Linux
 | 
						|
             * arch/arm/mach-pxa/sleep.S expects two instructions following
 | 
						|
             * an MMU enable to execute from cache.  Imitate this behaviour.
 | 
						|
             */
 | 
						|
            sctlr.type |= ARM_CP_SUPPRESS_TB_END;
 | 
						|
        }
 | 
						|
        define_one_arm_cp_reg(cpu, &sctlr);
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_SVE)) {
 | 
						|
        define_one_arm_cp_reg(cpu, &zcr_el1_reginfo);
 | 
						|
        if (arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
            define_one_arm_cp_reg(cpu, &zcr_el2_reginfo);
 | 
						|
        } else {
 | 
						|
            define_one_arm_cp_reg(cpu, &zcr_no_el2_reginfo);
 | 
						|
        }
 | 
						|
        if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
            define_one_arm_cp_reg(cpu, &zcr_el3_reginfo);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | 
						|
        gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
 | 
						|
                                 aarch64_fpu_gdb_set_reg,
 | 
						|
                                 34, "aarch64-fpu.xml", 0);
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_NEON)) {
 | 
						|
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | 
						|
                                 51, "arm-neon.xml", 0);
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
 | 
						|
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | 
						|
                                 35, "arm-vfp3.xml", 0);
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
 | 
						|
        gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | 
						|
                                 19, "arm-vfp.xml", 0);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Sort alphabetically by type name, except for "any". */
 | 
						|
static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
 | 
						|
{
 | 
						|
    ObjectClass *class_a = (ObjectClass *)a;
 | 
						|
    ObjectClass *class_b = (ObjectClass *)b;
 | 
						|
    const char *name_a, *name_b;
 | 
						|
 | 
						|
    name_a = object_class_get_name(class_a);
 | 
						|
    name_b = object_class_get_name(class_b);
 | 
						|
    if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
 | 
						|
        return 1;
 | 
						|
    } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
 | 
						|
        return -1;
 | 
						|
    } else {
 | 
						|
        return strcmp(name_a, name_b);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void arm_cpu_list_entry(gpointer data, gpointer user_data)
 | 
						|
{
 | 
						|
    ObjectClass *oc = data;
 | 
						|
    CPUListState *s = user_data;
 | 
						|
    const char *typename;
 | 
						|
    char *name;
 | 
						|
 | 
						|
    typename = object_class_get_name(oc);
 | 
						|
    name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | 
						|
    (*s->cpu_fprintf)(s->file, "  %s\n",
 | 
						|
                      name);
 | 
						|
    g_free(name);
 | 
						|
}
 | 
						|
 | 
						|
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
 | 
						|
{
 | 
						|
    CPUListState s = {
 | 
						|
        .file = f,
 | 
						|
        .cpu_fprintf = cpu_fprintf,
 | 
						|
    };
 | 
						|
    GSList *list;
 | 
						|
 | 
						|
    list = object_class_get_list(TYPE_ARM_CPU, false);
 | 
						|
    list = g_slist_sort(list, arm_cpu_list_compare);
 | 
						|
    (*cpu_fprintf)(f, "Available CPUs:\n");
 | 
						|
    g_slist_foreach(list, arm_cpu_list_entry, &s);
 | 
						|
    g_slist_free(list);
 | 
						|
#ifdef CONFIG_KVM
 | 
						|
    /* The 'host' CPU type is dynamically registered only if KVM is
 | 
						|
     * enabled, so we have to special-case it here:
 | 
						|
     */
 | 
						|
    (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void arm_cpu_add_definition(gpointer data, gpointer user_data)
 | 
						|
{
 | 
						|
    ObjectClass *oc = data;
 | 
						|
    CpuDefinitionInfoList **cpu_list = user_data;
 | 
						|
    CpuDefinitionInfoList *entry;
 | 
						|
    CpuDefinitionInfo *info;
 | 
						|
    const char *typename;
 | 
						|
 | 
						|
    typename = object_class_get_name(oc);
 | 
						|
    info = g_malloc0(sizeof(*info));
 | 
						|
    info->name = g_strndup(typename,
 | 
						|
                           strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | 
						|
    info->q_typename = g_strdup(typename);
 | 
						|
 | 
						|
    entry = g_malloc0(sizeof(*entry));
 | 
						|
    entry->value = info;
 | 
						|
    entry->next = *cpu_list;
 | 
						|
    *cpu_list = entry;
 | 
						|
}
 | 
						|
 | 
						|
CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
 | 
						|
{
 | 
						|
    CpuDefinitionInfoList *cpu_list = NULL;
 | 
						|
    GSList *list;
 | 
						|
 | 
						|
    list = object_class_get_list(TYPE_ARM_CPU, false);
 | 
						|
    g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
 | 
						|
    g_slist_free(list);
 | 
						|
 | 
						|
    return cpu_list;
 | 
						|
}
 | 
						|
 | 
						|
static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
 | 
						|
                                   void *opaque, int state, int secstate,
 | 
						|
                                   int crm, int opc1, int opc2)
 | 
						|
{
 | 
						|
    /* Private utility function for define_one_arm_cp_reg_with_opaque():
 | 
						|
     * add a single reginfo struct to the hash table.
 | 
						|
     */
 | 
						|
    uint32_t *key = g_new(uint32_t, 1);
 | 
						|
    ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
 | 
						|
    int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
 | 
						|
    int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
 | 
						|
 | 
						|
    /* Reset the secure state to the specific incoming state.  This is
 | 
						|
     * necessary as the register may have been defined with both states.
 | 
						|
     */
 | 
						|
    r2->secure = secstate;
 | 
						|
 | 
						|
    if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
 | 
						|
        /* Register is banked (using both entries in array).
 | 
						|
         * Overwriting fieldoffset as the array is only used to define
 | 
						|
         * banked registers but later only fieldoffset is used.
 | 
						|
         */
 | 
						|
        r2->fieldoffset = r->bank_fieldoffsets[ns];
 | 
						|
    }
 | 
						|
 | 
						|
    if (state == ARM_CP_STATE_AA32) {
 | 
						|
        if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
 | 
						|
            /* If the register is banked then we don't need to migrate or
 | 
						|
             * reset the 32-bit instance in certain cases:
 | 
						|
             *
 | 
						|
             * 1) If the register has both 32-bit and 64-bit instances then we
 | 
						|
             *    can count on the 64-bit instance taking care of the
 | 
						|
             *    non-secure bank.
 | 
						|
             * 2) If ARMv8 is enabled then we can count on a 64-bit version
 | 
						|
             *    taking care of the secure bank.  This requires that separate
 | 
						|
             *    32 and 64-bit definitions are provided.
 | 
						|
             */
 | 
						|
            if ((r->state == ARM_CP_STATE_BOTH && ns) ||
 | 
						|
                (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
 | 
						|
                r2->type |= ARM_CP_ALIAS;
 | 
						|
            }
 | 
						|
        } else if ((secstate != r->secure) && !ns) {
 | 
						|
            /* The register is not banked so we only want to allow migration of
 | 
						|
             * the non-secure instance.
 | 
						|
             */
 | 
						|
            r2->type |= ARM_CP_ALIAS;
 | 
						|
        }
 | 
						|
 | 
						|
        if (r->state == ARM_CP_STATE_BOTH) {
 | 
						|
            /* We assume it is a cp15 register if the .cp field is left unset.
 | 
						|
             */
 | 
						|
            if (r2->cp == 0) {
 | 
						|
                r2->cp = 15;
 | 
						|
            }
 | 
						|
 | 
						|
#ifdef HOST_WORDS_BIGENDIAN
 | 
						|
            if (r2->fieldoffset) {
 | 
						|
                r2->fieldoffset += sizeof(uint32_t);
 | 
						|
            }
 | 
						|
#endif
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (state == ARM_CP_STATE_AA64) {
 | 
						|
        /* To allow abbreviation of ARMCPRegInfo
 | 
						|
         * definitions, we treat cp == 0 as equivalent to
 | 
						|
         * the value for "standard guest-visible sysreg".
 | 
						|
         * STATE_BOTH definitions are also always "standard
 | 
						|
         * sysreg" in their AArch64 view (the .cp value may
 | 
						|
         * be non-zero for the benefit of the AArch32 view).
 | 
						|
         */
 | 
						|
        if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
 | 
						|
            r2->cp = CP_REG_ARM64_SYSREG_CP;
 | 
						|
        }
 | 
						|
        *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
 | 
						|
                                  r2->opc0, opc1, opc2);
 | 
						|
    } else {
 | 
						|
        *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
 | 
						|
    }
 | 
						|
    if (opaque) {
 | 
						|
        r2->opaque = opaque;
 | 
						|
    }
 | 
						|
    /* reginfo passed to helpers is correct for the actual access,
 | 
						|
     * and is never ARM_CP_STATE_BOTH:
 | 
						|
     */
 | 
						|
    r2->state = state;
 | 
						|
    /* Make sure reginfo passed to helpers for wildcarded regs
 | 
						|
     * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
 | 
						|
     */
 | 
						|
    r2->crm = crm;
 | 
						|
    r2->opc1 = opc1;
 | 
						|
    r2->opc2 = opc2;
 | 
						|
    /* By convention, for wildcarded registers only the first
 | 
						|
     * entry is used for migration; the others are marked as
 | 
						|
     * ALIAS so we don't try to transfer the register
 | 
						|
     * multiple times. Special registers (ie NOP/WFI) are
 | 
						|
     * never migratable and not even raw-accessible.
 | 
						|
     */
 | 
						|
    if ((r->type & ARM_CP_SPECIAL)) {
 | 
						|
        r2->type |= ARM_CP_NO_RAW;
 | 
						|
    }
 | 
						|
    if (((r->crm == CP_ANY) && crm != 0) ||
 | 
						|
        ((r->opc1 == CP_ANY) && opc1 != 0) ||
 | 
						|
        ((r->opc2 == CP_ANY) && opc2 != 0)) {
 | 
						|
        r2->type |= ARM_CP_ALIAS;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check that raw accesses are either forbidden or handled. Note that
 | 
						|
     * we can't assert this earlier because the setup of fieldoffset for
 | 
						|
     * banked registers has to be done first.
 | 
						|
     */
 | 
						|
    if (!(r2->type & ARM_CP_NO_RAW)) {
 | 
						|
        assert(!raw_accessors_invalid(r2));
 | 
						|
    }
 | 
						|
 | 
						|
    /* Overriding of an existing definition must be explicitly
 | 
						|
     * requested.
 | 
						|
     */
 | 
						|
    if (!(r->type & ARM_CP_OVERRIDE)) {
 | 
						|
        ARMCPRegInfo *oldreg;
 | 
						|
        oldreg = g_hash_table_lookup(cpu->cp_regs, key);
 | 
						|
        if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
 | 
						|
            fprintf(stderr, "Register redefined: cp=%d %d bit "
 | 
						|
                    "crn=%d crm=%d opc1=%d opc2=%d, "
 | 
						|
                    "was %s, now %s\n", r2->cp, 32 + 32 * is64,
 | 
						|
                    r2->crn, r2->crm, r2->opc1, r2->opc2,
 | 
						|
                    oldreg->name, r2->name);
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    g_hash_table_insert(cpu->cp_regs, key, r2);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | 
						|
                                       const ARMCPRegInfo *r, void *opaque)
 | 
						|
{
 | 
						|
    /* Define implementations of coprocessor registers.
 | 
						|
     * We store these in a hashtable because typically
 | 
						|
     * there are less than 150 registers in a space which
 | 
						|
     * is 16*16*16*8*8 = 262144 in size.
 | 
						|
     * Wildcarding is supported for the crm, opc1 and opc2 fields.
 | 
						|
     * If a register is defined twice then the second definition is
 | 
						|
     * used, so this can be used to define some generic registers and
 | 
						|
     * then override them with implementation specific variations.
 | 
						|
     * At least one of the original and the second definition should
 | 
						|
     * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
 | 
						|
     * against accidental use.
 | 
						|
     *
 | 
						|
     * The state field defines whether the register is to be
 | 
						|
     * visible in the AArch32 or AArch64 execution state. If the
 | 
						|
     * state is set to ARM_CP_STATE_BOTH then we synthesise a
 | 
						|
     * reginfo structure for the AArch32 view, which sees the lower
 | 
						|
     * 32 bits of the 64 bit register.
 | 
						|
     *
 | 
						|
     * Only registers visible in AArch64 may set r->opc0; opc0 cannot
 | 
						|
     * be wildcarded. AArch64 registers are always considered to be 64
 | 
						|
     * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
 | 
						|
     * the register, if any.
 | 
						|
     */
 | 
						|
    int crm, opc1, opc2, state;
 | 
						|
    int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
 | 
						|
    int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
 | 
						|
    int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
 | 
						|
    int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
 | 
						|
    int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
 | 
						|
    int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
 | 
						|
    /* 64 bit registers have only CRm and Opc1 fields */
 | 
						|
    assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
 | 
						|
    /* op0 only exists in the AArch64 encodings */
 | 
						|
    assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
 | 
						|
    /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
 | 
						|
    assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
 | 
						|
    /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
 | 
						|
     * encodes a minimum access level for the register. We roll this
 | 
						|
     * runtime check into our general permission check code, so check
 | 
						|
     * here that the reginfo's specified permissions are strict enough
 | 
						|
     * to encompass the generic architectural permission check.
 | 
						|
     */
 | 
						|
    if (r->state != ARM_CP_STATE_AA32) {
 | 
						|
        int mask = 0;
 | 
						|
        switch (r->opc1) {
 | 
						|
        case 0: case 1: case 2:
 | 
						|
            /* min_EL EL1 */
 | 
						|
            mask = PL1_RW;
 | 
						|
            break;
 | 
						|
        case 3:
 | 
						|
            /* min_EL EL0 */
 | 
						|
            mask = PL0_RW;
 | 
						|
            break;
 | 
						|
        case 4:
 | 
						|
            /* min_EL EL2 */
 | 
						|
            mask = PL2_RW;
 | 
						|
            break;
 | 
						|
        case 5:
 | 
						|
            /* unallocated encoding, so not possible */
 | 
						|
            assert(false);
 | 
						|
            break;
 | 
						|
        case 6:
 | 
						|
            /* min_EL EL3 */
 | 
						|
            mask = PL3_RW;
 | 
						|
            break;
 | 
						|
        case 7:
 | 
						|
            /* min_EL EL1, secure mode only (we don't check the latter) */
 | 
						|
            mask = PL1_RW;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            /* broken reginfo with out-of-range opc1 */
 | 
						|
            assert(false);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        /* assert our permissions are not too lax (stricter is fine) */
 | 
						|
        assert((r->access & ~mask) == 0);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Check that the register definition has enough info to handle
 | 
						|
     * reads and writes if they are permitted.
 | 
						|
     */
 | 
						|
    if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
 | 
						|
        if (r->access & PL3_R) {
 | 
						|
            assert((r->fieldoffset ||
 | 
						|
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
 | 
						|
                   r->readfn);
 | 
						|
        }
 | 
						|
        if (r->access & PL3_W) {
 | 
						|
            assert((r->fieldoffset ||
 | 
						|
                   (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
 | 
						|
                   r->writefn);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    /* Bad type field probably means missing sentinel at end of reg list */
 | 
						|
    assert(cptype_valid(r->type));
 | 
						|
    for (crm = crmmin; crm <= crmmax; crm++) {
 | 
						|
        for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
 | 
						|
            for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
 | 
						|
                for (state = ARM_CP_STATE_AA32;
 | 
						|
                     state <= ARM_CP_STATE_AA64; state++) {
 | 
						|
                    if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
 | 
						|
                        continue;
 | 
						|
                    }
 | 
						|
                    if (state == ARM_CP_STATE_AA32) {
 | 
						|
                        /* Under AArch32 CP registers can be common
 | 
						|
                         * (same for secure and non-secure world) or banked.
 | 
						|
                         */
 | 
						|
                        switch (r->secure) {
 | 
						|
                        case ARM_CP_SECSTATE_S:
 | 
						|
                        case ARM_CP_SECSTATE_NS:
 | 
						|
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
 | 
						|
                                                   r->secure, crm, opc1, opc2);
 | 
						|
                            break;
 | 
						|
                        default:
 | 
						|
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
 | 
						|
                                                   ARM_CP_SECSTATE_S,
 | 
						|
                                                   crm, opc1, opc2);
 | 
						|
                            add_cpreg_to_hashtable(cpu, r, opaque, state,
 | 
						|
                                                   ARM_CP_SECSTATE_NS,
 | 
						|
                                                   crm, opc1, opc2);
 | 
						|
                            break;
 | 
						|
                        }
 | 
						|
                    } else {
 | 
						|
                        /* AArch64 registers get mapped to non-secure instance
 | 
						|
                         * of AArch32 */
 | 
						|
                        add_cpreg_to_hashtable(cpu, r, opaque, state,
 | 
						|
                                               ARM_CP_SECSTATE_NS,
 | 
						|
                                               crm, opc1, opc2);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | 
						|
                                    const ARMCPRegInfo *regs, void *opaque)
 | 
						|
{
 | 
						|
    /* Define a whole list of registers */
 | 
						|
    const ARMCPRegInfo *r;
 | 
						|
    for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
 | 
						|
        define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
 | 
						|
{
 | 
						|
    return g_hash_table_lookup(cpregs, &encoded_cp);
 | 
						|
}
 | 
						|
 | 
						|
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | 
						|
                         uint64_t value)
 | 
						|
{
 | 
						|
    /* Helper coprocessor write function for write-ignore registers */
 | 
						|
}
 | 
						|
 | 
						|
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
 | 
						|
{
 | 
						|
    /* Helper coprocessor write function for read-as-zero registers */
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
 | 
						|
{
 | 
						|
    /* Helper coprocessor reset function for do-nothing-on-reset registers */
 | 
						|
}
 | 
						|
 | 
						|
static int bad_mode_switch(CPUARMState *env, int mode, CPSRWriteType write_type)
 | 
						|
{
 | 
						|
    /* Return true if it is not valid for us to switch to
 | 
						|
     * this CPU mode (ie all the UNPREDICTABLE cases in
 | 
						|
     * the ARM ARM CPSRWriteByInstr pseudocode).
 | 
						|
     */
 | 
						|
 | 
						|
    /* Changes to or from Hyp via MSR and CPS are illegal. */
 | 
						|
    if (write_type == CPSRWriteByInstr &&
 | 
						|
        ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_HYP ||
 | 
						|
         mode == ARM_CPU_MODE_HYP)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (mode) {
 | 
						|
    case ARM_CPU_MODE_USR:
 | 
						|
        return 0;
 | 
						|
    case ARM_CPU_MODE_SYS:
 | 
						|
    case ARM_CPU_MODE_SVC:
 | 
						|
    case ARM_CPU_MODE_ABT:
 | 
						|
    case ARM_CPU_MODE_UND:
 | 
						|
    case ARM_CPU_MODE_IRQ:
 | 
						|
    case ARM_CPU_MODE_FIQ:
 | 
						|
        /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
 | 
						|
         * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
 | 
						|
         */
 | 
						|
        /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
 | 
						|
         * and CPS are treated as illegal mode changes.
 | 
						|
         */
 | 
						|
        if (write_type == CPSRWriteByInstr &&
 | 
						|
            (env->cp15.hcr_el2 & HCR_TGE) &&
 | 
						|
            (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON &&
 | 
						|
            !arm_is_secure_below_el3(env)) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    case ARM_CPU_MODE_HYP:
 | 
						|
        return !arm_feature(env, ARM_FEATURE_EL2)
 | 
						|
            || arm_current_el(env) < 2 || arm_is_secure(env);
 | 
						|
    case ARM_CPU_MODE_MON:
 | 
						|
        return arm_current_el(env) < 3;
 | 
						|
    default:
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpsr_read(CPUARMState *env)
 | 
						|
{
 | 
						|
    int ZF;
 | 
						|
    ZF = (env->ZF == 0);
 | 
						|
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
 | 
						|
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | 
						|
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
 | 
						|
        | ((env->condexec_bits & 0xfc) << 8)
 | 
						|
        | (env->GE << 16) | (env->daif & CPSR_AIF);
 | 
						|
}
 | 
						|
 | 
						|
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
 | 
						|
                CPSRWriteType write_type)
 | 
						|
{
 | 
						|
    uint32_t changed_daif;
 | 
						|
 | 
						|
    if (mask & CPSR_NZCV) {
 | 
						|
        env->ZF = (~val) & CPSR_Z;
 | 
						|
        env->NF = val;
 | 
						|
        env->CF = (val >> 29) & 1;
 | 
						|
        env->VF = (val << 3) & 0x80000000;
 | 
						|
    }
 | 
						|
    if (mask & CPSR_Q)
 | 
						|
        env->QF = ((val & CPSR_Q) != 0);
 | 
						|
    if (mask & CPSR_T)
 | 
						|
        env->thumb = ((val & CPSR_T) != 0);
 | 
						|
    if (mask & CPSR_IT_0_1) {
 | 
						|
        env->condexec_bits &= ~3;
 | 
						|
        env->condexec_bits |= (val >> 25) & 3;
 | 
						|
    }
 | 
						|
    if (mask & CPSR_IT_2_7) {
 | 
						|
        env->condexec_bits &= 3;
 | 
						|
        env->condexec_bits |= (val >> 8) & 0xfc;
 | 
						|
    }
 | 
						|
    if (mask & CPSR_GE) {
 | 
						|
        env->GE = (val >> 16) & 0xf;
 | 
						|
    }
 | 
						|
 | 
						|
    /* In a V7 implementation that includes the security extensions but does
 | 
						|
     * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
 | 
						|
     * whether non-secure software is allowed to change the CPSR_F and CPSR_A
 | 
						|
     * bits respectively.
 | 
						|
     *
 | 
						|
     * In a V8 implementation, it is permitted for privileged software to
 | 
						|
     * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
 | 
						|
     */
 | 
						|
    if (write_type != CPSRWriteRaw && !arm_feature(env, ARM_FEATURE_V8) &&
 | 
						|
        arm_feature(env, ARM_FEATURE_EL3) &&
 | 
						|
        !arm_feature(env, ARM_FEATURE_EL2) &&
 | 
						|
        !arm_is_secure(env)) {
 | 
						|
 | 
						|
        changed_daif = (env->daif ^ val) & mask;
 | 
						|
 | 
						|
        if (changed_daif & CPSR_A) {
 | 
						|
            /* Check to see if we are allowed to change the masking of async
 | 
						|
             * abort exceptions from a non-secure state.
 | 
						|
             */
 | 
						|
            if (!(env->cp15.scr_el3 & SCR_AW)) {
 | 
						|
                qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                              "Ignoring attempt to switch CPSR_A flag from "
 | 
						|
                              "non-secure world with SCR.AW bit clear\n");
 | 
						|
                mask &= ~CPSR_A;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (changed_daif & CPSR_F) {
 | 
						|
            /* Check to see if we are allowed to change the masking of FIQ
 | 
						|
             * exceptions from a non-secure state.
 | 
						|
             */
 | 
						|
            if (!(env->cp15.scr_el3 & SCR_FW)) {
 | 
						|
                qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                              "Ignoring attempt to switch CPSR_F flag from "
 | 
						|
                              "non-secure world with SCR.FW bit clear\n");
 | 
						|
                mask &= ~CPSR_F;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Check whether non-maskable FIQ (NMFI) support is enabled.
 | 
						|
             * If this bit is set software is not allowed to mask
 | 
						|
             * FIQs, but is allowed to set CPSR_F to 0.
 | 
						|
             */
 | 
						|
            if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
 | 
						|
                (val & CPSR_F)) {
 | 
						|
                qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                              "Ignoring attempt to enable CPSR_F flag "
 | 
						|
                              "(non-maskable FIQ [NMFI] support enabled)\n");
 | 
						|
                mask &= ~CPSR_F;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    env->daif &= ~(CPSR_AIF & mask);
 | 
						|
    env->daif |= val & CPSR_AIF & mask;
 | 
						|
 | 
						|
    if (write_type != CPSRWriteRaw &&
 | 
						|
        ((env->uncached_cpsr ^ val) & mask & CPSR_M)) {
 | 
						|
        if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR) {
 | 
						|
            /* Note that we can only get here in USR mode if this is a
 | 
						|
             * gdb stub write; for this case we follow the architectural
 | 
						|
             * behaviour for guest writes in USR mode of ignoring an attempt
 | 
						|
             * to switch mode. (Those are caught by translate.c for writes
 | 
						|
             * triggered by guest instructions.)
 | 
						|
             */
 | 
						|
            mask &= ~CPSR_M;
 | 
						|
        } else if (bad_mode_switch(env, val & CPSR_M, write_type)) {
 | 
						|
            /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
 | 
						|
             * v7, and has defined behaviour in v8:
 | 
						|
             *  + leave CPSR.M untouched
 | 
						|
             *  + allow changes to the other CPSR fields
 | 
						|
             *  + set PSTATE.IL
 | 
						|
             * For user changes via the GDB stub, we don't set PSTATE.IL,
 | 
						|
             * as this would be unnecessarily harsh for a user error.
 | 
						|
             */
 | 
						|
            mask &= ~CPSR_M;
 | 
						|
            if (write_type != CPSRWriteByGDBStub &&
 | 
						|
                arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
                mask |= CPSR_IL;
 | 
						|
                val |= CPSR_IL;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            switch_mode(env, val & CPSR_M);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    mask &= ~CACHED_CPSR_BITS;
 | 
						|
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
 | 
						|
}
 | 
						|
 | 
						|
/* Sign/zero extend */
 | 
						|
uint32_t HELPER(sxtb16)(uint32_t x)
 | 
						|
{
 | 
						|
    uint32_t res;
 | 
						|
    res = (uint16_t)(int8_t)x;
 | 
						|
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(uxtb16)(uint32_t x)
 | 
						|
{
 | 
						|
    uint32_t res;
 | 
						|
    res = (uint16_t)(uint8_t)x;
 | 
						|
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
int32_t HELPER(sdiv)(int32_t num, int32_t den)
 | 
						|
{
 | 
						|
    if (den == 0)
 | 
						|
      return 0;
 | 
						|
    if (num == INT_MIN && den == -1)
 | 
						|
      return INT_MIN;
 | 
						|
    return num / den;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
 | 
						|
{
 | 
						|
    if (den == 0)
 | 
						|
      return 0;
 | 
						|
    return num / den;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(rbit)(uint32_t x)
 | 
						|
{
 | 
						|
    return revbit32(x);
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_USER_ONLY)
 | 
						|
 | 
						|
/* These should probably raise undefined insn exceptions.  */
 | 
						|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
 | 
						|
{
 | 
						|
    /* translate.c should never generate calls here in user-only mode */
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
 | 
						|
{
 | 
						|
    /* translate.c should never generate calls here in user-only mode */
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
 | 
						|
{
 | 
						|
    /* The TT instructions can be used by unprivileged code, but in
 | 
						|
     * user-only emulation we don't have the MPU.
 | 
						|
     * Luckily since we know we are NonSecure unprivileged (and that in
 | 
						|
     * turn means that the A flag wasn't specified), all the bits in the
 | 
						|
     * register must be zero:
 | 
						|
     *  IREGION: 0 because IRVALID is 0
 | 
						|
     *  IRVALID: 0 because NS
 | 
						|
     *  S: 0 because NS
 | 
						|
     *  NSRW: 0 because NS
 | 
						|
     *  NSR: 0 because NS
 | 
						|
     *  RW: 0 because unpriv and A flag not set
 | 
						|
     *  R: 0 because unpriv and A flag not set
 | 
						|
     *  SRVALID: 0 because NS
 | 
						|
     *  MRVALID: 0 because unpriv and A flag not set
 | 
						|
     *  SREGION: 0 becaus SRVALID is 0
 | 
						|
     *  MREGION: 0 because MRVALID is 0
 | 
						|
     */
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void switch_mode(CPUARMState *env, int mode)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
 | 
						|
    if (mode != ARM_CPU_MODE_USR) {
 | 
						|
        cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | 
						|
                                 uint32_t cur_el, bool secure)
 | 
						|
{
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
void aarch64_sync_64_to_32(CPUARMState *env)
 | 
						|
{
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
 | 
						|
void switch_mode(CPUARMState *env, int mode)
 | 
						|
{
 | 
						|
    int old_mode;
 | 
						|
    int i;
 | 
						|
 | 
						|
    old_mode = env->uncached_cpsr & CPSR_M;
 | 
						|
    if (mode == old_mode)
 | 
						|
        return;
 | 
						|
 | 
						|
    if (old_mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | 
						|
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | 
						|
    } else if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | 
						|
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | 
						|
    }
 | 
						|
 | 
						|
    i = bank_number(old_mode);
 | 
						|
    env->banked_r13[i] = env->regs[13];
 | 
						|
    env->banked_r14[i] = env->regs[14];
 | 
						|
    env->banked_spsr[i] = env->spsr;
 | 
						|
 | 
						|
    i = bank_number(mode);
 | 
						|
    env->regs[13] = env->banked_r13[i];
 | 
						|
    env->regs[14] = env->banked_r14[i];
 | 
						|
    env->spsr = env->banked_spsr[i];
 | 
						|
}
 | 
						|
 | 
						|
/* Physical Interrupt Target EL Lookup Table
 | 
						|
 *
 | 
						|
 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 | 
						|
 *
 | 
						|
 * The below multi-dimensional table is used for looking up the target
 | 
						|
 * exception level given numerous condition criteria.  Specifically, the
 | 
						|
 * target EL is based on SCR and HCR routing controls as well as the
 | 
						|
 * currently executing EL and secure state.
 | 
						|
 *
 | 
						|
 *    Dimensions:
 | 
						|
 *    target_el_table[2][2][2][2][2][4]
 | 
						|
 *                    |  |  |  |  |  +--- Current EL
 | 
						|
 *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 | 
						|
 *                    |  |  |  +--------- HCR mask override
 | 
						|
 *                    |  |  +------------ SCR exec state control
 | 
						|
 *                    |  +--------------- SCR mask override
 | 
						|
 *                    +------------------ 32-bit(0)/64-bit(1) EL3
 | 
						|
 *
 | 
						|
 *    The table values are as such:
 | 
						|
 *    0-3 = EL0-EL3
 | 
						|
 *     -1 = Cannot occur
 | 
						|
 *
 | 
						|
 * The ARM ARM target EL table includes entries indicating that an "exception
 | 
						|
 * is not taken".  The two cases where this is applicable are:
 | 
						|
 *    1) An exception is taken from EL3 but the SCR does not have the exception
 | 
						|
 *    routed to EL3.
 | 
						|
 *    2) An exception is taken from EL2 but the HCR does not have the exception
 | 
						|
 *    routed to EL2.
 | 
						|
 * In these two cases, the below table contain a target of EL1.  This value is
 | 
						|
 * returned as it is expected that the consumer of the table data will check
 | 
						|
 * for "target EL >= current EL" to ensure the exception is not taken.
 | 
						|
 *
 | 
						|
 *            SCR     HCR
 | 
						|
 *         64  EA     AMO                 From
 | 
						|
 *        BIT IRQ     IMO      Non-secure         Secure
 | 
						|
 *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 | 
						|
 */
 | 
						|
static const int8_t target_el_table[2][2][2][2][2][4] = {
 | 
						|
    {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
 | 
						|
       {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
 | 
						|
      {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
 | 
						|
       {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
 | 
						|
     {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
 | 
						|
       {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
 | 
						|
      {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
 | 
						|
       {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
 | 
						|
    {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
 | 
						|
       {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
 | 
						|
      {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
 | 
						|
       {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
 | 
						|
     {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
 | 
						|
       {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
 | 
						|
      {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
 | 
						|
       {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Determine the target EL for physical exceptions
 | 
						|
 */
 | 
						|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | 
						|
                                 uint32_t cur_el, bool secure)
 | 
						|
{
 | 
						|
    CPUARMState *env = cs->env_ptr;
 | 
						|
    int rw;
 | 
						|
    int scr;
 | 
						|
    int hcr;
 | 
						|
    int target_el;
 | 
						|
    /* Is the highest EL AArch64? */
 | 
						|
    int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
        rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
 | 
						|
    } else {
 | 
						|
        /* Either EL2 is the highest EL (and so the EL2 register width
 | 
						|
         * is given by is64); or there is no EL2 or EL3, in which case
 | 
						|
         * the value of 'rw' does not affect the table lookup anyway.
