 e14b5a23d8
			
		
	
	
		e14b5a23d8
		
	
	
	
	
		
			
			Introduce ARMMMUFaultInfo to propagate MMU Fault information across the MMU translation code path. This is in preparation for adding Stage-2 translation. No functional changes. Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Message-id: 1445864527-14520-11-git-send-email-edgar.iglesias@gmail.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			435 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			435 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU ARM CPU -- internal functions and types
 | |
|  *
 | |
|  * Copyright (c) 2014 Linaro Ltd
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, see
 | |
|  * <http://www.gnu.org/licenses/gpl-2.0.html>
 | |
|  *
 | |
|  * This header defines functions, types, etc which need to be shared
 | |
|  * between different source files within target-arm/ but which are
 | |
|  * private to it and not required by the rest of QEMU.
 | |
|  */
 | |
| 
 | |
| #ifndef TARGET_ARM_INTERNALS_H
 | |
| #define TARGET_ARM_INTERNALS_H
 | |
| 
 | |
| static inline bool excp_is_internal(int excp)
 | |
| {
 | |
|     /* Return true if this exception number represents a QEMU-internal
 | |
|      * exception that will not be passed to the guest.
 | |
|      */
 | |
|     return excp == EXCP_INTERRUPT
 | |
|         || excp == EXCP_HLT
 | |
|         || excp == EXCP_DEBUG
 | |
|         || excp == EXCP_HALTED
 | |
|         || excp == EXCP_EXCEPTION_EXIT
 | |
|         || excp == EXCP_KERNEL_TRAP
 | |
|         || excp == EXCP_SEMIHOST
 | |
|         || excp == EXCP_STREX;
 | |
| }
 | |
| 
 | |
| /* Exception names for debug logging; note that not all of these
 | |
|  * precisely correspond to architectural exceptions.
 | |
|  */
 | |
| static const char * const excnames[] = {
 | |
|     [EXCP_UDEF] = "Undefined Instruction",
 | |
|     [EXCP_SWI] = "SVC",
 | |
|     [EXCP_PREFETCH_ABORT] = "Prefetch Abort",
 | |
|     [EXCP_DATA_ABORT] = "Data Abort",
 | |
|     [EXCP_IRQ] = "IRQ",
 | |
|     [EXCP_FIQ] = "FIQ",
 | |
|     [EXCP_BKPT] = "Breakpoint",
 | |
|     [EXCP_EXCEPTION_EXIT] = "QEMU v7M exception exit",
 | |
|     [EXCP_KERNEL_TRAP] = "QEMU intercept of kernel commpage",
 | |
|     [EXCP_STREX] = "QEMU intercept of STREX",
 | |
|     [EXCP_HVC] = "Hypervisor Call",
 | |
|     [EXCP_HYP_TRAP] = "Hypervisor Trap",
 | |
|     [EXCP_SMC] = "Secure Monitor Call",
 | |
|     [EXCP_VIRQ] = "Virtual IRQ",
 | |
|     [EXCP_VFIQ] = "Virtual FIQ",
 | |
|     [EXCP_SEMIHOST] = "Semihosting call",
 | |
| };
 | |
| 
 | |
| static inline void arm_log_exception(int idx)
 | |
| {
 | |
|     if (qemu_loglevel_mask(CPU_LOG_INT)) {
 | |
|         const char *exc = NULL;
 | |
| 
 | |
|         if (idx >= 0 && idx < ARRAY_SIZE(excnames)) {
 | |
|             exc = excnames[idx];
 | |
|         }
 | |
|         if (!exc) {
 | |
|             exc = "unknown";
 | |
|         }
 | |
|         qemu_log_mask(CPU_LOG_INT, "Taking exception %d [%s]\n", idx, exc);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Scale factor for generic timers, ie number of ns per tick.
 | |
|  * This gives a 62.5MHz timer.
 | |
|  */
 | |
| #define GTIMER_SCALE 16
 | |
| 
 | |
| /*
 | |
|  * For AArch64, map a given EL to an index in the banked_spsr array.
