These should match 'start' as target_ulong, not target_long. On 32bit targets, the parameter was sign-extended to uint64_t, so only the first mmap within the upper 2GB memory can succeed. Signed-off-by: Luca Bonissi <qemu@bonslack.org> Message-Id: <327460e2-0ebd-9edb-426b-1df80d16c32a@bonslack.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			1440 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1440 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  User emulator execution
 | 
						|
 *
 | 
						|
 *  Copyright (c) 2003-2005 Fabrice Bellard
 | 
						|
 *
 | 
						|
 * This library is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU Lesser General Public
 | 
						|
 * License as published by the Free Software Foundation; either
 | 
						|
 * version 2.1 of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This library is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | 
						|
 * Lesser General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU Lesser General Public
 | 
						|
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | 
						|
 */
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "hw/core/tcg-cpu-ops.h"
 | 
						|
#include "disas/disas.h"
 | 
						|
#include "exec/exec-all.h"
 | 
						|
#include "tcg/tcg.h"
 | 
						|
#include "qemu/bitops.h"
 | 
						|
#include "qemu/rcu.h"
 | 
						|
#include "exec/cpu_ldst.h"
 | 
						|
#include "exec/translate-all.h"
 | 
						|
#include "exec/helper-proto.h"
 | 
						|
#include "qemu/atomic128.h"
 | 
						|
#include "trace/trace-root.h"
 | 
						|
#include "tcg/tcg-ldst.h"
 | 
						|
#include "internal.h"
 | 
						|
 | 
						|
__thread uintptr_t helper_retaddr;
 | 
						|
 | 
						|
//#define DEBUG_SIGNAL
 | 
						|
 | 
						|
/*
 | 
						|
 * Adjust the pc to pass to cpu_restore_state; return the memop type.
 | 
						|
 */
 | 
						|
MMUAccessType adjust_signal_pc(uintptr_t *pc, bool is_write)
 | 
						|
{
 | 
						|
    switch (helper_retaddr) {
 | 
						|
    default:
 | 
						|
        /*
 | 
						|
         * Fault during host memory operation within a helper function.
 | 
						|
         * The helper's host return address, saved here, gives us a
 | 
						|
         * pointer into the generated code that will unwind to the
 | 
						|
         * correct guest pc.
 | 
						|
         */
 | 
						|
        *pc = helper_retaddr;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0:
 | 
						|
        /*
 | 
						|
         * Fault during host memory operation within generated code.
 | 
						|
         * (Or, a unrelated bug within qemu, but we can't tell from here).
 | 
						|
         *
 | 
						|
         * We take the host pc from the signal frame.  However, we cannot
 | 
						|
         * use that value directly.  Within cpu_restore_state_from_tb, we
 | 
						|
         * assume PC comes from GETPC(), as used by the helper functions,
 | 
						|
         * so we adjust the address by -GETPC_ADJ to form an address that
 | 
						|
         * is within the call insn, so that the address does not accidentally
 | 
						|
         * match the beginning of the next guest insn.  However, when the
 | 
						|
         * pc comes from the signal frame it points to the actual faulting
 | 
						|
         * host memory insn and not the return from a call insn.
 | 
						|
         *
 | 
						|
         * Therefore, adjust to compensate for what will be done later
 | 
						|
         * by cpu_restore_state_from_tb.
 | 
						|
         */
 | 
						|
        *pc += GETPC_ADJ;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 1:
 | 
						|
        /*
 | 
						|
         * Fault during host read for translation, or loosely, "execution".
 | 
						|
         *
 | 
						|
         * The guest pc is already pointing to the start of the TB for which
 | 
						|
         * code is being generated.  If the guest translator manages the
 | 
						|
         * page crossings correctly, this is exactly the correct address
 | 
						|
         * (and if the translator doesn't handle page boundaries correctly
 | 
						|
         * there's little we can do about that here).  Therefore, do not
 | 
						|
         * trigger the unwinder.
 | 
						|
         */
 | 
						|
        *pc = 0;
 | 
						|
        return MMU_INST_FETCH;
 | 
						|
    }
 | 
						|
 | 
						|
    return is_write ? MMU_DATA_STORE : MMU_DATA_LOAD;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * handle_sigsegv_accerr_write:
 | 
						|
 * @cpu: the cpu context
 | 
						|
 * @old_set: the sigset_t from the signal ucontext_t
 | 
						|
 * @host_pc: the host pc, adjusted for the signal
 | 
						|
 * @guest_addr: the guest address of the fault
 | 
						|
 *
 | 
						|
 * Return true if the write fault has been handled, and should be re-tried.
 | 
						|
 *
 | 
						|
 * Note that it is important that we don't call page_unprotect() unless
 | 
						|
 * this is really a "write to nonwritable page" fault, because
 | 
						|
 * page_unprotect() assumes that if it is called for an access to
 | 
						|
 * a page that's writable this means we had two threads racing and
 | 
						|
 * another thread got there first and already made the page writable;
 | 
						|
 * so we will retry the access. If we were to call page_unprotect()
 | 
						|
 * for some other kind of fault that should really be passed to the
 | 
						|
 * guest, we'd end up in an infinite loop of retrying the faulting access.
 | 
						|
 */
 | 
						|
bool handle_sigsegv_accerr_write(CPUState *cpu, sigset_t *old_set,
 | 
						|
                                 uintptr_t host_pc, abi_ptr guest_addr)
 | 
						|
{
 | 
						|
    switch (page_unprotect(guest_addr, host_pc)) {
 | 
						|
    case 0:
 | 
						|
        /*
 | 
						|
         * Fault not caused by a page marked unwritable to protect
 | 
						|
         * cached translations, must be the guest binary's problem.
 | 
						|
         */
 | 
						|
        return false;
 | 
						|
    case 1:
 | 
						|
        /*
 | 
						|
         * Fault caused by protection of cached translation; TBs
 | 
						|
         * invalidated, so resume execution.