 | 
						|
         */
 | 
						|
        rw = is64;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (excp_idx) {
 | 
						|
    case EXCP_IRQ:
 | 
						|
        scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
 | 
						|
        hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
 | 
						|
        break;
 | 
						|
    case EXCP_FIQ:
 | 
						|
        scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
 | 
						|
        hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
 | 
						|
        hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
 | 
						|
        break;
 | 
						|
    };
 | 
						|
 | 
						|
    /* If HCR.TGE is set then HCR is treated as being 1 */
 | 
						|
    hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
 | 
						|
 | 
						|
    /* Perform a table-lookup for the target EL given the current state */
 | 
						|
    target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
 | 
						|
 | 
						|
    assert(target_el > 0);
 | 
						|
 | 
						|
    return target_el;
 | 
						|
}
 | 
						|
 | 
						|
static bool v7m_stack_write(ARMCPU *cpu, uint32_t addr, uint32_t value,
 | 
						|
                            ARMMMUIdx mmu_idx, bool ignfault)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    MemTxResult txres;
 | 
						|
    target_ulong page_size;
 | 
						|
    hwaddr physaddr;
 | 
						|
    int prot;
 | 
						|
    ARMMMUFaultInfo fi;
 | 
						|
    bool secure = mmu_idx & ARM_MMU_IDX_M_S;
 | 
						|
    int exc;
 | 
						|
    bool exc_secure;
 | 
						|
 | 
						|
    if (get_phys_addr(env, addr, MMU_DATA_STORE, mmu_idx, &physaddr,
 | 
						|
                      &attrs, &prot, &page_size, &fi, NULL)) {
 | 
						|
        /* MPU/SAU lookup failed */
 | 
						|
        if (fi.type == ARMFault_QEMU_SFault) {
 | 
						|
            qemu_log_mask(CPU_LOG_INT,
 | 
						|
                          "...SecureFault with SFSR.AUVIOL during stacking\n");
 | 
						|
            env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
 | 
						|
            env->v7m.sfar = addr;
 | 
						|
            exc = ARMV7M_EXCP_SECURE;
 | 
						|
            exc_secure = false;
 | 
						|
        } else {
 | 
						|
            qemu_log_mask(CPU_LOG_INT, "...MemManageFault with CFSR.MSTKERR\n");
 | 
						|
            env->v7m.cfsr[secure] |= R_V7M_CFSR_MSTKERR_MASK;
 | 
						|
            exc = ARMV7M_EXCP_MEM;
 | 
						|
            exc_secure = secure;
 | 
						|
        }
 | 
						|
        goto pend_fault;
 | 
						|
    }
 | 
						|
    address_space_stl_le(arm_addressspace(cs, attrs), physaddr, value,
 | 
						|
                         attrs, &txres);
 | 
						|
    if (txres != MEMTX_OK) {
 | 
						|
        /* BusFault trying to write the data */
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.STKERR\n");
 | 
						|
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_STKERR_MASK;
 | 
						|
        exc = ARMV7M_EXCP_BUS;
 | 
						|
        exc_secure = false;
 | 
						|
        goto pend_fault;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
 | 
						|
pend_fault:
 | 
						|
    /* By pending the exception at this point we are making
 | 
						|
     * the IMPDEF choice "overridden exceptions pended" (see the
 | 
						|
     * MergeExcInfo() pseudocode). The other choice would be to not
 | 
						|
     * pend them now and then make a choice about which to throw away
 | 
						|
     * later if we have two derived exceptions.
 | 
						|
     * The only case when we must not pend the exception but instead
 | 
						|
     * throw it away is if we are doing the push of the callee registers
 | 
						|
     * and we've already generated a derived exception. Even in this
 | 
						|
     * case we will still update the fault status registers.
 | 
						|
     */
 | 
						|
    if (!ignfault) {
 | 
						|
        armv7m_nvic_set_pending_derived(env->nvic, exc, exc_secure);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool v7m_stack_read(ARMCPU *cpu, uint32_t *dest, uint32_t addr,
 | 
						|
                           ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    MemTxResult txres;
 | 
						|
    target_ulong page_size;
 | 
						|
    hwaddr physaddr;
 | 
						|
    int prot;
 | 
						|
    ARMMMUFaultInfo fi;
 | 
						|
    bool secure = mmu_idx & ARM_MMU_IDX_M_S;
 | 
						|
    int exc;
 | 
						|
    bool exc_secure;
 | 
						|
    uint32_t value;
 | 
						|
 | 
						|
    if (get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &physaddr,
 | 
						|
                      &attrs, &prot, &page_size, &fi, NULL)) {
 | 
						|
        /* MPU/SAU lookup failed */
 | 
						|
        if (fi.type == ARMFault_QEMU_SFault) {
 | 
						|
            qemu_log_mask(CPU_LOG_INT,
 | 
						|
                          "...SecureFault with SFSR.AUVIOL during unstack\n");
 | 
						|
            env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK | R_V7M_SFSR_SFARVALID_MASK;
 | 
						|
            env->v7m.sfar = addr;
 | 
						|
            exc = ARMV7M_EXCP_SECURE;
 | 
						|
            exc_secure = false;
 | 
						|
        } else {
 | 
						|
            qemu_log_mask(CPU_LOG_INT,
 | 
						|
                          "...MemManageFault with CFSR.MUNSTKERR\n");
 | 
						|
            env->v7m.cfsr[secure] |= R_V7M_CFSR_MUNSTKERR_MASK;
 | 
						|
            exc = ARMV7M_EXCP_MEM;
 | 
						|
            exc_secure = secure;
 | 
						|
        }
 | 
						|
        goto pend_fault;
 | 
						|
    }
 | 
						|
 | 
						|
    value = address_space_ldl(arm_addressspace(cs, attrs), physaddr,
 | 
						|
                              attrs, &txres);
 | 
						|
    if (txres != MEMTX_OK) {
 | 
						|
        /* BusFault trying to read the data */
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...BusFault with BFSR.UNSTKERR\n");
 | 
						|
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_UNSTKERR_MASK;
 | 
						|
        exc = ARMV7M_EXCP_BUS;
 | 
						|
        exc_secure = false;
 | 
						|
        goto pend_fault;
 | 
						|
    }
 | 
						|
 | 
						|
    *dest = value;
 | 
						|
    return true;
 | 
						|
 | 
						|
pend_fault:
 | 
						|
    /* By pending the exception at this point we are making
 | 
						|
     * the IMPDEF choice "overridden exceptions pended" (see the
 | 
						|
     * MergeExcInfo() pseudocode). The other choice would be to not
 | 
						|
     * pend them now and then make a choice about which to throw away
 | 
						|
     * later if we have two derived exceptions.
 | 
						|
     */
 | 
						|
    armv7m_nvic_set_pending(env->nvic, exc, exc_secure);
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if we're using the process stack pointer (not the MSP) */
 | 
						|
static bool v7m_using_psp(CPUARMState *env)
 | 
						|
{
 | 
						|
    /* Handler mode always uses the main stack; for thread mode
 | 
						|
     * the CONTROL.SPSEL bit determines the answer.
 | 
						|
     * Note that in v7M it is not possible to be in Handler mode with
 | 
						|
     * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
 | 
						|
     */
 | 
						|
    return !arm_v7m_is_handler_mode(env) &&
 | 
						|
        env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
 | 
						|
}
 | 
						|
 | 
						|
/* Write to v7M CONTROL.SPSEL bit for the specified security bank.
 | 
						|
 * This may change the current stack pointer between Main and Process
 | 
						|
 * stack pointers if it is done for the CONTROL register for the current
 | 
						|
 * security state.
 | 
						|
 */
 | 
						|
static void write_v7m_control_spsel_for_secstate(CPUARMState *env,
 | 
						|
                                                 bool new_spsel,
 | 
						|
                                                 bool secstate)
 | 
						|
{
 | 
						|
    bool old_is_psp = v7m_using_psp(env);
 | 
						|
 | 
						|
    env->v7m.control[secstate] =
 | 
						|
        deposit32(env->v7m.control[secstate],
 | 
						|
                  R_V7M_CONTROL_SPSEL_SHIFT,
 | 
						|
                  R_V7M_CONTROL_SPSEL_LENGTH, new_spsel);
 | 
						|
 | 
						|
    if (secstate == env->v7m.secure) {
 | 
						|
        bool new_is_psp = v7m_using_psp(env);
 | 
						|
        uint32_t tmp;
 | 
						|
 | 
						|
        if (old_is_psp != new_is_psp) {
 | 
						|
            tmp = env->v7m.other_sp;
 | 
						|
            env->v7m.other_sp = env->regs[13];
 | 
						|
            env->regs[13] = tmp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Write to v7M CONTROL.SPSEL bit. This may change the current
 | 
						|
 * stack pointer between Main and Process stack pointers.
 | 
						|
 */
 | 
						|
static void write_v7m_control_spsel(CPUARMState *env, bool new_spsel)
 | 
						|
{
 | 
						|
    write_v7m_control_spsel_for_secstate(env, new_spsel, env->v7m.secure);
 | 
						|
}
 | 
						|
 | 
						|
void write_v7m_exception(CPUARMState *env, uint32_t new_exc)
 | 
						|
{
 | 
						|
    /* Write a new value to v7m.exception, thus transitioning into or out
 | 
						|
     * of Handler mode; this may result in a change of active stack pointer.
 | 
						|
     */
 | 
						|
    bool new_is_psp, old_is_psp = v7m_using_psp(env);
 | 
						|
    uint32_t tmp;
 | 
						|
 | 
						|
    env->v7m.exception = new_exc;
 | 
						|
 | 
						|
    new_is_psp = v7m_using_psp(env);
 | 
						|
 | 
						|
    if (old_is_psp != new_is_psp) {
 | 
						|
        tmp = env->v7m.other_sp;
 | 
						|
        env->v7m.other_sp = env->regs[13];
 | 
						|
        env->regs[13] = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Switch M profile security state between NS and S */
 | 
						|
static void switch_v7m_security_state(CPUARMState *env, bool new_secstate)
 | 
						|
{
 | 
						|
    uint32_t new_ss_msp, new_ss_psp;
 | 
						|
 | 
						|
    if (env->v7m.secure == new_secstate) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* All the banked state is accessed by looking at env->v7m.secure
 | 
						|
     * except for the stack pointer; rearrange the SP appropriately.
 | 
						|
     */
 | 
						|
    new_ss_msp = env->v7m.other_ss_msp;
 | 
						|
    new_ss_psp = env->v7m.other_ss_psp;
 | 
						|
 | 
						|
    if (v7m_using_psp(env)) {
 | 
						|
        env->v7m.other_ss_psp = env->regs[13];
 | 
						|
        env->v7m.other_ss_msp = env->v7m.other_sp;
 | 
						|
    } else {
 | 
						|
        env->v7m.other_ss_msp = env->regs[13];
 | 
						|
        env->v7m.other_ss_psp = env->v7m.other_sp;
 | 
						|
    }
 | 
						|
 | 
						|
    env->v7m.secure = new_secstate;
 | 
						|
 | 
						|
    if (v7m_using_psp(env)) {
 | 
						|
        env->regs[13] = new_ss_psp;
 | 
						|
        env->v7m.other_sp = new_ss_msp;
 | 
						|
    } else {
 | 
						|
        env->regs[13] = new_ss_msp;
 | 
						|
        env->v7m.other_sp = new_ss_psp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(v7m_bxns)(CPUARMState *env, uint32_t dest)
 | 
						|
{
 | 
						|
    /* Handle v7M BXNS:
 | 
						|
     *  - if the return value is a magic value, do exception return (like BX)
 | 
						|
     *  - otherwise bit 0 of the return value is the target security state
 | 
						|
     */
 | 
						|
    uint32_t min_magic;
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
        /* Covers FNC_RETURN and EXC_RETURN magic */
 | 
						|
        min_magic = FNC_RETURN_MIN_MAGIC;
 | 
						|
    } else {
 | 
						|
        /* EXC_RETURN magic only */
 | 
						|
        min_magic = EXC_RETURN_MIN_MAGIC;
 | 
						|
    }
 | 
						|
 | 
						|
    if (dest >= min_magic) {
 | 
						|
        /* This is an exception return magic value; put it where
 | 
						|
         * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
 | 
						|
         * Note that if we ever add gen_ss_advance() singlestep support to
 | 
						|
         * M profile this should count as an "instruction execution complete"
 | 
						|
         * event (compare gen_bx_excret_final_code()).
 | 
						|
         */
 | 
						|
        env->regs[15] = dest & ~1;
 | 
						|
        env->thumb = dest & 1;
 | 
						|
        HELPER(exception_internal)(env, EXCP_EXCEPTION_EXIT);
 | 
						|
        /* notreached */
 | 
						|
    }
 | 
						|
 | 
						|
    /* translate.c should have made BXNS UNDEF unless we're secure */
 | 
						|
    assert(env->v7m.secure);
 | 
						|
 | 
						|
    switch_v7m_security_state(env, dest & 1);
 | 
						|
    env->thumb = 1;
 | 
						|
    env->regs[15] = dest & ~1;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(v7m_blxns)(CPUARMState *env, uint32_t dest)
 | 
						|
{
 | 
						|
    /* Handle v7M BLXNS:
 | 
						|
     *  - bit 0 of the destination address is the target security state
 | 
						|
     */
 | 
						|
 | 
						|
    /* At this point regs[15] is the address just after the BLXNS */
 | 
						|
    uint32_t nextinst = env->regs[15] | 1;
 | 
						|
    uint32_t sp = env->regs[13] - 8;
 | 
						|
    uint32_t saved_psr;
 | 
						|
 | 
						|
    /* translate.c will have made BLXNS UNDEF unless we're secure */
 | 
						|
    assert(env->v7m.secure);
 | 
						|
 | 
						|
    if (dest & 1) {
 | 
						|
        /* target is Secure, so this is just a normal BLX,
 | 
						|
         * except that the low bit doesn't indicate Thumb/not.
 | 
						|
         */
 | 
						|
        env->regs[14] = nextinst;
 | 
						|
        env->thumb = 1;
 | 
						|
        env->regs[15] = dest & ~1;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Target is non-secure: first push a stack frame */
 | 
						|
    if (!QEMU_IS_ALIGNED(sp, 8)) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                      "BLXNS with misaligned SP is UNPREDICTABLE\n");
 | 
						|
    }
 | 
						|
 | 
						|
    saved_psr = env->v7m.exception;
 | 
						|
    if (env->v7m.control[M_REG_S] & R_V7M_CONTROL_SFPA_MASK) {
 | 
						|
        saved_psr |= XPSR_SFPA;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Note that these stores can throw exceptions on MPU faults */
 | 
						|
    cpu_stl_data(env, sp, nextinst);
 | 
						|
    cpu_stl_data(env, sp + 4, saved_psr);
 | 
						|
 | 
						|
    env->regs[13] = sp;
 | 
						|
    env->regs[14] = 0xfeffffff;
 | 
						|
    if (arm_v7m_is_handler_mode(env)) {
 | 
						|
        /* Write a dummy value to IPSR, to avoid leaking the current secure
 | 
						|
         * exception number to non-secure code. This is guaranteed not
 | 
						|
         * to cause write_v7m_exception() to actually change stacks.
 | 
						|
         */
 | 
						|
        write_v7m_exception(env, 1);
 | 
						|
    }
 | 
						|
    switch_v7m_security_state(env, 0);
 | 
						|
    env->thumb = 1;
 | 
						|
    env->regs[15] = dest;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t *get_v7m_sp_ptr(CPUARMState *env, bool secure, bool threadmode,
 | 
						|
                                bool spsel)
 | 
						|
{
 | 
						|
    /* Return a pointer to the location where we currently store the
 | 
						|
     * stack pointer for the requested security state and thread mode.
 | 
						|
     * This pointer will become invalid if the CPU state is updated
 | 
						|
     * such that the stack pointers are switched around (eg changing
 | 
						|
     * the SPSEL control bit).
 | 
						|
     * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
 | 
						|
     * Unlike that pseudocode, we require the caller to pass us in the
 | 
						|
     * SPSEL control bit value; this is because we also use this
 | 
						|
     * function in handling of pushing of the callee-saves registers
 | 
						|
     * part of the v8M stack frame (pseudocode PushCalleeStack()),
 | 
						|
     * and in the tailchain codepath the SPSEL bit comes from the exception
 | 
						|
     * return magic LR value from the previous exception. The pseudocode
 | 
						|
     * opencodes the stack-selection in PushCalleeStack(), but we prefer
 | 
						|
     * to make this utility function generic enough to do the job.
 | 
						|
     */
 | 
						|
    bool want_psp = threadmode && spsel;
 | 
						|
 | 
						|
    if (secure == env->v7m.secure) {
 | 
						|
        if (want_psp == v7m_using_psp(env)) {
 | 
						|
            return &env->regs[13];
 | 
						|
        } else {
 | 
						|
            return &env->v7m.other_sp;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (want_psp) {
 | 
						|
            return &env->v7m.other_ss_psp;
 | 
						|
        } else {
 | 
						|
            return &env->v7m.other_ss_msp;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool arm_v7m_load_vector(ARMCPU *cpu, int exc, bool targets_secure,
 | 
						|
                                uint32_t *pvec)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    MemTxResult result;
 | 
						|
    uint32_t addr = env->v7m.vecbase[targets_secure] + exc * 4;
 | 
						|
    uint32_t vector_entry;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    ARMMMUIdx mmu_idx;
 | 
						|
    bool exc_secure;
 | 
						|
 | 
						|
    mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targets_secure, true);
 | 
						|
 | 
						|
    /* We don't do a get_phys_addr() here because the rules for vector
 | 
						|
     * loads are special: they always use the default memory map, and
 | 
						|
     * the default memory map permits reads from all addresses.
 | 
						|
     * Since there's no easy way to pass through to pmsav8_mpu_lookup()
 | 
						|
     * that we want this special case which would always say "yes",
 | 
						|
     * we just do the SAU lookup here followed by a direct physical load.
 | 
						|
     */
 | 
						|
    attrs.secure = targets_secure;
 | 
						|
    attrs.user = false;
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
        V8M_SAttributes sattrs = {};
 | 
						|
 | 
						|
        v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
 | 
						|
        if (sattrs.ns) {
 | 
						|
            attrs.secure = false;
 | 
						|
        } else if (!targets_secure) {
 | 
						|
            /* NS access to S memory */
 | 
						|
            goto load_fail;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    vector_entry = address_space_ldl(arm_addressspace(cs, attrs), addr,
 | 
						|
                                     attrs, &result);
 | 
						|
    if (result != MEMTX_OK) {
 | 
						|
        goto load_fail;
 | 
						|
    }
 | 
						|
    *pvec = vector_entry;
 | 
						|
    return true;
 | 
						|
 | 
						|
load_fail:
 | 
						|
    /* All vector table fetch fails are reported as HardFault, with
 | 
						|
     * HFSR.VECTTBL and .FORCED set. (FORCED is set because
 | 
						|
     * technically the underlying exception is a MemManage or BusFault
 | 
						|
     * that is escalated to HardFault.) This is a terminal exception,
 | 
						|
     * so we will either take the HardFault immediately or else enter
 | 
						|
     * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
 | 
						|
     */
 | 
						|
    exc_secure = targets_secure ||
 | 
						|
        !(cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
 | 
						|
    env->v7m.hfsr |= R_V7M_HFSR_VECTTBL_MASK | R_V7M_HFSR_FORCED_MASK;
 | 
						|
    armv7m_nvic_set_pending_derived(env->nvic, ARMV7M_EXCP_HARD, exc_secure);
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool v7m_push_callee_stack(ARMCPU *cpu, uint32_t lr, bool dotailchain,
 | 
						|
                                  bool ignore_faults)
 | 
						|
{
 | 
						|
    /* For v8M, push the callee-saves register part of the stack frame.
 | 
						|
     * Compare the v8M pseudocode PushCalleeStack().
 | 
						|
     * In the tailchaining case this may not be the current stack.
 | 
						|
     */
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint32_t *frame_sp_p;
 | 
						|
    uint32_t frameptr;
 | 
						|
    ARMMMUIdx mmu_idx;
 | 
						|
    bool stacked_ok;
 | 
						|
 | 
						|
    if (dotailchain) {
 | 
						|
        bool mode = lr & R_V7M_EXCRET_MODE_MASK;
 | 
						|
        bool priv = !(env->v7m.control[M_REG_S] & R_V7M_CONTROL_NPRIV_MASK) ||
 | 
						|
            !mode;
 | 
						|
 | 
						|
        mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, M_REG_S, priv);
 | 
						|
        frame_sp_p = get_v7m_sp_ptr(env, M_REG_S, mode,
 | 
						|
                                    lr & R_V7M_EXCRET_SPSEL_MASK);
 | 
						|
    } else {
 | 
						|
        mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
 | 
						|
        frame_sp_p = &env->regs[13];
 | 
						|
    }
 | 
						|
 | 
						|
    frameptr = *frame_sp_p - 0x28;
 | 
						|
 | 
						|
    /* Write as much of the stack frame as we can. A write failure may
 | 
						|
     * cause us to pend a derived exception.
 | 
						|
     */
 | 
						|
    stacked_ok =
 | 
						|
        v7m_stack_write(cpu, frameptr, 0xfefa125b, mmu_idx, ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x8, env->regs[4], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0xc, env->regs[5], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x10, env->regs[6], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x14, env->regs[7], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x18, env->regs[8], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x1c, env->regs[9], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x20, env->regs[10], mmu_idx,
 | 
						|
                        ignore_faults) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 0x24, env->regs[11], mmu_idx,
 | 
						|
                        ignore_faults);
 | 
						|
 | 
						|
    /* Update SP regardless of whether any of the stack accesses failed.
 | 
						|
     * When we implement v8M stack limit checking then this attempt to
 | 
						|
     * update SP might also fail and result in a derived exception.
 | 
						|
     */
 | 
						|
    *frame_sp_p = frameptr;
 | 
						|
 | 
						|
    return !stacked_ok;
 | 
						|
}
 | 
						|
 | 
						|
static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
 | 
						|
                                bool ignore_stackfaults)
 | 
						|
{
 | 
						|
    /* Do the "take the exception" parts of exception entry,
 | 
						|
     * but not the pushing of state to the stack. This is
 | 
						|
     * similar to the pseudocode ExceptionTaken() function.
 | 
						|
     */
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint32_t addr;
 | 
						|
    bool targets_secure;
 | 
						|
    int exc;
 | 
						|
    bool push_failed = false;
 | 
						|
 | 
						|
    armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
 | 
						|
            (lr & R_V7M_EXCRET_S_MASK)) {
 | 
						|
            /* The background code (the owner of the registers in the
 | 
						|
             * exception frame) is Secure. This means it may either already
 | 
						|
             * have or now needs to push callee-saves registers.
 | 
						|
             */
 | 
						|
            if (targets_secure) {
 | 
						|
                if (dotailchain && !(lr & R_V7M_EXCRET_ES_MASK)) {
 | 
						|
                    /* We took an exception from Secure to NonSecure
 | 
						|
                     * (which means the callee-saved registers got stacked)
 | 
						|
                     * and are now tailchaining to a Secure exception.
 | 
						|
                     * Clear DCRS so eventual return from this Secure
 | 
						|
                     * exception unstacks the callee-saved registers.
 | 
						|
                     */
 | 
						|
                    lr &= ~R_V7M_EXCRET_DCRS_MASK;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                /* We're going to a non-secure exception; push the
 | 
						|
                 * callee-saves registers to the stack now, if they're
 | 
						|
                 * not already saved.
 | 
						|
                 */
 | 
						|
                if (lr & R_V7M_EXCRET_DCRS_MASK &&
 | 
						|
                    !(dotailchain && (lr & R_V7M_EXCRET_ES_MASK))) {
 | 
						|
                    push_failed = v7m_push_callee_stack(cpu, lr, dotailchain,
 | 
						|
                                                        ignore_stackfaults);
 | 
						|
                }
 | 
						|
                lr |= R_V7M_EXCRET_DCRS_MASK;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        lr &= ~R_V7M_EXCRET_ES_MASK;
 | 
						|
        if (targets_secure || !arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
            lr |= R_V7M_EXCRET_ES_MASK;
 | 
						|
        }
 | 
						|
        lr &= ~R_V7M_EXCRET_SPSEL_MASK;
 | 
						|
        if (env->v7m.control[targets_secure] & R_V7M_CONTROL_SPSEL_MASK) {
 | 
						|
            lr |= R_V7M_EXCRET_SPSEL_MASK;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Clear registers if necessary to prevent non-secure exception
 | 
						|
         * code being able to see register values from secure code.
 | 
						|
         * Where register values become architecturally UNKNOWN we leave
 | 
						|
         * them with their previous values.
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
            if (!targets_secure) {
 | 
						|
                /* Always clear the caller-saved registers (they have been
 | 
						|
                 * pushed to the stack earlier in v7m_push_stack()).
 | 
						|
                 * Clear callee-saved registers if the background code is
 | 
						|
                 * Secure (in which case these regs were saved in
 | 
						|
                 * v7m_push_callee_stack()).
 | 
						|
                 */
 | 
						|
                int i;
 | 
						|
 | 
						|
                for (i = 0; i < 13; i++) {
 | 
						|
                    /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
 | 
						|
                    if (i < 4 || i > 11 || (lr & R_V7M_EXCRET_S_MASK)) {
 | 
						|
                        env->regs[i] = 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                /* Clear EAPSR */
 | 
						|
                xpsr_write(env, 0, XPSR_NZCV | XPSR_Q | XPSR_GE | XPSR_IT);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (push_failed && !ignore_stackfaults) {
 | 
						|
        /* Derived exception on callee-saves register stacking:
 | 
						|
         * we might now want to take a different exception which
 | 
						|
         * targets a different security state, so try again from the top.
 | 
						|
         */
 | 
						|
        v7m_exception_taken(cpu, lr, true, true);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
 | 
						|
        /* Vector load failed: derived exception */
 | 
						|
        v7m_exception_taken(cpu, lr, true, true);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Now we've done everything that might cause a derived exception
 | 
						|
     * we can go ahead and activate whichever exception we're going to
 | 
						|
     * take (which might now be the derived exception).
 | 
						|
     */
 | 
						|
    armv7m_nvic_acknowledge_irq(env->nvic);
 | 
						|
 | 
						|
    /* Switch to target security state -- must do this before writing SPSEL */
 | 
						|
    switch_v7m_security_state(env, targets_secure);
 | 
						|
    write_v7m_control_spsel(env, 0);
 | 
						|
    arm_clear_exclusive(env);
 | 
						|
    /* Clear IT bits */
 | 
						|
    env->condexec_bits = 0;
 | 
						|
    env->regs[14] = lr;
 | 
						|
    env->regs[15] = addr & 0xfffffffe;
 | 
						|
    env->thumb = addr & 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool v7m_push_stack(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* Do the "set up stack frame" part of exception entry,
 | 
						|
     * similar to pseudocode PushStack().
 | 
						|
     * Return true if we generate a derived exception (and so
 | 
						|
     * should ignore further stack faults trying to process
 | 
						|
     * that derived exception.)
 | 
						|
     */
 | 
						|
    bool stacked_ok;
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint32_t xpsr = xpsr_read(env);
 | 
						|
    uint32_t frameptr = env->regs[13];
 | 
						|
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
 | 
						|
 | 
						|
    /* Align stack pointer if the guest wants that */
 | 
						|
    if ((frameptr & 4) &&
 | 
						|
        (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_STKALIGN_MASK)) {
 | 
						|
        frameptr -= 4;
 | 
						|
        xpsr |= XPSR_SPREALIGN;
 | 
						|
    }
 | 
						|
 | 
						|
    frameptr -= 0x20;
 | 
						|
 | 
						|
    /* Write as much of the stack frame as we can. If we fail a stack
 | 
						|
     * write this will result in a derived exception being pended
 | 
						|
     * (which may be taken in preference to the one we started with
 | 
						|
     * if it has higher priority).
 | 
						|
     */
 | 
						|
    stacked_ok =
 | 
						|
        v7m_stack_write(cpu, frameptr, env->regs[0], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 4, env->regs[1], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 8, env->regs[2], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 12, env->regs[3], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 16, env->regs[12], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 20, env->regs[14], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 24, env->regs[15], mmu_idx, false) &&
 | 
						|
        v7m_stack_write(cpu, frameptr + 28, xpsr, mmu_idx, false);
 | 
						|
 | 
						|
    /* Update SP regardless of whether any of the stack accesses failed.
 | 
						|
     * When we implement v8M stack limit checking then this attempt to
 | 
						|
     * update SP might also fail and result in a derived exception.
 | 
						|
     */
 | 
						|
    env->regs[13] = frameptr;
 | 
						|
 | 
						|
    return !stacked_ok;
 | 
						|
}
 | 
						|
 | 
						|
static void do_v7m_exception_exit(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    uint32_t excret;
 | 
						|
    uint32_t xpsr;
 | 
						|
    bool ufault = false;
 | 
						|
    bool sfault = false;
 | 
						|
    bool return_to_sp_process;
 | 
						|
    bool return_to_handler;
 | 
						|
    bool rettobase = false;
 | 
						|
    bool exc_secure = false;
 | 
						|
    bool return_to_secure;
 | 
						|
 | 
						|
    /* If we're not in Handler mode then jumps to magic exception-exit
 | 
						|
     * addresses don't have magic behaviour. However for the v8M
 | 
						|
     * security extensions the magic secure-function-return has to
 | 
						|
     * work in thread mode too, so to avoid doing an extra check in
 | 
						|
     * the generated code we allow exception-exit magic to also cause the
 | 
						|
     * internal exception and bring us here in thread mode. Correct code
 | 
						|
     * will never try to do this (the following insn fetch will always
 | 
						|
     * fault) so we the overhead of having taken an unnecessary exception
 | 
						|
     * doesn't matter.
 | 
						|
     */
 | 
						|
    if (!arm_v7m_is_handler_mode(env)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* In the spec pseudocode ExceptionReturn() is called directly
 | 
						|
     * from BXWritePC() and gets the full target PC value including
 | 
						|
     * bit zero. In QEMU's implementation we treat it as a normal
 | 
						|
     * jump-to-register (which is then caught later on), and so split
 | 
						|
     * the target value up between env->regs[15] and env->thumb in
 | 
						|
     * gen_bx(). Reconstitute it.
 | 
						|
     */
 | 
						|
    excret = env->regs[15];
 | 
						|
    if (env->thumb) {
 | 
						|
        excret |= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "Exception return: magic PC %" PRIx32
 | 
						|
                  " previous exception %d\n",
 | 
						|
                  excret, env->v7m.exception);
 | 
						|
 | 
						|
    if ((excret & R_V7M_EXCRET_RES1_MASK) != R_V7M_EXCRET_RES1_MASK) {
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR, "M profile: zero high bits in exception "
 | 
						|
                      "exit PC value 0x%" PRIx32 " are UNPREDICTABLE\n",
 | 
						|
                      excret);
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
        /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
 | 
						|
         * we pick which FAULTMASK to clear.
 | 
						|
         */
 | 
						|
        if (!env->v7m.secure &&
 | 
						|
            ((excret & R_V7M_EXCRET_ES_MASK) ||
 | 
						|
             !(excret & R_V7M_EXCRET_DCRS_MASK))) {
 | 
						|
            sfault = 1;
 | 
						|
            /* For all other purposes, treat ES as 0 (R_HXSR) */
 | 
						|
            excret &= ~R_V7M_EXCRET_ES_MASK;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (env->v7m.exception != ARMV7M_EXCP_NMI) {
 | 
						|
        /* Auto-clear FAULTMASK on return from other than NMI.
 | 
						|
         * If the security extension is implemented then this only
 | 
						|
         * happens if the raw execution priority is >= 0; the
 | 
						|
         * value of the ES bit in the exception return value indicates
 | 
						|
         * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
            exc_secure = excret & R_V7M_EXCRET_ES_MASK;
 | 
						|
            if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
 | 
						|
                env->v7m.faultmask[exc_secure] = 0;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            env->v7m.faultmask[M_REG_NS] = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (armv7m_nvic_complete_irq(env->nvic, env->v7m.exception,
 | 
						|
                                     exc_secure)) {
 | 
						|
    case -1:
 | 
						|
        /* attempt to exit an exception that isn't active */
 | 
						|
        ufault = true;
 | 
						|
        break;
 | 
						|
    case 0:
 | 
						|
        /* still an irq active now */
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        /* we returned to base exception level, no nesting.
 | 
						|
         * (In the pseudocode this is written using "NestedActivation != 1"
 | 
						|
         * where we have 'rettobase == false'.)
 | 
						|
         */
 | 
						|
        rettobase = true;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    return_to_handler = !(excret & R_V7M_EXCRET_MODE_MASK);
 | 
						|
    return_to_sp_process = excret & R_V7M_EXCRET_SPSEL_MASK;
 | 
						|
    return_to_secure = arm_feature(env, ARM_FEATURE_M_SECURITY) &&
 | 
						|
        (excret & R_V7M_EXCRET_S_MASK);
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        if (!arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
            /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
 | 
						|
             * we choose to take the UsageFault.
