 af2a580f7e
			
		
	
	
		af2a580f7e
		
	
	
	
	
		
			
			Now all the users of ptimers have converted to the transaction-based API, we can remove ptimer_init_with_bh() and all the code paths that are used only by bottom-half based ptimers, and tidy up the documentation comments to consider the transaction-based API the only possibility. The code changes result from: * s->bh no longer exists * s->callback is now always non-NULL Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20191025142411.17085-1-peter.maydell@linaro.org
		
			
				
	
	
		
			447 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			447 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * General purpose implementation of a simple periodic countdown timer.
 | |
|  *
 | |
|  * Copyright (c) 2007 CodeSourcery.
 | |
|  *
 | |
|  * This code is licensed under the GNU LGPL.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "hw/ptimer.h"
 | |
| #include "migration/vmstate.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "sysemu/replay.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "block/aio.h"
 | |
| #include "sysemu/cpus.h"
 | |
| 
 | |
| #define DELTA_ADJUST     1
 | |
| #define DELTA_NO_ADJUST -1
 | |
| 
 | |
| struct ptimer_state
 | |
| {
 | |
|     uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
 | |
|     uint64_t limit;
 | |
|     uint64_t delta;
 | |
|     uint32_t period_frac;
 | |
|     int64_t period;
 | |
|     int64_t last_event;
 | |
|     int64_t next_event;
 | |
|     uint8_t policy_mask;
 | |
|     QEMUTimer *timer;
 | |
|     ptimer_cb callback;
 | |
|     void *callback_opaque;
 | |
|     /*
 | |
|      * These track whether we're in a transaction block, and if we
 | |
|      * need to do a timer reload when the block finishes. They don't
 | |
|      * need to be migrated because migration can never happen in the
 | |
|      * middle of a transaction block.
 | |
|      */
 | |
|     bool in_transaction;
 | |
|     bool need_reload;
 | |
| };
 | |
| 
 | |
| /* Use a bottom-half routine to avoid reentrancy issues.  */
 | |
| static void ptimer_trigger(ptimer_state *s)
 | |
| {
 | |
|     s->callback(s->callback_opaque);
 | |
| }
 | |
| 
 | |
| static void ptimer_reload(ptimer_state *s, int delta_adjust)
 | |
| {
 | |
|     uint32_t period_frac;
 | |
|     uint64_t period;
 | |
|     uint64_t delta;
 | |
|     bool suppress_trigger = false;
 | |
| 
 | |
|     /*
 | |
|      * Note that if delta_adjust is 0 then we must be here because of
 | |
|      * a count register write or timer start, not because of timer expiry.
 | |
|      * In that case the policy might require us to suppress the timer trigger
 | |
|      * that we would otherwise generate for a zero delta.
 | |
|      */
 | |
|     if (delta_adjust == 0 &&
 | |
|         (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
 | |
|         suppress_trigger = true;
 | |
|     }
 | |
|     if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
 | |
|         && !suppress_trigger) {
 | |
|         ptimer_trigger(s);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Note that ptimer_trigger() might call the device callback function,
 | |
|      * which can then modify timer state, so we must not cache any fields
 | |
|      * from ptimer_state until after we have called it.
 | |
|      */
 | |
|     delta = s->delta;
 | |
|     period = s->period;
 | |
|     period_frac = s->period_frac;
 | |
| 
 | |
|     if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 | |
|         delta = s->delta = s->limit;
 | |
|     }
 | |
| 
 | |
|     if (s->period == 0) {
 | |
|         if (!qtest_enabled()) {
 | |
|             fprintf(stderr, "Timer with period zero, disabling\n");
 | |
|         }
 | |
|         timer_del(s->timer);
 | |
|         s->enabled = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 | |
|         if (delta_adjust != DELTA_NO_ADJUST) {
 | |
|             delta += delta_adjust;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
 | |
|         if (s->enabled == 1 && s->limit == 0) {
 | |
|             delta = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 | |