 | 
						|
         */
 | 
						|
        return true;
 | 
						|
    case 2:
 | 
						|
        /*
 | 
						|
         * Fault caused by protection of cached translation, and the
 | 
						|
         * currently executing TB was modified and must be exited immediately.
 | 
						|
         */
 | 
						|
        sigprocmask(SIG_SETMASK, old_set, NULL);
 | 
						|
        cpu_loop_exit_noexc(cpu);
 | 
						|
        /* NORETURN */
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
typedef struct PageFlagsNode {
 | 
						|
    struct rcu_head rcu;
 | 
						|
    IntervalTreeNode itree;
 | 
						|
    int flags;
 | 
						|
} PageFlagsNode;
 | 
						|
 | 
						|
static IntervalTreeRoot pageflags_root;
 | 
						|
 | 
						|
static PageFlagsNode *pageflags_find(target_ulong start, target_ulong last)
 | 
						|
{
 | 
						|
    IntervalTreeNode *n;
 | 
						|
 | 
						|
    n = interval_tree_iter_first(&pageflags_root, start, last);
 | 
						|
    return n ? container_of(n, PageFlagsNode, itree) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
static PageFlagsNode *pageflags_next(PageFlagsNode *p, target_ulong start,
 | 
						|
                                     target_ulong last)
 | 
						|
{
 | 
						|
    IntervalTreeNode *n;
 | 
						|
 | 
						|
    n = interval_tree_iter_next(&p->itree, start, last);
 | 
						|
    return n ? container_of(n, PageFlagsNode, itree) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
 | 
						|
{
 | 
						|
    IntervalTreeNode *n;
 | 
						|
    int rc = 0;
 | 
						|
 | 
						|
    mmap_lock();
 | 
						|
    for (n = interval_tree_iter_first(&pageflags_root, 0, -1);
 | 
						|
         n != NULL;
 | 
						|
         n = interval_tree_iter_next(n, 0, -1)) {
 | 
						|
        PageFlagsNode *p = container_of(n, PageFlagsNode, itree);
 | 
						|
 | 
						|
        rc = fn(priv, n->start, n->last + 1, p->flags);
 | 
						|
        if (rc != 0) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    mmap_unlock();
 | 
						|
 | 
						|
    return rc;
 | 
						|
}
 | 
						|
 | 
						|
static int dump_region(void *priv, target_ulong start,
 | 
						|
                       target_ulong end, unsigned long prot)
 | 
						|
{
 | 
						|
    FILE *f = (FILE *)priv;
 | 
						|
 | 
						|
    fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx" "TARGET_FMT_lx" %c%c%c\n",
 | 
						|
            start, end, end - start,
 | 
						|
            ((prot & PAGE_READ) ? 'r' : '-'),
 | 
						|
            ((prot & PAGE_WRITE) ? 'w' : '-'),
 | 
						|
            ((prot & PAGE_EXEC) ? 'x' : '-'));
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* dump memory mappings */
 | 
						|
void page_dump(FILE *f)
 | 
						|
{
 | 
						|
    const int length = sizeof(target_ulong) * 2;
 | 
						|
 | 
						|
    fprintf(f, "%-*s %-*s %-*s %s\n",
 | 
						|
            length, "start", length, "end", length, "size", "prot");
 | 
						|
    walk_memory_regions(f, dump_region);
 | 
						|
}
 | 
						|
 | 
						|
int page_get_flags(target_ulong address)
 | 
						|
{
 | 
						|
    PageFlagsNode *p = pageflags_find(address, address);
 | 
						|
 | 
						|
    /*
 | 
						|
     * See util/interval-tree.c re lockless lookups: no false positives but
 | 
						|
     * there are false negatives.  If we find nothing, retry with the mmap
 | 
						|
     * lock acquired.
 | 
						|
     */
 | 
						|
    if (p) {
 | 
						|
        return p->flags;
 | 
						|
    }
 | 
						|
    if (have_mmap_lock()) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    mmap_lock();
 | 
						|
    p = pageflags_find(address, address);
 | 
						|
    mmap_unlock();
 | 
						|
    return p ? p->flags : 0;
 | 
						|
}
 | 
						|
 | 
						|
/* A subroutine of page_set_flags: insert a new node for [start,last]. */
 | 
						|
static void pageflags_create(target_ulong start, target_ulong last, int flags)
 | 
						|
{
 | 
						|
    PageFlagsNode *p = g_new(PageFlagsNode, 1);
 | 
						|
 | 
						|
    p->itree.start = start;
 | 
						|
    p->itree.last = last;
 | 
						|
    p->flags = flags;
 | 
						|
    interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
}
 | 
						|
 | 
						|
/* A subroutine of page_set_flags: remove everything in [start,last]. */
 | 
						|
static bool pageflags_unset(target_ulong start, target_ulong last)
 | 
						|
{
 | 
						|
    bool inval_tb = false;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        PageFlagsNode *p = pageflags_find(start, last);
 | 
						|
        target_ulong p_last;
 | 
						|
 | 
						|
        if (!p) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (p->flags & PAGE_EXEC) {
 | 
						|
            inval_tb = true;
 | 
						|
        }
 | 
						|
 | 
						|
        interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
        p_last = p->itree.last;
 | 
						|
 | 
						|
        if (p->itree.start < start) {
 | 
						|
            /* Truncate the node from the end, or split out the middle. */
 | 
						|
            p->itree.last = start - 1;
 | 
						|
            interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
            if (last < p_last) {
 | 
						|
                pageflags_create(last + 1, p_last, p->flags);
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        } else if (p_last <= last) {
 | 
						|
            /* Range completely covers node -- remove it. */
 | 
						|
            g_free_rcu(p, rcu);
 | 
						|
        } else {
 | 
						|
            /* Truncate the node from the start. */
 | 
						|
            p->itree.start = last + 1;
 | 
						|
            interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return inval_tb;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * A subroutine of page_set_flags: nothing overlaps [start,last],
 | 
						|
 * but check adjacent mappings and maybe merge into a single range.
