Signed-off-by: LIU Zhiwei <zhiwei_liu@c-sky.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20200813071421.2509-3-zhiwei_liu@c-sky.com> [rth: Use FloatRoundMode for conversion functions.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			7659 lines
		
	
	
		
			250 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7659 lines
		
	
	
		
			250 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU float support
 | 
						|
 *
 | 
						|
 * The code in this source file is derived from release 2a of the SoftFloat
 | 
						|
 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 | 
						|
 * some later contributions) are provided under that license, as detailed below.
 | 
						|
 * It has subsequently been modified by contributors to the QEMU Project,
 | 
						|
 * so some portions are provided under:
 | 
						|
 *  the SoftFloat-2a license
 | 
						|
 *  the BSD license
 | 
						|
 *  GPL-v2-or-later
 | 
						|
 *
 | 
						|
 * Any future contributions to this file after December 1st 2014 will be
 | 
						|
 * taken to be licensed under the Softfloat-2a license unless specifically
 | 
						|
 * indicated otherwise.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
===============================================================================
 | 
						|
This C source file is part of the SoftFloat IEC/IEEE Floating-point
 | 
						|
Arithmetic Package, Release 2a.
 | 
						|
 | 
						|
Written by John R. Hauser.  This work was made possible in part by the
 | 
						|
International Computer Science Institute, located at Suite 600, 1947 Center
 | 
						|
Street, Berkeley, California 94704.  Funding was partially provided by the
 | 
						|
National Science Foundation under grant MIP-9311980.  The original version
 | 
						|
of this code was written as part of a project to build a fixed-point vector
 | 
						|
processor in collaboration with the University of California at Berkeley,
 | 
						|
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | 
						|
is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | 
						|
arithmetic/SoftFloat.html'.
 | 
						|
 | 
						|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | 
						|
has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | 
						|
TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | 
						|
PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | 
						|
AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | 
						|
 | 
						|
Derivative works are acceptable, even for commercial purposes, so long as
 | 
						|
(1) they include prominent notice that the work is derivative, and (2) they
 | 
						|
include prominent notice akin to these four paragraphs for those parts of
 | 
						|
this code that are retained.
 | 
						|
 | 
						|
===============================================================================
 | 
						|
*/
 | 
						|
 | 
						|
/* BSD licensing:
 | 
						|
 * Copyright (c) 2006, Fabrice Bellard
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * Redistribution and use in source and binary forms, with or without
 | 
						|
 * modification, are permitted provided that the following conditions are met:
 | 
						|
 *
 | 
						|
 * 1. Redistributions of source code must retain the above copyright notice,
 | 
						|
 * this list of conditions and the following disclaimer.
 | 
						|
 *
 | 
						|
 * 2. Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
 * this list of conditions and the following disclaimer in the documentation
 | 
						|
 * and/or other materials provided with the distribution.
 | 
						|
 *
 | 
						|
 * 3. Neither the name of the copyright holder nor the names of its contributors
 | 
						|
 * may be used to endorse or promote products derived from this software without
 | 
						|
 * specific prior written permission.
 | 
						|
 *
 | 
						|
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | 
						|
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
						|
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | 
						|
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | 
						|
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | 
						|
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | 
						|
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | 
						|
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | 
						|
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | 
						|
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 | 
						|
 * THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 */
 | 
						|
 | 
						|
/* Portions of this work are licensed under the terms of the GNU GPL,
 | 
						|
 * version 2 or later. See the COPYING file in the top-level directory.
 | 
						|
 */
 | 
						|
 | 
						|
/* softfloat (and in particular the code in softfloat-specialize.h) is
 | 
						|
 * target-dependent and needs the TARGET_* macros.
 | 
						|
 */
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include <math.h>
 | 
						|
#include "qemu/bitops.h"
 | 
						|
#include "fpu/softfloat.h"
 | 
						|
 | 
						|
/* We only need stdlib for abort() */
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Primitive arithmetic functions, including multi-word arithmetic, and
 | 
						|
| division and square root approximations.  (Can be specialized to target if
 | 
						|
| desired.)