 | 
						|
             */
 | 
						|
            if ((excret & R_V7M_EXCRET_S_MASK) ||
 | 
						|
                (excret & R_V7M_EXCRET_ES_MASK) ||
 | 
						|
                !(excret & R_V7M_EXCRET_DCRS_MASK)) {
 | 
						|
                ufault = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (excret & R_V7M_EXCRET_RES0_MASK) {
 | 
						|
            ufault = true;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* For v7M we only recognize certain combinations of the low bits */
 | 
						|
        switch (excret & 0xf) {
 | 
						|
        case 1: /* Return to Handler */
 | 
						|
            break;
 | 
						|
        case 13: /* Return to Thread using Process stack */
 | 
						|
        case 9: /* Return to Thread using Main stack */
 | 
						|
            /* We only need to check NONBASETHRDENA for v7M, because in
 | 
						|
             * v8M this bit does not exist (it is RES1).
 | 
						|
             */
 | 
						|
            if (!rettobase &&
 | 
						|
                !(env->v7m.ccr[env->v7m.secure] &
 | 
						|
                  R_V7M_CCR_NONBASETHRDENA_MASK)) {
 | 
						|
                ufault = true;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            ufault = true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (sfault) {
 | 
						|
        env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
 | 
						|
        v7m_exception_taken(cpu, excret, true, false);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
 | 
						|
                      "stackframe: failed EXC_RETURN.ES validity check\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ufault) {
 | 
						|
        /* Bad exception return: instead of popping the exception
 | 
						|
         * stack, directly take a usage fault on the current stack.
 | 
						|
         */
 | 
						|
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
 | 
						|
        v7m_exception_taken(cpu, excret, true, false);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
 | 
						|
                      "stackframe: failed exception return integrity check\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
 | 
						|
     * Handler mode (and will be until we write the new XPSR.Interrupt
 | 
						|
     * field) this does not switch around the current stack pointer.
 | 
						|
     */
 | 
						|
    write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
 | 
						|
 | 
						|
    switch_v7m_security_state(env, return_to_secure);
 | 
						|
 | 
						|
    {
 | 
						|
        /* The stack pointer we should be reading the exception frame from
 | 
						|
         * depends on bits in the magic exception return type value (and
 | 
						|
         * for v8M isn't necessarily the stack pointer we will eventually
 | 
						|
         * end up resuming execution with). Get a pointer to the location
 | 
						|
         * in the CPU state struct where the SP we need is currently being
 | 
						|
         * stored; we will use and modify it in place.
 | 
						|
         * We use this limited C variable scope so we don't accidentally
 | 
						|
         * use 'frame_sp_p' after we do something that makes it invalid.
 | 
						|
         */
 | 
						|
        uint32_t *frame_sp_p = get_v7m_sp_ptr(env,
 | 
						|
                                              return_to_secure,
 | 
						|
                                              !return_to_handler,
 | 
						|
                                              return_to_sp_process);
 | 
						|
        uint32_t frameptr = *frame_sp_p;
 | 
						|
        bool pop_ok = true;
 | 
						|
        ARMMMUIdx mmu_idx;
 | 
						|
 | 
						|
        mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, return_to_secure,
 | 
						|
                                                        !return_to_handler);
 | 
						|
 | 
						|
        if (!QEMU_IS_ALIGNED(frameptr, 8) &&
 | 
						|
            arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
            qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                          "M profile exception return with non-8-aligned SP "
 | 
						|
                          "for destination state is UNPREDICTABLE\n");
 | 
						|
        }
 | 
						|
 | 
						|
        /* Do we need to pop callee-saved registers? */
 | 
						|
        if (return_to_secure &&
 | 
						|
            ((excret & R_V7M_EXCRET_ES_MASK) == 0 ||
 | 
						|
             (excret & R_V7M_EXCRET_DCRS_MASK) == 0)) {
 | 
						|
            uint32_t expected_sig = 0xfefa125b;
 | 
						|
            uint32_t actual_sig = ldl_phys(cs->as, frameptr);
 | 
						|
 | 
						|
            if (expected_sig != actual_sig) {
 | 
						|
                /* Take a SecureFault on the current stack */
 | 
						|
                env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
 | 
						|
                armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
 | 
						|
                v7m_exception_taken(cpu, excret, true, false);
 | 
						|
                qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
 | 
						|
                              "stackframe: failed exception return integrity "
 | 
						|
                              "signature check\n");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
 | 
						|
            pop_ok =
 | 
						|
                v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[4], frameptr + 0x8, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[5], frameptr + 0xc, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[6], frameptr + 0x10, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[7], frameptr + 0x14, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[8], frameptr + 0x18, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[9], frameptr + 0x1c, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[10], frameptr + 0x20, mmu_idx) &&
 | 
						|
                v7m_stack_read(cpu, &env->regs[11], frameptr + 0x24, mmu_idx);
 | 
						|
 | 
						|
            frameptr += 0x28;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Pop registers */
 | 
						|
        pop_ok = pop_ok &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[0], frameptr, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[1], frameptr + 0x4, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[2], frameptr + 0x8, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[3], frameptr + 0xc, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[12], frameptr + 0x10, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[14], frameptr + 0x14, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &env->regs[15], frameptr + 0x18, mmu_idx) &&
 | 
						|
            v7m_stack_read(cpu, &xpsr, frameptr + 0x1c, mmu_idx);
 | 
						|
 | 
						|
        if (!pop_ok) {
 | 
						|
            /* v7m_stack_read() pended a fault, so take it (as a tail
 | 
						|
             * chained exception on the same stack frame)
 | 
						|
             */
 | 
						|
            v7m_exception_taken(cpu, excret, true, false);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Returning from an exception with a PC with bit 0 set is defined
 | 
						|
         * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
 | 
						|
         * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
 | 
						|
         * the lsbit, and there are several RTOSes out there which incorrectly
 | 
						|
         * assume the r15 in the stack frame should be a Thumb-style "lsbit
 | 
						|
         * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
 | 
						|
         * complain about the badly behaved guest.
 | 
						|
         */
 | 
						|
        if (env->regs[15] & 1) {
 | 
						|
            env->regs[15] &= ~1U;
 | 
						|
            if (!arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
                qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                              "M profile return from interrupt with misaligned "
 | 
						|
                              "PC is UNPREDICTABLE on v7M\n");
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
            /* For v8M we have to check whether the xPSR exception field
 | 
						|
             * matches the EXCRET value for return to handler/thread
 | 
						|
             * before we commit to changing the SP and xPSR.
 | 
						|
             */
 | 
						|
            bool will_be_handler = (xpsr & XPSR_EXCP) != 0;
 | 
						|
            if (return_to_handler != will_be_handler) {
 | 
						|
                /* Take an INVPC UsageFault on the current stack.
 | 
						|
                 * By this point we will have switched to the security state
 | 
						|
                 * for the background state, so this UsageFault will target
 | 
						|
                 * that state.
 | 
						|
                 */
 | 
						|
                armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
 | 
						|
                                        env->v7m.secure);
 | 
						|
                env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
 | 
						|
                v7m_exception_taken(cpu, excret, true, false);
 | 
						|
                qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
 | 
						|
                              "stackframe: failed exception return integrity "
 | 
						|
                              "check\n");
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Commit to consuming the stack frame */
 | 
						|
        frameptr += 0x20;
 | 
						|
        /* Undo stack alignment (the SPREALIGN bit indicates that the original
 | 
						|
         * pre-exception SP was not 8-aligned and we added a padding word to
 | 
						|
         * align it, so we undo this by ORing in the bit that increases it
 | 
						|
         * from the current 8-aligned value to the 8-unaligned value. (Adding 4
 | 
						|
         * would work too but a logical OR is how the pseudocode specifies it.)
 | 
						|
         */
 | 
						|
        if (xpsr & XPSR_SPREALIGN) {
 | 
						|
            frameptr |= 4;
 | 
						|
        }
 | 
						|
        *frame_sp_p = frameptr;
 | 
						|
    }
 | 
						|
    /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
 | 
						|
    xpsr_write(env, xpsr, ~XPSR_SPREALIGN);
 | 
						|
 | 
						|
    /* The restored xPSR exception field will be zero if we're
 | 
						|
     * resuming in Thread mode. If that doesn't match what the
 | 
						|
     * exception return excret specified then this is a UsageFault.
 | 
						|
     * v7M requires we make this check here; v8M did it earlier.
 | 
						|
     */
 | 
						|
    if (return_to_handler != arm_v7m_is_handler_mode(env)) {
 | 
						|
        /* Take an INVPC UsageFault by pushing the stack again;
 | 
						|
         * we know we're v7M so this is never a Secure UsageFault.
 | 
						|
         */
 | 
						|
        bool ignore_stackfaults;
 | 
						|
 | 
						|
        assert(!arm_feature(env, ARM_FEATURE_V8));
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
 | 
						|
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
 | 
						|
        ignore_stackfaults = v7m_push_stack(cpu);
 | 
						|
        v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
 | 
						|
                      "failed exception return integrity check\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Otherwise, we have a successful exception exit. */
 | 
						|
    arm_clear_exclusive(env);
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...successful exception return\n");
 | 
						|
}
 | 
						|
 | 
						|
static bool do_v7m_function_return(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* v8M security extensions magic function return.
 | 
						|
     * We may either:
 | 
						|
     *  (1) throw an exception (longjump)
 | 
						|
     *  (2) return true if we successfully handled the function return
 | 
						|
     *  (3) return false if we failed a consistency check and have
 | 
						|
     *      pended a UsageFault that needs to be taken now
 | 
						|
     *
 | 
						|
     * At this point the magic return value is split between env->regs[15]
 | 
						|
     * and env->thumb. We don't bother to reconstitute it because we don't
 | 
						|
     * need it (all values are handled the same way).
 | 
						|
     */
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint32_t newpc, newpsr, newpsr_exc;
 | 
						|
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...really v7M secure function return\n");
 | 
						|
 | 
						|
    {
 | 
						|
        bool threadmode, spsel;
 | 
						|
        TCGMemOpIdx oi;
 | 
						|
        ARMMMUIdx mmu_idx;
 | 
						|
        uint32_t *frame_sp_p;
 | 
						|
        uint32_t frameptr;
 | 
						|
 | 
						|
        /* Pull the return address and IPSR from the Secure stack */
 | 
						|
        threadmode = !arm_v7m_is_handler_mode(env);
 | 
						|
        spsel = env->v7m.control[M_REG_S] & R_V7M_CONTROL_SPSEL_MASK;
 | 
						|
 | 
						|
        frame_sp_p = get_v7m_sp_ptr(env, true, threadmode, spsel);
 | 
						|
        frameptr = *frame_sp_p;
 | 
						|
 | 
						|
        /* These loads may throw an exception (for MPU faults). We want to
 | 
						|
         * do them as secure, so work out what MMU index that is.
 | 
						|
         */
 | 
						|
        mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
 | 
						|
        oi = make_memop_idx(MO_LE, arm_to_core_mmu_idx(mmu_idx));
 | 
						|
        newpc = helper_le_ldul_mmu(env, frameptr, oi, 0);
 | 
						|
        newpsr = helper_le_ldul_mmu(env, frameptr + 4, oi, 0);
 | 
						|
 | 
						|
        /* Consistency checks on new IPSR */
 | 
						|
        newpsr_exc = newpsr & XPSR_EXCP;
 | 
						|
        if (!((env->v7m.exception == 0 && newpsr_exc == 0) ||
 | 
						|
              (env->v7m.exception == 1 && newpsr_exc != 0))) {
 | 
						|
            /* Pend the fault and tell our caller to take it */
 | 
						|
            env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
 | 
						|
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
 | 
						|
                                    env->v7m.secure);
 | 
						|
            qemu_log_mask(CPU_LOG_INT,
 | 
						|
                          "...taking INVPC UsageFault: "
 | 
						|
                          "IPSR consistency check failed\n");
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        *frame_sp_p = frameptr + 8;
 | 
						|
    }
 | 
						|
 | 
						|
    /* This invalidates frame_sp_p */
 | 
						|
    switch_v7m_security_state(env, true);
 | 
						|
    env->v7m.exception = newpsr_exc;
 | 
						|
    env->v7m.control[M_REG_S] &= ~R_V7M_CONTROL_SFPA_MASK;
 | 
						|
    if (newpsr & XPSR_SFPA) {
 | 
						|
        env->v7m.control[M_REG_S] |= R_V7M_CONTROL_SFPA_MASK;
 | 
						|
    }
 | 
						|
    xpsr_write(env, 0, XPSR_IT);
 | 
						|
    env->thumb = newpc & 1;
 | 
						|
    env->regs[15] = newpc & ~1;
 | 
						|
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...function return successful\n");
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static void arm_log_exception(int idx)
 | 
						|
{
 | 
						|
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
 | 
						|
        const char *exc = NULL;
 | 
						|
        static const char * const excnames[] = {
 | 
						|
            [EXCP_UDEF] = "Undefined Instruction",
 | 
						|
            [EXCP_SWI] = "SVC",
 | 
						|
            [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
 | 
						|
            [EXCP_DATA_ABORT] = "Data Abort",
 | 
						|
            [EXCP_IRQ] = "IRQ",
 | 
						|
            [EXCP_FIQ] = "FIQ",
 | 
						|
            [EXCP_BKPT] = "Breakpoint",
 | 
						|
            [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
 | 
						|
            [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
 | 
						|
            [EXCP_HVC] = "Hypervisor Call",
 | 
						|
            [EXCP_HYP_TRAP] = "Hypervisor Trap",
 | 
						|
            [EXCP_SMC] = "Secure Monitor Call",
 | 
						|
            [EXCP_VIRQ] = "Virtual IRQ",
 | 
						|
            [EXCP_VFIQ] = "Virtual FIQ",
 | 
						|
            [EXCP_SEMIHOST] = "Semihosting call",
 | 
						|
            [EXCP_NOCP] = "v7M NOCP UsageFault",
 | 
						|
            [EXCP_INVSTATE] = "v7M INVSTATE UsageFault",
 | 
						|
        };
 | 
						|
 | 
						|
        if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
 | 
						|
            exc = excnames[idx];
 | 
						|
        }
 | 
						|
        if (!exc) {
 | 
						|
            exc = "unknown";
 | 
						|
        }
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool v7m_read_half_insn(ARMCPU *cpu, ARMMMUIdx mmu_idx,
 | 
						|
                               uint32_t addr, uint16_t *insn)
 | 
						|
{
 | 
						|
    /* Load a 16-bit portion of a v7M instruction, returning true on success,
 | 
						|
     * or false on failure (in which case we will have pended the appropriate
 | 
						|
     * exception).
 | 
						|
     * We need to do the instruction fetch's MPU and SAU checks
 | 
						|
     * like this because there is no MMU index that would allow
 | 
						|
     * doing the load with a single function call. Instead we must
 | 
						|
     * first check that the security attributes permit the load
 | 
						|
     * and that they don't mismatch on the two halves of the instruction,
 | 
						|
     * and then we do the load as a secure load (ie using the security
 | 
						|
     * attributes of the address, not the CPU, as architecturally required).
 | 
						|
     */
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    V8M_SAttributes sattrs = {};
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    ARMMMUFaultInfo fi = {};
 | 
						|
    MemTxResult txres;
 | 
						|
    target_ulong page_size;
 | 
						|
    hwaddr physaddr;
 | 
						|
    int prot;
 | 
						|
 | 
						|
    v8m_security_lookup(env, addr, MMU_INST_FETCH, mmu_idx, &sattrs);
 | 
						|
    if (!sattrs.nsc || sattrs.ns) {
 | 
						|
        /* This must be the second half of the insn, and it straddles a
 | 
						|
         * region boundary with the second half not being S&NSC.
 | 
						|
         */
 | 
						|
        env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
 | 
						|
        qemu_log_mask(CPU_LOG_INT,
 | 
						|
                      "...really SecureFault with SFSR.INVEP\n");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    if (get_phys_addr(env, addr, MMU_INST_FETCH, mmu_idx,
 | 
						|
                      &physaddr, &attrs, &prot, &page_size, &fi, NULL)) {
 | 
						|
        /* the MPU lookup failed */
 | 
						|
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM, env->v7m.secure);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...really MemManage with CFSR.IACCVIOL\n");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    *insn = address_space_lduw_le(arm_addressspace(cs, attrs), physaddr,
 | 
						|
                                 attrs, &txres);
 | 
						|
    if (txres != MEMTX_OK) {
 | 
						|
        env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...really BusFault with CFSR.IBUSERR\n");
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool v7m_handle_execute_nsc(ARMCPU *cpu)
 | 
						|
{
 | 
						|
    /* Check whether this attempt to execute code in a Secure & NS-Callable
 | 
						|
     * memory region is for an SG instruction; if so, then emulate the
 | 
						|
     * effect of the SG instruction and return true. Otherwise pend
 | 
						|
     * the correct kind of exception and return false.
 | 
						|
     */
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    ARMMMUIdx mmu_idx;
 | 
						|
    uint16_t insn;
 | 
						|
 | 
						|
    /* We should never get here unless get_phys_addr_pmsav8() caused
 | 
						|
     * an exception for NS executing in S&NSC memory.
 | 
						|
     */
 | 
						|
    assert(!env->v7m.secure);
 | 
						|
    assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
 | 
						|
 | 
						|
    /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
 | 
						|
    mmu_idx = arm_v7m_mmu_idx_for_secstate(env, true);
 | 
						|
 | 
						|
    if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15], &insn)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!env->thumb) {
 | 
						|
        goto gen_invep;
 | 
						|
    }
 | 
						|
 | 
						|
    if (insn != 0xe97f) {
 | 
						|
        /* Not an SG instruction first half (we choose the IMPDEF
 | 
						|
         * early-SG-check option).
 | 
						|
         */
 | 
						|
        goto gen_invep;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!v7m_read_half_insn(cpu, mmu_idx, env->regs[15] + 2, &insn)) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (insn != 0xe97f) {
 | 
						|
        /* Not an SG instruction second half (yes, both halves of the SG
 | 
						|
         * insn have the same hex value)
 | 
						|
         */
 | 
						|
        goto gen_invep;
 | 
						|
    }
 | 
						|
 | 
						|
    /* OK, we have confirmed that we really have an SG instruction.
 | 
						|
     * We know we're NS in S memory so don't need to repeat those checks.
 | 
						|
     */
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...really an SG instruction at 0x%08" PRIx32
 | 
						|
                  ", executing it\n", env->regs[15]);
 | 
						|
    env->regs[14] &= ~1;
 | 
						|
    switch_v7m_security_state(env, true);
 | 
						|
    xpsr_write(env, 0, XPSR_IT);
 | 
						|
    env->regs[15] += 4;
 | 
						|
    return true;
 | 
						|
 | 
						|
gen_invep:
 | 
						|
    env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
 | 
						|
    armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
 | 
						|
    qemu_log_mask(CPU_LOG_INT,
 | 
						|
                  "...really SecureFault with SFSR.INVEP\n");
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
void arm_v7m_cpu_do_interrupt(CPUState *cs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint32_t lr;
 | 
						|
    bool ignore_stackfaults;
 | 
						|
 | 
						|
    arm_log_exception(cs->exception_index);
 | 
						|
 | 
						|
    /* For exceptions we just mark as pending on the NVIC, and let that
 | 
						|
       handle it.  */
 | 
						|
    switch (cs->exception_index) {
 | 
						|
    case EXCP_UDEF:
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
 | 
						|
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_UNDEFINSTR_MASK;
 | 
						|
        break;
 | 
						|
    case EXCP_NOCP:
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
 | 
						|
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_NOCP_MASK;
 | 
						|
        break;
 | 
						|
    case EXCP_INVSTATE:
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
 | 
						|
        env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVSTATE_MASK;
 | 
						|
        break;
 | 
						|
    case EXCP_SWI:
 | 
						|
        /* The PC already points to the next instruction.  */
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC, env->v7m.secure);
 | 
						|
        break;
 | 
						|
    case EXCP_PREFETCH_ABORT:
 | 
						|
    case EXCP_DATA_ABORT:
 | 
						|
        /* Note that for M profile we don't have a guest facing FSR, but
 | 
						|
         * the env->exception.fsr will be populated by the code that
 | 
						|
         * raises the fault, in the A profile short-descriptor format.
 | 
						|
         */
 | 
						|
        switch (env->exception.fsr & 0xf) {
 | 
						|
        case M_FAKE_FSR_NSC_EXEC:
 | 
						|
            /* Exception generated when we try to execute code at an address
 | 
						|
             * which is marked as Secure & Non-Secure Callable and the CPU
 | 
						|
             * is in the Non-Secure state. The only instruction which can
 | 
						|
             * be executed like this is SG (and that only if both halves of
 | 
						|
             * the SG instruction have the same security attributes.)
 | 
						|
             * Everything else must generate an INVEP SecureFault, so we
 | 
						|
             * emulate the SG instruction here.
 | 
						|
             */
 | 
						|
            if (v7m_handle_execute_nsc(cpu)) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case M_FAKE_FSR_SFAULT:
 | 
						|
            /* Various flavours of SecureFault for attempts to execute or
 | 
						|
             * access data in the wrong security state.
 | 
						|
             */
 | 
						|
            switch (cs->exception_index) {
 | 
						|
            case EXCP_PREFETCH_ABORT:
 | 
						|
                if (env->v7m.secure) {
 | 
						|
                    env->v7m.sfsr |= R_V7M_SFSR_INVTRAN_MASK;
 | 
						|
                    qemu_log_mask(CPU_LOG_INT,
 | 
						|
                                  "...really SecureFault with SFSR.INVTRAN\n");
 | 
						|
                } else {
 | 
						|
                    env->v7m.sfsr |= R_V7M_SFSR_INVEP_MASK;
 | 
						|
                    qemu_log_mask(CPU_LOG_INT,
 | 
						|
                                  "...really SecureFault with SFSR.INVEP\n");
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case EXCP_DATA_ABORT:
 | 
						|
                /* This must be an NS access to S memory */
 | 
						|
                env->v7m.sfsr |= R_V7M_SFSR_AUVIOL_MASK;
 | 
						|
                qemu_log_mask(CPU_LOG_INT,
 | 
						|
                              "...really SecureFault with SFSR.AUVIOL\n");
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
 | 
						|
            break;
 | 
						|
        case 0x8: /* External Abort */
 | 
						|
            switch (cs->exception_index) {
 | 
						|
            case EXCP_PREFETCH_ABORT:
 | 
						|
                env->v7m.cfsr[M_REG_NS] |= R_V7M_CFSR_IBUSERR_MASK;
 | 
						|
                qemu_log_mask(CPU_LOG_INT, "...with CFSR.IBUSERR\n");
 | 
						|
                break;
 | 
						|
            case EXCP_DATA_ABORT:
 | 
						|
                env->v7m.cfsr[M_REG_NS] |=
 | 
						|
                    (R_V7M_CFSR_PRECISERR_MASK | R_V7M_CFSR_BFARVALID_MASK);
 | 
						|
                env->v7m.bfar = env->exception.vaddress;
 | 
						|
                qemu_log_mask(CPU_LOG_INT,
 | 
						|
                              "...with CFSR.PRECISERR and BFAR 0x%x\n",
 | 
						|
                              env->v7m.bfar);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_BUS, false);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            /* All other FSR values are either MPU faults or "can't happen
 | 
						|
             * for M profile" cases.
 | 
						|
             */
 | 
						|
            switch (cs->exception_index) {
 | 
						|
            case EXCP_PREFETCH_ABORT:
 | 
						|
                env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_IACCVIOL_MASK;
 | 
						|
                qemu_log_mask(CPU_LOG_INT, "...with CFSR.IACCVIOL\n");
 | 
						|
                break;
 | 
						|
            case EXCP_DATA_ABORT:
 | 
						|
                env->v7m.cfsr[env->v7m.secure] |=
 | 
						|
                    (R_V7M_CFSR_DACCVIOL_MASK | R_V7M_CFSR_MMARVALID_MASK);
 | 
						|
                env->v7m.mmfar[env->v7m.secure] = env->exception.vaddress;
 | 
						|
                qemu_log_mask(CPU_LOG_INT,
 | 
						|
                              "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
 | 
						|
                              env->v7m.mmfar[env->v7m.secure]);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM,
 | 
						|
                                    env->v7m.secure);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EXCP_BKPT:
 | 
						|
        if (semihosting_enabled()) {
 | 
						|
            int nr;
 | 
						|
            nr = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env)) & 0xff;
 | 
						|
            if (nr == 0xab) {
 | 
						|
                env->regs[15] += 2;
 | 
						|
                qemu_log_mask(CPU_LOG_INT,
 | 
						|
                              "...handling as semihosting call 0x%x\n",
 | 
						|
                              env->regs[0]);
 | 
						|
                env->regs[0] = do_arm_semihosting(env);
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG, false);
 | 
						|
        break;
 | 
						|
    case EXCP_IRQ:
 | 
						|
        break;
 | 
						|
    case EXCP_EXCEPTION_EXIT:
 | 
						|
        if (env->regs[15] < EXC_RETURN_MIN_MAGIC) {
 | 
						|
            /* Must be v8M security extension function return */
 | 
						|
            assert(env->regs[15] >= FNC_RETURN_MIN_MAGIC);
 | 
						|
            assert(arm_feature(env, ARM_FEATURE_M_SECURITY));
 | 
						|
            if (do_v7m_function_return(cpu)) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            do_v7m_exception_exit(cpu);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | 
						|
        return; /* Never happens.  Keep compiler happy.  */
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        lr = R_V7M_EXCRET_RES1_MASK |
 | 
						|
            R_V7M_EXCRET_DCRS_MASK |
 | 
						|
            R_V7M_EXCRET_FTYPE_MASK;
 | 
						|
        /* The S bit indicates whether we should return to Secure
 | 
						|
         * or NonSecure (ie our current state).
 | 
						|
         * The ES bit indicates whether we're taking this exception
 | 
						|
         * to Secure or NonSecure (ie our target state). We set it
 | 
						|
         * later, in v7m_exception_taken().
 | 
						|
         * The SPSEL bit is also set in v7m_exception_taken() for v8M.
 | 
						|
         * This corresponds to the ARM ARM pseudocode for v8M setting
 | 
						|
         * some LR bits in PushStack() and some in ExceptionTaken();
 | 
						|
         * the distinction matters for the tailchain cases where we
 | 
						|
         * can take an exception without pushing the stack.
 | 
						|
         */
 | 
						|
        if (env->v7m.secure) {
 | 
						|
            lr |= R_V7M_EXCRET_S_MASK;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        lr = R_V7M_EXCRET_RES1_MASK |
 | 
						|
            R_V7M_EXCRET_S_MASK |
 | 
						|
            R_V7M_EXCRET_DCRS_MASK |
 | 
						|
            R_V7M_EXCRET_FTYPE_MASK |
 | 
						|
            R_V7M_EXCRET_ES_MASK;
 | 
						|
        if (env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK) {
 | 
						|
            lr |= R_V7M_EXCRET_SPSEL_MASK;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (!arm_v7m_is_handler_mode(env)) {
 | 
						|
        lr |= R_V7M_EXCRET_MODE_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    ignore_stackfaults = v7m_push_stack(cpu);
 | 
						|
    v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
 | 
						|
}
 | 
						|
 | 
						|
/* Function used to synchronize QEMU's AArch64 register set with AArch32
 | 
						|
 * register set.  This is necessary when switching between AArch32 and AArch64
 | 
						|
 * execution state.
 | 
						|
 */
 | 
						|
void aarch64_sync_32_to_64(CPUARMState *env)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint32_t mode = env->uncached_cpsr & CPSR_M;
 | 
						|
 | 
						|
    /* We can blanket copy R[0:7] to X[0:7] */
 | 
						|
    for (i = 0; i < 8; i++) {
 | 
						|
        env->xregs[i] = env->regs[i];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
 | 
						|
     * Otherwise, they come from the banked user regs.
 | 
						|
     */
 | 
						|
    if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        for (i = 8; i < 13; i++) {
 | 
						|
            env->xregs[i] = env->usr_regs[i - 8];
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (i = 8; i < 13; i++) {
 | 
						|
            env->xregs[i] = env->regs[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Registers x13-x23 are the various mode SP and FP registers. Registers
 | 
						|
     * r13 and r14 are only copied if we are in that mode, otherwise we copy
 | 
						|
     * from the mode banked register.
 | 
						|
     */
 | 
						|
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
 | 
						|
        env->xregs[13] = env->regs[13];
 | 
						|
        env->xregs[14] = env->regs[14];
 | 
						|
    } else {
 | 
						|
        env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
 | 
						|
        /* HYP is an exception in that it is copied from r14 */
 | 
						|
        if (mode == ARM_CPU_MODE_HYP) {
 | 
						|
            env->xregs[14] = env->regs[14];
 | 
						|
        } else {
 | 
						|
            env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_HYP) {
 | 
						|
        env->xregs[15] = env->regs[13];
 | 
						|
    } else {
 | 
						|
        env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_IRQ) {
 | 
						|
        env->xregs[16] = env->regs[14];
 | 
						|
        env->xregs[17] = env->regs[13];
 | 
						|
    } else {
 | 
						|
        env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
 | 
						|
        env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_SVC) {
 | 
						|
        env->xregs[18] = env->regs[14];
 | 
						|
        env->xregs[19] = env->regs[13];
 | 
						|
    } else {
 | 
						|
        env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
 | 
						|
        env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_ABT) {
 | 
						|
        env->xregs[20] = env->regs[14];
 | 
						|
        env->xregs[21] = env->regs[13];
 | 
						|
    } else {
 | 
						|
        env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
 | 
						|
        env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_UND) {
 | 
						|
        env->xregs[22] = env->regs[14];
 | 
						|
        env->xregs[23] = env->regs[13];
 | 
						|
    } else {
 | 
						|
        env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
 | 
						|
        env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
 | 
						|
     * mode, then we can copy from r8-r14.  Otherwise, we copy from the
 | 
						|
     * FIQ bank for r8-r14.
 | 
						|
     */
 | 
						|
    if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        for (i = 24; i < 31; i++) {
 | 
						|
            env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (i = 24; i < 29; i++) {
 | 
						|
            env->xregs[i] = env->fiq_regs[i - 24];
 | 
						|
        }
 | 
						|
        env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
 | 
						|
        env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
 | 
						|
    }
 | 
						|
 | 
						|
    env->pc = env->regs[15];
 | 
						|
}
 | 
						|
 | 
						|
/* Function used to synchronize QEMU's AArch32 register set with AArch64
 | 
						|
 * register set.  This is necessary when switching between AArch32 and AArch64
 | 
						|
 * execution state.
 | 
						|
 */
 | 
						|
void aarch64_sync_64_to_32(CPUARMState *env)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint32_t mode = env->uncached_cpsr & CPSR_M;
 | 
						|
 | 
						|
    /* We can blanket copy X[0:7] to R[0:7] */
 | 
						|
    for (i = 0; i < 8; i++) {
 | 
						|
        env->regs[i] = env->xregs[i];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
 | 
						|
     * Otherwise, we copy x8-x12 into the banked user regs.
 | 
						|
     */
 | 
						|
    if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        for (i = 8; i < 13; i++) {
 | 
						|
            env->usr_regs[i - 8] = env->xregs[i];
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (i = 8; i < 13; i++) {
 | 
						|
            env->regs[i] = env->xregs[i];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Registers r13 & r14 depend on the current mode.
 | 
						|
     * If we are in a given mode, we copy the corresponding x registers to r13
 | 
						|
     * and r14.  Otherwise, we copy the x register to the banked r13 and r14
 | 
						|
     * for the mode.
 | 
						|
     */
 | 
						|
    if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
 | 
						|
        env->regs[13] = env->xregs[13];
 | 
						|
        env->regs[14] = env->xregs[14];
 | 
						|
    } else {
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
 | 
						|
 | 
						|
        /* HYP is an exception in that it does not have its own banked r14 but
 | 
						|
         * shares the USR r14
 | 
						|
         */
 | 
						|
        if (mode == ARM_CPU_MODE_HYP) {
 | 
						|
            env->regs[14] = env->xregs[14];
 | 
						|
        } else {
 | 
						|
            env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_HYP) {
 | 
						|
        env->regs[13] = env->xregs[15];
 | 
						|
    } else {
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_IRQ) {
 | 
						|
        env->regs[14] = env->xregs[16];
 | 
						|
        env->regs[13] = env->xregs[17];
 | 
						|
    } else {
 | 
						|
        env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_SVC) {
 | 
						|
        env->regs[14] = env->xregs[18];
 | 
						|
        env->regs[13] = env->xregs[19];
 | 
						|
    } else {
 | 
						|
        env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_ABT) {
 | 
						|
        env->regs[14] = env->xregs[20];
 | 
						|
        env->regs[13] = env->xregs[21];
 | 
						|
    } else {
 | 
						|
        env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
 | 
						|
    }
 | 
						|
 | 
						|
    if (mode == ARM_CPU_MODE_UND) {
 | 
						|
        env->regs[14] = env->xregs[22];
 | 
						|
        env->regs[13] = env->xregs[23];
 | 
						|
    } else {
 | 
						|
        env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
 | 
						|
    }
 | 
						|
 | 
						|
    /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
 | 
						|
     * mode, then we can copy to r8-r14.  Otherwise, we copy to the
 | 
						|
     * FIQ bank for r8-r14.