 | 
						|
 */
 | 
						|
static void pageflags_create_merge(target_ulong start, target_ulong last,
 | 
						|
                                   int flags)
 | 
						|
{
 | 
						|
    PageFlagsNode *next = NULL, *prev = NULL;
 | 
						|
 | 
						|
    if (start > 0) {
 | 
						|
        prev = pageflags_find(start - 1, start - 1);
 | 
						|
        if (prev) {
 | 
						|
            if (prev->flags == flags) {
 | 
						|
                interval_tree_remove(&prev->itree, &pageflags_root);
 | 
						|
            } else {
 | 
						|
                prev = NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (last + 1 != 0) {
 | 
						|
        next = pageflags_find(last + 1, last + 1);
 | 
						|
        if (next) {
 | 
						|
            if (next->flags == flags) {
 | 
						|
                interval_tree_remove(&next->itree, &pageflags_root);
 | 
						|
            } else {
 | 
						|
                next = NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (prev) {
 | 
						|
        if (next) {
 | 
						|
            prev->itree.last = next->itree.last;
 | 
						|
            g_free_rcu(next, rcu);
 | 
						|
        } else {
 | 
						|
            prev->itree.last = last;
 | 
						|
        }
 | 
						|
        interval_tree_insert(&prev->itree, &pageflags_root);
 | 
						|
    } else if (next) {
 | 
						|
        next->itree.start = start;
 | 
						|
        interval_tree_insert(&next->itree, &pageflags_root);
 | 
						|
    } else {
 | 
						|
        pageflags_create(start, last, flags);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allow the target to decide if PAGE_TARGET_[12] may be reset.
 | 
						|
 * By default, they are not kept.
 | 
						|
 */
 | 
						|
#ifndef PAGE_TARGET_STICKY
 | 
						|
#define PAGE_TARGET_STICKY  0
 | 
						|
#endif
 | 
						|
#define PAGE_STICKY  (PAGE_ANON | PAGE_PASSTHROUGH | PAGE_TARGET_STICKY)
 | 
						|
 | 
						|
/* A subroutine of page_set_flags: add flags to [start,last]. */
 | 
						|
static bool pageflags_set_clear(target_ulong start, target_ulong last,
 | 
						|
                                int set_flags, int clear_flags)
 | 
						|
{
 | 
						|
    PageFlagsNode *p;
 | 
						|
    target_ulong p_start, p_last;
 | 
						|
    int p_flags, merge_flags;
 | 
						|
    bool inval_tb = false;
 | 
						|
 | 
						|
 restart:
 | 
						|
    p = pageflags_find(start, last);
 | 
						|
    if (!p) {
 | 
						|
        if (set_flags) {
 | 
						|
            pageflags_create_merge(start, last, set_flags);
 | 
						|
        }
 | 
						|
        goto done;
 | 
						|
    }
 | 
						|
 | 
						|
    p_start = p->itree.start;
 | 
						|
    p_last = p->itree.last;
 | 
						|
    p_flags = p->flags;
 | 
						|
    /* Using mprotect on a page does not change sticky bits. */
 | 
						|
    merge_flags = (p_flags & ~clear_flags) | set_flags;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Need to flush if an overlapping executable region
 | 
						|
     * removes exec, or adds write.
 | 
						|
     */
 | 
						|
    if ((p_flags & PAGE_EXEC)
 | 
						|
        && (!(merge_flags & PAGE_EXEC)
 | 
						|
            || (merge_flags & ~p_flags & PAGE_WRITE))) {
 | 
						|
        inval_tb = true;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If there is an exact range match, update and return without
 | 
						|
     * attempting to merge with adjacent regions.
 | 
						|
     */
 | 
						|
    if (start == p_start && last == p_last) {
 | 
						|
        if (merge_flags) {
 | 
						|
            p->flags = merge_flags;
 | 
						|
        } else {
 | 
						|
            interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
            g_free_rcu(p, rcu);
 | 
						|
        }
 | 
						|
        goto done;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If sticky bits affect the original mapping, then we must be more
 | 
						|
     * careful about the existing intervals and the separate flags.
 | 
						|
     */
 | 
						|
    if (set_flags != merge_flags) {
 | 
						|
        if (p_start < start) {
 | 
						|
            interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
            p->itree.last = start - 1;
 | 
						|
            interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
 | 
						|
            if (last < p_last) {
 | 
						|
                if (merge_flags) {
 | 
						|
                    pageflags_create(start, last, merge_flags);
 | 
						|
                }
 | 
						|
                pageflags_create(last + 1, p_last, p_flags);
 | 
						|
            } else {
 | 
						|
                if (merge_flags) {
 | 
						|
                    pageflags_create(start, p_last, merge_flags);
 | 
						|
                }
 | 
						|
                if (p_last < last) {
 | 
						|
                    start = p_last + 1;
 | 
						|
                    goto restart;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (start < p_start && set_flags) {
 | 
						|
                pageflags_create(start, p_start - 1, set_flags);
 | 
						|
            }
 | 
						|
            if (last < p_last) {
 | 
						|
                interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
                p->itree.start = last + 1;
 | 
						|
                interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
                if (merge_flags) {
 | 
						|
                    pageflags_create(start, last, merge_flags);
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                if (merge_flags) {
 | 
						|
                    p->flags = merge_flags;
 | 
						|
                } else {
 | 
						|
                    interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
                    g_free_rcu(p, rcu);
 | 
						|
                }
 | 
						|
                if (p_last < last) {
 | 
						|
                    start = p_last + 1;
 | 
						|
                    goto restart;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        goto done;
 | 
						|
    }
 | 
						|
 | 
						|
    /* If flags are not changing for this range, incorporate it. */
 | 
						|
    if (set_flags == p_flags) {
 | 
						|
        if (start < p_start) {
 | 
						|
            interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
            p->itree.start = start;
 | 
						|
            interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
        }
 | 
						|
        if (p_last < last) {
 | 
						|
            start = p_last + 1;
 | 
						|
            goto restart;
 | 
						|
        }
 | 
						|
        goto done;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Maybe split out head and/or tail ranges with the original flags. */
 | 
						|
    interval_tree_remove(&p->itree, &pageflags_root);
 | 
						|
    if (p_start < start) {
 | 
						|
        p->itree.last = start - 1;
 | 
						|
        interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
 | 
						|
        if (p_last < last) {
 | 
						|
            goto restart;
 | 
						|
        }
 | 
						|
        if (last < p_last) {
 | 
						|
            pageflags_create(last + 1, p_last, p_flags);
 | 
						|
        }
 | 
						|
    } else if (last < p_last) {
 | 
						|
        p->itree.start = last + 1;
 | 
						|
        interval_tree_insert(&p->itree, &pageflags_root);
 | 
						|
    } else {
 | 
						|
        g_free_rcu(p, rcu);
 | 
						|
        goto restart;
 | 
						|
    }
 | 
						|
    if (set_flags) {
 | 
						|
        pageflags_create(start, last, set_flags);
 | 
						|
    }
 | 
						|
 | 
						|
 done:
 | 
						|
    return inval_tb;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Modify the flags of a page and invalidate the code if necessary.