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#include "fpu/softfloat-macros.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Hardfloat
 | 
						|
 *
 | 
						|
 * Fast emulation of guest FP instructions is challenging for two reasons.
 | 
						|
 * First, FP instruction semantics are similar but not identical, particularly
 | 
						|
 * when handling NaNs. Second, emulating at reasonable speed the guest FP
 | 
						|
 * exception flags is not trivial: reading the host's flags register with a
 | 
						|
 * feclearexcept & fetestexcept pair is slow [slightly slower than soft-fp],
 | 
						|
 * and trapping on every FP exception is not fast nor pleasant to work with.
 | 
						|
 *
 | 
						|
 * We address these challenges by leveraging the host FPU for a subset of the
 | 
						|
 * operations. To do this we expand on the idea presented in this paper:
 | 
						|
 *
 | 
						|
 * Guo, Yu-Chuan, et al. "Translating the ARM Neon and VFP instructions in a
 | 
						|
 * binary translator." Software: Practice and Experience 46.12 (2016):1591-1615.
 | 
						|
 *
 | 
						|
 * The idea is thus to leverage the host FPU to (1) compute FP operations
 | 
						|
 * and (2) identify whether FP exceptions occurred while avoiding
 | 
						|
 * expensive exception flag register accesses.
 | 
						|
 *
 | 
						|
 * An important optimization shown in the paper is that given that exception
 | 
						|
 * flags are rarely cleared by the guest, we can avoid recomputing some flags.
 | 
						|
 * This is particularly useful for the inexact flag, which is very frequently
 | 
						|
 * raised in floating-point workloads.
 | 
						|
 *
 | 
						|
 * We optimize the code further by deferring to soft-fp whenever FP exception
 | 
						|
 * detection might get hairy. Two examples: (1) when at least one operand is
 | 
						|
 * denormal/inf/NaN; (2) when operands are not guaranteed to lead to a 0 result
 | 
						|
 * and the result is < the minimum normal.
 | 
						|
 */
 | 
						|
#define GEN_INPUT_FLUSH__NOCHECK(name, soft_t)                          \
 | 
						|
    static inline void name(soft_t *a, float_status *s)                 \
 | 
						|
    {                                                                   \
 | 
						|
        if (unlikely(soft_t ## _is_denormal(*a))) {                     \
 | 
						|
            *a = soft_t ## _set_sign(soft_t ## _zero,                   \
 | 
						|
                                     soft_t ## _is_neg(*a));            \
 | 
						|
            s->float_exception_flags |= float_flag_input_denormal;      \
 | 
						|
        }                                                               \
 | 
						|
    }
 | 
						|
 | 
						|
GEN_INPUT_FLUSH__NOCHECK(float32_input_flush__nocheck, float32)
 | 
						|
GEN_INPUT_FLUSH__NOCHECK(float64_input_flush__nocheck, float64)
 | 
						|
#undef GEN_INPUT_FLUSH__NOCHECK
 | 
						|
 | 
						|
#define GEN_INPUT_FLUSH1(name, soft_t)                  \
 | 
						|
    static inline void name(soft_t *a, float_status *s) \
 | 
						|
    {                                                   \
 | 
						|
        if (likely(!s->flush_inputs_to_zero)) {         \
 | 
						|
            return;                                     \
 | 
						|
        }                                               \
 | 
						|
        soft_t ## _input_flush__nocheck(a, s);          \
 | 
						|
    }
 | 
						|
 | 
						|
GEN_INPUT_FLUSH1(float32_input_flush1, float32)
 | 
						|
GEN_INPUT_FLUSH1(float64_input_flush1, float64)
 | 
						|
#undef GEN_INPUT_FLUSH1
 | 
						|
 | 
						|
#define GEN_INPUT_FLUSH2(name, soft_t)                                  \
 | 
						|
    static inline void name(soft_t *a, soft_t *b, float_status *s)      \
 | 
						|
    {                                                                   \
 | 
						|
        if (likely(!s->flush_inputs_to_zero)) {                         \
 | 
						|
            return;                                                     \
 | 
						|
        }                                                               \
 | 
						|
        soft_t ## _input_flush__nocheck(a, s);                          \