 | 
						|
     */
 | 
						|
    if (mode == ARM_CPU_MODE_FIQ) {
 | 
						|
        for (i = 24; i < 31; i++) {
 | 
						|
            env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        for (i = 24; i < 29; i++) {
 | 
						|
            env->fiq_regs[i - 24] = env->xregs[i];
 | 
						|
        }
 | 
						|
        env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
 | 
						|
        env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
 | 
						|
    }
 | 
						|
 | 
						|
    env->regs[15] = env->pc;
 | 
						|
}
 | 
						|
 | 
						|
static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    uint32_t addr;
 | 
						|
    uint32_t mask;
 | 
						|
    int new_mode;
 | 
						|
    uint32_t offset;
 | 
						|
    uint32_t moe;
 | 
						|
 | 
						|
    /* If this is a debug exception we must update the DBGDSCR.MOE bits */
 | 
						|
    switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
 | 
						|
    case EC_BREAKPOINT:
 | 
						|
    case EC_BREAKPOINT_SAME_EL:
 | 
						|
        moe = 1;
 | 
						|
        break;
 | 
						|
    case EC_WATCHPOINT:
 | 
						|
    case EC_WATCHPOINT_SAME_EL:
 | 
						|
        moe = 10;
 | 
						|
        break;
 | 
						|
    case EC_AA32_BKPT:
 | 
						|
        moe = 3;
 | 
						|
        break;
 | 
						|
    case EC_VECTORCATCH:
 | 
						|
        moe = 5;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        moe = 0;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    if (moe) {
 | 
						|
        env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
 | 
						|
    }
 | 
						|
 | 
						|
    /* TODO: Vectored interrupt controller.  */
 | 
						|
    switch (cs->exception_index) {
 | 
						|
    case EXCP_UDEF:
 | 
						|
        new_mode = ARM_CPU_MODE_UND;
 | 
						|
        addr = 0x04;
 | 
						|
        mask = CPSR_I;
 | 
						|
        if (env->thumb)
 | 
						|
            offset = 2;
 | 
						|
        else
 | 
						|
            offset = 4;
 | 
						|
        break;
 | 
						|
    case EXCP_SWI:
 | 
						|
        new_mode = ARM_CPU_MODE_SVC;
 | 
						|
        addr = 0x08;
 | 
						|
        mask = CPSR_I;
 | 
						|
        /* The PC already points to the next instruction.  */
 | 
						|
        offset = 0;
 | 
						|
        break;
 | 
						|
    case EXCP_BKPT:
 | 
						|
        env->exception.fsr = 2;
 | 
						|
        /* Fall through to prefetch abort.  */
 | 
						|
    case EXCP_PREFETCH_ABORT:
 | 
						|
        A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
 | 
						|
        A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
 | 
						|
                      env->exception.fsr, (uint32_t)env->exception.vaddress);
 | 
						|
        new_mode = ARM_CPU_MODE_ABT;
 | 
						|
        addr = 0x0c;
 | 
						|
        mask = CPSR_A | CPSR_I;
 | 
						|
        offset = 4;
 | 
						|
        break;
 | 
						|
    case EXCP_DATA_ABORT:
 | 
						|
        A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
 | 
						|
        A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
 | 
						|
                      env->exception.fsr,
 | 
						|
                      (uint32_t)env->exception.vaddress);
 | 
						|
        new_mode = ARM_CPU_MODE_ABT;
 | 
						|
        addr = 0x10;
 | 
						|
        mask = CPSR_A | CPSR_I;
 | 
						|
        offset = 8;
 | 
						|
        break;
 | 
						|
    case EXCP_IRQ:
 | 
						|
        new_mode = ARM_CPU_MODE_IRQ;
 | 
						|
        addr = 0x18;
 | 
						|
        /* Disable IRQ and imprecise data aborts.  */
 | 
						|
        mask = CPSR_A | CPSR_I;
 | 
						|
        offset = 4;
 | 
						|
        if (env->cp15.scr_el3 & SCR_IRQ) {
 | 
						|
            /* IRQ routed to monitor mode */
 | 
						|
            new_mode = ARM_CPU_MODE_MON;
 | 
						|
            mask |= CPSR_F;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case EXCP_FIQ:
 | 
						|
        new_mode = ARM_CPU_MODE_FIQ;
 | 
						|
        addr = 0x1c;
 | 
						|
        /* Disable FIQ, IRQ and imprecise data aborts.  */
 | 
						|
        mask = CPSR_A | CPSR_I | CPSR_F;
 | 
						|
        if (env->cp15.scr_el3 & SCR_FIQ) {
 | 
						|
            /* FIQ routed to monitor mode */
 | 
						|
            new_mode = ARM_CPU_MODE_MON;
 | 
						|
        }
 | 
						|
        offset = 4;
 | 
						|
        break;
 | 
						|
    case EXCP_VIRQ:
 | 
						|
        new_mode = ARM_CPU_MODE_IRQ;
 | 
						|
        addr = 0x18;
 | 
						|
        /* Disable IRQ and imprecise data aborts.  */
 | 
						|
        mask = CPSR_A | CPSR_I;
 | 
						|
        offset = 4;
 | 
						|
        break;
 | 
						|
    case EXCP_VFIQ:
 | 
						|
        new_mode = ARM_CPU_MODE_FIQ;
 | 
						|
        addr = 0x1c;
 | 
						|
        /* Disable FIQ, IRQ and imprecise data aborts.  */
 | 
						|
        mask = CPSR_A | CPSR_I | CPSR_F;
 | 
						|
        offset = 4;
 | 
						|
        break;
 | 
						|
    case EXCP_SMC:
 | 
						|
        new_mode = ARM_CPU_MODE_MON;
 | 
						|
        addr = 0x08;
 | 
						|
        mask = CPSR_A | CPSR_I | CPSR_F;
 | 
						|
        offset = 0;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | 
						|
        return; /* Never happens.  Keep compiler happy.  */
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_mode == ARM_CPU_MODE_MON) {
 | 
						|
        addr += env->cp15.mvbar;
 | 
						|
    } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 | 
						|
        /* High vectors. When enabled, base address cannot be remapped. */
 | 
						|
        addr += 0xffff0000;
 | 
						|
    } else {
 | 
						|
        /* ARM v7 architectures provide a vector base address register to remap
 | 
						|
         * the interrupt vector table.
 | 
						|
         * This register is only followed in non-monitor mode, and is banked.
 | 
						|
         * Note: only bits 31:5 are valid.
 | 
						|
         */
 | 
						|
        addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
 | 
						|
    }
 | 
						|
 | 
						|
    if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
 | 
						|
        env->cp15.scr_el3 &= ~SCR_NS;
 | 
						|
    }
 | 
						|
 | 
						|
    switch_mode (env, new_mode);
 | 
						|
    /* For exceptions taken to AArch32 we must clear the SS bit in both
 | 
						|
     * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
 | 
						|
     */
 | 
						|
    env->uncached_cpsr &= ~PSTATE_SS;
 | 
						|
    env->spsr = cpsr_read(env);
 | 
						|
    /* Clear IT bits.  */
 | 
						|
    env->condexec_bits = 0;
 | 
						|
    /* Switch to the new mode, and to the correct instruction set.  */
 | 
						|
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
 | 
						|
    /* Set new mode endianness */
 | 
						|
    env->uncached_cpsr &= ~CPSR_E;
 | 
						|
    if (env->cp15.sctlr_el[arm_current_el(env)] & SCTLR_EE) {
 | 
						|
        env->uncached_cpsr |= CPSR_E;
 | 
						|
    }
 | 
						|
    env->daif |= mask;
 | 
						|
    /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
 | 
						|
     * and we should just guard the thumb mode on V4 */
 | 
						|
    if (arm_feature(env, ARM_FEATURE_V4T)) {
 | 
						|
        env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
 | 
						|
    }
 | 
						|
    env->regs[14] = env->regs[15] + offset;
 | 
						|
    env->regs[15] = addr;
 | 
						|
}
 | 
						|
 | 
						|
/* Handle exception entry to a target EL which is using AArch64 */
 | 
						|
static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    unsigned int new_el = env->exception.target_el;
 | 
						|
    target_ulong addr = env->cp15.vbar_el[new_el];
 | 
						|
    unsigned int new_mode = aarch64_pstate_mode(new_el, true);
 | 
						|
 | 
						|
    if (arm_current_el(env) < new_el) {
 | 
						|
        /* Entry vector offset depends on whether the implemented EL
 | 
						|
         * immediately lower than the target level is using AArch32 or AArch64
 | 
						|
         */
 | 
						|
        bool is_aa64;
 | 
						|
 | 
						|
        switch (new_el) {
 | 
						|
        case 3:
 | 
						|
            is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
 | 
						|
            break;
 | 
						|
        case 1:
 | 
						|
            is_aa64 = is_a64(env);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
 | 
						|
        if (is_aa64) {
 | 
						|
            addr += 0x400;
 | 
						|
        } else {
 | 
						|
            addr += 0x600;
 | 
						|
        }
 | 
						|
    } else if (pstate_read(env) & PSTATE_SP) {
 | 
						|
        addr += 0x200;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (cs->exception_index) {
 | 
						|
    case EXCP_PREFETCH_ABORT:
 | 
						|
    case EXCP_DATA_ABORT:
 | 
						|
        env->cp15.far_el[new_el] = env->exception.vaddress;
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
 | 
						|
                      env->cp15.far_el[new_el]);
 | 
						|
        /* fall through */
 | 
						|
    case EXCP_BKPT:
 | 
						|
    case EXCP_UDEF:
 | 
						|
    case EXCP_SWI:
 | 
						|
    case EXCP_HVC:
 | 
						|
    case EXCP_HYP_TRAP:
 | 
						|
    case EXCP_SMC:
 | 
						|
        env->cp15.esr_el[new_el] = env->exception.syndrome;
 | 
						|
        break;
 | 
						|
    case EXCP_IRQ:
 | 
						|
    case EXCP_VIRQ:
 | 
						|
        addr += 0x80;
 | 
						|
        break;
 | 
						|
    case EXCP_FIQ:
 | 
						|
    case EXCP_VFIQ:
 | 
						|
        addr += 0x100;
 | 
						|
        break;
 | 
						|
    case EXCP_SEMIHOST:
 | 
						|
        qemu_log_mask(CPU_LOG_INT,
 | 
						|
                      "...handling as semihosting call 0x%" PRIx64 "\n",
 | 
						|
                      env->xregs[0]);
 | 
						|
        env->xregs[0] = do_arm_semihosting(env);
 | 
						|
        return;
 | 
						|
    default:
 | 
						|
        cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_a64(env)) {
 | 
						|
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
 | 
						|
        aarch64_save_sp(env, arm_current_el(env));
 | 
						|
        env->elr_el[new_el] = env->pc;
 | 
						|
    } else {
 | 
						|
        env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
 | 
						|
        env->elr_el[new_el] = env->regs[15];
 | 
						|
 | 
						|
        aarch64_sync_32_to_64(env);
 | 
						|
 | 
						|
        env->condexec_bits = 0;
 | 
						|
    }
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
 | 
						|
                  env->elr_el[new_el]);
 | 
						|
 | 
						|
    pstate_write(env, PSTATE_DAIF | new_mode);
 | 
						|
    env->aarch64 = 1;
 | 
						|
    aarch64_restore_sp(env, new_el);
 | 
						|
 | 
						|
    env->pc = addr;
 | 
						|
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
 | 
						|
                  new_el, env->pc, pstate_read(env));
 | 
						|
}
 | 
						|
 | 
						|
static inline bool check_for_semihosting(CPUState *cs)
 | 
						|
{
 | 
						|
    /* Check whether this exception is a semihosting call; if so
 | 
						|
     * then handle it and return true; otherwise return false.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
 | 
						|
    if (is_a64(env)) {
 | 
						|
        if (cs->exception_index == EXCP_SEMIHOST) {
 | 
						|
            /* This is always the 64-bit semihosting exception.
 | 
						|
             * The "is this usermode" and "is semihosting enabled"
 | 
						|
             * checks have been done at translate time.
 | 
						|
             */
 | 
						|
            qemu_log_mask(CPU_LOG_INT,
 | 
						|
                          "...handling as semihosting call 0x%" PRIx64 "\n",
 | 
						|
                          env->xregs[0]);
 | 
						|
            env->xregs[0] = do_arm_semihosting(env);
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        return false;
 | 
						|
    } else {
 | 
						|
        uint32_t imm;
 | 
						|
 | 
						|
        /* Only intercept calls from privileged modes, to provide some
 | 
						|
         * semblance of security.
 | 
						|
         */
 | 
						|
        if (cs->exception_index != EXCP_SEMIHOST &&
 | 
						|
            (!semihosting_enabled() ||
 | 
						|
             ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR))) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        switch (cs->exception_index) {
 | 
						|
        case EXCP_SEMIHOST:
 | 
						|
            /* This is always a semihosting call; the "is this usermode"
 | 
						|
             * and "is semihosting enabled" checks have been done at
 | 
						|
             * translate time.
 | 
						|
             */
 | 
						|
            break;
 | 
						|
        case EXCP_SWI:
 | 
						|
            /* Check for semihosting interrupt.  */
 | 
						|
            if (env->thumb) {
 | 
						|
                imm = arm_lduw_code(env, env->regs[15] - 2, arm_sctlr_b(env))
 | 
						|
                    & 0xff;
 | 
						|
                if (imm == 0xab) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                imm = arm_ldl_code(env, env->regs[15] - 4, arm_sctlr_b(env))
 | 
						|
                    & 0xffffff;
 | 
						|
                if (imm == 0x123456) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        case EXCP_BKPT:
 | 
						|
            /* See if this is a semihosting syscall.  */
 | 
						|
            if (env->thumb) {
 | 
						|
                imm = arm_lduw_code(env, env->regs[15], arm_sctlr_b(env))
 | 
						|
                    & 0xff;
 | 
						|
                if (imm == 0xab) {
 | 
						|
                    env->regs[15] += 2;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return false;
 | 
						|
        default:
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
 | 
						|
        qemu_log_mask(CPU_LOG_INT,
 | 
						|
                      "...handling as semihosting call 0x%x\n",
 | 
						|
                      env->regs[0]);
 | 
						|
        env->regs[0] = do_arm_semihosting(env);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Handle a CPU exception for A and R profile CPUs.
 | 
						|
 * Do any appropriate logging, handle PSCI calls, and then hand off
 | 
						|
 * to the AArch64-entry or AArch32-entry function depending on the
 | 
						|
 * target exception level's register width.
 | 
						|
 */
 | 
						|
void arm_cpu_do_interrupt(CPUState *cs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    unsigned int new_el = env->exception.target_el;
 | 
						|
 | 
						|
    assert(!arm_feature(env, ARM_FEATURE_M));
 | 
						|
 | 
						|
    arm_log_exception(cs->exception_index);
 | 
						|
    qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
 | 
						|
                  new_el);
 | 
						|
    if (qemu_loglevel_mask(CPU_LOG_INT)
 | 
						|
        && !excp_is_internal(cs->exception_index)) {
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...with ESR 0x%x/0x%" PRIx32 "\n",
 | 
						|
                      env->exception.syndrome >> ARM_EL_EC_SHIFT,
 | 
						|
                      env->exception.syndrome);
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_is_psci_call(cpu, cs->exception_index)) {
 | 
						|
        arm_handle_psci_call(cpu);
 | 
						|
        qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Semihosting semantics depend on the register width of the
 | 
						|
     * code that caused the exception, not the target exception level,
 | 
						|
     * so must be handled here.
 | 
						|
     */
 | 
						|
    if (check_for_semihosting(cs)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    assert(!excp_is_internal(cs->exception_index));
 | 
						|
    if (arm_el_is_aa64(env, new_el)) {
 | 
						|
        arm_cpu_do_interrupt_aarch64(cs);
 | 
						|
    } else {
 | 
						|
        arm_cpu_do_interrupt_aarch32(cs);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Hooks may change global state so BQL should be held, also the
 | 
						|
     * BQL needs to be held for any modification of
 | 
						|
     * cs->interrupt_request.
 | 
						|
     */
 | 
						|
    g_assert(qemu_mutex_iothread_locked());
 | 
						|
 | 
						|
    arm_call_el_change_hook(cpu);
 | 
						|
 | 
						|
    if (!kvm_enabled()) {
 | 
						|
        cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return the exception level which controls this address translation regime */
 | 
						|
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    switch (mmu_idx) {
 | 
						|
    case ARMMMUIdx_S2NS:
 | 
						|
    case ARMMMUIdx_S1E2:
 | 
						|
        return 2;
 | 
						|
    case ARMMMUIdx_S1E3:
 | 
						|
        return 3;
 | 
						|
    case ARMMMUIdx_S1SE0:
 | 
						|
        return arm_el_is_aa64(env, 3) ? 1 : 3;
 | 
						|
    case ARMMMUIdx_S1SE1:
 | 
						|
    case ARMMMUIdx_S1NSE0:
 | 
						|
    case ARMMMUIdx_S1NSE1:
 | 
						|
    case ARMMMUIdx_MPrivNegPri:
 | 
						|
    case ARMMMUIdx_MUserNegPri:
 | 
						|
    case ARMMMUIdx_MPriv:
 | 
						|
    case ARMMMUIdx_MUser:
 | 
						|
    case ARMMMUIdx_MSPrivNegPri:
 | 
						|
    case ARMMMUIdx_MSUserNegPri:
 | 
						|
    case ARMMMUIdx_MSPriv:
 | 
						|
    case ARMMMUIdx_MSUser:
 | 
						|
        return 1;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return the SCTLR value which controls this address translation regime */
 | 
						|
static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if the specified stage of address translation is disabled */
 | 
						|
static inline bool regime_translation_disabled(CPUARMState *env,
 | 
						|
                                               ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M)) {
 | 
						|
        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
 | 
						|
                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
 | 
						|
        case R_V7M_MPU_CTRL_ENABLE_MASK:
 | 
						|
            /* Enabled, but not for HardFault and NMI */
 | 
						|
            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
 | 
						|
        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
 | 
						|
            /* Enabled for all cases */
 | 
						|
            return false;
 | 
						|
        case 0:
 | 
						|
        default:
 | 
						|
            /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
 | 
						|
             * we warned about that in armv7m_nvic.c when the guest set it.
 | 
						|
             */
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (mmu_idx == ARMMMUIdx_S2NS) {
 | 
						|
        return (env->cp15.hcr_el2 & HCR_VM) == 0;
 | 
						|
    }
 | 
						|
    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool regime_translation_big_endian(CPUARMState *env,
 | 
						|
                                                 ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the TCR controlling this translation regime */
 | 
						|
static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    if (mmu_idx == ARMMMUIdx_S2NS) {
 | 
						|
        return &env->cp15.vtcr_el2;
 | 
						|
    }
 | 
						|
    return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
 | 
						|
}
 | 
						|
 | 
						|
/* Convert a possible stage1+2 MMU index into the appropriate
 | 
						|
 * stage 1 MMU index
 | 
						|
 */
 | 
						|
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
 | 
						|
        mmu_idx += (ARMMMUIdx_S1NSE0 - ARMMMUIdx_S12NSE0);
 | 
						|
    }
 | 
						|
    return mmu_idx;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns TBI0 value for current regime el */
 | 
						|
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    TCR *tcr;
 | 
						|
    uint32_t el;
 | 
						|
 | 
						|
    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
 | 
						|
     * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
 | 
						|
     */
 | 
						|
    mmu_idx = stage_1_mmu_idx(mmu_idx);
 | 
						|
 | 
						|
    tcr = regime_tcr(env, mmu_idx);
 | 
						|
    el = regime_el(env, mmu_idx);
 | 
						|
 | 
						|
    if (el > 1) {
 | 
						|
        return extract64(tcr->raw_tcr, 20, 1);
 | 
						|
    } else {
 | 
						|
        return extract64(tcr->raw_tcr, 37, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Returns TBI1 value for current regime el */
 | 
						|
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    TCR *tcr;
 | 
						|
    uint32_t el;
 | 
						|
 | 
						|
    /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
 | 
						|
     * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
 | 
						|
     */
 | 
						|
    mmu_idx = stage_1_mmu_idx(mmu_idx);
 | 
						|
 | 
						|
    tcr = regime_tcr(env, mmu_idx);
 | 
						|
    el = regime_el(env, mmu_idx);
 | 
						|
 | 
						|
    if (el > 1) {
 | 
						|
        return 0;
 | 
						|
    } else {
 | 
						|
        return extract64(tcr->raw_tcr, 38, 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return the TTBR associated with this translation regime */
 | 
						|
static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
 | 
						|
                                   int ttbrn)
 | 
						|
{
 | 
						|
    if (mmu_idx == ARMMMUIdx_S2NS) {
 | 
						|
        return env->cp15.vttbr_el2;
 | 
						|
    }
 | 
						|
    if (ttbrn == 0) {
 | 
						|
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
 | 
						|
    } else {
 | 
						|
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Return true if the translation regime is using LPAE format page tables */
 | 
						|
static inline bool regime_using_lpae_format(CPUARMState *env,
 | 
						|
                                            ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    int el = regime_el(env, mmu_idx);
 | 
						|
    if (el == 2 || arm_el_is_aa64(env, el)) {
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    if (arm_feature(env, ARM_FEATURE_LPAE)
 | 
						|
        && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Returns true if the stage 1 translation regime is using LPAE format page
 | 
						|
 * tables. Used when raising alignment exceptions, whose FSR changes depending
 | 
						|
 * on whether the long or short descriptor format is in use. */
 | 
						|
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    mmu_idx = stage_1_mmu_idx(mmu_idx);
 | 
						|
 | 
						|
    return regime_using_lpae_format(env, mmu_idx);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
 | 
						|
{
 | 
						|
    switch (mmu_idx) {
 | 
						|
    case ARMMMUIdx_S1SE0:
 | 
						|
    case ARMMMUIdx_S1NSE0:
 | 
						|
    case ARMMMUIdx_MUser:
 | 
						|
    case ARMMMUIdx_MSUser:
 | 
						|
    case ARMMMUIdx_MUserNegPri:
 | 
						|
    case ARMMMUIdx_MSUserNegPri:
 | 
						|
        return true;
 | 
						|
    default:
 | 
						|
        return false;
 | 
						|
    case ARMMMUIdx_S12NSE0:
 | 
						|
    case ARMMMUIdx_S12NSE1:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Translate section/page access permissions to page
 | 
						|
 * R/W protection flags
 | 
						|
 *
 | 
						|
 * @env:         CPUARMState
 | 
						|
 * @mmu_idx:     MMU index indicating required translation regime
 | 
						|
 * @ap:          The 3-bit access permissions (AP[2:0])
 | 
						|
 * @domain_prot: The 2-bit domain access permissions
 | 
						|
 */
 | 
						|
static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
 | 
						|
                                int ap, int domain_prot)
 | 
						|
{
 | 
						|
    bool is_user = regime_is_user(env, mmu_idx);
 | 
						|
 | 
						|
    if (domain_prot == 3) {
 | 
						|
        return PAGE_READ | PAGE_WRITE;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ap) {
 | 
						|
    case 0:
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
 | 
						|
        case SCTLR_S:
 | 
						|
            return is_user ? 0 : PAGE_READ;
 | 
						|
        case SCTLR_R:
 | 
						|
            return PAGE_READ;
 | 
						|
        default:
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    case 1:
 | 
						|
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | 
						|
    case 2:
 | 
						|
        if (is_user) {
 | 
						|
            return PAGE_READ;
 | 
						|
        } else {
 | 
						|
            return PAGE_READ | PAGE_WRITE;
 | 
						|
        }
 | 
						|
    case 3:
 | 
						|
        return PAGE_READ | PAGE_WRITE;
 | 
						|
    case 4: /* Reserved.  */
 | 
						|
        return 0;
 | 
						|
    case 5:
 | 
						|
        return is_user ? 0 : PAGE_READ;
 | 
						|
    case 6:
 | 
						|
        return PAGE_READ;
 | 
						|
    case 7:
 | 
						|
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        return PAGE_READ;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Translate section/page access permissions to page
 | 
						|
 * R/W protection flags.
 | 
						|
 *
 | 
						|
 * @ap:      The 2-bit simple AP (AP[2:1])
 | 
						|
 * @is_user: TRUE if accessing from PL0
 | 
						|
 */
 | 
						|
static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
 | 
						|
{
 | 
						|
    switch (ap) {
 | 
						|
    case 0:
 | 
						|
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | 
						|
    case 1:
 | 
						|
        return PAGE_READ | PAGE_WRITE;
 | 
						|
    case 2:
 | 
						|
        return is_user ? 0 : PAGE_READ;
 | 
						|
    case 3:
 | 
						|
        return PAGE_READ;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int
 | 
						|
simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
 | 
						|
{
 | 
						|
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
 | 
						|
}
 | 
						|
 | 
						|
/* Translate S2 section/page access permissions to protection flags
 | 
						|
 *
 | 
						|
 * @env:     CPUARMState
 | 
						|
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 | 
						|
 * @xn:      XN (execute-never) bit
 | 
						|
 */
 | 
						|
static int get_S2prot(CPUARMState *env, int s2ap, int xn)
 | 
						|
{
 | 
						|
    int prot = 0;
 | 
						|
 | 
						|
    if (s2ap & 1) {
 | 
						|
        prot |= PAGE_READ;
 | 
						|
    }
 | 
						|
    if (s2ap & 2) {
 | 
						|
        prot |= PAGE_WRITE;
 | 
						|
    }
 | 
						|
    if (!xn) {
 | 
						|
        if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
 | 
						|
            prot |= PAGE_EXEC;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return prot;
 | 
						|
}
 | 
						|
 | 
						|
/* Translate section/page access permissions to protection flags
 | 
						|
 *
 | 
						|
 * @env:     CPUARMState
 | 
						|
 * @mmu_idx: MMU index indicating required translation regime
 | 
						|
 * @is_aa64: TRUE if AArch64
 | 
						|
 * @ap:      The 2-bit simple AP (AP[2:1])
 | 
						|
 * @ns:      NS (non-secure) bit
 | 
						|
 * @xn:      XN (execute-never) bit
 | 
						|
 * @pxn:     PXN (privileged execute-never) bit
 | 
						|
 */
 | 
						|
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
 | 
						|
                      int ap, int ns, int xn, int pxn)
 | 
						|
{
 | 
						|
    bool is_user = regime_is_user(env, mmu_idx);
 | 
						|
    int prot_rw, user_rw;
 | 
						|
    bool have_wxn;
 | 
						|
    int wxn = 0;
 | 
						|
 | 
						|
    assert(mmu_idx != ARMMMUIdx_S2NS);
 | 
						|
 | 
						|
    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
 | 
						|
    if (is_user) {
 | 
						|
        prot_rw = user_rw;
 | 
						|
    } else {
 | 
						|
        prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
 | 
						|
    }
 | 
						|
 | 
						|
    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
 | 
						|
        return prot_rw;
 | 
						|
    }
 | 
						|
 | 
						|
    /* TODO have_wxn should be replaced with
 | 
						|
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
 | 
						|
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
 | 
						|
     * compatible processors have EL2, which is required for [U]WXN.
 | 
						|
     */
 | 
						|
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
 | 
						|
 | 
						|
    if (have_wxn) {
 | 
						|
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_aa64) {
 | 
						|
        switch (regime_el(env, mmu_idx)) {
 | 
						|
        case 1:
 | 
						|
            if (!is_user) {
 | 
						|
                xn = pxn || (user_rw & PAGE_WRITE);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
        case 3:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
        switch (regime_el(env, mmu_idx)) {
 | 
						|
        case 1:
 | 
						|
        case 3:
 | 
						|
            if (is_user) {
 | 
						|
                xn = xn || !(user_rw & PAGE_READ);
 | 
						|
            } else {
 | 
						|
                int uwxn = 0;
 | 
						|
                if (have_wxn) {
 | 
						|
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
 | 
						|
                }
 | 
						|
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
 | 
						|
                     (uwxn && (user_rw & PAGE_WRITE));
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 2:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        xn = wxn = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
 | 
						|
        return prot_rw;
 | 
						|
    }
 | 
						|
    return prot_rw | PAGE_EXEC;
 | 
						|
}
 | 
						|
 | 
						|
static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
 | 
						|
                                     uint32_t *table, uint32_t address)
 | 
						|
{
 | 
						|
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
 | 
						|
    TCR *tcr = regime_tcr(env, mmu_idx);
 | 
						|
 | 
						|
    if (address & tcr->mask) {
 | 
						|
        if (tcr->raw_tcr & TTBCR_PD1) {
 | 
						|
            /* Translation table walk disabled for TTBR1 */
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
 | 
						|
    } else {
 | 
						|
        if (tcr->raw_tcr & TTBCR_PD0) {
 | 
						|
            /* Translation table walk disabled for TTBR0 */
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
        *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
 | 
						|
    }
 | 
						|
    *table |= (address >> 18) & 0x3ffc;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Translate a S1 pagetable walk through S2 if needed.  */
 | 
						|
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
 | 
						|
                               hwaddr addr, MemTxAttrs txattrs,
 | 
						|
                               ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
 | 
						|
        !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
 | 
						|
        target_ulong s2size;
 | 
						|
        hwaddr s2pa;
 | 
						|
        int s2prot;
 | 
						|
        int ret;
 | 
						|
 | 
						|
        ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
 | 
						|
                                 &txattrs, &s2prot, &s2size, fi, NULL);
 | 
						|
        if (ret) {
 | 
						|
            assert(fi->type != ARMFault_None);
 | 
						|
            fi->s2addr = addr;
 | 
						|
            fi->stage2 = true;
 | 
						|
            fi->s1ptw = true;
 | 
						|
            return ~0;
 | 
						|
        }
 | 
						|
        addr = s2pa;
 | 
						|
    }
 | 
						|
    return addr;
 | 
						|
}
 | 
						|
 | 
						|
/* All loads done in the course of a page table walk go through here.
 | 
						|
 * TODO: rather than ignoring errors from physical memory reads (which
 | 
						|
 * are external aborts in ARM terminology) we should propagate this
 | 
						|
 * error out so that we can turn it into a Data Abort if this walk
 | 
						|
 * was being done for a CPU load/store or an address translation instruction
 | 
						|
 * (but not if it was for a debug access).