 | |
|  * Note that this mapping and the AArch32 mapping defined in bank_number()
 | |
|  * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
 | |
|  * mandated mapping between each other.
 | |
|  */
 | |
| static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
 | |
| {
 | |
|     static const unsigned int map[4] = {
 | |
|         [1] = 1, /* EL1.  */
 | |
|         [2] = 6, /* EL2.  */
 | |
|         [3] = 7, /* EL3.  */
 | |
|     };
 | |
|     assert(el >= 1 && el <= 3);
 | |
|     return map[el];
 | |
| }
 | |
| 
 | |
| int bank_number(int mode);
 | |
| void switch_mode(CPUARMState *, int);
 | |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
 | |
| void arm_translate_init(void);
 | |
| 
 | |
| enum arm_fprounding {
 | |
|     FPROUNDING_TIEEVEN,
 | |
|     FPROUNDING_POSINF,
 | |
|     FPROUNDING_NEGINF,
 | |
|     FPROUNDING_ZERO,
 | |
|     FPROUNDING_TIEAWAY,
 | |
|     FPROUNDING_ODD
 | |
| };
 | |
| 
 | |
| int arm_rmode_to_sf(int rmode);
 | |
| 
 | |
| static inline void aarch64_save_sp(CPUARMState *env, int el)
 | |
| {
 | |
|     if (env->pstate & PSTATE_SP) {
 | |
|         env->sp_el[el] = env->xregs[31];
 | |
|     } else {
 | |
|         env->sp_el[0] = env->xregs[31];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void aarch64_restore_sp(CPUARMState *env, int el)
 | |
| {
 | |
|     if (env->pstate & PSTATE_SP) {
 | |
|         env->xregs[31] = env->sp_el[el];
 | |
|     } else {
 | |
|         env->xregs[31] = env->sp_el[0];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void update_spsel(CPUARMState *env, uint32_t imm)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     /* Update PSTATE SPSel bit; this requires us to update the
 | |
|      * working stack pointer in xregs[31].
 | |
|      */
 | |
|     if (!((imm ^ env->pstate) & PSTATE_SP)) {
 | |
|         return;
 | |
|     }
 | |
|     aarch64_save_sp(env, cur_el);
 | |
|     env->pstate = deposit32(env->pstate, 0, 1, imm);
 | |
| 
 | |
|     /* We rely on illegal updates to SPsel from EL0 to get trapped
 | |
|      * at translation time.
 | |
|      */
 | |
|     assert(cur_el >= 1 && cur_el <= 3);
 | |
|     aarch64_restore_sp(env, cur_el);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * arm_pamax
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * Returns the implementation defined bit-width of physical addresses.
 | |
|  * The ARMv8 reference manuals refer to this as PAMax().
 | |
|  */
 | |
| static inline unsigned int arm_pamax(ARMCPU *cpu)
 | |
| {
 | |
|     static const unsigned int pamax_map[] = {
 | |
|         [0] = 32,
 | |
|         [1] = 36,
 | |
|         [2] = 40,
 | |
|         [3] = 42,
 | |
|         [4] = 44,
 | |
|         [5] = 48,
 | |
|     };
 | |
|     unsigned int parange = extract32(cpu->id_aa64mmfr0, 0, 4);
 | |
| 
 | |
|     /* id_aa64mmfr0 is a read-only register so values outside of the
 | |
|      * supported mappings can be considered an implementation error.  */
 | |
|     assert(parange < ARRAY_SIZE(pamax_map));
 | |
|     return pamax_map[parange];
 | |
| }
 | |
| 
 | |
| /* Return true if extended addresses are enabled.
 | |
|  * This is always the case if our translation regime is 64 bit,
 | |
|  * but depends on TTBCR.EAE for 32 bit.