 | 
						|
        soft_t ## _input_flush__nocheck(b, s);                          \
 | 
						|
    }
 | 
						|
 | 
						|
GEN_INPUT_FLUSH2(float32_input_flush2, float32)
 | 
						|
GEN_INPUT_FLUSH2(float64_input_flush2, float64)
 | 
						|
#undef GEN_INPUT_FLUSH2
 | 
						|
 | 
						|
#define GEN_INPUT_FLUSH3(name, soft_t)                                  \
 | 
						|
    static inline void name(soft_t *a, soft_t *b, soft_t *c, float_status *s) \
 | 
						|
    {                                                                   \
 | 
						|
        if (likely(!s->flush_inputs_to_zero)) {                         \
 | 
						|
            return;                                                     \
 | 
						|
        }                                                               \
 | 
						|
        soft_t ## _input_flush__nocheck(a, s);                          \
 | 
						|
        soft_t ## _input_flush__nocheck(b, s);                          \
 | 
						|
        soft_t ## _input_flush__nocheck(c, s);                          \
 | 
						|
    }
 | 
						|
 | 
						|
GEN_INPUT_FLUSH3(float32_input_flush3, float32)
 | 
						|
GEN_INPUT_FLUSH3(float64_input_flush3, float64)
 | 
						|
#undef GEN_INPUT_FLUSH3
 | 
						|
 | 
						|
/*
 | 
						|
 * Choose whether to use fpclassify or float32/64_* primitives in the generated
 | 
						|
 * hardfloat functions. Each combination of number of inputs and float size
 | 
						|
 * gets its own value.
 | 
						|
 */
 | 
						|
#if defined(__x86_64__)
 | 
						|
# define QEMU_HARDFLOAT_1F32_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_1F64_USE_FP 1
 | 
						|
# define QEMU_HARDFLOAT_2F32_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_2F64_USE_FP 1
 | 
						|
# define QEMU_HARDFLOAT_3F32_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_3F64_USE_FP 1
 | 
						|
#else
 | 
						|
# define QEMU_HARDFLOAT_1F32_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_1F64_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_2F32_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_2F64_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_3F32_USE_FP 0
 | 
						|
# define QEMU_HARDFLOAT_3F64_USE_FP 0
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * QEMU_HARDFLOAT_USE_ISINF chooses whether to use isinf() over
 | 
						|
 * float{32,64}_is_infinity when !USE_FP.
 | 
						|
 * On x86_64/aarch64, using the former over the latter can yield a ~6% speedup.
 | 
						|
 * On power64 however, using isinf() reduces fp-bench performance by up to 50%.
 | 
						|
 */
 | 
						|
#if defined(__x86_64__) || defined(__aarch64__)
 | 
						|
# define QEMU_HARDFLOAT_USE_ISINF   1
 | 
						|
#else
 | 
						|
# define QEMU_HARDFLOAT_USE_ISINF   0
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Some targets clear the FP flags before most FP operations. This prevents
 | 
						|
 * the use of hardfloat, since hardfloat relies on the inexact flag being
 | 
						|
 * already set.
 | 
						|
 */
 | 
						|
#if defined(TARGET_PPC) || defined(__FAST_MATH__)
 | 
						|
# if defined(__FAST_MATH__)
 | 
						|
#  warning disabling hardfloat due to -ffast-math: hardfloat requires an exact \
 | 
						|
    IEEE implementation
 | 
						|
# endif
 | 
						|
# define QEMU_NO_HARDFLOAT 1
 | 
						|
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN
 | 
						|
#else
 | 
						|
# define QEMU_NO_HARDFLOAT 0
 | 
						|
# define QEMU_SOFTFLOAT_ATTR QEMU_FLATTEN __attribute__((noinline))
 | 
						|
#endif
 | 
						|
 | 
						|
static inline bool can_use_fpu(const float_status *s)
 | 
						|
{
 | 
						|
    if (QEMU_NO_HARDFLOAT) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
    return likely(s->float_exception_flags & float_flag_inexact &&
 | 
						|
                  s->float_rounding_mode == float_round_nearest_even);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Hardfloat generation functions. Each operation can have two flavors:
 | 
						|
 * either using softfloat primitives (e.g. float32_is_zero_or_normal) for
 | 
						|
 * most condition checks, or native ones (e.g. fpclassify).