|         if (delta_adjust != DELTA_NO_ADJUST) {
 | |
|             delta = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 | |
|         if (s->enabled == 1 && s->limit != 0) {
 | |
|             delta = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (delta == 0) {
 | |
|         if (!qtest_enabled()) {
 | |
|             fprintf(stderr, "Timer with delta zero, disabling\n");
 | |
|         }
 | |
|         timer_del(s->timer);
 | |
|         s->enabled = 0;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Artificially limit timeout rate to something
 | |
|      * achievable under QEMU.  Otherwise, QEMU spends all
 | |
|      * its time generating timer interrupts, and there
 | |
|      * is no forward progress.
 | |
|      * About ten microseconds is the fastest that really works
 | |
|      * on the current generation of host machines.
 | |
|      */
 | |
| 
 | |
|     if (s->enabled == 1 && (delta * period < 10000) && !use_icount) {
 | |
|         period = 10000 / delta;
 | |
|         period_frac = 0;
 | |
|     }
 | |
| 
 | |
|     s->last_event = s->next_event;
 | |
|     s->next_event = s->last_event + delta * period;
 | |
|     if (period_frac) {
 | |
|         s->next_event += ((int64_t)period_frac * delta) >> 32;
 | |
|     }
 | |
|     timer_mod(s->timer, s->next_event);
 | |
| }
 | |
| 
 | |
| static void ptimer_tick(void *opaque)
 | |
| {
 | |
|     ptimer_state *s = (ptimer_state *)opaque;
 | |
|     bool trigger = true;
 | |
| 
 | |
|     /*
 | |
|      * We perform all the tick actions within a begin/commit block
 | |
|      * because the callback function that ptimer_trigger() calls
 | |
|      * might make calls into the ptimer APIs that provoke another
 | |
|      * trigger, and we want that to cause the callback function
 | |
|      * to be called iteratively, not recursively.
 | |
|      */
 | |
|     ptimer_transaction_begin(s);
 | |
| 
 | |
|     if (s->enabled == 2) {
 | |
|         s->delta = 0;
 | |
|         s->enabled = 0;
 | |
|     } else {
 | |
|         int delta_adjust = DELTA_ADJUST;
 | |
| 
 | |
|         if (s->delta == 0 || s->limit == 0) {
 | |
|             /* If a "continuous trigger" policy is not used and limit == 0,
 | |
|                we should error out. delta == 0 means that this tick is
 | |
|                caused by a "no immediate reload" policy, so it shouldn't
 | |
|                be adjusted.  */
 | |
|             delta_adjust = DELTA_NO_ADJUST;
 | |
|         }
 | |
| 
 | |
|         if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 | |
|             /* Avoid re-trigger on deferred reload if "no immediate trigger"
 | |
|                policy isn't used.  */
 | |
|             trigger = (delta_adjust == DELTA_ADJUST);
 | |
|         }
 | |
| 
 | |
|         s->delta = s->limit;
 | |
| 
 | |
|         ptimer_reload(s, delta_adjust);
 | |
|     }
 | |
| 
 | |
|     if (trigger) {
 | |
|         ptimer_trigger(s);
 | |
|     }
 | |
| 
 | |
|     ptimer_transaction_commit(s);
 | |
| }
 | |
| 
 | |
| uint64_t ptimer_get_count(ptimer_state *s)
 | |
| {
 | |
|     uint64_t counter;
 | |
| 
 | |
|     if (s->enabled && s->delta != 0) {
 | |
|         int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|         int64_t next = s->next_event;
 | |
|         int64_t last = s->last_event;
 | |
|         bool expired = (now - next >= 0);
 | |
|         bool oneshot = (s->enabled == 2);
 | |
| 
 | |
|         /* Figure out the current counter value.  */
 | |
|         if (expired) {
 | |
|             /* Prevent timer underflowing if it should already have
 | |
|                triggered.  */
 | |
|             counter = 0;
 | |
|         } else {
 | |
|             uint64_t rem;
 | |
|             uint64_t div;
 | |
|             int clz1, clz2;
 | |
|             int shift;
 | |
|             uint32_t period_frac = s->period_frac;
 | |
|             uint64_t period = s->period;
 | |
| 
 | |
|             if (!oneshot && (s->delta * period < 10000) && !use_icount) {
 | |
|                 period = 10000 / s->delta;