 | 
						|
 * The flag PAGE_WRITE_ORG is positioned automatically depending
 | 
						|
 * on PAGE_WRITE.  The mmap_lock should already be held.
 | 
						|
 */
 | 
						|
void page_set_flags(target_ulong start, target_ulong last, int flags)
 | 
						|
{
 | 
						|
    bool reset = false;
 | 
						|
    bool inval_tb = false;
 | 
						|
 | 
						|
    /* This function should never be called with addresses outside the
 | 
						|
       guest address space.  If this assert fires, it probably indicates
 | 
						|
       a missing call to h2g_valid.  */
 | 
						|
    assert(start <= last);
 | 
						|
    assert(last <= GUEST_ADDR_MAX);
 | 
						|
    /* Only set PAGE_ANON with new mappings. */
 | 
						|
    assert(!(flags & PAGE_ANON) || (flags & PAGE_RESET));
 | 
						|
    assert_memory_lock();
 | 
						|
 | 
						|
    start &= TARGET_PAGE_MASK;
 | 
						|
    last |= ~TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    if (!(flags & PAGE_VALID)) {
 | 
						|
        flags = 0;
 | 
						|
    } else {
 | 
						|
        reset = flags & PAGE_RESET;
 | 
						|
        flags &= ~PAGE_RESET;
 | 
						|
        if (flags & PAGE_WRITE) {
 | 
						|
            flags |= PAGE_WRITE_ORG;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!flags || reset) {
 | 
						|
        page_reset_target_data(start, last);
 | 
						|
        inval_tb |= pageflags_unset(start, last);
 | 
						|
    }
 | 
						|
    if (flags) {
 | 
						|
        inval_tb |= pageflags_set_clear(start, last, flags,
 | 
						|
                                        ~(reset ? 0 : PAGE_STICKY));
 | 
						|
    }
 | 
						|
    if (inval_tb) {
 | 
						|
        tb_invalidate_phys_range(start, last);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool page_check_range(target_ulong start, target_ulong len, int flags)
 | 
						|
{
 | 
						|
    target_ulong last;
 | 
						|
    int locked;  /* tri-state: =0: unlocked, +1: global, -1: local */
 | 
						|
    bool ret;
 | 
						|
 | 
						|
    if (len == 0) {
 | 
						|
        return true;  /* trivial length */
 | 
						|
    }
 | 
						|
 | 
						|
    last = start + len - 1;
 | 
						|
    if (last < start) {
 | 
						|
        return false; /* wrap around */
 | 
						|
    }
 | 
						|
 | 
						|
    locked = have_mmap_lock();
 | 
						|
    while (true) {
 | 
						|
        PageFlagsNode *p = pageflags_find(start, last);
 | 
						|
        int missing;
 | 
						|
 | 
						|
        if (!p) {
 | 
						|
            if (!locked) {
 | 
						|
                /*
 | 
						|
                 * Lockless lookups have false negatives.
 | 
						|
                 * Retry with the lock held.
 | 
						|
                 */
 | 
						|
                mmap_lock();
 | 
						|
                locked = -1;
 | 
						|
                p = pageflags_find(start, last);
 | 
						|
            }
 | 
						|
            if (!p) {
 | 
						|
                ret = false; /* entire region invalid */
 | 
						|
                break;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (start < p->itree.start) {
 | 
						|
            ret = false; /* initial bytes invalid */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        missing = flags & ~p->flags;
 | 
						|
        if (missing & ~PAGE_WRITE) {
 | 
						|
            ret = false; /* page doesn't match */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (missing & PAGE_WRITE) {
 | 
						|
            if (!(p->flags & PAGE_WRITE_ORG)) {
 | 
						|
                ret = false; /* page not writable */
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            /* Asking about writable, but has been protected: undo. */
 | 
						|
            if (!page_unprotect(start, 0)) {
 | 
						|
                ret = false;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            /* TODO: page_unprotect should take a range, not a single page. */
 | 
						|
            if (last - start < TARGET_PAGE_SIZE) {
 | 
						|
                ret = true; /* ok */
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            start += TARGET_PAGE_SIZE;
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (last <= p->itree.last) {
 | 
						|
            ret = true; /* ok */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        start = p->itree.last + 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Release the lock if acquired locally. */
 | 
						|
    if (locked < 0) {
 | 
						|
        mmap_unlock();
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
bool page_check_range_empty(target_ulong start, target_ulong last)
 | 
						|
{
 | 
						|
    assert(last >= start);
 | 
						|
    assert_memory_lock();
 | 
						|
    return pageflags_find(start, last) == NULL;
 | 
						|
}
 | 
						|
 | 
						|
target_ulong page_find_range_empty(target_ulong min, target_ulong max,
 | 
						|
                                   target_ulong len, target_ulong align)
 | 
						|
{
 | 
						|
    target_ulong len_m1, align_m1;
 | 
						|
 | 
						|
    assert(min <= max);
 | 
						|
    assert(max <= GUEST_ADDR_MAX);
 | 
						|
    assert(len != 0);
 | 
						|
    assert(is_power_of_2(align));
 | 
						|
    assert_memory_lock();
 | 
						|
 | 
						|
    len_m1 = len - 1;
 | 
						|
    align_m1 = align - 1;
 | 
						|
 | 
						|
    /* Iteratively narrow the search region. */
 | 
						|
    while (1) {
 | 
						|
        PageFlagsNode *p;
 | 
						|
 | 
						|