 | 
						|
 *
 | 
						|
 * The flavor is chosen by the callers. Instead of using macros, we rely on the
 | 
						|
 * compiler to propagate constants and inline everything into the callers.
 | 
						|
 *
 | 
						|
 * We only generate functions for operations with two inputs, since only
 | 
						|
 * these are common enough to justify consolidating them into common code.
 | 
						|
 */
 | 
						|
 | 
						|
typedef union {
 | 
						|
    float32 s;
 | 
						|
    float h;
 | 
						|
} union_float32;
 | 
						|
 | 
						|
typedef union {
 | 
						|
    float64 s;
 | 
						|
    double h;
 | 
						|
} union_float64;
 | 
						|
 | 
						|
typedef bool (*f32_check_fn)(union_float32 a, union_float32 b);
 | 
						|
typedef bool (*f64_check_fn)(union_float64 a, union_float64 b);
 | 
						|
 | 
						|
typedef float32 (*soft_f32_op2_fn)(float32 a, float32 b, float_status *s);
 | 
						|
typedef float64 (*soft_f64_op2_fn)(float64 a, float64 b, float_status *s);
 | 
						|
typedef float   (*hard_f32_op2_fn)(float a, float b);
 | 
						|
typedef double  (*hard_f64_op2_fn)(double a, double b);
 | 
						|
 | 
						|
/* 2-input is-zero-or-normal */
 | 
						|
static inline bool f32_is_zon2(union_float32 a, union_float32 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | 
						|
        /*
 | 
						|
         * Not using a temp variable for consecutive fpclassify calls ends up
 | 
						|
         * generating faster code.
 | 
						|
         */
 | 
						|
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | 
						|
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
 | 
						|
    }
 | 
						|
    return float32_is_zero_or_normal(a.s) &&
 | 
						|
           float32_is_zero_or_normal(b.s);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool f64_is_zon2(union_float64 a, union_float64 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | 
						|
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | 
						|
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO);
 | 
						|
    }
 | 
						|
    return float64_is_zero_or_normal(a.s) &&
 | 
						|
           float64_is_zero_or_normal(b.s);
 | 
						|
}
 | 
						|
 | 
						|
/* 3-input is-zero-or-normal */
 | 
						|
static inline
 | 
						|
bool f32_is_zon3(union_float32 a, union_float32 b, union_float32 c)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_3F32_USE_FP) {
 | 
						|
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | 
						|
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
 | 
						|
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
 | 
						|
    }
 | 
						|
    return float32_is_zero_or_normal(a.s) &&
 | 
						|
           float32_is_zero_or_normal(b.s) &&
 | 
						|
           float32_is_zero_or_normal(c.s);
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
bool f64_is_zon3(union_float64 a, union_float64 b, union_float64 c)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_3F64_USE_FP) {
 | 
						|
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | 
						|
               (fpclassify(b.h) == FP_NORMAL || fpclassify(b.h) == FP_ZERO) &&
 | 
						|
               (fpclassify(c.h) == FP_NORMAL || fpclassify(c.h) == FP_ZERO);
 | 
						|
    }
 | 
						|
    return float64_is_zero_or_normal(a.s) &&
 | 
						|
           float64_is_zero_or_normal(b.s) &&
 | 
						|
           float64_is_zero_or_normal(c.s);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool f32_is_inf(union_float32 a)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_USE_ISINF) {
 | 
						|
        return isinf(a.h);
 | 
						|
    }
 | 
						|
    return float32_is_infinity(a.s);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool f64_is_inf(union_float64 a)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_USE_ISINF) {
 | 
						|
        return isinf(a.h);
 | 
						|
    }
 | 
						|
    return float64_is_infinity(a.s);
 | 
						|
}
 | 
						|
 | 
						|
static inline float32
 | 
						|
float32_gen2(float32 xa, float32 xb, float_status *s,
 | 
						|
             hard_f32_op2_fn hard, soft_f32_op2_fn soft,
 | 
						|
             f32_check_fn pre, f32_check_fn post)
 | 
						|
{
 | 
						|
    union_float32 ua, ub, ur;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    ub.s = xb;
 | 
						|
 | 
						|