 | 
						|
 */
 | 
						|
static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
 | 
						|
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    MemTxResult result = MEMTX_OK;
 | 
						|
    AddressSpace *as;
 | 
						|
    uint32_t data;
 | 
						|
 | 
						|
    attrs.secure = is_secure;
 | 
						|
    as = arm_addressspace(cs, attrs);
 | 
						|
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
 | 
						|
    if (fi->s1ptw) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (regime_translation_big_endian(env, mmu_idx)) {
 | 
						|
        data = address_space_ldl_be(as, addr, attrs, &result);
 | 
						|
    } else {
 | 
						|
        data = address_space_ldl_le(as, addr, attrs, &result);
 | 
						|
    }
 | 
						|
    if (result == MEMTX_OK) {
 | 
						|
        return data;
 | 
						|
    }
 | 
						|
    fi->type = ARMFault_SyncExternalOnWalk;
 | 
						|
    fi->ea = arm_extabort_type(result);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
 | 
						|
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    MemTxResult result = MEMTX_OK;
 | 
						|
    AddressSpace *as;
 | 
						|
    uint64_t data;
 | 
						|
 | 
						|
    attrs.secure = is_secure;
 | 
						|
    as = arm_addressspace(cs, attrs);
 | 
						|
    addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fi);
 | 
						|
    if (fi->s1ptw) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    if (regime_translation_big_endian(env, mmu_idx)) {
 | 
						|
        data = address_space_ldq_be(as, addr, attrs, &result);
 | 
						|
    } else {
 | 
						|
        data = address_space_ldq_le(as, addr, attrs, &result);
 | 
						|
    }
 | 
						|
    if (result == MEMTX_OK) {
 | 
						|
        return data;
 | 
						|
    }
 | 
						|
    fi->type = ARMFault_SyncExternalOnWalk;
 | 
						|
    fi->ea = arm_extabort_type(result);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
 | 
						|
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                             hwaddr *phys_ptr, int *prot,
 | 
						|
                             target_ulong *page_size,
 | 
						|
                             ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(arm_env_get_cpu(env));
 | 
						|
    int level = 1;
 | 
						|
    uint32_t table;
 | 
						|
    uint32_t desc;
 | 
						|
    int type;
 | 
						|
    int ap;
 | 
						|
    int domain = 0;
 | 
						|
    int domain_prot;
 | 
						|
    hwaddr phys_addr;
 | 
						|
    uint32_t dacr;
 | 
						|
 | 
						|
    /* Pagetable walk.  */
 | 
						|
    /* Lookup l1 descriptor.  */
 | 
						|
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
 | 
						|
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
 | 
						|
        fi->type = ARMFault_Translation;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | 
						|
                       mmu_idx, fi);
 | 
						|
    if (fi->type != ARMFault_None) {
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    type = (desc & 3);
 | 
						|
    domain = (desc >> 5) & 0x0f;
 | 
						|
    if (regime_el(env, mmu_idx) == 1) {
 | 
						|
        dacr = env->cp15.dacr_ns;
 | 
						|
    } else {
 | 
						|
        dacr = env->cp15.dacr_s;
 | 
						|
    }
 | 
						|
    domain_prot = (dacr >> (domain * 2)) & 3;
 | 
						|
    if (type == 0) {
 | 
						|
        /* Section translation fault.  */
 | 
						|
        fi->type = ARMFault_Translation;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    if (type != 2) {
 | 
						|
        level = 2;
 | 
						|
    }
 | 
						|
    if (domain_prot == 0 || domain_prot == 2) {
 | 
						|
        fi->type = ARMFault_Domain;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    if (type == 2) {
 | 
						|
        /* 1Mb section.  */
 | 
						|
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | 
						|
        ap = (desc >> 10) & 3;
 | 
						|
        *page_size = 1024 * 1024;
 | 
						|
    } else {
 | 
						|
        /* Lookup l2 entry.  */
 | 
						|
        if (type == 1) {
 | 
						|
            /* Coarse pagetable.  */
 | 
						|
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | 
						|
        } else {
 | 
						|
            /* Fine pagetable.  */
 | 
						|
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
 | 
						|
        }
 | 
						|
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | 
						|
                           mmu_idx, fi);
 | 
						|
        if (fi->type != ARMFault_None) {
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
        switch (desc & 3) {
 | 
						|
        case 0: /* Page translation fault.  */
 | 
						|
            fi->type = ARMFault_Translation;
 | 
						|
            goto do_fault;
 | 
						|
        case 1: /* 64k page.  */
 | 
						|
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | 
						|
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | 
						|
            *page_size = 0x10000;
 | 
						|
            break;
 | 
						|
        case 2: /* 4k page.  */
 | 
						|
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | 
						|
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
 | 
						|
            *page_size = 0x1000;
 | 
						|
            break;
 | 
						|
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
 | 
						|
            if (type == 1) {
 | 
						|
                /* ARMv6/XScale extended small page format */
 | 
						|
                if (arm_feature(env, ARM_FEATURE_XSCALE)
 | 
						|
                    || arm_feature(env, ARM_FEATURE_V6)) {
 | 
						|
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | 
						|
                    *page_size = 0x1000;
 | 
						|
                } else {
 | 
						|
                    /* UNPREDICTABLE in ARMv5; we choose to take a
 | 
						|
                     * page translation fault.
 | 
						|
                     */
 | 
						|
                    fi->type = ARMFault_Translation;
 | 
						|
                    goto do_fault;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
 | 
						|
                *page_size = 0x400;
 | 
						|
            }
 | 
						|
            ap = (desc >> 4) & 3;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            /* Never happens, but compiler isn't smart enough to tell.  */
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
 | 
						|
    *prot |= *prot ? PAGE_EXEC : 0;
 | 
						|
    if (!(*prot & (1 << access_type))) {
 | 
						|
        /* Access permission fault.  */
 | 
						|
        fi->type = ARMFault_Permission;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    *phys_ptr = phys_addr;
 | 
						|
    return false;
 | 
						|
do_fault:
 | 
						|
    fi->domain = domain;
 | 
						|
    fi->level = level;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
 | 
						|
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | 
						|
                             target_ulong *page_size, ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    CPUState *cs = CPU(arm_env_get_cpu(env));
 | 
						|
    int level = 1;
 | 
						|
    uint32_t table;
 | 
						|
    uint32_t desc;
 | 
						|
    uint32_t xn;
 | 
						|
    uint32_t pxn = 0;
 | 
						|
    int type;
 | 
						|
    int ap;
 | 
						|
    int domain = 0;
 | 
						|
    int domain_prot;
 | 
						|
    hwaddr phys_addr;
 | 
						|
    uint32_t dacr;
 | 
						|
    bool ns;
 | 
						|
 | 
						|
    /* Pagetable walk.  */
 | 
						|
    /* Lookup l1 descriptor.  */
 | 
						|
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
 | 
						|
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
 | 
						|
        fi->type = ARMFault_Translation;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | 
						|
                       mmu_idx, fi);
 | 
						|
    if (fi->type != ARMFault_None) {
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    type = (desc & 3);
 | 
						|
    if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
 | 
						|
        /* Section translation fault, or attempt to use the encoding
 | 
						|
         * which is Reserved on implementations without PXN.
 | 
						|
         */
 | 
						|
        fi->type = ARMFault_Translation;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    if ((type == 1) || !(desc & (1 << 18))) {
 | 
						|
        /* Page or Section.  */
 | 
						|
        domain = (desc >> 5) & 0x0f;
 | 
						|
    }
 | 
						|
    if (regime_el(env, mmu_idx) == 1) {
 | 
						|
        dacr = env->cp15.dacr_ns;
 | 
						|
    } else {
 | 
						|
        dacr = env->cp15.dacr_s;
 | 
						|
    }
 | 
						|
    if (type == 1) {
 | 
						|
        level = 2;
 | 
						|
    }
 | 
						|
    domain_prot = (dacr >> (domain * 2)) & 3;
 | 
						|
    if (domain_prot == 0 || domain_prot == 2) {
 | 
						|
        /* Section or Page domain fault */
 | 
						|
        fi->type = ARMFault_Domain;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
    if (type != 1) {
 | 
						|
        if (desc & (1 << 18)) {
 | 
						|
            /* Supersection.  */
 | 
						|
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
 | 
						|
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
 | 
						|
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
 | 
						|
            *page_size = 0x1000000;
 | 
						|
        } else {
 | 
						|
            /* Section.  */
 | 
						|
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | 
						|
            *page_size = 0x100000;
 | 
						|
        }
 | 
						|
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
 | 
						|
        xn = desc & (1 << 4);
 | 
						|
        pxn = desc & 1;
 | 
						|
        ns = extract32(desc, 19, 1);
 | 
						|
    } else {
 | 
						|
        if (arm_feature(env, ARM_FEATURE_PXN)) {
 | 
						|
            pxn = (desc >> 2) & 1;
 | 
						|
        }
 | 
						|
        ns = extract32(desc, 3, 1);
 | 
						|
        /* Lookup l2 entry.  */
 | 
						|
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | 
						|
        desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | 
						|
                           mmu_idx, fi);
 | 
						|
        if (fi->type != ARMFault_None) {
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
 | 
						|
        switch (desc & 3) {
 | 
						|
        case 0: /* Page translation fault.  */
 | 
						|
            fi->type = ARMFault_Translation;
 | 
						|
            goto do_fault;
 | 
						|
        case 1: /* 64k page.  */
 | 
						|
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | 
						|
            xn = desc & (1 << 15);
 | 
						|
            *page_size = 0x10000;
 | 
						|
            break;
 | 
						|
        case 2: case 3: /* 4k page.  */
 | 
						|
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | 
						|
            xn = desc & 1;
 | 
						|
            *page_size = 0x1000;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            /* Never happens, but compiler isn't smart enough to tell.  */
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (domain_prot == 3) {
 | 
						|
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | 
						|
    } else {
 | 
						|
        if (pxn && !regime_is_user(env, mmu_idx)) {
 | 
						|
            xn = 1;
 | 
						|
        }
 | 
						|
        if (xn && access_type == MMU_INST_FETCH) {
 | 
						|
            fi->type = ARMFault_Permission;
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V6K) &&
 | 
						|
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
 | 
						|
            /* The simplified model uses AP[0] as an access control bit.  */
 | 
						|
            if ((ap & 1) == 0) {
 | 
						|
                /* Access flag fault.  */
 | 
						|
                fi->type = ARMFault_AccessFlag;
 | 
						|
                goto do_fault;
 | 
						|
            }
 | 
						|
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
 | 
						|
        } else {
 | 
						|
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
 | 
						|
        }
 | 
						|
        if (*prot && !xn) {
 | 
						|
            *prot |= PAGE_EXEC;
 | 
						|
        }
 | 
						|
        if (!(*prot & (1 << access_type))) {
 | 
						|
            /* Access permission fault.  */
 | 
						|
            fi->type = ARMFault_Permission;
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (ns) {
 | 
						|
        /* The NS bit will (as required by the architecture) have no effect if
 | 
						|
         * the CPU doesn't support TZ or this is a non-secure translation
 | 
						|
         * regime, because the attribute will already be non-secure.
 | 
						|
         */
 | 
						|
        attrs->secure = false;
 | 
						|
    }
 | 
						|
    *phys_ptr = phys_addr;
 | 
						|
    return false;
 | 
						|
do_fault:
 | 
						|
    fi->domain = domain;
 | 
						|
    fi->level = level;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * check_s2_mmu_setup
 | 
						|
 * @cpu:        ARMCPU
 | 
						|
 * @is_aa64:    True if the translation regime is in AArch64 state
 | 
						|
 * @startlevel: Suggested starting level
 | 
						|
 * @inputsize:  Bitsize of IPAs
 | 
						|
 * @stride:     Page-table stride (See the ARM ARM)
 | 
						|
 *
 | 
						|
 * Returns true if the suggested S2 translation parameters are OK and
 | 
						|
 * false otherwise.
 | 
						|
 */
 | 
						|
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
 | 
						|
                               int inputsize, int stride)
 | 
						|
{
 | 
						|
    const int grainsize = stride + 3;
 | 
						|
    int startsizecheck;
 | 
						|
 | 
						|
    /* Negative levels are never allowed.  */
 | 
						|
    if (level < 0) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
 | 
						|
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_aa64) {
 | 
						|
        CPUARMState *env = &cpu->env;
 | 
						|
        unsigned int pamax = arm_pamax(cpu);
 | 
						|
 | 
						|
        switch (stride) {
 | 
						|
        case 13: /* 64KB Pages.  */
 | 
						|
            if (level == 0 || (level == 1 && pamax <= 42)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 11: /* 16KB Pages.  */
 | 
						|
            if (level == 0 || (level == 1 && pamax <= 40)) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 9: /* 4KB Pages.  */
 | 
						|
            if (level == 0 && pamax <= 42) {
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
 | 
						|
        /* Inputsize checks.  */
 | 
						|
        if (inputsize > pamax &&
 | 
						|
            (arm_el_is_aa64(env, 1) || inputsize > 40)) {
 | 
						|
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* AArch32 only supports 4KB pages. Assert on that.  */
 | 
						|
        assert(stride == 9);
 | 
						|
 | 
						|
        if (level == 0) {
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Translate from the 4-bit stage 2 representation of
 | 
						|
 * memory attributes (without cache-allocation hints) to
 | 
						|
 * the 8-bit representation of the stage 1 MAIR registers
 | 
						|
 * (which includes allocation hints).
 | 
						|
 *
 | 
						|
 * ref: shared/translation/attrs/S2AttrDecode()
 | 
						|
 *      .../S2ConvertAttrsHints()
 | 
						|
 */
 | 
						|
static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
 | 
						|
{
 | 
						|
    uint8_t hiattr = extract32(s2attrs, 2, 2);
 | 
						|
    uint8_t loattr = extract32(s2attrs, 0, 2);
 | 
						|
    uint8_t hihint = 0, lohint = 0;
 | 
						|
 | 
						|
    if (hiattr != 0) { /* normal memory */
 | 
						|
        if ((env->cp15.hcr_el2 & HCR_CD) != 0) { /* cache disabled */
 | 
						|
            hiattr = loattr = 1; /* non-cacheable */
 | 
						|
        } else {
 | 
						|
            if (hiattr != 1) { /* Write-through or write-back */
 | 
						|
                hihint = 3; /* RW allocate */
 | 
						|
            }
 | 
						|
            if (loattr != 1) { /* Write-through or write-back */
 | 
						|
                lohint = 3; /* RW allocate */
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
 | 
						|
}
 | 
						|
 | 
						|
static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
 | 
						|
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                               hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
 | 
						|
                               target_ulong *page_size_ptr,
 | 
						|
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    CPUState *cs = CPU(cpu);
 | 
						|
    /* Read an LPAE long-descriptor translation table. */
 | 
						|
    ARMFaultType fault_type = ARMFault_Translation;
 | 
						|
    uint32_t level;
 | 
						|
    uint32_t epd = 0;
 | 
						|
    int32_t t0sz, t1sz;
 | 
						|
    uint32_t tg;
 | 
						|
    uint64_t ttbr;
 | 
						|
    int ttbr_select;
 | 
						|
    hwaddr descaddr, indexmask, indexmask_grainsize;
 | 
						|
    uint32_t tableattrs;
 | 
						|
    target_ulong page_size;
 | 
						|
    uint32_t attrs;
 | 
						|
    int32_t stride = 9;
 | 
						|
    int32_t addrsize;
 | 
						|
    int inputsize;
 | 
						|
    int32_t tbi = 0;
 | 
						|
    TCR *tcr = regime_tcr(env, mmu_idx);
 | 
						|
    int ap, ns, xn, pxn;
 | 
						|
    uint32_t el = regime_el(env, mmu_idx);
 | 
						|
    bool ttbr1_valid = true;
 | 
						|
    uint64_t descaddrmask;
 | 
						|
    bool aarch64 = arm_el_is_aa64(env, el);
 | 
						|
 | 
						|
    /* TODO:
 | 
						|
     * This code does not handle the different format TCR for VTCR_EL2.
 | 
						|
     * This code also does not support shareability levels.
 | 
						|
     * Attribute and permission bit handling should also be checked when adding
 | 
						|
     * support for those page table walks.
 | 
						|
     */
 | 
						|
    if (aarch64) {
 | 
						|
        level = 0;
 | 
						|
        addrsize = 64;
 | 
						|
        if (el > 1) {
 | 
						|
            if (mmu_idx != ARMMMUIdx_S2NS) {
 | 
						|
                tbi = extract64(tcr->raw_tcr, 20, 1);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (extract64(address, 55, 1)) {
 | 
						|
                tbi = extract64(tcr->raw_tcr, 38, 1);
 | 
						|
            } else {
 | 
						|
                tbi = extract64(tcr->raw_tcr, 37, 1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        tbi *= 8;
 | 
						|
 | 
						|
        /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
 | 
						|
         * invalid.
 | 
						|
         */
 | 
						|
        if (el > 1) {
 | 
						|
            ttbr1_valid = false;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        level = 1;
 | 
						|
        addrsize = 32;
 | 
						|
        /* There is no TTBR1 for EL2 */
 | 
						|
        if (el == 2) {
 | 
						|
            ttbr1_valid = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Determine whether this address is in the region controlled by
 | 
						|
     * TTBR0 or TTBR1 (or if it is in neither region and should fault).
 | 
						|
     * This is a Non-secure PL0/1 stage 1 translation, so controlled by
 | 
						|
     * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
 | 
						|
     */
 | 
						|
    if (aarch64) {
 | 
						|
        /* AArch64 translation.  */
 | 
						|
        t0sz = extract32(tcr->raw_tcr, 0, 6);
 | 
						|
        t0sz = MIN(t0sz, 39);
 | 
						|
        t0sz = MAX(t0sz, 16);
 | 
						|
    } else if (mmu_idx != ARMMMUIdx_S2NS) {
 | 
						|
        /* AArch32 stage 1 translation.  */
 | 
						|
        t0sz = extract32(tcr->raw_tcr, 0, 3);
 | 
						|
    } else {
 | 
						|
        /* AArch32 stage 2 translation.  */
 | 
						|
        bool sext = extract32(tcr->raw_tcr, 4, 1);
 | 
						|
        bool sign = extract32(tcr->raw_tcr, 3, 1);
 | 
						|
        /* Address size is 40-bit for a stage 2 translation,
 | 
						|
         * and t0sz can be negative (from -8 to 7),
 | 
						|
         * so we need to adjust it to use the TTBR selecting logic below.
 | 
						|
         */
 | 
						|
        addrsize = 40;
 | 
						|
        t0sz = sextract32(tcr->raw_tcr, 0, 4) + 8;
 | 
						|
 | 
						|
        /* If the sign-extend bit is not the same as t0sz[3], the result
 | 
						|
         * is unpredictable. Flag this as a guest error.  */
 | 
						|
        if (sign != sext) {
 | 
						|
            qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
 | 
						|
        }
 | 
						|
    }
 | 
						|
    t1sz = extract32(tcr->raw_tcr, 16, 6);
 | 
						|
    if (aarch64) {
 | 
						|
        t1sz = MIN(t1sz, 39);
 | 
						|
        t1sz = MAX(t1sz, 16);
 | 
						|
    }
 | 
						|
    if (t0sz && !extract64(address, addrsize - t0sz, t0sz - tbi)) {
 | 
						|
        /* there is a ttbr0 region and we are in it (high bits all zero) */
 | 
						|
        ttbr_select = 0;
 | 
						|
    } else if (ttbr1_valid && t1sz &&
 | 
						|
               !extract64(~address, addrsize - t1sz, t1sz - tbi)) {
 | 
						|
        /* there is a ttbr1 region and we are in it (high bits all one) */
 | 
						|
        ttbr_select = 1;
 | 
						|
    } else if (!t0sz) {
 | 
						|
        /* ttbr0 region is "everything not in the ttbr1 region" */
 | 
						|
        ttbr_select = 0;
 | 
						|
    } else if (!t1sz && ttbr1_valid) {
 | 
						|
        /* ttbr1 region is "everything not in the ttbr0 region" */
 | 
						|
        ttbr_select = 1;
 | 
						|
    } else {
 | 
						|
        /* in the gap between the two regions, this is a Translation fault */
 | 
						|
        fault_type = ARMFault_Translation;
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Note that QEMU ignores shareability and cacheability attributes,
 | 
						|
     * so we don't need to do anything with the SH, ORGN, IRGN fields
 | 
						|
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
 | 
						|
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
 | 
						|
     * implement any ASID-like capability so we can ignore it (instead
 | 
						|
     * we will always flush the TLB any time the ASID is changed).
 | 
						|
     */
 | 
						|
    if (ttbr_select == 0) {
 | 
						|
        ttbr = regime_ttbr(env, mmu_idx, 0);
 | 
						|
        if (el < 2) {
 | 
						|
            epd = extract32(tcr->raw_tcr, 7, 1);
 | 
						|
        }
 | 
						|
        inputsize = addrsize - t0sz;
 | 
						|
 | 
						|
        tg = extract32(tcr->raw_tcr, 14, 2);
 | 
						|
        if (tg == 1) { /* 64KB pages */
 | 
						|
            stride = 13;
 | 
						|
        }
 | 
						|
        if (tg == 2) { /* 16KB pages */
 | 
						|
            stride = 11;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* We should only be here if TTBR1 is valid */
 | 
						|
        assert(ttbr1_valid);
 | 
						|
 | 
						|
        ttbr = regime_ttbr(env, mmu_idx, 1);
 | 
						|
        epd = extract32(tcr->raw_tcr, 23, 1);
 | 
						|
        inputsize = addrsize - t1sz;
 | 
						|
 | 
						|
        tg = extract32(tcr->raw_tcr, 30, 2);
 | 
						|
        if (tg == 3)  { /* 64KB pages */
 | 
						|
            stride = 13;
 | 
						|
        }
 | 
						|
        if (tg == 1) { /* 16KB pages */
 | 
						|
            stride = 11;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Here we should have set up all the parameters for the translation:
 | 
						|
     * inputsize, ttbr, epd, stride, tbi
 | 
						|
     */
 | 
						|
 | 
						|
    if (epd) {
 | 
						|
        /* Translation table walk disabled => Translation fault on TLB miss
 | 
						|
         * Note: This is always 0 on 64-bit EL2 and EL3.
 | 
						|
         */
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
 | 
						|
    if (mmu_idx != ARMMMUIdx_S2NS) {
 | 
						|
        /* The starting level depends on the virtual address size (which can
 | 
						|
         * be up to 48 bits) and the translation granule size. It indicates
 | 
						|
         * the number of strides (stride bits at a time) needed to
 | 
						|
         * consume the bits of the input address. In the pseudocode this is:
 | 
						|
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
 | 
						|
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
 | 
						|
         * our 'stride + 3' and 'stride' is our 'stride'.
 | 
						|
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
 | 
						|
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
 | 
						|
         * = 4 - (inputsize - 4) / stride;
 | 
						|
         */
 | 
						|
        level = 4 - (inputsize - 4) / stride;
 | 
						|
    } else {
 | 
						|
        /* For stage 2 translations the starting level is specified by the
 | 
						|
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
 | 
						|
         */
 | 
						|
        uint32_t sl0 = extract32(tcr->raw_tcr, 6, 2);
 | 
						|
        uint32_t startlevel;
 | 
						|
        bool ok;
 | 
						|
 | 
						|
        if (!aarch64 || stride == 9) {
 | 
						|
            /* AArch32 or 4KB pages */
 | 
						|
            startlevel = 2 - sl0;
 | 
						|
        } else {
 | 
						|
            /* 16KB or 64KB pages */
 | 
						|
            startlevel = 3 - sl0;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Check that the starting level is valid. */
 | 
						|
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
 | 
						|
                                inputsize, stride);
 | 
						|
        if (!ok) {
 | 
						|
            fault_type = ARMFault_Translation;
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
        level = startlevel;
 | 
						|
    }
 | 
						|
 | 
						|
    indexmask_grainsize = (1ULL << (stride + 3)) - 1;
 | 
						|
    indexmask = (1ULL << (inputsize - (stride * (4 - level)))) - 1;
 | 
						|
 | 
						|
    /* Now we can extract the actual base address from the TTBR */
 | 
						|
    descaddr = extract64(ttbr, 0, 48);
 | 
						|
    descaddr &= ~indexmask;
 | 
						|
 | 
						|
    /* The address field in the descriptor goes up to bit 39 for ARMv7
 | 
						|
     * but up to bit 47 for ARMv8, but we use the descaddrmask
 | 
						|
     * up to bit 39 for AArch32, because we don't need other bits in that case
 | 
						|
     * to construct next descriptor address (anyway they should be all zeroes).
 | 
						|
     */
 | 
						|
    descaddrmask = ((1ull << (aarch64 ? 48 : 40)) - 1) &
 | 
						|
                   ~indexmask_grainsize;
 | 
						|
 | 
						|
    /* Secure accesses start with the page table in secure memory and
 | 
						|
     * can be downgraded to non-secure at any step. Non-secure accesses
 | 
						|
     * remain non-secure. We implement this by just ORing in the NSTable/NS
 | 
						|
     * bits at each step.
 | 
						|
     */
 | 
						|
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
 | 
						|
    for (;;) {
 | 
						|
        uint64_t descriptor;
 | 
						|
        bool nstable;
 | 
						|
 | 
						|
        descaddr |= (address >> (stride * (4 - level))) & indexmask;
 | 
						|
        descaddr &= ~7ULL;
 | 
						|
        nstable = extract32(tableattrs, 4, 1);
 | 
						|
        descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fi);
 | 
						|
        if (fi->type != ARMFault_None) {
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!(descriptor & 1) ||
 | 
						|
            (!(descriptor & 2) && (level == 3))) {
 | 
						|
            /* Invalid, or the Reserved level 3 encoding */
 | 
						|
            goto do_fault;
 | 
						|
        }
 | 
						|
        descaddr = descriptor & descaddrmask;
 | 
						|
 | 
						|
        if ((descriptor & 2) && (level < 3)) {
 | 
						|
            /* Table entry. The top five bits are attributes which  may
 | 
						|
             * propagate down through lower levels of the table (and
 | 
						|
             * which are all arranged so that 0 means "no effect", so
 | 
						|
             * we can gather them up by ORing in the bits at each level).
 | 
						|
             */
 | 
						|
            tableattrs |= extract64(descriptor, 59, 5);
 | 
						|
            level++;
 | 
						|
            indexmask = indexmask_grainsize;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        /* Block entry at level 1 or 2, or page entry at level 3.
 | 
						|
         * These are basically the same thing, although the number
 | 
						|
         * of bits we pull in from the vaddr varies.
 | 
						|
         */
 | 
						|
        page_size = (1ULL << ((stride * (4 - level)) + 3));
 | 
						|
        descaddr |= (address & (page_size - 1));
 | 
						|
        /* Extract attributes from the descriptor */
 | 
						|
        attrs = extract64(descriptor, 2, 10)
 | 
						|
            | (extract64(descriptor, 52, 12) << 10);
 | 
						|
 | 
						|
        if (mmu_idx == ARMMMUIdx_S2NS) {
 | 
						|
            /* Stage 2 table descriptors do not include any attribute fields */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        /* Merge in attributes from table descriptors */
 | 
						|
        attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
 | 
						|
        attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
 | 
						|
        /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
 | 
						|
         * means "force PL1 access only", which means forcing AP[1] to 0.
 | 
						|
         */
 | 
						|
        if (extract32(tableattrs, 2, 1)) {
 | 
						|
            attrs &= ~(1 << 4);
 | 
						|
        }
 | 
						|
        attrs |= nstable << 3; /* NS */
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    /* Here descaddr is the final physical address, and attributes
 | 
						|
     * are all in attrs.
 | 
						|
     */
 | 
						|
    fault_type = ARMFault_AccessFlag;
 | 
						|
    if ((attrs & (1 << 8)) == 0) {
 | 
						|
        /* Access flag */
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
 | 
						|
    ap = extract32(attrs, 4, 2);
 | 
						|
    xn = extract32(attrs, 12, 1);
 | 
						|
 | 
						|
    if (mmu_idx == ARMMMUIdx_S2NS) {
 | 
						|
        ns = true;
 | 
						|
        *prot = get_S2prot(env, ap, xn);
 | 
						|
    } else {
 | 
						|
        ns = extract32(attrs, 3, 1);
 | 
						|
        pxn = extract32(attrs, 11, 1);
 | 
						|
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
 | 
						|
    }
 | 
						|
 | 
						|
    fault_type = ARMFault_Permission;
 | 
						|
    if (!(*prot & (1 << access_type))) {
 | 
						|
        goto do_fault;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ns) {
 | 
						|
        /* The NS bit will (as required by the architecture) have no effect if
 | 
						|
         * the CPU doesn't support TZ or this is a non-secure translation
 | 
						|
         * regime, because the attribute will already be non-secure.
 | 
						|
         */
 | 
						|
        txattrs->secure = false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (cacheattrs != NULL) {
 | 
						|
        if (mmu_idx == ARMMMUIdx_S2NS) {
 | 
						|
            cacheattrs->attrs = convert_stage2_attrs(env,
 | 
						|
                                                     extract32(attrs, 0, 4));
 | 
						|
        } else {
 | 
						|
            /* Index into MAIR registers for cache attributes */
 | 
						|
            uint8_t attrindx = extract32(attrs, 0, 3);
 | 
						|
            uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
 | 
						|
            assert(attrindx <= 7);
 | 
						|
            cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
 | 
						|
        }
 | 
						|
        cacheattrs->shareability = extract32(attrs, 6, 2);
 | 
						|
    }
 | 
						|
 | 
						|
    *phys_ptr = descaddr;
 | 
						|
    *page_size_ptr = page_size;
 | 
						|
    return false;
 | 
						|
 | 
						|
do_fault:
 | 
						|
    fi->type = fault_type;
 | 
						|
    fi->level = level;
 | 
						|
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
 | 
						|
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
 | 
						|
                                                ARMMMUIdx mmu_idx,
 | 
						|
                                                int32_t address, int *prot)
 | 
						|
{
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_M)) {
 | 
						|
        *prot = PAGE_READ | PAGE_WRITE;
 | 
						|
        switch (address) {
 | 
						|
        case 0xF0000000 ... 0xFFFFFFFF:
 | 
						|
            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
 | 
						|
                /* hivecs execing is ok */
 | 
						|
                *prot |= PAGE_EXEC;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case 0x00000000 ... 0x7FFFFFFF:
 | 
						|
            *prot |= PAGE_EXEC;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Default system address map for M profile cores.
 | 
						|
         * The architecture specifies which regions are execute-never;
 | 
						|
         * at the MPU level no other checks are defined.
 | 
						|
         */
 | 
						|
        switch (address) {
 | 
						|
        case 0x00000000 ... 0x1fffffff: /* ROM */
 | 
						|
        case 0x20000000 ... 0x3fffffff: /* SRAM */
 | 
						|
        case 0x60000000 ... 0x7fffffff: /* RAM */
 | 
						|
        case 0x80000000 ... 0x9fffffff: /* RAM */
 | 
						|
            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | 
						|
            break;
 | 
						|
        case 0x40000000 ... 0x5fffffff: /* Peripheral */
 | 
						|
        case 0xa0000000 ... 0xbfffffff: /* Device */
 | 
						|
        case 0xc0000000 ... 0xdfffffff: /* Device */
 | 
						|
        case 0xe0000000 ... 0xffffffff: /* System */
 | 
						|
            *prot = PAGE_READ | PAGE_WRITE;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool pmsav7_use_background_region(ARMCPU *cpu,
 | 
						|
                                         ARMMMUIdx mmu_idx, bool is_user)
 | 
						|
{
 | 
						|
    /* Return true if we should use the default memory map as a
 | 
						|
     * "background" region if there are no hits against any MPU regions.
 | 
						|
     */
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
 | 
						|
    if (is_user) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M)) {
 | 
						|
        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
 | 
						|
            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
 | 
						|
    } else {
 | 
						|
        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline bool m_is_ppb_region(CPUARMState *env, uint32_t address)
 | 
						|
{
 | 
						|
    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
 | 
						|
    return arm_feature(env, ARM_FEATURE_M) &&
 | 
						|
        extract32(address, 20, 12) == 0xe00;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool m_is_system_region(CPUARMState *env, uint32_t address)
 | 
						|
{
 | 
						|
    /* True if address is in the M profile system region
 | 
						|
     * 0xe0000000 - 0xffffffff
 | 
						|
     */
 | 
						|
    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
 | 
						|
}
 | 
						|
 | 
						|
static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
 | 
						|
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                                 hwaddr *phys_ptr, int *prot,
 | 
						|
                                 ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int n;
 | 
						|
    bool is_user = regime_is_user(env, mmu_idx);
 | 
						|
 | 
						|
    *phys_ptr = address;
 | 
						|
    *prot = 0;
 | 
						|
 | 
						|
    if (regime_translation_disabled(env, mmu_idx) ||
 | 
						|
        m_is_ppb_region(env, address)) {
 | 
						|
        /* MPU disabled or M profile PPB access: use default memory map.
 | 
						|
         * The other case which uses the default memory map in the
 | 
						|
         * v7M ARM ARM pseudocode is exception vector reads from the vector
 | 
						|
         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
 | 
						|
         * which always does a direct read using address_space_ldl(), rather
 | 
						|
         * than going via this function, so we don't need to check that here.
 | 
						|
         */
 | 
						|
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | 
						|
    } else { /* MPU enabled */
 | 
						|
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
 | 
						|
            /* region search */
 | 
						|
            uint32_t base = env->pmsav7.drbar[n];
 | 
						|
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
 | 
						|
            uint32_t rmask;
 | 
						|
            bool srdis = false;
 | 
						|
 | 
						|
            if (!(env->pmsav7.drsr[n] & 0x1)) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (!rsize) {
 | 
						|
                qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                              "DRSR[%d]: Rsize field cannot be 0\n", n);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            rsize++;
 | 
						|
            rmask = (1ull << rsize) - 1;
 | 
						|
 | 
						|
            if (base & rmask) {
 | 
						|
                qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
 | 
						|
                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
 | 
						|
                              n, base, rmask);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (address < base || address > base + rmask) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Region matched */
 | 
						|
 | 
						|
            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
 | 
						|
                int i, snd;
 | 
						|
                uint32_t srdis_mask;
 | 
						|
 | 
						|
                rsize -= 3; /* sub region size (power of 2) */
 | 
						|
                snd = ((address - base) >> rsize) & 0x7;
 | 
						|
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
 | 
						|
 | 
						|
                srdis_mask = srdis ? 0x3 : 0x0;
 | 
						|
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
 | 
						|
                    /* This will check in groups of 2, 4 and then 8, whether
 | 
						|
                     * the subregion bits are consistent. rsize is incremented
 | 
						|
                     * back up to give the region size, considering consistent
 | 
						|
                     * adjacent subregions as one region. Stop testing if rsize
 | 
						|
                     * is already big enough for an entire QEMU page.