        /* Align min and double-check there's enough space remaining. */
 | 
						|
        min = (min + align_m1) & ~align_m1;
 | 
						|
        if (min > max) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        if (len_m1 > max - min) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
 | 
						|
        p = pageflags_find(min, min + len_m1);
 | 
						|
        if (p == NULL) {
 | 
						|
            /* Found! */
 | 
						|
            return min;
 | 
						|
        }
 | 
						|
        if (max <= p->itree.last) {
 | 
						|
            /* Existing allocation fills the remainder of the search region. */
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        /* Skip across existing allocation. */
 | 
						|
        min = p->itree.last + 1;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void page_protect(tb_page_addr_t address)
 | 
						|
{
 | 
						|
    PageFlagsNode *p;
 | 
						|
    target_ulong start, last;
 | 
						|
    int prot;
 | 
						|
 | 
						|
    assert_memory_lock();
 | 
						|
 | 
						|
    if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
 | 
						|
        start = address & TARGET_PAGE_MASK;
 | 
						|
        last = start + TARGET_PAGE_SIZE - 1;
 | 
						|
    } else {
 | 
						|
        start = address & qemu_host_page_mask;
 | 
						|
        last = start + qemu_host_page_size - 1;
 | 
						|
    }
 | 
						|
 | 
						|
    p = pageflags_find(start, last);
 | 
						|
    if (!p) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    prot = p->flags;
 | 
						|
 | 
						|
    if (unlikely(p->itree.last < last)) {
 | 
						|
        /* More than one protection region covers the one host page. */
 | 
						|
        assert(TARGET_PAGE_SIZE < qemu_host_page_size);
 | 
						|
        while ((p = pageflags_next(p, start, last)) != NULL) {
 | 
						|
            prot |= p->flags;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (prot & PAGE_WRITE) {
 | 
						|
        pageflags_set_clear(start, last, 0, PAGE_WRITE);
 | 
						|
        mprotect(g2h_untagged(start), qemu_host_page_size,
 | 
						|
                 prot & (PAGE_READ | PAGE_EXEC) ? PROT_READ : PROT_NONE);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from signal handler: invalidate the code and unprotect the
 | 
						|
 * page. Return 0 if the fault was not handled, 1 if it was handled,
 | 
						|
 * and 2 if it was handled but the caller must cause the TB to be
 | 
						|
 * immediately exited. (We can only return 2 if the 'pc' argument is
 | 
						|
 * non-zero.)
 | 
						|
 */
 | 
						|
int page_unprotect(target_ulong address, uintptr_t pc)
 | 
						|
{
 | 
						|
    PageFlagsNode *p;
 | 
						|
    bool current_tb_invalidated;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Technically this isn't safe inside a signal handler.  However we
 | 
						|
     * know this only ever happens in a synchronous SEGV handler, so in
 | 
						|
     * practice it seems to be ok.
 | 
						|
     */
 | 
						|
    mmap_lock();
 | 
						|
 | 
						|
    p = pageflags_find(address, address);
 | 
						|
 | 
						|
    /* If this address was not really writable, nothing to do. */
 | 
						|
    if (!p || !(p->flags & PAGE_WRITE_ORG)) {
 | 
						|
        mmap_unlock();
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    current_tb_invalidated = false;
 | 
						|
    if (p->flags & PAGE_WRITE) {
 | 
						|
        /*
 | 
						|
         * If the page is actually marked WRITE then assume this is because
 | 
						|
         * this thread raced with another one which got here first and
 | 
						|
         * set the page to PAGE_WRITE and did the TB invalidate for us.
 | 
						|
         */
 | 
						|
#ifdef TARGET_HAS_PRECISE_SMC
 | 
						|
        TranslationBlock *current_tb = tcg_tb_lookup(pc);
 | 
						|
        if (current_tb) {
 | 
						|
            current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
 | 
						|
        }
 | 
						|
#endif
 | 
						|
    } else {
 | 
						|
        target_ulong start, len, i;
 | 
						|
        int prot;
 | 
						|
 | 
						|
        if (qemu_host_page_size <= TARGET_PAGE_SIZE) {
 | 
						|
            start = address & TARGET_PAGE_MASK;
 | 
						|
            len = TARGET_PAGE_SIZE;
 | 
						|
            prot = p->flags | PAGE_WRITE;
 | 
						|
            pageflags_set_clear(start, start + len - 1, PAGE_WRITE, 0);
 | 
						|
            current_tb_invalidated = tb_invalidate_phys_page_unwind(start, pc);
 | 
						|
        } else {
 | 
						|
            start = address & qemu_host_page_mask;
 | 
						|
            len = qemu_host_page_size;
 | 
						|
            prot = 0;
 | 
						|
 | 
						|
            for (i = 0; i < len; i += TARGET_PAGE_SIZE) {
 | 
						|
                target_ulong addr = start + i;
 | 
						|
 | 
						|
                p = pageflags_find(addr, addr);
 | 
						|
                if (p) {
 | 
						|
                    prot |= p->flags;
 | 
						|
                    if (p->flags & PAGE_WRITE_ORG) {
 | 
						|
                        prot |= PAGE_WRITE;
 | 
						|
                        pageflags_set_clear(addr, addr + TARGET_PAGE_SIZE - 1,
 | 
						|
                                            PAGE_WRITE, 0);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                /*
 | 
						|
                 * Since the content will be modified, we must invalidate
 | 
						|
                 * the corresponding translated code.