 | |
|  */
 | |
| static inline bool extended_addresses_enabled(CPUARMState *env)
 | |
| {
 | |
|     TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
 | |
|     return arm_el_is_aa64(env, 1) ||
 | |
|            (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
 | |
| }
 | |
| 
 | |
| /* Valid Syndrome Register EC field values */
 | |
| enum arm_exception_class {
 | |
|     EC_UNCATEGORIZED          = 0x00,
 | |
|     EC_WFX_TRAP               = 0x01,
 | |
|     EC_CP15RTTRAP             = 0x03,
 | |
|     EC_CP15RRTTRAP            = 0x04,
 | |
|     EC_CP14RTTRAP             = 0x05,
 | |
|     EC_CP14DTTRAP             = 0x06,
 | |
|     EC_ADVSIMDFPACCESSTRAP    = 0x07,
 | |
|     EC_FPIDTRAP               = 0x08,
 | |
|     EC_CP14RRTTRAP            = 0x0c,
 | |
|     EC_ILLEGALSTATE           = 0x0e,
 | |
|     EC_AA32_SVC               = 0x11,
 | |
|     EC_AA32_HVC               = 0x12,
 | |
|     EC_AA32_SMC               = 0x13,
 | |
|     EC_AA64_SVC               = 0x15,
 | |
|     EC_AA64_HVC               = 0x16,
 | |
|     EC_AA64_SMC               = 0x17,
 | |
|     EC_SYSTEMREGISTERTRAP     = 0x18,
 | |
|     EC_INSNABORT              = 0x20,
 | |
|     EC_INSNABORT_SAME_EL      = 0x21,
 | |
|     EC_PCALIGNMENT            = 0x22,
 | |
|     EC_DATAABORT              = 0x24,
 | |
|     EC_DATAABORT_SAME_EL      = 0x25,
 | |
|     EC_SPALIGNMENT            = 0x26,
 | |
|     EC_AA32_FPTRAP            = 0x28,
 | |
|     EC_AA64_FPTRAP            = 0x2c,
 | |
|     EC_SERROR                 = 0x2f,
 | |
|     EC_BREAKPOINT             = 0x30,
 | |
|     EC_BREAKPOINT_SAME_EL     = 0x31,
 | |
|     EC_SOFTWARESTEP           = 0x32,
 | |
|     EC_SOFTWARESTEP_SAME_EL   = 0x33,
 | |
|     EC_WATCHPOINT             = 0x34,
 | |
|     EC_WATCHPOINT_SAME_EL     = 0x35,
 | |
|     EC_AA32_BKPT              = 0x38,
 | |
|     EC_VECTORCATCH            = 0x3a,
 | |
|     EC_AA64_BKPT              = 0x3c,
 | |
| };
 | |
| 
 | |
| #define ARM_EL_EC_SHIFT 26
 | |
| #define ARM_EL_IL_SHIFT 25
 | |
| #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
 | |
| 
 | |
| /* Utility functions for constructing various kinds of syndrome value.
 | |
|  * Note that in general we follow the AArch64 syndrome values; in a
 | |
|  * few cases the value in HSR for exceptions taken to AArch32 Hyp
 | |
|  * mode differs slightly, so if we ever implemented Hyp mode then the
 | |
|  * syndrome value would need some massaging on exception entry.
 | |
|  * (One example of this is that AArch64 defaults to IL bit set for
 | |
|  * exceptions which don't specifically indicate information about the
 | |
|  * trapping instruction, whereas AArch32 defaults to IL bit clear.)