 | 
						|
                     */
 | 
						|
                    int snd_rounded = snd & ~(i - 1);
 | 
						|
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
 | 
						|
                                                     snd_rounded + 8, i);
 | 
						|
                    if (srdis_mask ^ srdis_multi) {
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    srdis_mask = (srdis_mask << i) | srdis_mask;
 | 
						|
                    rsize++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (rsize < TARGET_PAGE_BITS) {
 | 
						|
                qemu_log_mask(LOG_UNIMP,
 | 
						|
                              "DRSR[%d]: No support for MPU (sub)region "
 | 
						|
                              "alignment of %" PRIu32 " bits. Minimum is %d\n",
 | 
						|
                              n, rsize, TARGET_PAGE_BITS);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if (srdis) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (n == -1) { /* no hits */
 | 
						|
            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
 | 
						|
                /* background fault */
 | 
						|
                fi->type = ARMFault_Background;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | 
						|
        } else { /* a MPU hit! */
 | 
						|
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
 | 
						|
            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);
 | 
						|
 | 
						|
            if (m_is_system_region(env, address)) {
 | 
						|
                /* System space is always execute never */
 | 
						|
                xn = 1;
 | 
						|
            }
 | 
						|
 | 
						|
            if (is_user) { /* User mode AP bit decoding */
 | 
						|
                switch (ap) {
 | 
						|
                case 0:
 | 
						|
                case 1:
 | 
						|
                case 5:
 | 
						|
                    break; /* no access */
 | 
						|
                case 3:
 | 
						|
                    *prot |= PAGE_WRITE;
 | 
						|
                    /* fall through */
 | 
						|
                case 2:
 | 
						|
                case 6:
 | 
						|
                    *prot |= PAGE_READ | PAGE_EXEC;
 | 
						|
                    break;
 | 
						|
                case 7:
 | 
						|
                    /* for v7M, same as 6; for R profile a reserved value */
 | 
						|
                    if (arm_feature(env, ARM_FEATURE_M)) {
 | 
						|
                        *prot |= PAGE_READ | PAGE_EXEC;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    /* fall through */
 | 
						|
                default:
 | 
						|
                    qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
 | 
						|
                                  PRIx32 "\n", n, ap);
 | 
						|
                }
 | 
						|
            } else { /* Priv. mode AP bits decoding */
 | 
						|
                switch (ap) {
 | 
						|
                case 0:
 | 
						|
                    break; /* no access */
 | 
						|
                case 1:
 | 
						|
                case 2:
 | 
						|
                case 3:
 | 
						|
                    *prot |= PAGE_WRITE;
 | 
						|
                    /* fall through */
 | 
						|
                case 5:
 | 
						|
                case 6:
 | 
						|
                    *prot |= PAGE_READ | PAGE_EXEC;
 | 
						|
                    break;
 | 
						|
                case 7:
 | 
						|
                    /* for v7M, same as 6; for R profile a reserved value */
 | 
						|
                    if (arm_feature(env, ARM_FEATURE_M)) {
 | 
						|
                        *prot |= PAGE_READ | PAGE_EXEC;
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                    /* fall through */
 | 
						|
                default:
 | 
						|
                    qemu_log_mask(LOG_GUEST_ERROR,
 | 
						|
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
 | 
						|
                                  PRIx32 "\n", n, ap);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /* execute never */
 | 
						|
            if (xn) {
 | 
						|
                *prot &= ~PAGE_EXEC;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fi->type = ARMFault_Permission;
 | 
						|
    fi->level = 1;
 | 
						|
    return !(*prot & (1 << access_type));
 | 
						|
}
 | 
						|
 | 
						|
static bool v8m_is_sau_exempt(CPUARMState *env,
 | 
						|
                              uint32_t address, MMUAccessType access_type)
 | 
						|
{
 | 
						|
    /* The architecture specifies that certain address ranges are
 | 
						|
     * exempt from v8M SAU/IDAU checks.
 | 
						|
     */
 | 
						|
    return
 | 
						|
        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
 | 
						|
        (address >= 0xe0000000 && address <= 0xe0002fff) ||
 | 
						|
        (address >= 0xe000e000 && address <= 0xe000efff) ||
 | 
						|
        (address >= 0xe002e000 && address <= 0xe002efff) ||
 | 
						|
        (address >= 0xe0040000 && address <= 0xe0041fff) ||
 | 
						|
        (address >= 0xe00ff000 && address <= 0xe00fffff);
 | 
						|
}
 | 
						|
 | 
						|
static void v8m_security_lookup(CPUARMState *env, uint32_t address,
 | 
						|
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                                V8M_SAttributes *sattrs)
 | 
						|
{
 | 
						|
    /* Look up the security attributes for this address. Compare the
 | 
						|
     * pseudocode SecurityCheck() function.
 | 
						|
     * We assume the caller has zero-initialized *sattrs.
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    int r;
 | 
						|
 | 
						|
    /* TODO: implement IDAU */
 | 
						|
 | 
						|
    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
 | 
						|
        /* 0xf0000000..0xffffffff is always S for insn fetches */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (v8m_is_sau_exempt(env, address, access_type)) {
 | 
						|
        sattrs->ns = !regime_is_secure(env, mmu_idx);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (env->sau.ctrl & 3) {
 | 
						|
    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
 | 
						|
        break;
 | 
						|
    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
 | 
						|
        sattrs->ns = true;
 | 
						|
        break;
 | 
						|
    default: /* SAU.ENABLE == 1 */
 | 
						|
        for (r = 0; r < cpu->sau_sregion; r++) {
 | 
						|
            if (env->sau.rlar[r] & 1) {
 | 
						|
                uint32_t base = env->sau.rbar[r] & ~0x1f;
 | 
						|
                uint32_t limit = env->sau.rlar[r] | 0x1f;
 | 
						|
 | 
						|
                if (base <= address && limit >= address) {
 | 
						|
                    if (sattrs->srvalid) {
 | 
						|
                        /* If we hit in more than one region then we must report
 | 
						|
                         * as Secure, not NS-Callable, with no valid region
 | 
						|
                         * number info.
 | 
						|
                         */
 | 
						|
                        sattrs->ns = false;
 | 
						|
                        sattrs->nsc = false;
 | 
						|
                        sattrs->sregion = 0;
 | 
						|
                        sattrs->srvalid = false;
 | 
						|
                        break;
 | 
						|
                    } else {
 | 
						|
                        if (env->sau.rlar[r] & 2) {
 | 
						|
                            sattrs->nsc = true;
 | 
						|
                        } else {
 | 
						|
                            sattrs->ns = true;
 | 
						|
                        }
 | 
						|
                        sattrs->srvalid = true;
 | 
						|
                        sattrs->sregion = r;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* TODO when we support the IDAU then it may override the result here */
 | 
						|
        break;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
 | 
						|
                              MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                              hwaddr *phys_ptr, MemTxAttrs *txattrs,
 | 
						|
                              int *prot, ARMMMUFaultInfo *fi, uint32_t *mregion)
 | 
						|
{
 | 
						|
    /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
 | 
						|
     * that a full phys-to-virt translation does).
 | 
						|
     * mregion is (if not NULL) set to the region number which matched,
 | 
						|
     * or -1 if no region number is returned (MPU off, address did not
 | 
						|
     * hit a region, address hit in multiple regions).
 | 
						|
     */
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    bool is_user = regime_is_user(env, mmu_idx);
 | 
						|
    uint32_t secure = regime_is_secure(env, mmu_idx);
 | 
						|
    int n;
 | 
						|
    int matchregion = -1;
 | 
						|
    bool hit = false;
 | 
						|
 | 
						|
    *phys_ptr = address;
 | 
						|
    *prot = 0;
 | 
						|
    if (mregion) {
 | 
						|
        *mregion = -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Unlike the ARM ARM pseudocode, we don't need to check whether this
 | 
						|
     * was an exception vector read from the vector table (which is always
 | 
						|
     * done using the default system address map), because those accesses
 | 
						|
     * are done in arm_v7m_load_vector(), which always does a direct
 | 
						|
     * read using address_space_ldl(), rather than going via this function.
 | 
						|
     */
 | 
						|
    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
 | 
						|
        hit = true;
 | 
						|
    } else if (m_is_ppb_region(env, address)) {
 | 
						|
        hit = true;
 | 
						|
    } else if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
 | 
						|
        hit = true;
 | 
						|
    } else {
 | 
						|
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
 | 
						|
            /* region search */
 | 
						|
            /* Note that the base address is bits [31:5] from the register
 | 
						|
             * with bits [4:0] all zeroes, but the limit address is bits
 | 
						|
             * [31:5] from the register with bits [4:0] all ones.
 | 
						|
             */
 | 
						|
            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
 | 
						|
            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;
 | 
						|
 | 
						|
            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
 | 
						|
                /* Region disabled */
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (address < base || address > limit) {
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            if (hit) {
 | 
						|
                /* Multiple regions match -- always a failure (unlike
 | 
						|
                 * PMSAv7 where highest-numbered-region wins)
 | 
						|
                 */
 | 
						|
                fi->type = ARMFault_Permission;
 | 
						|
                fi->level = 1;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
 | 
						|
            matchregion = n;
 | 
						|
            hit = true;
 | 
						|
 | 
						|
            if (base & ~TARGET_PAGE_MASK) {
 | 
						|
                qemu_log_mask(LOG_UNIMP,
 | 
						|
                              "MPU_RBAR[%d]: No support for MPU region base"
 | 
						|
                              "address of 0x%" PRIx32 ". Minimum alignment is "
 | 
						|
                              "%d\n",
 | 
						|
                              n, base, TARGET_PAGE_BITS);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
            if ((limit + 1) & ~TARGET_PAGE_MASK) {
 | 
						|
                qemu_log_mask(LOG_UNIMP,
 | 
						|
                              "MPU_RBAR[%d]: No support for MPU region limit"
 | 
						|
                              "address of 0x%" PRIx32 ". Minimum alignment is "
 | 
						|
                              "%d\n",
 | 
						|
                              n, limit, TARGET_PAGE_BITS);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!hit) {
 | 
						|
        /* background fault */
 | 
						|
        fi->type = ARMFault_Background;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (matchregion == -1) {
 | 
						|
        /* hit using the background region */
 | 
						|
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | 
						|
    } else {
 | 
						|
        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
 | 
						|
        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
 | 
						|
 | 
						|
        if (m_is_system_region(env, address)) {
 | 
						|
            /* System space is always execute never */
 | 
						|
            xn = 1;
 | 
						|
        }
 | 
						|
 | 
						|
        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
 | 
						|
        if (*prot && !xn) {
 | 
						|
            *prot |= PAGE_EXEC;
 | 
						|
        }
 | 
						|
        /* We don't need to look the attribute up in the MAIR0/MAIR1
 | 
						|
         * registers because that only tells us about cacheability.
 | 
						|
         */
 | 
						|
        if (mregion) {
 | 
						|
            *mregion = matchregion;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    fi->type = ARMFault_Permission;
 | 
						|
    fi->level = 1;
 | 
						|
    return !(*prot & (1 << access_type));
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
 | 
						|
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
 | 
						|
                                 int *prot, ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    uint32_t secure = regime_is_secure(env, mmu_idx);
 | 
						|
    V8M_SAttributes sattrs = {};
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
 | 
						|
        if (access_type == MMU_INST_FETCH) {
 | 
						|
            /* Instruction fetches always use the MMU bank and the
 | 
						|
             * transaction attribute determined by the fetch address,
 | 
						|
             * regardless of CPU state. This is painful for QEMU
 | 
						|
             * to handle, because it would mean we need to encode
 | 
						|
             * into the mmu_idx not just the (user, negpri) information
 | 
						|
             * for the current security state but also that for the
 | 
						|
             * other security state, which would balloon the number
 | 
						|
             * of mmu_idx values needed alarmingly.
 | 
						|
             * Fortunately we can avoid this because it's not actually
 | 
						|
             * possible to arbitrarily execute code from memory with
 | 
						|
             * the wrong security attribute: it will always generate
 | 
						|
             * an exception of some kind or another, apart from the
 | 
						|
             * special case of an NS CPU executing an SG instruction
 | 
						|
             * in S&NSC memory. So we always just fail the translation
 | 
						|
             * here and sort things out in the exception handler
 | 
						|
             * (including possibly emulating an SG instruction).
 | 
						|
             */
 | 
						|
            if (sattrs.ns != !secure) {
 | 
						|
                if (sattrs.nsc) {
 | 
						|
                    fi->type = ARMFault_QEMU_NSCExec;
 | 
						|
                } else {
 | 
						|
                    fi->type = ARMFault_QEMU_SFault;
 | 
						|
                }
 | 
						|
                *phys_ptr = address;
 | 
						|
                *prot = 0;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            /* For data accesses we always use the MMU bank indicated
 | 
						|
             * by the current CPU state, but the security attributes
 | 
						|
             * might downgrade a secure access to nonsecure.
 | 
						|
             */
 | 
						|
            if (sattrs.ns) {
 | 
						|
                txattrs->secure = false;
 | 
						|
            } else if (!secure) {
 | 
						|
                /* NS access to S memory must fault.
 | 
						|
                 * Architecturally we should first check whether the
 | 
						|
                 * MPU information for this address indicates that we
 | 
						|
                 * are doing an unaligned access to Device memory, which
 | 
						|
                 * should generate a UsageFault instead. QEMU does not
 | 
						|
                 * currently check for that kind of unaligned access though.
 | 
						|
                 * If we added it we would need to do so as a special case
 | 
						|
                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
 | 
						|
                 */
 | 
						|
                fi->type = ARMFault_QEMU_SFault;
 | 
						|
                *phys_ptr = address;
 | 
						|
                *prot = 0;
 | 
						|
                return true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
 | 
						|
                             txattrs, prot, fi, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
 | 
						|
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                                 hwaddr *phys_ptr, int *prot,
 | 
						|
                                 ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    int n;
 | 
						|
    uint32_t mask;
 | 
						|
    uint32_t base;
 | 
						|
    bool is_user = regime_is_user(env, mmu_idx);
 | 
						|
 | 
						|
    if (regime_translation_disabled(env, mmu_idx)) {
 | 
						|
        /* MPU disabled.  */
 | 
						|
        *phys_ptr = address;
 | 
						|
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    *phys_ptr = address;
 | 
						|
    for (n = 7; n >= 0; n--) {
 | 
						|
        base = env->cp15.c6_region[n];
 | 
						|
        if ((base & 1) == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        mask = 1 << ((base >> 1) & 0x1f);
 | 
						|
        /* Keep this shift separate from the above to avoid an
 | 
						|
           (undefined) << 32.  */
 | 
						|
        mask = (mask << 1) - 1;
 | 
						|
        if (((base ^ address) & ~mask) == 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (n < 0) {
 | 
						|
        fi->type = ARMFault_Background;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (access_type == MMU_INST_FETCH) {
 | 
						|
        mask = env->cp15.pmsav5_insn_ap;
 | 
						|
    } else {
 | 
						|
        mask = env->cp15.pmsav5_data_ap;
 | 
						|
    }
 | 
						|
    mask = (mask >> (n * 4)) & 0xf;
 | 
						|
    switch (mask) {
 | 
						|
    case 0:
 | 
						|
        fi->type = ARMFault_Permission;
 | 
						|
        fi->level = 1;
 | 
						|
        return true;
 | 
						|
    case 1:
 | 
						|
        if (is_user) {
 | 
						|
            fi->type = ARMFault_Permission;
 | 
						|
            fi->level = 1;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        *prot = PAGE_READ | PAGE_WRITE;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        *prot = PAGE_READ;
 | 
						|
        if (!is_user) {
 | 
						|
            *prot |= PAGE_WRITE;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        *prot = PAGE_READ | PAGE_WRITE;
 | 
						|
        break;
 | 
						|
    case 5:
 | 
						|
        if (is_user) {
 | 
						|
            fi->type = ARMFault_Permission;
 | 
						|
            fi->level = 1;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
        *prot = PAGE_READ;
 | 
						|
        break;
 | 
						|
    case 6:
 | 
						|
        *prot = PAGE_READ;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        /* Bad permission.  */
 | 
						|
        fi->type = ARMFault_Permission;
 | 
						|
        fi->level = 1;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    *prot |= PAGE_EXEC;
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Combine either inner or outer cacheability attributes for normal
 | 
						|
 * memory, according to table D4-42 and pseudocode procedure
 | 
						|
 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
 | 
						|
 *
 | 
						|
 * NB: only stage 1 includes allocation hints (RW bits), leading to
 | 
						|
 * some asymmetry.
 | 
						|
 */
 | 
						|
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
 | 
						|
{
 | 
						|
    if (s1 == 4 || s2 == 4) {
 | 
						|
        /* non-cacheable has precedence */
 | 
						|
        return 4;
 | 
						|
    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
 | 
						|
        /* stage 1 write-through takes precedence */
 | 
						|
        return s1;
 | 
						|
    } else if (extract32(s2, 2, 2) == 2) {
 | 
						|
        /* stage 2 write-through takes precedence, but the allocation hint
 | 
						|
         * is still taken from stage 1
 | 
						|
         */
 | 
						|
        return (2 << 2) | extract32(s1, 0, 2);
 | 
						|
    } else { /* write-back */
 | 
						|
        return s1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
 | 
						|
 * and CombineS1S2Desc()
 | 
						|
 *
 | 
						|
 * @s1:      Attributes from stage 1 walk
 | 
						|
 * @s2:      Attributes from stage 2 walk
 | 
						|
 */
 | 
						|
static ARMCacheAttrs combine_cacheattrs(ARMCacheAttrs s1, ARMCacheAttrs s2)
 | 
						|
{
 | 
						|
    uint8_t s1lo = extract32(s1.attrs, 0, 4), s2lo = extract32(s2.attrs, 0, 4);
 | 
						|
    uint8_t s1hi = extract32(s1.attrs, 4, 4), s2hi = extract32(s2.attrs, 4, 4);
 | 
						|
    ARMCacheAttrs ret;
 | 
						|
 | 
						|
    /* Combine shareability attributes (table D4-43) */
 | 
						|
    if (s1.shareability == 2 || s2.shareability == 2) {
 | 
						|
        /* if either are outer-shareable, the result is outer-shareable */
 | 
						|
        ret.shareability = 2;
 | 
						|
    } else if (s1.shareability == 3 || s2.shareability == 3) {
 | 
						|
        /* if either are inner-shareable, the result is inner-shareable */
 | 
						|
        ret.shareability = 3;
 | 
						|
    } else {
 | 
						|
        /* both non-shareable */
 | 
						|
        ret.shareability = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Combine memory type and cacheability attributes */
 | 
						|
    if (s1hi == 0 || s2hi == 0) {
 | 
						|
        /* Device has precedence over normal */
 | 
						|
        if (s1lo == 0 || s2lo == 0) {
 | 
						|
            /* nGnRnE has precedence over anything */
 | 
						|
            ret.attrs = 0;
 | 
						|
        } else if (s1lo == 4 || s2lo == 4) {
 | 
						|
            /* non-Reordering has precedence over Reordering */
 | 
						|
            ret.attrs = 4;  /* nGnRE */
 | 
						|
        } else if (s1lo == 8 || s2lo == 8) {
 | 
						|
            /* non-Gathering has precedence over Gathering */
 | 
						|
            ret.attrs = 8;  /* nGRE */
 | 
						|
        } else {
 | 
						|
            ret.attrs = 0xc; /* GRE */
 | 
						|
        }
 | 
						|
 | 
						|
        /* Any location for which the resultant memory type is any
 | 
						|
         * type of Device memory is always treated as Outer Shareable.
 | 
						|
         */
 | 
						|
        ret.shareability = 2;
 | 
						|
    } else { /* Normal memory */
 | 
						|
        /* Outer/inner cacheability combine independently */
 | 
						|
        ret.attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
 | 
						|
                  | combine_cacheattr_nibble(s1lo, s2lo);
 | 
						|
 | 
						|
        if (ret.attrs == 0x44) {
 | 
						|
            /* Any location for which the resultant memory type is Normal
 | 
						|
             * Inner Non-cacheable, Outer Non-cacheable is always treated
 | 
						|
             * as Outer Shareable.
 | 
						|
             */
 | 
						|
            ret.shareability = 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* get_phys_addr - get the physical address for this virtual address
 | 
						|
 *
 | 
						|
 * Find the physical address corresponding to the given virtual address,
 | 
						|
 * by doing a translation table walk on MMU based systems or using the
 | 
						|
 * MPU state on MPU based systems.
 | 
						|
 *
 | 
						|
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 | 
						|
 * prot and page_size may not be filled in, and the populated fsr value provides
 | 
						|
 * information on why the translation aborted, in the format of a
 | 
						|
 * DFSR/IFSR fault register, with the following caveats:
 | 
						|
 *  * we honour the short vs long DFSR format differences.
 | 
						|
 *  * the WnR bit is never set (the caller must do this).
 | 
						|
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
 | 
						|
 *    value.
 | 
						|
 *
 | 
						|
 * @env: CPUARMState
 | 
						|
 * @address: virtual address to get physical address for
 | 
						|
 * @access_type: 0 for read, 1 for write, 2 for execute
 | 
						|
 * @mmu_idx: MMU index indicating required translation regime
 | 
						|
 * @phys_ptr: set to the physical address corresponding to the virtual address
 | 
						|
 * @attrs: set to the memory transaction attributes to use
 | 
						|
 * @prot: set to the permissions for the page containing phys_ptr
 | 
						|
 * @page_size: set to the size of the page containing phys_ptr
 | 
						|
 * @fi: set to fault info if the translation fails
 | 
						|
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 | 
						|
 */
 | 
						|
static bool get_phys_addr(CPUARMState *env, target_ulong address,
 | 
						|
                          MMUAccessType access_type, ARMMMUIdx mmu_idx,
 | 
						|
                          hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | 
						|
                          target_ulong *page_size,
 | 
						|
                          ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
 | 
						|
{
 | 
						|
    if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
 | 
						|
        /* Call ourselves recursively to do the stage 1 and then stage 2
 | 
						|
         * translations.
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
            hwaddr ipa;
 | 
						|
            int s2_prot;
 | 
						|
            int ret;
 | 
						|
            ARMCacheAttrs cacheattrs2 = {};
 | 
						|
 | 
						|
            ret = get_phys_addr(env, address, access_type,
 | 
						|
                                stage_1_mmu_idx(mmu_idx), &ipa, attrs,
 | 
						|
                                prot, page_size, fi, cacheattrs);
 | 
						|
 | 
						|
            /* If S1 fails or S2 is disabled, return early.  */
 | 
						|
            if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
 | 
						|
                *phys_ptr = ipa;
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
 | 
						|
            /* S1 is done. Now do S2 translation.  */
 | 
						|
            ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
 | 
						|
                                     phys_ptr, attrs, &s2_prot,
 | 
						|
                                     page_size, fi,
 | 
						|
                                     cacheattrs != NULL ? &cacheattrs2 : NULL);
 | 
						|
            fi->s2addr = ipa;
 | 
						|
            /* Combine the S1 and S2 perms.  */
 | 
						|
            *prot &= s2_prot;
 | 
						|
 | 
						|
            /* Combine the S1 and S2 cache attributes, if needed */
 | 
						|
            if (!ret && cacheattrs != NULL) {
 | 
						|
                *cacheattrs = combine_cacheattrs(*cacheattrs, cacheattrs2);
 | 
						|
            }
 | 
						|
 | 
						|
            return ret;
 | 
						|
        } else {
 | 
						|
            /*
 | 
						|
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
 | 
						|
             */
 | 
						|
            mmu_idx = stage_1_mmu_idx(mmu_idx);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* The page table entries may downgrade secure to non-secure, but
 | 
						|
     * cannot upgrade an non-secure translation regime's attributes
 | 
						|
     * to secure.
 | 
						|
     */
 | 
						|
    attrs->secure = regime_is_secure(env, mmu_idx);
 | 
						|
    attrs->user = regime_is_user(env, mmu_idx);
 | 
						|
 | 
						|
    /* Fast Context Switch Extension. This doesn't exist at all in v8.
 | 
						|
     * In v7 and earlier it affects all stage 1 translations.
 | 
						|
     */
 | 
						|
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
 | 
						|
        && !arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
        if (regime_el(env, mmu_idx) == 3) {
 | 
						|
            address += env->cp15.fcseidr_s;
 | 
						|
        } else {
 | 
						|
            address += env->cp15.fcseidr_ns;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_PMSA)) {
 | 
						|
        bool ret;
 | 
						|
        *page_size = TARGET_PAGE_SIZE;
 | 
						|
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V8)) {
 | 
						|
            /* PMSAv8 */
 | 
						|
            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
 | 
						|
                                       phys_ptr, attrs, prot, fi);
 | 
						|
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | 
						|
            /* PMSAv7 */
 | 
						|
            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
 | 
						|
                                       phys_ptr, prot, fi);
 | 
						|
        } else {
 | 
						|
            /* Pre-v7 MPU */
 | 
						|
            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
 | 
						|
                                       phys_ptr, prot, fi);
 | 
						|
        }
 | 
						|
        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
 | 
						|
                      " mmu_idx %u -> %s (prot %c%c%c)\n",
 | 
						|
                      access_type == MMU_DATA_LOAD ? "reading" :
 | 
						|
                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
 | 
						|
                      (uint32_t)address, mmu_idx,
 | 
						|
                      ret ? "Miss" : "Hit",
 | 
						|
                      *prot & PAGE_READ ? 'r' : '-',
 | 
						|
                      *prot & PAGE_WRITE ? 'w' : '-',
 | 
						|
                      *prot & PAGE_EXEC ? 'x' : '-');
 | 
						|
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Definitely a real MMU, not an MPU */
 | 
						|
 | 
						|
    if (regime_translation_disabled(env, mmu_idx)) {
 | 
						|
        /* MMU disabled. */
 | 
						|
        *phys_ptr = address;
 | 
						|
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | 
						|
        *page_size = TARGET_PAGE_SIZE;
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (regime_using_lpae_format(env, mmu_idx)) {
 | 
						|
        return get_phys_addr_lpae(env, address, access_type, mmu_idx,
 | 
						|
                                  phys_ptr, attrs, prot, page_size,
 | 
						|
                                  fi, cacheattrs);
 | 
						|
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
 | 
						|
        return get_phys_addr_v6(env, address, access_type, mmu_idx,
 | 
						|
                                phys_ptr, attrs, prot, page_size, fi);
 | 
						|
    } else {
 | 
						|
        return get_phys_addr_v5(env, address, access_type, mmu_idx,
 | 
						|
                                    phys_ptr, prot, page_size, fi);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Walk the page table and (if the mapping exists) add the page
 | 
						|
 * to the TLB. Return false on success, or true on failure. Populate
 | 
						|
 * fsr with ARM DFSR/IFSR fault register format value on failure.
 | 
						|
 */
 | 
						|
bool arm_tlb_fill(CPUState *cs, vaddr address,
 | 
						|
                  MMUAccessType access_type, int mmu_idx,
 | 
						|
                  ARMMMUFaultInfo *fi)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    hwaddr phys_addr;
 | 
						|
    target_ulong page_size;
 | 
						|
    int prot;
 | 
						|
    int ret;
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
 | 
						|
    ret = get_phys_addr(env, address, access_type,
 | 
						|
                        core_to_arm_mmu_idx(env, mmu_idx), &phys_addr,
 | 
						|
                        &attrs, &prot, &page_size, fi, NULL);
 | 
						|
    if (!ret) {
 | 
						|
        /* Map a single [sub]page.  */
 | 
						|
        phys_addr &= TARGET_PAGE_MASK;
 | 
						|
        address &= TARGET_PAGE_MASK;
 | 
						|
        tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
 | 
						|
                                prot, mmu_idx, page_size);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
 | 
						|
                                         MemTxAttrs *attrs)
 | 
						|
{
 | 
						|
    ARMCPU *cpu = ARM_CPU(cs);
 | 
						|
    CPUARMState *env = &cpu->env;
 | 
						|
    hwaddr phys_addr;
 | 
						|
    target_ulong page_size;
 | 
						|
    int prot;
 | 
						|
    bool ret;
 | 
						|
    ARMMMUFaultInfo fi = {};
 | 
						|
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
 | 
						|
 | 
						|
    *attrs = (MemTxAttrs) {};
 | 
						|
 | 
						|
    ret = get_phys_addr(env, addr, 0, mmu_idx, &phys_addr,
 | 
						|
                        attrs, &prot, &page_size, &fi, NULL);
 | 
						|
 | 
						|
    if (ret) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    return phys_addr;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
 | 
						|
{
 | 
						|
    uint32_t mask;
 | 
						|
    unsigned el = arm_current_el(env);
 | 
						|
 | 
						|
    /* First handle registers which unprivileged can read */
 | 
						|
 | 
						|
    switch (reg) {
 | 
						|
    case 0 ... 7: /* xPSR sub-fields */
 | 
						|
        mask = 0;
 | 
						|
        if ((reg & 1) && el) {
 | 
						|
            mask |= XPSR_EXCP; /* IPSR (unpriv. reads as zero) */
 | 
						|
        }
 | 
						|
        if (!(reg & 4)) {
 | 
						|
            mask |= XPSR_NZCV | XPSR_Q; /* APSR */
 | 
						|
        }
 | 
						|
        /* EPSR reads as zero */
 | 
						|
        return xpsr_read(env) & mask;
 | 
						|
        break;
 | 
						|
    case 20: /* CONTROL */
 | 
						|
        return env->v7m.control[env->v7m.secure];
 | 
						|
    case 0x94: /* CONTROL_NS */
 | 
						|
        /* We have to handle this here because unprivileged Secure code
 | 
						|
         * can read the NS CONTROL register.
 | 
						|
         */
 | 
						|
        if (!env->v7m.secure) {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        return env->v7m.control[M_REG_NS];
 | 
						|
    }
 | 
						|
 | 
						|
    if (el == 0) {
 | 
						|
        return 0; /* unprivileged reads others as zero */
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
        switch (reg) {
 | 
						|
        case 0x88: /* MSP_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
            return env->v7m.other_ss_msp;
 | 
						|
        case 0x89: /* PSP_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
            return env->v7m.other_ss_psp;
 | 
						|
        case 0x90: /* PRIMASK_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
            return env->v7m.primask[M_REG_NS];
 | 
						|
        case 0x91: /* BASEPRI_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
            return env->v7m.basepri[M_REG_NS];
 | 
						|
        case 0x93: /* FAULTMASK_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
            return env->v7m.faultmask[M_REG_NS];
 | 
						|
        case 0x98: /* SP_NS */
 | 
						|
        {
 | 
						|
            /* This gives the non-secure SP selected based on whether we're
 | 
						|
             * currently in handler mode or not, using the NS CONTROL.SPSEL.
 | 
						|
             */
 | 
						|
            bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
 | 
						|
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return 0;
 | 
						|
            }
 | 
						|
            if (!arm_v7m_is_handler_mode(env) && spsel) {
 | 
						|
                return env->v7m.other_ss_psp;
 | 
						|
            } else {
 | 
						|
                return env->v7m.other_ss_msp;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (reg) {
 | 
						|
    case 8: /* MSP */
 | 
						|
        return v7m_using_psp(env) ? env->v7m.other_sp : env->regs[13];
 | 
						|
    case 9: /* PSP */
 | 
						|
        return v7m_using_psp(env) ? env->regs[13] : env->v7m.other_sp;
 | 
						|
    case 16: /* PRIMASK */
 | 
						|
        return env->v7m.primask[env->v7m.secure];
 | 
						|
    case 17: /* BASEPRI */
 | 
						|
    case 18: /* BASEPRI_MAX */
 | 
						|
        return env->v7m.basepri[env->v7m.secure];
 | 
						|
    case 19: /* FAULTMASK */
 | 
						|
        return env->v7m.faultmask[env->v7m.secure];
 | 
						|
    default:
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to read unknown special"
 | 
						|
                                       " register %d\n", reg);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
 | 
						|
{
 | 
						|
    /* We're passed bits [11..0] of the instruction; extract
 | 
						|
     * SYSm and the mask bits.