 | 
						|
                 */
 | 
						|
                current_tb_invalidated |=
 | 
						|
                    tb_invalidate_phys_page_unwind(addr, pc);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (prot & PAGE_EXEC) {
 | 
						|
            prot = (prot & ~PAGE_EXEC) | PAGE_READ;
 | 
						|
        }
 | 
						|
        mprotect((void *)g2h_untagged(start), len, prot & PAGE_BITS);
 | 
						|
    }
 | 
						|
    mmap_unlock();
 | 
						|
 | 
						|
    /* If current TB was invalidated return to main loop */
 | 
						|
    return current_tb_invalidated ? 2 : 1;
 | 
						|
}
 | 
						|
 | 
						|
static int probe_access_internal(CPUArchState *env, vaddr addr,
 | 
						|
                                 int fault_size, MMUAccessType access_type,
 | 
						|
                                 bool nonfault, uintptr_t ra)
 | 
						|
{
 | 
						|
    int acc_flag;
 | 
						|
    bool maperr;
 | 
						|
 | 
						|
    switch (access_type) {
 | 
						|
    case MMU_DATA_STORE:
 | 
						|
        acc_flag = PAGE_WRITE_ORG;
 | 
						|
        break;
 | 
						|
    case MMU_DATA_LOAD:
 | 
						|
        acc_flag = PAGE_READ;
 | 
						|
        break;
 | 
						|
    case MMU_INST_FETCH:
 | 
						|
        acc_flag = PAGE_EXEC;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    if (guest_addr_valid_untagged(addr)) {
 | 
						|
        int page_flags = page_get_flags(addr);
 | 
						|
        if (page_flags & acc_flag) {
 | 
						|
            if ((acc_flag == PAGE_READ || acc_flag == PAGE_WRITE)
 | 
						|
                && cpu_plugin_mem_cbs_enabled(env_cpu(env))) {
 | 
						|
                return TLB_MMIO;
 | 
						|
            }
 | 
						|
            return 0; /* success */
 | 
						|
        }
 | 
						|
        maperr = !(page_flags & PAGE_VALID);
 | 
						|
    } else {
 | 
						|
        maperr = true;
 | 
						|
    }
 | 
						|
 | 
						|
    if (nonfault) {
 | 
						|
        return TLB_INVALID_MASK;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_loop_exit_sigsegv(env_cpu(env), addr, access_type, maperr, ra);
 | 
						|
}
 | 
						|
 | 
						|
int probe_access_flags(CPUArchState *env, vaddr addr, int size,
 | 
						|
                       MMUAccessType access_type, int mmu_idx,
 | 
						|
                       bool nonfault, void **phost, uintptr_t ra)
 | 
						|
{
 | 
						|
    int flags;
 | 
						|
 | 
						|
    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | 
						|
    flags = probe_access_internal(env, addr, size, access_type, nonfault, ra);
 | 
						|
    *phost = (flags & TLB_INVALID_MASK) ? NULL : g2h(env_cpu(env), addr);
 | 
						|
    return flags;
 | 
						|
}
 | 
						|
 | 
						|
void *probe_access(CPUArchState *env, vaddr addr, int size,
 | 
						|
                   MMUAccessType access_type, int mmu_idx, uintptr_t ra)
 | 
						|
{
 | 
						|
    int flags;
 | 
						|
 | 
						|
    g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | 
						|
    flags = probe_access_internal(env, addr, size, access_type, false, ra);
 | 
						|
    g_assert((flags & ~TLB_MMIO) == 0);
 | 
						|
 | 
						|
    return size ? g2h(env_cpu(env), addr) : NULL;
 | 
						|
}
 | 
						|
 | 
						|
tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
 | 
						|
                                        void **hostp)
 | 
						|
{
 | 
						|
    int flags;
 | 
						|
 | 
						|
    flags = probe_access_internal(env, addr, 1, MMU_INST_FETCH, false, 0);
 | 
						|
    g_assert(flags == 0);
 | 
						|
 | 
						|
    if (hostp) {
 | 
						|
        *hostp = g2h_untagged(addr);
 | 
						|
    }
 | 
						|
    return addr;
 | 
						|
}
 | 
						|
 | 
						|
#ifdef TARGET_PAGE_DATA_SIZE
 | 
						|
/*
 | 
						|
 * Allocate chunks of target data together.  For the only current user,
 | 
						|
 * if we allocate one hunk per page, we have overhead of 40/128 or 40%.
 | 
						|
 * Therefore, allocate memory for 64 pages at a time for overhead < 1%.