 | |
|                 period_frac = 0;
 | |
|             }
 | |
| 
 | |
|             /* We need to divide time by period, where time is stored in
 | |
|                rem (64-bit integer) and period is stored in period/period_frac
 | |
|                (64.32 fixed point).
 | |
| 
 | |
|                Doing full precision division is hard, so scale values and
 | |
|                do a 64-bit division.  The result should be rounded down,
 | |
|                so that the rounding error never causes the timer to go
 | |
|                backwards.
 | |
|             */
 | |
| 
 | |
|             rem = next - now;
 | |
|             div = period;
 | |
| 
 | |
|             clz1 = clz64(rem);
 | |
|             clz2 = clz64(div);
 | |
|             shift = clz1 < clz2 ? clz1 : clz2;
 | |
| 
 | |
|             rem <<= shift;
 | |
|             div <<= shift;
 | |
|             if (shift >= 32) {
 | |
|                 div |= ((uint64_t)period_frac << (shift - 32));
 | |
|             } else {
 | |
|                 if (shift != 0)
 | |
|                     div |= (period_frac >> (32 - shift));
 | |
|                 /* Look at remaining bits of period_frac and round div up if 
 | |
|                    necessary.  */
 | |
|                 if ((uint32_t)(period_frac << shift))
 | |
|                     div += 1;
 | |
|             }
 | |
|             counter = rem / div;
 | |
| 
 | |
|             if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 | |
|                 /* Before wrapping around, timer should stay with counter = 0
 | |
|                    for a one period.  */
 | |
|                 if (!oneshot && s->delta == s->limit) {
 | |
|                     if (now == last) {
 | |
|                         /* Counter == delta here, check whether it was
 | |
|                            adjusted and if it was, then right now it is
 | |
|                            that "one period".  */
 | |
|                         if (counter == s->limit + DELTA_ADJUST) {
 | |
|                             return 0;
 | |
|                         }
 | |
|                     } else if (counter == s->limit) {
 | |
|                         /* Since the counter is rounded down and now != last,
 | |
|                            the counter == limit means that delta was adjusted
 | |
|                            by +1 and right now it is that adjusted period.  */
 | |
|                         return 0;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 | |
|             /* If now == last then delta == limit, i.e. the counter already
 | |
|                represents the correct value. It would be rounded down a 1ns
 | |
|                later.  */
 | |
|             if (now != last) {
 | |
|                 counter += 1;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         counter = s->delta;
 | |
|     }
 | |
|     return counter;
 | |
| }
 | |
| 
 | |
| void ptimer_set_count(ptimer_state *s, uint64_t count)
 | |
| {
 | |
|     assert(s->in_transaction);
 | |
|     s->delta = count;
 | |
|     if (s->enabled) {
 | |
|         s->need_reload = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void ptimer_run(ptimer_state *s, int oneshot)
 | |
| {
 | |
|     bool was_disabled = !s->enabled;
 | |
| 
 | |
|     assert(s->in_transaction);
 | |
| 
 | |
|     if (was_disabled && s->period == 0) {
 | |
|         if (!qtest_enabled()) {
 | |
|             fprintf(stderr, "Timer with period zero, disabling\n");
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     s->enabled = oneshot ? 2 : 1;
 | |
|     if (was_disabled) {
 | |
|         s->need_reload = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Pause a timer.  Note that this may cause it to "lose" time, even if it
 | |
|    is immediately restarted.  */
 | |
| void ptimer_stop(ptimer_state *s)
 | |
| {
 | |
|     assert(s->in_transaction);
 | |
| 
 | |
|     if (!s->enabled)
 | |
|         return;
 | |
| 
 | |
|     s->delta = ptimer_get_count(s);
 | |
|     timer_del(s->timer);
 | |
|     s->enabled = 0;
 | |
|     s->need_reload = false;
 | |
| }