 | 
						|
     * Invalid combinations of SYSm and mask are UNPREDICTABLE;
 | 
						|
     * we choose to treat them as if the mask bits were valid.
 | 
						|
     * NB that the pseudocode 'mask' variable is bits [11..10],
 | 
						|
     * whereas ours is [11..8].
 | 
						|
     */
 | 
						|
    uint32_t mask = extract32(maskreg, 8, 4);
 | 
						|
    uint32_t reg = extract32(maskreg, 0, 8);
 | 
						|
 | 
						|
    if (arm_current_el(env) == 0 && reg > 7) {
 | 
						|
        /* only xPSR sub-fields may be written by unprivileged */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
 | 
						|
        switch (reg) {
 | 
						|
        case 0x88: /* MSP_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            env->v7m.other_ss_msp = val;
 | 
						|
            return;
 | 
						|
        case 0x89: /* PSP_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            env->v7m.other_ss_psp = val;
 | 
						|
            return;
 | 
						|
        case 0x90: /* PRIMASK_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            env->v7m.primask[M_REG_NS] = val & 1;
 | 
						|
            return;
 | 
						|
        case 0x91: /* BASEPRI_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            env->v7m.basepri[M_REG_NS] = val & 0xff;
 | 
						|
            return;
 | 
						|
        case 0x93: /* FAULTMASK_NS */
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            env->v7m.faultmask[M_REG_NS] = val & 1;
 | 
						|
            return;
 | 
						|
        case 0x98: /* SP_NS */
 | 
						|
        {
 | 
						|
            /* This gives the non-secure SP selected based on whether we're
 | 
						|
             * currently in handler mode or not, using the NS CONTROL.SPSEL.
 | 
						|
             */
 | 
						|
            bool spsel = env->v7m.control[M_REG_NS] & R_V7M_CONTROL_SPSEL_MASK;
 | 
						|
 | 
						|
            if (!env->v7m.secure) {
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            if (!arm_v7m_is_handler_mode(env) && spsel) {
 | 
						|
                env->v7m.other_ss_psp = val;
 | 
						|
            } else {
 | 
						|
                env->v7m.other_ss_msp = val;
 | 
						|
            }
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (reg) {
 | 
						|
    case 0 ... 7: /* xPSR sub-fields */
 | 
						|
        /* only APSR is actually writable */
 | 
						|
        if (!(reg & 4)) {
 | 
						|
            uint32_t apsrmask = 0;
 | 
						|
 | 
						|
            if (mask & 8) {
 | 
						|
                apsrmask |= XPSR_NZCV | XPSR_Q;
 | 
						|
            }
 | 
						|
            if ((mask & 4) && arm_feature(env, ARM_FEATURE_THUMB_DSP)) {
 | 
						|
                apsrmask |= XPSR_GE;
 | 
						|
            }
 | 
						|
            xpsr_write(env, val, apsrmask);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 8: /* MSP */
 | 
						|
        if (v7m_using_psp(env)) {
 | 
						|
            env->v7m.other_sp = val;
 | 
						|
        } else {
 | 
						|
            env->regs[13] = val;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 9: /* PSP */
 | 
						|
        if (v7m_using_psp(env)) {
 | 
						|
            env->regs[13] = val;
 | 
						|
        } else {
 | 
						|
            env->v7m.other_sp = val;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 16: /* PRIMASK */
 | 
						|
        env->v7m.primask[env->v7m.secure] = val & 1;
 | 
						|
        break;
 | 
						|
    case 17: /* BASEPRI */
 | 
						|
        env->v7m.basepri[env->v7m.secure] = val & 0xff;
 | 
						|
        break;
 | 
						|
    case 18: /* BASEPRI_MAX */
 | 
						|
        val &= 0xff;
 | 
						|
        if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
 | 
						|
                         || env->v7m.basepri[env->v7m.secure] == 0)) {
 | 
						|
            env->v7m.basepri[env->v7m.secure] = val;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 19: /* FAULTMASK */
 | 
						|
        env->v7m.faultmask[env->v7m.secure] = val & 1;
 | 
						|
        break;
 | 
						|
    case 20: /* CONTROL */
 | 
						|
        /* Writing to the SPSEL bit only has an effect if we are in
 | 
						|
         * thread mode; other bits can be updated by any privileged code.
 | 
						|
         * write_v7m_control_spsel() deals with updating the SPSEL bit in
 | 
						|
         * env->v7m.control, so we only need update the others.
 | 
						|
         * For v7M, we must just ignore explicit writes to SPSEL in handler
 | 
						|
         * mode; for v8M the write is permitted but will have no effect.
 | 
						|
         */
 | 
						|
        if (arm_feature(env, ARM_FEATURE_V8) ||
 | 
						|
            !arm_v7m_is_handler_mode(env)) {
 | 
						|
            write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
 | 
						|
        }
 | 
						|
        env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
 | 
						|
        env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        qemu_log_mask(LOG_GUEST_ERROR, "Attempt to write unknown special"
 | 
						|
                                       " register %d\n", reg);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(v7m_tt)(CPUARMState *env, uint32_t addr, uint32_t op)
 | 
						|
{
 | 
						|
    /* Implement the TT instruction. op is bits [7:6] of the insn. */
 | 
						|
    bool forceunpriv = op & 1;
 | 
						|
    bool alt = op & 2;
 | 
						|
    V8M_SAttributes sattrs = {};
 | 
						|
    uint32_t tt_resp;
 | 
						|
    bool r, rw, nsr, nsrw, mrvalid;
 | 
						|
    int prot;
 | 
						|
    ARMMMUFaultInfo fi = {};
 | 
						|
    MemTxAttrs attrs = {};
 | 
						|
    hwaddr phys_addr;
 | 
						|
    ARMMMUIdx mmu_idx;
 | 
						|
    uint32_t mregion;
 | 
						|
    bool targetpriv;
 | 
						|
    bool targetsec = env->v7m.secure;
 | 
						|
 | 
						|
    /* Work out what the security state and privilege level we're
 | 
						|
     * interested in is...
 | 
						|
     */
 | 
						|
    if (alt) {
 | 
						|
        targetsec = !targetsec;
 | 
						|
    }
 | 
						|
 | 
						|
    if (forceunpriv) {
 | 
						|
        targetpriv = false;
 | 
						|
    } else {
 | 
						|
        targetpriv = arm_v7m_is_handler_mode(env) ||
 | 
						|
            !(env->v7m.control[targetsec] & R_V7M_CONTROL_NPRIV_MASK);
 | 
						|
    }
 | 
						|
 | 
						|
    /* ...and then figure out which MMU index this is */
 | 
						|
    mmu_idx = arm_v7m_mmu_idx_for_secstate_and_priv(env, targetsec, targetpriv);
 | 
						|
 | 
						|
    /* We know that the MPU and SAU don't care about the access type
 | 
						|
     * for our purposes beyond that we don't want to claim to be
 | 
						|
     * an insn fetch, so we arbitrarily call this a read.
 | 
						|
     */
 | 
						|
 | 
						|
    /* MPU region info only available for privileged or if
 | 
						|
     * inspecting the other MPU state.
 | 
						|
     */
 | 
						|
    if (arm_current_el(env) != 0 || alt) {
 | 
						|
        /* We can ignore the return value as prot is always set */
 | 
						|
        pmsav8_mpu_lookup(env, addr, MMU_DATA_LOAD, mmu_idx,
 | 
						|
                          &phys_addr, &attrs, &prot, &fi, &mregion);
 | 
						|
        if (mregion == -1) {
 | 
						|
            mrvalid = false;
 | 
						|
            mregion = 0;
 | 
						|
        } else {
 | 
						|
            mrvalid = true;
 | 
						|
        }
 | 
						|
        r = prot & PAGE_READ;
 | 
						|
        rw = prot & PAGE_WRITE;
 | 
						|
    } else {
 | 
						|
        r = false;
 | 
						|
        rw = false;
 | 
						|
        mrvalid = false;
 | 
						|
        mregion = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (env->v7m.secure) {
 | 
						|
        v8m_security_lookup(env, addr, MMU_DATA_LOAD, mmu_idx, &sattrs);
 | 
						|
        nsr = sattrs.ns && r;
 | 
						|
        nsrw = sattrs.ns && rw;
 | 
						|
    } else {
 | 
						|
        sattrs.ns = true;
 | 
						|
        nsr = false;
 | 
						|
        nsrw = false;
 | 
						|
    }
 | 
						|
 | 
						|
    tt_resp = (sattrs.iregion << 24) |
 | 
						|
        (sattrs.irvalid << 23) |
 | 
						|
        ((!sattrs.ns) << 22) |
 | 
						|
        (nsrw << 21) |
 | 
						|
        (nsr << 20) |
 | 
						|
        (rw << 19) |
 | 
						|
        (r << 18) |
 | 
						|
        (sattrs.srvalid << 17) |
 | 
						|
        (mrvalid << 16) |
 | 
						|
        (sattrs.sregion << 8) |
 | 
						|
        mregion;
 | 
						|
 | 
						|
    return tt_resp;
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
 | 
						|
{
 | 
						|
    /* Implement DC ZVA, which zeroes a fixed-length block of memory.
 | 
						|
     * Note that we do not implement the (architecturally mandated)
 | 
						|
     * alignment fault for attempts to use this on Device memory
 | 
						|
     * (which matches the usual QEMU behaviour of not implementing either
 | 
						|
     * alignment faults or any memory attribute handling).
 | 
						|
     */
 | 
						|
 | 
						|
    ARMCPU *cpu = arm_env_get_cpu(env);
 | 
						|
    uint64_t blocklen = 4 << cpu->dcz_blocksize;
 | 
						|
    uint64_t vaddr = vaddr_in & ~(blocklen - 1);
 | 
						|
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    {
 | 
						|
        /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
 | 
						|
         * the block size so we might have to do more than one TLB lookup.
 | 
						|
         * We know that in fact for any v8 CPU the page size is at least 4K
 | 
						|
         * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
 | 
						|
         * 1K as an artefact of legacy v5 subpage support being present in the
 | 
						|
         * same QEMU executable.
 | 
						|
         */
 | 
						|
        int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
 | 
						|
        void *hostaddr[maxidx];
 | 
						|
        int try, i;
 | 
						|
        unsigned mmu_idx = cpu_mmu_index(env, false);
 | 
						|
        TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
 | 
						|
 | 
						|
        for (try = 0; try < 2; try++) {
 | 
						|
 | 
						|
            for (i = 0; i < maxidx; i++) {
 | 
						|
                hostaddr[i] = tlb_vaddr_to_host(env,
 | 
						|
                                                vaddr + TARGET_PAGE_SIZE * i,
 | 
						|
                                                1, mmu_idx);
 | 
						|
                if (!hostaddr[i]) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (i == maxidx) {
 | 
						|
                /* If it's all in the TLB it's fair game for just writing to;
 | 
						|
                 * we know we don't need to update dirty status, etc.
 | 
						|
                 */
 | 
						|
                for (i = 0; i < maxidx - 1; i++) {
 | 
						|
                    memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
 | 
						|
                }
 | 
						|
                memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
 | 
						|
                return;
 | 
						|
            }
 | 
						|
            /* OK, try a store and see if we can populate the tlb. This
 | 
						|
             * might cause an exception if the memory isn't writable,
 | 
						|
             * in which case we will longjmp out of here. We must for
 | 
						|
             * this purpose use the actual register value passed to us
 | 
						|
             * so that we get the fault address right.
 | 
						|
             */
 | 
						|
            helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
 | 
						|
            /* Now we can populate the other TLB entries, if any */
 | 
						|
            for (i = 0; i < maxidx; i++) {
 | 
						|
                uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
 | 
						|
                if (va != (vaddr_in & TARGET_PAGE_MASK)) {
 | 
						|
                    helper_ret_stb_mmu(env, va, 0, oi, GETPC());
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Slow path (probably attempt to do this to an I/O device or
 | 
						|
         * similar, or clearing of a block of code we have translations
 | 
						|
         * cached for). Just do a series of byte writes as the architecture
 | 
						|
         * demands. It's not worth trying to use a cpu_physical_memory_map(),
 | 
						|
         * memset(), unmap() sequence here because:
 | 
						|
         *  + we'd need to account for the blocksize being larger than a page
 | 
						|
         *  + the direct-RAM access case is almost always going to be dealt
 | 
						|
         *    with in the fastpath code above, so there's no speed benefit
 | 
						|
         *  + we would have to deal with the map returning NULL because the
 | 
						|
         *    bounce buffer was in use
 | 
						|
         */
 | 
						|
        for (i = 0; i < blocklen; i++) {
 | 
						|
            helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
 | 
						|
        }
 | 
						|
    }
 | 
						|
#else
 | 
						|
    memset(g2h(vaddr), 0, blocklen);
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
/* Note that signed overflow is undefined in C.  The following routines are
 | 
						|
   careful to use unsigned types where modulo arithmetic is required.
 | 
						|
   Failure to do so _will_ break on newer gcc.  */
 | 
						|
 | 
						|
/* Signed saturating arithmetic.  */
 | 
						|
 | 
						|
/* Perform 16-bit signed saturating addition.  */
 | 
						|
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
 | 
						|
{
 | 
						|
    uint16_t res;
 | 
						|
 | 
						|
    res = a + b;
 | 
						|
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
 | 
						|
        if (a & 0x8000)
 | 
						|
            res = 0x8000;
 | 
						|
        else
 | 
						|
            res = 0x7fff;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Perform 8-bit signed saturating addition.  */
 | 
						|
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
 | 
						|
{
 | 
						|
    uint8_t res;
 | 
						|
 | 
						|
    res = a + b;
 | 
						|
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
 | 
						|
        if (a & 0x80)
 | 
						|
            res = 0x80;
 | 
						|
        else
 | 
						|
            res = 0x7f;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Perform 16-bit signed saturating subtraction.  */
 | 
						|
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
 | 
						|
{
 | 
						|
    uint16_t res;
 | 
						|
 | 
						|
    res = a - b;
 | 
						|
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
 | 
						|
        if (a & 0x8000)
 | 
						|
            res = 0x8000;
 | 
						|
        else
 | 
						|
            res = 0x7fff;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* Perform 8-bit signed saturating subtraction.  */
 | 
						|
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
 | 
						|
{
 | 
						|
    uint8_t res;
 | 
						|
 | 
						|
    res = a - b;
 | 
						|
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
 | 
						|
        if (a & 0x80)
 | 
						|
            res = 0x80;
 | 
						|
        else
 | 
						|
            res = 0x7f;
 | 
						|
    }
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
 | 
						|
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
 | 
						|
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
 | 
						|
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
 | 
						|
#define PFX q
 | 
						|
 | 
						|
#include "op_addsub.h"
 | 
						|
 | 
						|
/* Unsigned saturating arithmetic.  */
 | 
						|
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
 | 
						|
{
 | 
						|
    uint16_t res;
 | 
						|
    res = a + b;
 | 
						|
    if (res < a)
 | 
						|
        res = 0xffff;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
 | 
						|
{
 | 
						|
    if (a > b)
 | 
						|
        return a - b;
 | 
						|
    else
 | 
						|
        return 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
 | 
						|
{
 | 
						|
    uint8_t res;
 | 
						|
    res = a + b;
 | 
						|
    if (res < a)
 | 
						|
        res = 0xff;
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
 | 
						|
{
 | 
						|
    if (a > b)
 | 
						|
        return a - b;
 | 
						|
    else
 | 
						|
        return 0;
 | 
						|
}
 | 
						|
 | 
						|
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
 | 
						|
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
 | 
						|
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
 | 
						|
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
 | 
						|
#define PFX uq
 | 
						|
 | 
						|
#include "op_addsub.h"
 | 
						|
 | 
						|
/* Signed modulo arithmetic.  */
 | 
						|
#define SARITH16(a, b, n, op) do { \
 | 
						|
    int32_t sum; \
 | 
						|
    sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
 | 
						|
    RESULT(sum, n, 16); \
 | 
						|
    if (sum >= 0) \
 | 
						|
        ge |= 3 << (n * 2); \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
#define SARITH8(a, b, n, op) do { \
 | 
						|
    int32_t sum; \
 | 
						|
    sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
 | 
						|
    RESULT(sum, n, 8); \
 | 
						|
    if (sum >= 0) \
 | 
						|
        ge |= 1 << n; \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
 | 
						|
#define ADD16(a, b, n) SARITH16(a, b, n, +)
 | 
						|
#define SUB16(a, b, n) SARITH16(a, b, n, -)
 | 
						|
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
 | 
						|
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
 | 
						|
#define PFX s
 | 
						|
#define ARITH_GE
 | 
						|
 | 
						|
#include "op_addsub.h"
 | 
						|
 | 
						|
/* Unsigned modulo arithmetic.  */
 | 
						|
#define ADD16(a, b, n) do { \
 | 
						|
    uint32_t sum; \
 | 
						|
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
 | 
						|
    RESULT(sum, n, 16); \
 | 
						|
    if ((sum >> 16) == 1) \
 | 
						|
        ge |= 3 << (n * 2); \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
#define ADD8(a, b, n) do { \
 | 
						|
    uint32_t sum; \
 | 
						|
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
 | 
						|
    RESULT(sum, n, 8); \
 | 
						|
    if ((sum >> 8) == 1) \
 | 
						|
        ge |= 1 << n; \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
#define SUB16(a, b, n) do { \
 | 
						|
    uint32_t sum; \
 | 
						|
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
 | 
						|
    RESULT(sum, n, 16); \
 | 
						|
    if ((sum >> 16) == 0) \
 | 
						|
        ge |= 3 << (n * 2); \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
#define SUB8(a, b, n) do { \
 | 
						|
    uint32_t sum; \
 | 
						|
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
 | 
						|
    RESULT(sum, n, 8); \
 | 
						|
    if ((sum >> 8) == 0) \
 | 
						|
        ge |= 1 << n; \
 | 
						|
    } while(0)
 | 
						|
 | 
						|
#define PFX u
 | 
						|
#define ARITH_GE
 | 
						|
 | 
						|
#include "op_addsub.h"
 | 
						|
 | 
						|
/* Halved signed arithmetic.  */
 | 
						|
#define ADD16(a, b, n) \
 | 
						|
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
 | 
						|
#define SUB16(a, b, n) \
 | 
						|
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
 | 
						|
#define ADD8(a, b, n) \
 | 
						|
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
 | 
						|
#define SUB8(a, b, n) \
 | 
						|
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
 | 
						|
#define PFX sh
 | 
						|
 | 
						|
#include "op_addsub.h"
 | 
						|
 | 
						|
/* Halved unsigned arithmetic.  */
 | 
						|
#define ADD16(a, b, n) \
 | 
						|
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | 
						|
#define SUB16(a, b, n) \
 | 
						|
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | 
						|
#define ADD8(a, b, n) \
 | 
						|
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | 
						|
#define SUB8(a, b, n) \
 | 
						|
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | 
						|
#define PFX uh
 | 
						|
 | 
						|
#include "op_addsub.h"
 | 
						|
 | 
						|
static inline uint8_t do_usad(uint8_t a, uint8_t b)
 | 
						|
{
 | 
						|
    if (a > b)
 | 
						|
        return a - b;
 | 
						|
    else
 | 
						|
        return b - a;
 | 
						|
}
 | 
						|
 | 
						|
/* Unsigned sum of absolute byte differences.  */
 | 
						|
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t sum;
 | 
						|
    sum = do_usad(a, b);
 | 
						|
    sum += do_usad(a >> 8, b >> 8);
 | 
						|
    sum += do_usad(a >> 16, b >>16);
 | 
						|
    sum += do_usad(a >> 24, b >> 24);
 | 
						|
    return sum;
 | 
						|
}
 | 
						|
 | 
						|
/* For ARMv6 SEL instruction.  */
 | 
						|
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
 | 
						|
{
 | 
						|
    uint32_t mask;
 | 
						|
 | 
						|
    mask = 0;
 | 
						|
    if (flags & 1)
 | 
						|
        mask |= 0xff;
 | 
						|
    if (flags & 2)
 | 
						|
        mask |= 0xff00;
 | 
						|
    if (flags & 4)
 | 
						|
        mask |= 0xff0000;
 | 
						|
    if (flags & 8)
 | 
						|
        mask |= 0xff000000;
 | 
						|
    return (a & mask) | (b & ~mask);
 | 
						|
}
 | 
						|
 | 
						|
/* VFP support.  We follow the convention used for VFP instructions:
 | 
						|
   Single precision routines have a "s" suffix, double precision a
 | 
						|
   "d" suffix.  */
 | 
						|
 | 
						|
/* Convert host exception flags to vfp form.  */
 | 
						|
static inline int vfp_exceptbits_from_host(int host_bits)
 | 
						|
{
 | 
						|
    int target_bits = 0;
 | 
						|
 | 
						|
    if (host_bits & float_flag_invalid)
 | 
						|
        target_bits |= 1;
 | 
						|
    if (host_bits & float_flag_divbyzero)
 | 
						|
        target_bits |= 2;
 | 
						|
    if (host_bits & float_flag_overflow)
 | 
						|
        target_bits |= 4;
 | 
						|
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
 | 
						|
        target_bits |= 8;
 | 
						|
    if (host_bits & float_flag_inexact)
 | 
						|
        target_bits |= 0x10;
 | 
						|
    if (host_bits & float_flag_input_denormal)
 | 
						|
        target_bits |= 0x80;
 | 
						|
    return target_bits;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint32_t fpscr;
 | 
						|
 | 
						|
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
 | 
						|
            | (env->vfp.vec_len << 16)
 | 
						|
            | (env->vfp.vec_stride << 20);
 | 
						|
    i = get_float_exception_flags(&env->vfp.fp_status);
 | 
						|
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
 | 
						|
    fpscr |= vfp_exceptbits_from_host(i);
 | 
						|
    return fpscr;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t vfp_get_fpscr(CPUARMState *env)
 | 
						|
{
 | 
						|
    return HELPER(vfp_get_fpscr)(env);
 | 
						|
}
 | 
						|
 | 
						|
/* Convert vfp exception flags to target form.  */
 | 
						|
static inline int vfp_exceptbits_to_host(int target_bits)
 | 
						|
{
 | 
						|
    int host_bits = 0;
 | 
						|
 | 
						|
    if (target_bits & 1)
 | 
						|
        host_bits |= float_flag_invalid;
 | 
						|
    if (target_bits & 2)
 | 
						|
        host_bits |= float_flag_divbyzero;
 | 
						|
    if (target_bits & 4)
 | 
						|
        host_bits |= float_flag_overflow;
 | 
						|
    if (target_bits & 8)
 | 
						|
        host_bits |= float_flag_underflow;
 | 
						|
    if (target_bits & 0x10)
 | 
						|
        host_bits |= float_flag_inexact;
 | 
						|
    if (target_bits & 0x80)
 | 
						|
        host_bits |= float_flag_input_denormal;
 | 
						|
    return host_bits;
 | 
						|
}
 | 
						|
 | 
						|
void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    uint32_t changed;
 | 
						|
 | 
						|
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
 | 
						|
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
 | 
						|
    env->vfp.vec_len = (val >> 16) & 7;
 | 
						|
    env->vfp.vec_stride = (val >> 20) & 3;
 | 
						|
 | 
						|
    changed ^= val;
 | 
						|
    if (changed & (3 << 22)) {
 | 
						|
        i = (val >> 22) & 3;
 | 
						|
        switch (i) {
 | 
						|
        case FPROUNDING_TIEEVEN:
 | 
						|
            i = float_round_nearest_even;
 | 
						|
            break;
 | 
						|
        case FPROUNDING_POSINF:
 | 
						|
            i = float_round_up;
 | 
						|
            break;
 | 
						|
        case FPROUNDING_NEGINF:
 | 
						|
            i = float_round_down;
 | 
						|
            break;
 | 
						|
        case FPROUNDING_ZERO:
 | 
						|
            i = float_round_to_zero;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        set_float_rounding_mode(i, &env->vfp.fp_status);
 | 
						|
    }
 | 
						|
    if (changed & (1 << 24)) {
 | 
						|
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | 
						|
        set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | 
						|
    }
 | 
						|
    if (changed & (1 << 25))
 | 
						|
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
 | 
						|
 | 
						|
    i = vfp_exceptbits_to_host(val);
 | 
						|
    set_float_exception_flags(i, &env->vfp.fp_status);
 | 
						|
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
 | 
						|
}
 | 
						|
 | 
						|
void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 | 
						|
{
 | 
						|
    HELPER(vfp_set_fpscr)(env, val);
 | 
						|
}
 | 
						|
 | 
						|
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 | 
						|
 | 
						|
#define VFP_BINOP(name) \
 | 
						|
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 | 
						|
{ \
 | 
						|
    float_status *fpst = fpstp; \
 | 
						|
    return float32_ ## name(a, b, fpst); \
 | 
						|
} \
 | 
						|
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 | 
						|
{ \
 | 
						|
    float_status *fpst = fpstp; \
 | 
						|
    return float64_ ## name(a, b, fpst); \
 | 
						|
}
 | 
						|
VFP_BINOP(add)
 | 
						|
VFP_BINOP(sub)
 | 
						|
VFP_BINOP(mul)
 | 
						|
VFP_BINOP(div)
 | 
						|
VFP_BINOP(min)
 | 
						|
VFP_BINOP(max)
 | 
						|
VFP_BINOP(minnum)
 | 
						|
VFP_BINOP(maxnum)
 | 
						|
#undef VFP_BINOP
 | 
						|
 | 
						|
float32 VFP_HELPER(neg, s)(float32 a)
 | 
						|
{
 | 
						|
    return float32_chs(a);
 | 
						|
}
 | 
						|
 | 
						|
float64 VFP_HELPER(neg, d)(float64 a)
 | 
						|
{
 | 
						|
    return float64_chs(a);
 | 
						|
}
 | 
						|
 | 
						|
float32 VFP_HELPER(abs, s)(float32 a)
 | 
						|
{
 | 
						|
    return float32_abs(a);
 | 
						|
}
 | 
						|
 | 
						|
float64 VFP_HELPER(abs, d)(float64 a)
 | 
						|
{
 | 
						|
    return float64_abs(a);
 | 
						|
}
 | 
						|
 | 
						|
float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 | 
						|
{
 | 
						|
    return float32_sqrt(a, &env->vfp.fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 | 
						|
{
 | 
						|
    return float64_sqrt(a, &env->vfp.fp_status);
 | 
						|
}
 | 
						|
 | 
						|
/* XXX: check quiet/signaling case */
 | 
						|
#define DO_VFP_cmp(p, type) \
 | 
						|
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
 | 
						|
{ \
 | 
						|
    uint32_t flags; \
 | 
						|
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
 | 
						|
    case 0: flags = 0x6; break; \
 | 
						|
    case -1: flags = 0x8; break; \
 | 
						|
    case 1: flags = 0x2; break; \
 | 
						|
    default: case 2: flags = 0x3; break; \
 | 
						|
    } \
 | 
						|
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | 
						|
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | 
						|
} \
 | 
						|
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
 | 
						|
{ \
 | 
						|
    uint32_t flags; \
 | 
						|
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
 | 
						|
    case 0: flags = 0x6; break; \
 | 
						|
    case -1: flags = 0x8; break; \
 | 
						|
    case 1: flags = 0x2; break; \
 | 
						|
    default: case 2: flags = 0x3; break; \
 | 
						|
    } \
 | 
						|
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | 
						|
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | 
						|
}
 | 
						|
DO_VFP_cmp(s, float32)
 | 
						|
DO_VFP_cmp(d, float64)
 | 
						|
#undef DO_VFP_cmp
 | 
						|
 | 
						|
/* Integer to float and float to integer conversions */
 | 
						|
 | 
						|
#define CONV_ITOF(name, fsz, sign) \
 | 
						|
    float##fsz HELPER(name)(uint32_t x, void *fpstp) \
 | 
						|
{ \
 | 
						|
    float_status *fpst = fpstp; \
 | 
						|
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
 | 
						|
}
 | 
						|
 | 
						|
#define CONV_FTOI(name, fsz, sign, round) \
 | 
						|
uint32_t HELPER(name)(float##fsz x, void *fpstp) \
 | 
						|
{ \
 | 
						|
    float_status *fpst = fpstp; \
 | 
						|
    if (float##fsz##_is_any_nan(x)) { \
 | 
						|
        float_raise(float_flag_invalid, fpst); \
 | 
						|
        return 0; \
 | 
						|
    } \
 | 
						|
    return float##fsz##_to_##sign##int32##round(x, fpst); \
 | 
						|
}
 | 
						|
 | 
						|
#define FLOAT_CONVS(name, p, fsz, sign) \
 | 
						|
CONV_ITOF(vfp_##name##to##p, fsz, sign) \
 | 
						|
CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
 | 
						|
CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
 | 
						|
 | 
						|
FLOAT_CONVS(si, s, 32, )
 | 
						|
FLOAT_CONVS(si, d, 64, )
 | 
						|
FLOAT_CONVS(ui, s, 32, u)
 | 
						|
FLOAT_CONVS(ui, d, 64, u)
 | 
						|
 | 
						|
#undef CONV_ITOF
 | 
						|
#undef CONV_FTOI
 | 
						|
#undef FLOAT_CONVS
 | 
						|
 | 
						|
/* floating point conversion */
 | 
						|
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 | 
						|
{
 | 
						|
    float64 r = float32_to_float64(x, &env->vfp.fp_status);
 | 
						|
    /* ARM requires that S<->D conversion of any kind of NaN generates
 | 
						|
     * a quiet NaN by forcing the most significant frac bit to 1.
 | 
						|
     */
 | 
						|
    return float64_maybe_silence_nan(r, &env->vfp.fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 | 
						|
{
 | 
						|
    float32 r =  float64_to_float32(x, &env->vfp.fp_status);
 | 
						|
    /* ARM requires that S<->D conversion of any kind of NaN generates
 | 
						|
     * a quiet NaN by forcing the most significant frac bit to 1.
 | 
						|
     */
 | 
						|
    return float32_maybe_silence_nan(r, &env->vfp.fp_status);
 | 
						|
}
 | 
						|
 | 
						|
/* VFP3 fixed point conversion.  */
 | 
						|
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
 | 
						|
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
 | 
						|
                                     void *fpstp) \
 | 
						|
{ \
 | 
						|
    float_status *fpst = fpstp; \
 | 
						|
    float##fsz tmp; \
 | 
						|
    tmp = itype##_to_##float##fsz(x, fpst); \
 | 
						|
    return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
 | 
						|
}
 | 
						|
 | 
						|
/* Notice that we want only input-denormal exception flags from the
 | 
						|
 * scalbn operation: the other possible flags (overflow+inexact if
 | 
						|
 * we overflow to infinity, output-denormal) aren't correct for the
 | 
						|
 * complete scale-and-convert operation.
 | 
						|
 */
 | 
						|
#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
 | 
						|
uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
 | 
						|
                                             uint32_t shift, \
 | 
						|
                                             void *fpstp) \
 | 
						|
{ \
 | 
						|
    float_status *fpst = fpstp; \
 | 
						|
    int old_exc_flags = get_float_exception_flags(fpst); \
 | 
						|
    float##fsz tmp; \
 | 
						|
    if (float##fsz##_is_any_nan(x)) { \
 | 
						|
        float_raise(float_flag_invalid, fpst); \
 | 
						|
        return 0; \
 | 
						|
    } \
 | 
						|
    tmp = float##fsz##_scalbn(x, shift, fpst); \
 | 
						|
    old_exc_flags |= get_float_exception_flags(fpst) \
 | 
						|
        & float_flag_input_denormal; \
 | 
						|
    set_float_exception_flags(old_exc_flags, fpst); \
 | 
						|
    return float##fsz##_to_##itype##round(tmp, fpst); \
 | 
						|
}
 | 
						|
 | 
						|
#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
 | 
						|
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
 | 
						|
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
 | 
						|
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
 | 
						|
 | 
						|
#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
 | 
						|
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
 | 
						|
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
 | 
						|
 | 
						|
VFP_CONV_FIX(sh, d, 64, 64, int16)
 | 
						|
VFP_CONV_FIX(sl, d, 64, 64, int32)
 | 
						|
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
 | 
						|
VFP_CONV_FIX(uh, d, 64, 64, uint16)
 | 
						|
VFP_CONV_FIX(ul, d, 64, 64, uint32)
 | 
						|
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
 | 
						|
VFP_CONV_FIX(sh, s, 32, 32, int16)
 | 
						|
VFP_CONV_FIX(sl, s, 32, 32, int32)
 | 
						|
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
 | 
						|
VFP_CONV_FIX(uh, s, 32, 32, uint16)
 | 
						|
VFP_CONV_FIX(ul, s, 32, 32, uint32)
 | 
						|
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
 | 
						|
#undef VFP_CONV_FIX
 | 
						|
#undef VFP_CONV_FIX_FLOAT
 | 
						|
#undef VFP_CONV_FLOAT_FIX_ROUND
 | 
						|
 | 
						|
/* Set the current fp rounding mode and return the old one.