 | |
|  */
 | |
| static inline uint32_t syn_uncategorized(void)
 | |
| {
 | |
|     return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa64_svc(uint32_t imm16)
 | |
| {
 | |
|     return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa64_hvc(uint32_t imm16)
 | |
| {
 | |
|     return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa64_smc(uint32_t imm16)
 | |
| {
 | |
|     return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_thumb)
 | |
| {
 | |
|     return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa32_hvc(uint32_t imm16)
 | |
| {
 | |
|     return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa32_smc(void)
 | |
| {
 | |
|     return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
 | |
| {
 | |
|     return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_thumb)
 | |
| {
 | |
|     return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
 | |
|                                            int crn, int crm, int rt,
 | |
|                                            int isread)
 | |
| {
 | |
|     return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
 | |
|         | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
 | |
|         | (crm << 1) | isread;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
 | |
|                                         int crn, int crm, int rt, int isread,
 | |
|                                         bool is_thumb)
 | |
| {
 | |
|     return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL)
 | |
|         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 | |
|         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
 | |
|                                         int crn, int crm, int rt, int isread,
 | |
|                                         bool is_thumb)
 | |
| {
 | |
|     return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL)
 | |
|         | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
 | |
|         | (crn << 10) | (rt << 5) | (crm << 1) | isread;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
 | |
|                                          int rt, int rt2, int isread,
 | |
|                                          bool is_thumb)
 | |
| {
 | |
|     return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL)
 | |
|         | (cv << 24) | (cond << 20) | (opc1 << 16)
 | |
|         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
 | |
|                                          int rt, int rt2, int isread,
 | |
|                                          bool is_thumb)
 | |
| {
 | |
|     return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL)
 | |
|         | (cv << 24) | (cond << 20) | (opc1 << 16)
 | |
|         | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_thumb)
 | |
| {
 | |
|     return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
 | |
|         | (is_thumb ? 0 : ARM_EL_IL)
 | |
|         | (cv << 24) | (cond << 20);
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
 | |
| {
 | |
|     return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 | |
|         | (ea << 9) | (s1ptw << 7) | fsc;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_data_abort(int same_el, int ea, int cm, int s1ptw,
 | |
|                                       int wnr, int fsc)
 | |
| {
 | |
|     return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 | |
|         | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_swstep(int same_el, int isv, int ex)
 | |
| {
 | |
|     return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 | |
|         | (isv << 24) | (ex << 6) | 0x22;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
 | |
| {
 | |
|     return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 | |
|         | (cm << 8) | (wnr << 6) | 0x22;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_breakpoint(int same_el)
 | |
| {
 | |
|     return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
 | |
|         | ARM_EL_IL | 0x22;
 | |
| }
 | |
| 
 | |
| static inline uint32_t syn_wfx(int cv, int cond, int ti)
 | |
| {
 | |
|     return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
 | |
|            (cv << 24) | (cond << 20) | ti;
 | |
| }
 | |
| 
 | |
| /* Update a QEMU watchpoint based on the information the guest has set in the
 | |
|  * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
 | |
|  */
 | |
| void hw_watchpoint_update(ARMCPU *cpu, int n);
 | |
| /* Update the QEMU watchpoints for every guest watchpoint. This does a
 | |
|  * complete delete-and-reinstate of the QEMU watchpoint list and so is
 | |
|  * suitable for use after migration or on reset.
 | |
|  */
 | |
| void hw_watchpoint_update_all(ARMCPU *cpu);
 | |
| /* Update a QEMU breakpoint based on the information the guest has set in the
 | |
|  * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
 | |
|  */
 | |
| void hw_breakpoint_update(ARMCPU *cpu, int n);
 | |
| /* Update the QEMU breakpoints for every guest breakpoint. This does a
 | |
|  * complete delete-and-reinstate of the QEMU breakpoint list and so is
 | |
|  * suitable for use after migration or on reset.
 | |
|  */
 | |
| void hw_breakpoint_update_all(ARMCPU *cpu);
 | |
| 
 | |
| /* Callback function for when a watchpoint or breakpoint triggers. */
 | |
| void arm_debug_excp_handler(CPUState *cs);
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| #else
 | |
| /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
 | |
| bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
 | |
| /* Actually handle a PSCI call */
 | |
| void arm_handle_psci_call(ARMCPU *cpu);
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * ARMMMUFaultInfo: Information describing an ARM MMU Fault
 | |
|  * @s2addr: Address that caused a fault at stage 2
 | |
|  * @stage2: True if we faulted at stage 2
 | |
|  * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
 | |
|  */
 | |
| typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
 | |
| struct ARMMMUFaultInfo {
 | |
|     target_ulong s2addr;
 | |
|     bool stage2;
 | |
|     bool s1ptw;
 | |
| };
 | |
| 
 | |
| /* Do a page table walk and add page to TLB if possible */
 | |
| bool arm_tlb_fill(CPUState *cpu, vaddr address, int rw, int mmu_idx,
 | |
|                   uint32_t *fsr, ARMMMUFaultInfo *fi);
 | |
| 
 | |
| #endif
 |