 | |
| 
 | |
| /* Set counter increment interval in nanoseconds.  */
 | |
| void ptimer_set_period(ptimer_state *s, int64_t period)
 | |
| {
 | |
|     assert(s->in_transaction);
 | |
|     s->delta = ptimer_get_count(s);
 | |
|     s->period = period;
 | |
|     s->period_frac = 0;
 | |
|     if (s->enabled) {
 | |
|         s->need_reload = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Set counter frequency in Hz.  */
 | |
| void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 | |
| {
 | |
|     assert(s->in_transaction);
 | |
|     s->delta = ptimer_get_count(s);
 | |
|     s->period = 1000000000ll / freq;
 | |
|     s->period_frac = (1000000000ll << 32) / freq;
 | |
|     if (s->enabled) {
 | |
|         s->need_reload = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Set the initial countdown value.  If reload is nonzero then also set
 | |
|    count = limit.  */
 | |
| void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 | |
| {
 | |
|     assert(s->in_transaction);
 | |
|     s->limit = limit;
 | |
|     if (reload)
 | |
|         s->delta = limit;
 | |
|     if (s->enabled && reload) {
 | |
|         s->need_reload = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint64_t ptimer_get_limit(ptimer_state *s)
 | |
| {
 | |
|     return s->limit;
 | |
| }
 | |
| 
 | |
| void ptimer_transaction_begin(ptimer_state *s)
 | |
| {
 | |
|     assert(!s->in_transaction);
 | |
|     s->in_transaction = true;
 | |
|     s->need_reload = false;
 | |
| }
 | |
| 
 | |
| void ptimer_transaction_commit(ptimer_state *s)
 | |
| {
 | |
|     assert(s->in_transaction);
 | |
|     /*
 | |
|      * We must loop here because ptimer_reload() can call the callback
 | |
|      * function, which might then update ptimer state in a way that
 | |
|      * means we need to do another reload and possibly another callback.
 | |
|      * A disabled timer never needs reloading (and if we don't check
 | |
|      * this then we loop forever if ptimer_reload() disables the timer).
 | |
|      */
 | |
|     while (s->need_reload && s->enabled) {
 | |
|         s->need_reload = false;
 | |
|         s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | |
|         ptimer_reload(s, 0);
 | |
|     }
 | |
|     /* Now we've finished reload we can leave the transaction block. */
 | |
|     s->in_transaction = false;
 | |
| }
 | |
| 
 | |
| const VMStateDescription vmstate_ptimer = {
 | |
|     .name = "ptimer",
 | |
|     .version_id = 1,
 | |
|     .minimum_version_id = 1,
 | |
|     .fields = (VMStateField[]) {
 | |
|         VMSTATE_UINT8(enabled, ptimer_state),
 | |
|         VMSTATE_UINT64(limit, ptimer_state),
 | |
|         VMSTATE_UINT64(delta, ptimer_state),
 | |
|         VMSTATE_UINT32(period_frac, ptimer_state),
 | |
|         VMSTATE_INT64(period, ptimer_state),
 | |
|         VMSTATE_INT64(last_event, ptimer_state),
 | |
|         VMSTATE_INT64(next_event, ptimer_state),
 | |
|         VMSTATE_TIMER_PTR(timer, ptimer_state),
 | |
|         VMSTATE_END_OF_LIST()
 | |
|     }
 | |
| };
 | |
| 
 | |
| ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
 | |
|                           uint8_t policy_mask)
 | |
| {
 | |
|     ptimer_state *s;
 | |
| 
 | |
|     /* The callback function is mandatory. */
 | |
|     assert(callback);
 | |
| 
 | |
|     s = g_new0(ptimer_state, 1);
 | |
|     s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 | |
|     s->policy_mask = policy_mask;
 | |
|     s->callback = callback;
 | |
|     s->callback_opaque = callback_opaque;
 | |
| 
 | |
|     /*
 | |
|      * These two policies are incompatible -- trigger-on-decrement implies
 | |
|      * a timer trigger when the count becomes 0, but no-immediate-trigger
 | |
|      * implies a trigger when the count stops being 0.
 | |
|      */
 | |
|     assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
 | |
|              (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
 | |
|     return s;
 | |
| }
 | |
| 
 | |
| void ptimer_free(ptimer_state *s)
 | |
| {
 | |
|     timer_free(s->timer);
 | |
|     g_free(s);
 | |
| }
 |