 | 
						|
 * The argument is a softfloat float_round_ value.
 | 
						|
 */
 | 
						|
uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
 | 
						|
{
 | 
						|
    float_status *fp_status = &env->vfp.fp_status;
 | 
						|
 | 
						|
    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 | 
						|
    set_float_rounding_mode(rmode, fp_status);
 | 
						|
 | 
						|
    return prev_rmode;
 | 
						|
}
 | 
						|
 | 
						|
/* Set the current fp rounding mode in the standard fp status and return
 | 
						|
 * the old one. This is for NEON instructions that need to change the
 | 
						|
 * rounding mode but wish to use the standard FPSCR values for everything
 | 
						|
 * else. Always set the rounding mode back to the correct value after
 | 
						|
 * modifying it.
 | 
						|
 * The argument is a softfloat float_round_ value.
 | 
						|
 */
 | 
						|
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
 | 
						|
{
 | 
						|
    float_status *fp_status = &env->vfp.standard_fp_status;
 | 
						|
 | 
						|
    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 | 
						|
    set_float_rounding_mode(rmode, fp_status);
 | 
						|
 | 
						|
    return prev_rmode;
 | 
						|
}
 | 
						|
 | 
						|
/* Half precision conversions.  */
 | 
						|
static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
 | 
						|
{
 | 
						|
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | 
						|
    float32 r = float16_to_float32(make_float16(a), ieee, s);
 | 
						|
    if (ieee) {
 | 
						|
        return float32_maybe_silence_nan(r, s);
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
 | 
						|
{
 | 
						|
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | 
						|
    float16 r = float32_to_float16(a, ieee, s);
 | 
						|
    if (ieee) {
 | 
						|
        r = float16_maybe_silence_nan(r, s);
 | 
						|
    }
 | 
						|
    return float16_val(r);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
 | 
						|
{
 | 
						|
    return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
 | 
						|
{
 | 
						|
    return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
 | 
						|
{
 | 
						|
    return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
 | 
						|
{
 | 
						|
    return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
 | 
						|
{
 | 
						|
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | 
						|
    float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
 | 
						|
    if (ieee) {
 | 
						|
        return float64_maybe_silence_nan(r, &env->vfp.fp_status);
 | 
						|
    }
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
 | 
						|
{
 | 
						|
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | 
						|
    float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
 | 
						|
    if (ieee) {
 | 
						|
        r = float16_maybe_silence_nan(r, &env->vfp.fp_status);
 | 
						|
    }
 | 
						|
    return float16_val(r);
 | 
						|
}
 | 
						|
 | 
						|
#define float32_two make_float32(0x40000000)
 | 
						|
#define float32_three make_float32(0x40400000)
 | 
						|
#define float32_one_point_five make_float32(0x3fc00000)
 | 
						|
 | 
						|
float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
 | 
						|
{
 | 
						|
    float_status *s = &env->vfp.standard_fp_status;
 | 
						|
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | 
						|
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | 
						|
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | 
						|
            float_raise(float_flag_input_denormal, s);
 | 
						|
        }
 | 
						|
        return float32_two;
 | 
						|
    }
 | 
						|
    return float32_sub(float32_two, float32_mul(a, b, s), s);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
 | 
						|
{
 | 
						|
    float_status *s = &env->vfp.standard_fp_status;
 | 
						|
    float32 product;
 | 
						|
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | 
						|
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | 
						|
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | 
						|
            float_raise(float_flag_input_denormal, s);
 | 
						|
        }
 | 
						|
        return float32_one_point_five;
 | 
						|
    }
 | 
						|
    product = float32_mul(a, b, s);
 | 
						|
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
 | 
						|
}
 | 
						|
 | 
						|
/* NEON helpers.  */
 | 
						|
 | 
						|
/* Constants 256 and 512 are used in some helpers; we avoid relying on
 | 
						|
 * int->float conversions at run-time.  */
 | 
						|
#define float64_256 make_float64(0x4070000000000000LL)
 | 
						|
#define float64_512 make_float64(0x4080000000000000LL)
 | 
						|
#define float32_maxnorm make_float32(0x7f7fffff)
 | 
						|
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 | 
						|
 | 
						|
/* Reciprocal functions
 | 
						|
 *
 | 
						|
 * The algorithm that must be used to calculate the estimate
 | 
						|
 * is specified by the ARM ARM, see FPRecipEstimate()
 | 
						|
 */
 | 
						|
 | 
						|
static float64 recip_estimate(float64 a, float_status *real_fp_status)
 | 
						|
{
 | 
						|
    /* These calculations mustn't set any fp exception flags,
 | 
						|
     * so we use a local copy of the fp_status.
 | 
						|
     */
 | 
						|
    float_status dummy_status = *real_fp_status;
 | 
						|
    float_status *s = &dummy_status;
 | 
						|
    /* q = (int)(a * 512.0) */
 | 
						|
    float64 q = float64_mul(float64_512, a, s);
 | 
						|
    int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | 
						|
 | 
						|
    /* r = 1.0 / (((double)q + 0.5) / 512.0) */
 | 
						|
    q = int64_to_float64(q_int, s);
 | 
						|
    q = float64_add(q, float64_half, s);
 | 
						|
    q = float64_div(q, float64_512, s);
 | 
						|
    q = float64_div(float64_one, q, s);
 | 
						|
 | 
						|
    /* s = (int)(256.0 * r + 0.5) */
 | 
						|
    q = float64_mul(q, float64_256, s);
 | 
						|
    q = float64_add(q, float64_half, s);
 | 
						|
    q_int = float64_to_int64_round_to_zero(q, s);
 | 
						|
 | 
						|
    /* return (double)s / 256.0 */
 | 
						|
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | 
						|
}
 | 
						|
 | 
						|
/* Common wrapper to call recip_estimate */
 | 
						|
static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
 | 
						|
{
 | 
						|
    uint64_t val64 = float64_val(num);
 | 
						|
    uint64_t frac = extract64(val64, 0, 52);
 | 
						|
    int64_t exp = extract64(val64, 52, 11);
 | 
						|
    uint64_t sbit;
 | 
						|
    float64 scaled, estimate;
 | 
						|
 | 
						|
    /* Generate the scaled number for the estimate function */
 | 
						|
    if (exp == 0) {
 | 
						|
        if (extract64(frac, 51, 1) == 0) {
 | 
						|
            exp = -1;
 | 
						|
            frac = extract64(frac, 0, 50) << 2;
 | 
						|
        } else {
 | 
						|
            frac = extract64(frac, 0, 51) << 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
 | 
						|
    scaled = make_float64((0x3feULL << 52)
 | 
						|
                          | extract64(frac, 44, 8) << 44);
 | 
						|
 | 
						|
    estimate = recip_estimate(scaled, fpst);
 | 
						|
 | 
						|
    /* Build new result */
 | 
						|
    val64 = float64_val(estimate);
 | 
						|
    sbit = 0x8000000000000000ULL & val64;
 | 
						|
    exp = off - exp;
 | 
						|
    frac = extract64(val64, 0, 52);
 | 
						|
 | 
						|
    if (exp == 0) {
 | 
						|
        frac = 1ULL << 51 | extract64(frac, 1, 51);
 | 
						|
    } else if (exp == -1) {
 | 
						|
        frac = 1ULL << 50 | extract64(frac, 2, 50);
 | 
						|
        exp = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return make_float64(sbit | (exp << 52) | frac);
 | 
						|
}
 | 
						|
 | 
						|
static bool round_to_inf(float_status *fpst, bool sign_bit)
 | 
						|
{
 | 
						|
    switch (fpst->float_rounding_mode) {
 | 
						|
    case float_round_nearest_even: /* Round to Nearest */
 | 
						|
        return true;
 | 
						|
    case float_round_up: /* Round to +Inf */
 | 
						|
        return !sign_bit;
 | 
						|
    case float_round_down: /* Round to -Inf */
 | 
						|
        return sign_bit;
 | 
						|
    case float_round_to_zero: /* Round to Zero */
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *fpst = fpstp;
 | 
						|
    float32 f32 = float32_squash_input_denormal(input, fpst);
 | 
						|
    uint32_t f32_val = float32_val(f32);
 | 
						|
    uint32_t f32_sbit = 0x80000000ULL & f32_val;
 | 
						|
    int32_t f32_exp = extract32(f32_val, 23, 8);
 | 
						|
    uint32_t f32_frac = extract32(f32_val, 0, 23);
 | 
						|
    float64 f64, r64;
 | 
						|
    uint64_t r64_val;
 | 
						|
    int64_t r64_exp;
 | 
						|
    uint64_t r64_frac;
 | 
						|
 | 
						|
    if (float32_is_any_nan(f32)) {
 | 
						|
        float32 nan = f32;
 | 
						|
        if (float32_is_signaling_nan(f32, fpst)) {
 | 
						|
            float_raise(float_flag_invalid, fpst);
 | 
						|
            nan = float32_maybe_silence_nan(f32, fpst);
 | 
						|
        }
 | 
						|
        if (fpst->default_nan_mode) {
 | 
						|
            nan =  float32_default_nan(fpst);
 | 
						|
        }
 | 
						|
        return nan;
 | 
						|
    } else if (float32_is_infinity(f32)) {
 | 
						|
        return float32_set_sign(float32_zero, float32_is_neg(f32));
 | 
						|
    } else if (float32_is_zero(f32)) {
 | 
						|
        float_raise(float_flag_divbyzero, fpst);
 | 
						|
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | 
						|
    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
 | 
						|
        /* Abs(value) < 2.0^-128 */
 | 
						|
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | 
						|
        if (round_to_inf(fpst, f32_sbit)) {
 | 
						|
            return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | 
						|
        } else {
 | 
						|
            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
 | 
						|
        }
 | 
						|
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
 | 
						|
        float_raise(float_flag_underflow, fpst);
 | 
						|
        return float32_set_sign(float32_zero, float32_is_neg(f32));
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
 | 
						|
    r64 = call_recip_estimate(f64, 253, fpst);
 | 
						|
    r64_val = float64_val(r64);
 | 
						|
    r64_exp = extract64(r64_val, 52, 11);
 | 
						|
    r64_frac = extract64(r64_val, 0, 52);
 | 
						|
 | 
						|
    /* result = sign : result_exp<7:0> : fraction<51:29>; */
 | 
						|
    return make_float32(f32_sbit |
 | 
						|
                        (r64_exp & 0xff) << 23 |
 | 
						|
                        extract64(r64_frac, 29, 24));
 | 
						|
}
 | 
						|
 | 
						|
float64 HELPER(recpe_f64)(float64 input, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *fpst = fpstp;
 | 
						|
    float64 f64 = float64_squash_input_denormal(input, fpst);
 | 
						|
    uint64_t f64_val = float64_val(f64);
 | 
						|
    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
 | 
						|
    int64_t f64_exp = extract64(f64_val, 52, 11);
 | 
						|
    float64 r64;
 | 
						|
    uint64_t r64_val;
 | 
						|
    int64_t r64_exp;
 | 
						|
    uint64_t r64_frac;
 | 
						|
 | 
						|
    /* Deal with any special cases */
 | 
						|
    if (float64_is_any_nan(f64)) {
 | 
						|
        float64 nan = f64;
 | 
						|
        if (float64_is_signaling_nan(f64, fpst)) {
 | 
						|
            float_raise(float_flag_invalid, fpst);
 | 
						|
            nan = float64_maybe_silence_nan(f64, fpst);
 | 
						|
        }
 | 
						|
        if (fpst->default_nan_mode) {
 | 
						|
            nan =  float64_default_nan(fpst);
 | 
						|
        }
 | 
						|
        return nan;
 | 
						|
    } else if (float64_is_infinity(f64)) {
 | 
						|
        return float64_set_sign(float64_zero, float64_is_neg(f64));
 | 
						|
    } else if (float64_is_zero(f64)) {
 | 
						|
        float_raise(float_flag_divbyzero, fpst);
 | 
						|
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | 
						|
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
 | 
						|
        /* Abs(value) < 2.0^-1024 */
 | 
						|
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | 
						|
        if (round_to_inf(fpst, f64_sbit)) {
 | 
						|
            return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | 
						|
        } else {
 | 
						|
            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
 | 
						|
        }
 | 
						|
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
 | 
						|
        float_raise(float_flag_underflow, fpst);
 | 
						|
        return float64_set_sign(float64_zero, float64_is_neg(f64));
 | 
						|
    }
 | 
						|
 | 
						|
    r64 = call_recip_estimate(f64, 2045, fpst);
 | 
						|
    r64_val = float64_val(r64);
 | 
						|
    r64_exp = extract64(r64_val, 52, 11);
 | 
						|
    r64_frac = extract64(r64_val, 0, 52);
 | 
						|
 | 
						|
    /* result = sign : result_exp<10:0> : fraction<51:0> */
 | 
						|
    return make_float64(f64_sbit |
 | 
						|
                        ((r64_exp & 0x7ff) << 52) |
 | 
						|
                        r64_frac);
 | 
						|
}
 | 
						|
 | 
						|
/* The algorithm that must be used to calculate the estimate
 | 
						|
 * is specified by the ARM ARM.
 | 
						|
 */
 | 
						|
static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
 | 
						|
{
 | 
						|
    /* These calculations mustn't set any fp exception flags,
 | 
						|
     * so we use a local copy of the fp_status.
 | 
						|
     */
 | 
						|
    float_status dummy_status = *real_fp_status;
 | 
						|
    float_status *s = &dummy_status;
 | 
						|
    float64 q;
 | 
						|
    int64_t q_int;
 | 
						|
 | 
						|
    if (float64_lt(a, float64_half, s)) {
 | 
						|
        /* range 0.25 <= a < 0.5 */
 | 
						|
 | 
						|
        /* a in units of 1/512 rounded down */
 | 
						|
        /* q0 = (int)(a * 512.0);  */
 | 
						|
        q = float64_mul(float64_512, a, s);
 | 
						|
        q_int = float64_to_int64_round_to_zero(q, s);
 | 
						|
 | 
						|
        /* reciprocal root r */
 | 
						|
        /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
 | 
						|
        q = int64_to_float64(q_int, s);
 | 
						|
        q = float64_add(q, float64_half, s);
 | 
						|
        q = float64_div(q, float64_512, s);
 | 
						|
        q = float64_sqrt(q, s);
 | 
						|
        q = float64_div(float64_one, q, s);
 | 
						|
    } else {
 | 
						|
        /* range 0.5 <= a < 1.0 */
 | 
						|
 | 
						|
        /* a in units of 1/256 rounded down */
 | 
						|
        /* q1 = (int)(a * 256.0); */
 | 
						|
        q = float64_mul(float64_256, a, s);
 | 
						|
        int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | 
						|
 | 
						|
        /* reciprocal root r */
 | 
						|
        /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
 | 
						|
        q = int64_to_float64(q_int, s);
 | 
						|
        q = float64_add(q, float64_half, s);
 | 
						|
        q = float64_div(q, float64_256, s);
 | 
						|
        q = float64_sqrt(q, s);
 | 
						|
        q = float64_div(float64_one, q, s);
 | 
						|
    }
 | 
						|
    /* r in units of 1/256 rounded to nearest */
 | 
						|
    /* s = (int)(256.0 * r + 0.5); */
 | 
						|
 | 
						|
    q = float64_mul(q, float64_256,s );
 | 
						|
    q = float64_add(q, float64_half, s);
 | 
						|
    q_int = float64_to_int64_round_to_zero(q, s);
 | 
						|
 | 
						|
    /* return (double)s / 256.0;*/
 | 
						|
    return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *s = fpstp;
 | 
						|
    float32 f32 = float32_squash_input_denormal(input, s);
 | 
						|
    uint32_t val = float32_val(f32);
 | 
						|
    uint32_t f32_sbit = 0x80000000 & val;
 | 
						|
    int32_t f32_exp = extract32(val, 23, 8);
 | 
						|
    uint32_t f32_frac = extract32(val, 0, 23);
 | 
						|
    uint64_t f64_frac;
 | 
						|
    uint64_t val64;
 | 
						|
    int result_exp;
 | 
						|
    float64 f64;
 | 
						|
 | 
						|
    if (float32_is_any_nan(f32)) {
 | 
						|
        float32 nan = f32;
 | 
						|
        if (float32_is_signaling_nan(f32, s)) {
 | 
						|
            float_raise(float_flag_invalid, s);
 | 
						|
            nan = float32_maybe_silence_nan(f32, s);
 | 
						|
        }
 | 
						|
        if (s->default_nan_mode) {
 | 
						|
            nan =  float32_default_nan(s);
 | 
						|
        }
 | 
						|
        return nan;
 | 
						|
    } else if (float32_is_zero(f32)) {
 | 
						|
        float_raise(float_flag_divbyzero, s);
 | 
						|
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | 
						|
    } else if (float32_is_neg(f32)) {
 | 
						|
        float_raise(float_flag_invalid, s);
 | 
						|
        return float32_default_nan(s);
 | 
						|
    } else if (float32_is_infinity(f32)) {
 | 
						|
        return float32_zero;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 | 
						|
     * preserving the parity of the exponent.  */
 | 
						|
 | 
						|
    f64_frac = ((uint64_t) f32_frac) << 29;
 | 
						|
    if (f32_exp == 0) {
 | 
						|
        while (extract64(f64_frac, 51, 1) == 0) {
 | 
						|
            f64_frac = f64_frac << 1;
 | 
						|
            f32_exp = f32_exp-1;
 | 
						|
        }
 | 
						|
        f64_frac = extract64(f64_frac, 0, 51) << 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (extract64(f32_exp, 0, 1) == 0) {
 | 
						|
        f64 = make_float64(((uint64_t) f32_sbit) << 32
 | 
						|
                           | (0x3feULL << 52)
 | 
						|
                           | f64_frac);
 | 
						|
    } else {
 | 
						|
        f64 = make_float64(((uint64_t) f32_sbit) << 32
 | 
						|
                           | (0x3fdULL << 52)
 | 
						|
                           | f64_frac);
 | 
						|
    }
 | 
						|
 | 
						|
    result_exp = (380 - f32_exp) / 2;
 | 
						|
 | 
						|
    f64 = recip_sqrt_estimate(f64, s);
 | 
						|
 | 
						|
    val64 = float64_val(f64);
 | 
						|
 | 
						|
    val = ((result_exp & 0xff) << 23)
 | 
						|
        | ((val64 >> 29)  & 0x7fffff);
 | 
						|
    return make_float32(val);
 | 
						|
}
 | 
						|
 | 
						|
float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *s = fpstp;
 | 
						|
    float64 f64 = float64_squash_input_denormal(input, s);
 | 
						|
    uint64_t val = float64_val(f64);
 | 
						|
    uint64_t f64_sbit = 0x8000000000000000ULL & val;
 | 
						|
    int64_t f64_exp = extract64(val, 52, 11);
 | 
						|
    uint64_t f64_frac = extract64(val, 0, 52);
 | 
						|
    int64_t result_exp;
 | 
						|
    uint64_t result_frac;
 | 
						|
 | 
						|
    if (float64_is_any_nan(f64)) {
 | 
						|
        float64 nan = f64;
 | 
						|
        if (float64_is_signaling_nan(f64, s)) {
 | 
						|
            float_raise(float_flag_invalid, s);
 | 
						|
            nan = float64_maybe_silence_nan(f64, s);
 | 
						|
        }
 | 
						|
        if (s->default_nan_mode) {
 | 
						|
            nan =  float64_default_nan(s);
 | 
						|
        }
 | 
						|
        return nan;
 | 
						|
    } else if (float64_is_zero(f64)) {
 | 
						|
        float_raise(float_flag_divbyzero, s);
 | 
						|
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | 
						|
    } else if (float64_is_neg(f64)) {
 | 
						|
        float_raise(float_flag_invalid, s);
 | 
						|
        return float64_default_nan(s);
 | 
						|
    } else if (float64_is_infinity(f64)) {
 | 
						|
        return float64_zero;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 | 
						|
     * preserving the parity of the exponent.  */
 | 
						|
 | 
						|
    if (f64_exp == 0) {
 | 
						|
        while (extract64(f64_frac, 51, 1) == 0) {
 | 
						|
            f64_frac = f64_frac << 1;
 | 
						|
            f64_exp = f64_exp - 1;
 | 
						|
        }
 | 
						|
        f64_frac = extract64(f64_frac, 0, 51) << 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (extract64(f64_exp, 0, 1) == 0) {
 | 
						|
        f64 = make_float64(f64_sbit
 | 
						|
                           | (0x3feULL << 52)
 | 
						|
                           | f64_frac);
 | 
						|
    } else {
 | 
						|
        f64 = make_float64(f64_sbit
 | 
						|
                           | (0x3fdULL << 52)
 | 
						|
                           | f64_frac);
 | 
						|
    }
 | 
						|
 | 
						|
    result_exp = (3068 - f64_exp) / 2;
 | 
						|
 | 
						|
    f64 = recip_sqrt_estimate(f64, s);
 | 
						|
 | 
						|
    result_frac = extract64(float64_val(f64), 0, 52);
 | 
						|
 | 
						|
    return make_float64(f64_sbit |
 | 
						|
                        ((result_exp & 0x7ff) << 52) |
 | 
						|
                        result_frac);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *s = fpstp;
 | 
						|
    float64 f64;
 | 
						|
 | 
						|
    if ((a & 0x80000000) == 0) {
 | 
						|
        return 0xffffffff;
 | 
						|
    }
 | 
						|
 | 
						|
    f64 = make_float64((0x3feULL << 52)
 | 
						|
                       | ((int64_t)(a & 0x7fffffff) << 21));
 | 
						|
 | 
						|
    f64 = recip_estimate(f64, s);
 | 
						|
 | 
						|
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *fpst = fpstp;
 | 
						|
    float64 f64;
 | 
						|
 | 
						|
    if ((a & 0xc0000000) == 0) {
 | 
						|
        return 0xffffffff;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a & 0x80000000) {
 | 
						|
        f64 = make_float64((0x3feULL << 52)
 | 
						|
                           | ((uint64_t)(a & 0x7fffffff) << 21));
 | 
						|
    } else { /* bits 31-30 == '01' */
 | 
						|
        f64 = make_float64((0x3fdULL << 52)
 | 
						|
                           | ((uint64_t)(a & 0x3fffffff) << 22));
 | 
						|
    }
 | 
						|
 | 
						|
    f64 = recip_sqrt_estimate(f64, fpst);
 | 
						|
 | 
						|
    return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | 
						|
}
 | 
						|
 | 
						|
/* VFPv4 fused multiply-accumulate */
 | 
						|
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *fpst = fpstp;
 | 
						|
    return float32_muladd(a, b, c, 0, fpst);
 | 
						|
}
 | 
						|
 | 
						|
float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
 | 
						|
{
 | 
						|
    float_status *fpst = fpstp;
 | 
						|
    return float64_muladd(a, b, c, 0, fpst);
 | 
						|
}
 | 
						|
 | 
						|
/* ARMv8 round to integral */
 | 
						|
float32 HELPER(rints_exact)(float32 x, void *fp_status)
 | 
						|
{
 | 
						|
    return float32_round_to_int(x, fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float64 HELPER(rintd_exact)(float64 x, void *fp_status)
 | 
						|
{
 | 
						|
    return float64_round_to_int(x, fp_status);
 | 
						|
}
 | 
						|
 | 
						|
float32 HELPER(rints)(float32 x, void *fp_status)
 | 
						|
{
 | 
						|
    int old_flags = get_float_exception_flags(fp_status), new_flags;
 | 
						|
    float32 ret;
 | 
						|
 | 
						|
    ret = float32_round_to_int(x, fp_status);
 | 
						|
 | 
						|
    /* Suppress any inexact exceptions the conversion produced */
 | 
						|
    if (!(old_flags & float_flag_inexact)) {
 | 
						|
        new_flags = get_float_exception_flags(fp_status);
 | 
						|
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
float64 HELPER(rintd)(float64 x, void *fp_status)
 | 
						|
{
 | 
						|
    int old_flags = get_float_exception_flags(fp_status), new_flags;
 | 
						|
    float64 ret;
 | 
						|
 | 
						|
    ret = float64_round_to_int(x, fp_status);
 | 
						|
 | 
						|
    new_flags = get_float_exception_flags(fp_status);
 | 
						|
 | 
						|
    /* Suppress any inexact exceptions the conversion produced */
 | 
						|
    if (!(old_flags & float_flag_inexact)) {
 | 
						|
        new_flags = get_float_exception_flags(fp_status);
 | 
						|
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Convert ARM rounding mode to softfloat */
 | 
						|
int arm_rmode_to_sf(int rmode)
 | 
						|
{
 | 
						|
    switch (rmode) {
 | 
						|
    case FPROUNDING_TIEAWAY:
 | 
						|
        rmode = float_round_ties_away;
 | 
						|
        break;
 | 
						|
    case FPROUNDING_ODD:
 | 
						|
        /* FIXME: add support for TIEAWAY and ODD */
 | 
						|
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
 | 
						|
                      rmode);
 | 
						|
    case FPROUNDING_TIEEVEN:
 | 
						|
    default:
 | 
						|
        rmode = float_round_nearest_even;
 | 
						|
        break;
 | 
						|
    case FPROUNDING_POSINF:
 | 
						|
        rmode = float_round_up;
 | 
						|
        break;
 | 
						|
    case FPROUNDING_NEGINF:
 | 
						|
        rmode = float_round_down;
 | 
						|
        break;
 | 
						|
    case FPROUNDING_ZERO:
 | 
						|
        rmode = float_round_to_zero;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    return rmode;
 | 
						|
}
 | 
						|
 | 
						|
/* CRC helpers.
 | 
						|
 * The upper bytes of val (above the number specified by 'bytes') must have
 | 
						|
 * been zeroed out by the caller.
 | 
						|
 */
 | 
						|
uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
 | 
						|
{
 | 
						|
    uint8_t buf[4];
 | 
						|
 | 
						|
    stl_le_p(buf, val);
 | 
						|
 | 
						|
    /* zlib crc32 converts the accumulator and output to one's complement.  */
 | 
						|
    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
 | 
						|
{
 | 
						|
    uint8_t buf[4];
 | 
						|
 | 
						|
    stl_le_p(buf, val);
 | 
						|
 | 
						|
    /* Linux crc32c converts the output to one's complement.  */
 | 
						|
    return crc32c(acc, buf, bytes) ^ 0xffffffff;
 | 
						|
}
 | 
						|
 | 
						|
/* Return the exception level to which FP-disabled exceptions should
 | 
						|
 * be taken, or 0 if FP is enabled.
 | 
						|
 */
 | 
						|
static inline int fp_exception_el(CPUARMState *env)
 | 
						|
{
 | 
						|
#ifndef CONFIG_USER_ONLY
 | 
						|
    int fpen;
 | 
						|
    int cur_el = arm_current_el(env);
 | 
						|
 | 
						|
    /* CPACR and the CPTR registers don't exist before v6, so FP is
 | 
						|
     * always accessible
 | 
						|
     */
 | 
						|
    if (!arm_feature(env, ARM_FEATURE_V6)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
 | 
						|
     * 0, 2 : trap EL0 and EL1/PL1 accesses
 | 
						|
     * 1    : trap only EL0 accesses
 | 
						|
     * 3    : trap no accesses
 | 
						|
     */
 | 
						|
    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
 | 
						|
    switch (fpen) {
 | 
						|
    case 0:
 | 
						|
    case 2:
 | 
						|
        if (cur_el == 0 || cur_el == 1) {
 | 
						|
            /* Trap to PL1, which might be EL1 or EL3 */
 | 
						|
            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
 | 
						|
                return 3;
 | 
						|
            }
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        if (cur_el == 3 && !is_a64(env)) {
 | 
						|
            /* Secure PL1 running at EL3 */
 | 
						|
            return 3;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        if (cur_el == 0) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
 | 
						|
     * check because zero bits in the registers mean "don't trap".
 | 
						|
     */
 | 
						|
 | 
						|
    /* CPTR_EL2 : present in v7VE or v8 */
 | 
						|
    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
 | 
						|
        && !arm_is_secure_below_el3(env)) {
 | 
						|
        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
 | 
						|
        return 2;
 | 
						|
    }
 | 
						|
 | 
						|
    /* CPTR_EL3 : present in v8 */
 | 
						|
    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
 | 
						|
        /* Trap all FP ops to EL3 */
 | 
						|
        return 3;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
 | 
						|
                          target_ulong *cs_base, uint32_t *pflags)
 | 
						|
{
 | 
						|
    ARMMMUIdx mmu_idx = core_to_arm_mmu_idx(env, cpu_mmu_index(env, false));
 | 
						|
    int fp_el = fp_exception_el(env);
 | 
						|
    uint32_t flags;
 | 
						|
 | 
						|
    if (is_a64(env)) {
 | 
						|
        int sve_el = sve_exception_el(env);
 | 
						|
        uint32_t zcr_len;
 | 
						|
 | 
						|
        *pc = env->pc;
 | 
						|
        flags = ARM_TBFLAG_AARCH64_STATE_MASK;
 | 
						|
        /* Get control bits for tagged addresses */
 | 
						|
        flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
 | 
						|
        flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
 | 
						|
        flags |= sve_el << ARM_TBFLAG_SVEEXC_EL_SHIFT;
 | 
						|
 | 
						|
        /* If SVE is disabled, but FP is enabled,
 | 
						|
           then the effective len is 0.  */
 | 
						|
        if (sve_el != 0 && fp_el == 0) {
 | 
						|
            zcr_len = 0;
 | 
						|
        } else {
 | 
						|
            int current_el = arm_current_el(env);
 | 
						|
 | 
						|
            zcr_len = env->vfp.zcr_el[current_el <= 1 ? 1 : current_el];
 | 
						|
            zcr_len &= 0xf;
 | 
						|
            if (current_el < 2 && arm_feature(env, ARM_FEATURE_EL2)) {
 | 
						|
                zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[2]);
 | 
						|
            }
 | 
						|
            if (current_el < 3 && arm_feature(env, ARM_FEATURE_EL3)) {
 | 
						|
                zcr_len = MIN(zcr_len, 0xf & (uint32_t)env->vfp.zcr_el[3]);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        flags |= zcr_len << ARM_TBFLAG_ZCR_LEN_SHIFT;
 | 
						|
    } else {
 | 
						|
        *pc = env->regs[15];
 | 
						|
        flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
 | 
						|
            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
 | 
						|
            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
 | 
						|
            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
 | 
						|
            | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
 | 
						|
        if (!(access_secure_reg(env))) {
 | 
						|
            flags |= ARM_TBFLAG_NS_MASK;
 | 
						|
        }
 | 
						|
        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
 | 
						|
            || arm_el_is_aa64(env, 1)) {
 | 
						|
            flags |= ARM_TBFLAG_VFPEN_MASK;
 | 
						|
        }
 | 
						|
        flags |= (extract32(env->cp15.c15_cpar, 0, 2)
 | 
						|
                  << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
 | 
						|
    }
 | 
						|
 | 
						|
    flags |= (arm_to_core_mmu_idx(mmu_idx) << ARM_TBFLAG_MMUIDX_SHIFT);
 | 
						|
 | 
						|
    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
 | 
						|
     * states defined in the ARM ARM for software singlestep:
 | 
						|
     *  SS_ACTIVE   PSTATE.SS   State
 | 
						|
     *     0            x       Inactive (the TB flag for SS is always 0)
 | 
						|
     *     1            0       Active-pending
 | 
						|
     *     1            1       Active-not-pending
 | 
						|
     */
 | 
						|
    if (arm_singlestep_active(env)) {
 | 
						|
        flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
 | 
						|
        if (is_a64(env)) {
 | 
						|
            if (env->pstate & PSTATE_SS) {
 | 
						|
                flags |= ARM_TBFLAG_PSTATE_SS_MASK;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (env->uncached_cpsr & PSTATE_SS) {
 | 
						|
                flags |= ARM_TBFLAG_PSTATE_SS_MASK;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (arm_cpu_data_is_big_endian(env)) {
 | 
						|
        flags |= ARM_TBFLAG_BE_DATA_MASK;
 | 
						|
    }
 | 
						|
    flags |= fp_el << ARM_TBFLAG_FPEXC_EL_SHIFT;
 | 
						|
 | 
						|
    if (arm_v7m_is_handler_mode(env)) {
 | 
						|
        flags |= ARM_TBFLAG_HANDLER_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    *pflags = flags;
 | 
						|
    *cs_base = 0;
 | 
						|
}
 |