    if (unlikely(!can_use_fpu(s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float32_input_flush2(&ua.s, &ub.s, s);
 | 
						|
    if (unlikely(!pre(ua, ub))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    ur.h = hard(ua.h, ub.h);
 | 
						|
    if (unlikely(f32_is_inf(ur))) {
 | 
						|
        s->float_exception_flags |= float_flag_overflow;
 | 
						|
    } else if (unlikely(fabsf(ur.h) <= FLT_MIN) && post(ua, ub)) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
    return ur.s;
 | 
						|
 | 
						|
 soft:
 | 
						|
    return soft(ua.s, ub.s, s);
 | 
						|
}
 | 
						|
 | 
						|
static inline float64
 | 
						|
float64_gen2(float64 xa, float64 xb, float_status *s,
 | 
						|
             hard_f64_op2_fn hard, soft_f64_op2_fn soft,
 | 
						|
             f64_check_fn pre, f64_check_fn post)
 | 
						|
{
 | 
						|
    union_float64 ua, ub, ur;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    ub.s = xb;
 | 
						|
 | 
						|
    if (unlikely(!can_use_fpu(s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float64_input_flush2(&ua.s, &ub.s, s);
 | 
						|
    if (unlikely(!pre(ua, ub))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    ur.h = hard(ua.h, ub.h);
 | 
						|
    if (unlikely(f64_is_inf(ur))) {
 | 
						|
        s->float_exception_flags |= float_flag_overflow;
 | 
						|
    } else if (unlikely(fabs(ur.h) <= DBL_MIN) && post(ua, ub)) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
    return ur.s;
 | 
						|
 | 
						|
 soft:
 | 
						|
    return soft(ua.s, ub.s, s);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the fraction bits of the single-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline uint32_t extractFloat32Frac(float32 a)
 | 
						|
{
 | 
						|
    return float32_val(a) & 0x007FFFFF;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the exponent bits of the single-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline int extractFloat32Exp(float32 a)
 | 
						|
{
 | 
						|
    return (float32_val(a) >> 23) & 0xFF;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the sign bit of the single-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline bool extractFloat32Sign(float32 a)
 | 
						|
{
 | 
						|
    return float32_val(a) >> 31;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the fraction bits of the double-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline uint64_t extractFloat64Frac(float64 a)
 | 
						|
{
 | 
						|
    return float64_val(a) & UINT64_C(0x000FFFFFFFFFFFFF);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the exponent bits of the double-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline int extractFloat64Exp(float64 a)
 | 
						|
{
 | 
						|
    return (float64_val(a) >> 52) & 0x7FF;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the sign bit of the double-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline bool extractFloat64Sign(float64 a)
 | 
						|
{
 | 
						|
    return float64_val(a) >> 63;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Classify a floating point number. Everything above float_class_qnan
 | 
						|
 * is a NaN so cls >= float_class_qnan is any NaN.
 | 
						|
 */
 | 
						|
 | 
						|
typedef enum __attribute__ ((__packed__)) {
 | 
						|
    float_class_unclassified,
 | 
						|
    float_class_zero,
 | 
						|
    float_class_normal,
 | 
						|
    float_class_inf,
 | 
						|
    float_class_qnan,  /* all NaNs from here */
 | 
						|
    float_class_snan,
 | 
						|
} FloatClass;
 | 
						|
 | 
						|
/* Simple helpers for checking if, or what kind of, NaN we have */
 | 
						|
static inline __attribute__((unused)) bool is_nan(FloatClass c)
 | 
						|
{
 | 
						|
    return unlikely(c >= float_class_qnan);
 | 
						|
}
 | 
						|
 | 
						|
static inline __attribute__((unused)) bool is_snan(FloatClass c)
 | 
						|
{
 | 
						|
    return c == float_class_snan;
 | 
						|
}
 | 
						|
 | 
						|
static inline __attribute__((unused)) bool is_qnan(FloatClass c)
 | 
						|
{
 | 
						|
    return c == float_class_qnan;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Structure holding all of the decomposed parts of a float. The
 | 
						|
 * exponent is unbiased and the fraction is normalized. All
 | 
						|
 * calculations are done with a 64 bit fraction and then rounded as
 | 
						|
 * appropriate for the final format.