 | 
						|
 */
 | 
						|
#define TPD_PAGES  64
 | 
						|
#define TBD_MASK   (TARGET_PAGE_MASK * TPD_PAGES)
 | 
						|
 | 
						|
typedef struct TargetPageDataNode {
 | 
						|
    struct rcu_head rcu;
 | 
						|
    IntervalTreeNode itree;
 | 
						|
    char data[TPD_PAGES][TARGET_PAGE_DATA_SIZE] __attribute__((aligned));
 | 
						|
} TargetPageDataNode;
 | 
						|
 | 
						|
static IntervalTreeRoot targetdata_root;
 | 
						|
 | 
						|
void page_reset_target_data(target_ulong start, target_ulong last)
 | 
						|
{
 | 
						|
    IntervalTreeNode *n, *next;
 | 
						|
 | 
						|
    assert_memory_lock();
 | 
						|
 | 
						|
    start &= TARGET_PAGE_MASK;
 | 
						|
    last |= ~TARGET_PAGE_MASK;
 | 
						|
 | 
						|
    for (n = interval_tree_iter_first(&targetdata_root, start, last),
 | 
						|
         next = n ? interval_tree_iter_next(n, start, last) : NULL;
 | 
						|
         n != NULL;
 | 
						|
         n = next,
 | 
						|
         next = next ? interval_tree_iter_next(n, start, last) : NULL) {
 | 
						|
        target_ulong n_start, n_last, p_ofs, p_len;
 | 
						|
        TargetPageDataNode *t = container_of(n, TargetPageDataNode, itree);
 | 
						|
 | 
						|
        if (n->start >= start && n->last <= last) {
 | 
						|
            interval_tree_remove(n, &targetdata_root);
 | 
						|
            g_free_rcu(t, rcu);
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        if (n->start < start) {
 | 
						|
            n_start = start;
 | 
						|
            p_ofs = (start - n->start) >> TARGET_PAGE_BITS;
 | 
						|
        } else {
 | 
						|
            n_start = n->start;
 | 
						|
            p_ofs = 0;
 | 
						|
        }
 | 
						|
        n_last = MIN(last, n->last);
 | 
						|
        p_len = (n_last + 1 - n_start) >> TARGET_PAGE_BITS;
 | 
						|
 | 
						|
        memset(t->data[p_ofs], 0, p_len * TARGET_PAGE_DATA_SIZE);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void *page_get_target_data(target_ulong address)
 | 
						|
{
 | 
						|
    IntervalTreeNode *n;
 | 
						|
    TargetPageDataNode *t;
 | 
						|
    target_ulong page, region;
 | 
						|
 | 
						|
    page = address & TARGET_PAGE_MASK;
 | 
						|
    region = address & TBD_MASK;
 | 
						|
 | 
						|
    n = interval_tree_iter_first(&targetdata_root, page, page);
 | 
						|
    if (!n) {
 | 
						|
        /*
 | 
						|
         * See util/interval-tree.c re lockless lookups: no false positives
 | 
						|
         * but there are false negatives.  If we find nothing, retry with
 | 
						|
         * the mmap lock acquired.  We also need the lock for the
 | 
						|
         * allocation + insert.
 | 
						|
         */
 | 
						|
        mmap_lock();
 | 
						|
        n = interval_tree_iter_first(&targetdata_root, page, page);
 | 
						|
        if (!n) {
 | 
						|
            t = g_new0(TargetPageDataNode, 1);
 | 
						|
            n = &t->itree;
 | 
						|
            n->start = region;
 | 
						|
            n->last = region | ~TBD_MASK;
 | 
						|
            interval_tree_insert(n, &targetdata_root);
 | 
						|
        }
 | 
						|
        mmap_unlock();
 | 
						|
    }
 | 
						|
 | 
						|
    t = container_of(n, TargetPageDataNode, itree);
 | 
						|
    return t->data[(page - region) >> TARGET_PAGE_BITS];
 | 
						|
}
 | 
						|
#else
 | 
						|
void page_reset_target_data(target_ulong start, target_ulong last) { }
 | 
						|
#endif /* TARGET_PAGE_DATA_SIZE */
 | 
						|
 | 
						|
/* The softmmu versions of these helpers are in cputlb.c.  */
 | 
						|
 | 
						|
static void *cpu_mmu_lookup(CPUArchState *env, vaddr addr,
 | 
						|
                            MemOp mop, uintptr_t ra, MMUAccessType type)
 | 
						|
{
 | 
						|
    int a_bits = get_alignment_bits(mop);
 | 
						|
    void *ret;
 | 
						|
 | 
						|
    /* Enforce guest required alignment.  */
 | 
						|
    if (unlikely(addr & ((1 << a_bits) - 1))) {
 | 
						|
        cpu_loop_exit_sigbus(env_cpu(env), addr, type, ra);
 | 
						|
    }
 | 
						|
 | 
						|
    ret = g2h(env_cpu(env), addr);
 | 
						|
    set_helper_retaddr(ra);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#include "ldst_atomicity.c.inc"
 | 
						|
 | 
						|
static uint8_t do_ld1_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint8_t ret;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_8);
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
 | 
						|
    ret = ldub_p(haddr);
 | 
						|
    clear_helper_retaddr();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return do_ld1_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return (int8_t)do_ld1_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint8_t ret = do_ld1_mmu(env, addr, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint16_t do_ld2_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                           MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint16_t ret;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_16);
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
 | 
						|
    ret = load_atom_2(env, ra, haddr, mop);
 | 
						|
    clear_helper_retaddr();
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        ret = bswap16(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return do_ld2_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return (int16_t)do_ld2_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                     MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint16_t ret = do_ld2_mmu(env, addr, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t do_ld4_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                           MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_32);
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
 | 
						|
    ret = load_atom_4(env, ra, haddr, mop);
 | 
						|
    clear_helper_retaddr();
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        ret = bswap32(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return do_ld4_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return (int32_t)do_ld4_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                     MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint32_t ret = do_ld4_mmu(env, addr, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t do_ld8_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                           MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint64_t ret;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_64);
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
 | 
						|
    ret = load_atom_8(env, ra, haddr, mop);
 | 
						|
    clear_helper_retaddr();
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        ret = bswap64(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                        MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return do_ld8_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                     MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    uint64_t ret = do_ld8_mmu(env, addr, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static Int128 do_ld16_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    Int128 ret;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_128);
 | 
						|
    cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_LOAD);
 | 
						|
    ret = load_atom_16(env, ra, haddr, mop);
 | 
						|
    clear_helper_retaddr();
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        ret = bswap128(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
 | 
						|
                       MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    return do_ld16_mmu(env, addr, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, MemOpIdx oi)
 | 
						|
{
 | 
						|
    return helper_ld16_mmu(env, addr, oi, GETPC());
 | 
						|
}
 | 
						|
 | 
						|
Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    Int128 ret = do_ld16_mmu(env, addr, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void do_st1_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
 | 
						|
                       MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_8);
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
 | 
						|
    stb_p(haddr, val);
 | 
						|
    clear_helper_retaddr();
 | 
						|
}
 | 
						|
 | 
						|
void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st1_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val,
 | 
						|
                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st1_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st2_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
 | 
						|
                       MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_16);
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        val = bswap16(val);
 | 
						|
    }
 | 
						|
    store_atom_2(env, ra, haddr, mop, val);
 | 
						|
    clear_helper_retaddr();
 | 
						|
}
 | 
						|
 | 
						|
void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st2_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st2_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st4_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
 | 
						|
                       MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_32);
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        val = bswap32(val);
 | 
						|
    }
 | 
						|
    store_atom_4(env, ra, haddr, mop, val);
 | 
						|
    clear_helper_retaddr();
 | 
						|
}
 | 
						|
 | 
						|
void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st4_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val,
 | 
						|
                 MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st4_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st8_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
 | 
						|
                       MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_64);
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        val = bswap64(val);
 | 
						|
    }
 | 
						|
    store_atom_8(env, ra, haddr, mop, val);
 | 
						|
    clear_helper_retaddr();
 | 
						|
}
 | 
						|
 | 
						|
void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st8_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val,
 | 
						|
                    MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st8_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 | 
						|
}
 | 
						|
 | 
						|
static void do_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
 | 
						|
                        MemOp mop, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
 | 
						|
    tcg_debug_assert((mop & MO_SIZE) == MO_128);
 | 
						|
    cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST);
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, mop, ra, MMU_DATA_STORE);
 | 
						|
 | 
						|
    if (mop & MO_BSWAP) {
 | 
						|
        val = bswap128(val);
 | 
						|
    }
 | 
						|
    store_atom_16(env, ra, haddr, mop, val);
 | 
						|
    clear_helper_retaddr();
 | 
						|
}
 | 
						|
 | 
						|
void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
 | 
						|
                     MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st16_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
}
 | 
						|
 | 
						|
void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
 | 
						|
{
 | 
						|
    helper_st16_mmu(env, addr, val, oi, GETPC());
 | 
						|
}
 | 
						|
 | 
						|
void cpu_st16_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                  Int128 val, MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    do_st16_mmu(env, addr, val, get_memop(oi), ra);
 | 
						|
    qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr ptr)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    set_helper_retaddr(1);
 | 
						|
    ret = ldub_p(g2h_untagged(ptr));
 | 
						|
    clear_helper_retaddr();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr ptr)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    set_helper_retaddr(1);
 | 
						|
    ret = lduw_p(g2h_untagged(ptr));
 | 
						|
    clear_helper_retaddr();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr ptr)
 | 
						|
{
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    set_helper_retaddr(1);
 | 
						|
    ret = ldl_p(g2h_untagged(ptr));
 | 
						|
    clear_helper_retaddr();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr ptr)
 | 
						|
{
 | 
						|
    uint64_t ret;
 | 
						|
 | 
						|
    set_helper_retaddr(1);
 | 
						|
    ret = ldq_p(g2h_untagged(ptr));
 | 
						|
    clear_helper_retaddr();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                         MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint8_t ret;
 | 
						|
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
 | 
						|
    ret = ldub_p(haddr);
 | 
						|
    clear_helper_retaddr();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint16_t ret;
 | 
						|
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
 | 
						|
    ret = lduw_p(haddr);
 | 
						|
    clear_helper_retaddr();
 | 
						|
    if (get_memop(oi) & MO_BSWAP) {
 | 
						|
        ret = bswap16(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint32_t ret;
 | 
						|
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_INST_FETCH);
 | 
						|
    ret = ldl_p(haddr);
 | 
						|
    clear_helper_retaddr();
 | 
						|
    if (get_memop(oi) & MO_BSWAP) {
 | 
						|
        ret = bswap32(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
 | 
						|
                          MemOpIdx oi, uintptr_t ra)
 | 
						|
{
 | 
						|
    void *haddr;
 | 
						|
    uint64_t ret;
 | 
						|
 | 
						|
    haddr = cpu_mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD);
 | 
						|
    ret = ldq_p(haddr);
 | 
						|
    clear_helper_retaddr();
 | 
						|
    if (get_memop(oi) & MO_BSWAP) {
 | 
						|
        ret = bswap64(ret);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#include "ldst_common.c.inc"
 | 
						|
 | 
						|
/*
 | 
						|
 * Do not allow unaligned operations to proceed.  Return the host address.
 | 
						|
 */
 | 
						|
static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
 | 
						|
                               int size, uintptr_t retaddr)
 | 
						|
{
 | 
						|
    MemOp mop = get_memop(oi);
 | 
						|
    int a_bits = get_alignment_bits(mop);
 | 
						|
    void *ret;
 | 
						|
 | 
						|
    /* Enforce guest required alignment.  */
 | 
						|
    if (unlikely(addr & ((1 << a_bits) - 1))) {
 | 
						|
        cpu_loop_exit_sigbus(env_cpu(env), addr, MMU_DATA_STORE, retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Enforce qemu required alignment.  */
 | 
						|
    if (unlikely(addr & (size - 1))) {
 | 
						|
        cpu_loop_exit_atomic(env_cpu(env), retaddr);
 | 
						|
    }
 | 
						|
 | 
						|
    ret = g2h(env_cpu(env), addr);
 | 
						|
    set_helper_retaddr(retaddr);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
#include "atomic_common.c.inc"
 | 
						|
 | 
						|
/*
 | 
						|
 * First set of functions passes in OI and RETADDR.
 | 
						|
 * This makes them callable from other helpers.
 | 
						|
 */
 | 
						|
 | 
						|
#define ATOMIC_NAME(X) \
 | 
						|
    glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
 | 
						|
#define ATOMIC_MMU_CLEANUP do { clear_helper_retaddr(); } while (0)
 | 
						|
 | 
						|
#define DATA_SIZE 1
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 2
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#define DATA_SIZE 4
 | 
						|
#include "atomic_template.h"
 | 
						|
 | 
						|
#ifdef CONFIG_ATOMIC64
 | 
						|
#define DATA_SIZE 8
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128
 | 
						|
#define DATA_SIZE 16
 | 
						|
#include "atomic_template.h"
 | 
						|
#endif
 |