 | 
						|
 *
 | 
						|
 * Thanks to the packed FloatClass a decent compiler should be able to
 | 
						|
 * fit the whole structure into registers and avoid using the stack
 | 
						|
 * for parameter passing.
 | 
						|
 */
 | 
						|
 | 
						|
typedef struct {
 | 
						|
    uint64_t frac;
 | 
						|
    int32_t  exp;
 | 
						|
    FloatClass cls;
 | 
						|
    bool sign;
 | 
						|
} FloatParts;
 | 
						|
 | 
						|
#define DECOMPOSED_BINARY_POINT    (64 - 2)
 | 
						|
#define DECOMPOSED_IMPLICIT_BIT    (1ull << DECOMPOSED_BINARY_POINT)
 | 
						|
#define DECOMPOSED_OVERFLOW_BIT    (DECOMPOSED_IMPLICIT_BIT << 1)
 | 
						|
 | 
						|
/* Structure holding all of the relevant parameters for a format.
 | 
						|
 *   exp_size: the size of the exponent field
 | 
						|
 *   exp_bias: the offset applied to the exponent field
 | 
						|
 *   exp_max: the maximum normalised exponent
 | 
						|
 *   frac_size: the size of the fraction field
 | 
						|
 *   frac_shift: shift to normalise the fraction with DECOMPOSED_BINARY_POINT
 | 
						|
 * The following are computed based the size of fraction
 | 
						|
 *   frac_lsb: least significant bit of fraction
 | 
						|
 *   frac_lsbm1: the bit below the least significant bit (for rounding)
 | 
						|
 *   round_mask/roundeven_mask: masks used for rounding
 | 
						|
 * The following optional modifiers are available:
 | 
						|
 *   arm_althp: handle ARM Alternative Half Precision
 | 
						|
 */
 | 
						|
typedef struct {
 | 
						|
    int exp_size;
 | 
						|
    int exp_bias;
 | 
						|
    int exp_max;
 | 
						|
    int frac_size;
 | 
						|
    int frac_shift;
 | 
						|
    uint64_t frac_lsb;
 | 
						|
    uint64_t frac_lsbm1;
 | 
						|
    uint64_t round_mask;
 | 
						|
    uint64_t roundeven_mask;
 | 
						|
    bool arm_althp;
 | 
						|
} FloatFmt;
 | 
						|
 | 
						|
/* Expand fields based on the size of exponent and fraction */
 | 
						|
#define FLOAT_PARAMS(E, F)                                           \
 | 
						|
    .exp_size       = E,                                             \
 | 
						|
    .exp_bias       = ((1 << E) - 1) >> 1,                           \
 | 
						|
    .exp_max        = (1 << E) - 1,                                  \
 | 
						|
    .frac_size      = F,                                             \
 | 
						|
    .frac_shift     = DECOMPOSED_BINARY_POINT - F,                   \
 | 
						|
    .frac_lsb       = 1ull << (DECOMPOSED_BINARY_POINT - F),         \
 | 
						|
    .frac_lsbm1     = 1ull << ((DECOMPOSED_BINARY_POINT - F) - 1),   \
 | 
						|
    .round_mask     = (1ull << (DECOMPOSED_BINARY_POINT - F)) - 1,   \
 | 
						|
    .roundeven_mask = (2ull << (DECOMPOSED_BINARY_POINT - F)) - 1
 | 
						|
 | 
						|
static const FloatFmt float16_params = {
 | 
						|
    FLOAT_PARAMS(5, 10)
 | 
						|
};
 | 
						|
 | 
						|
static const FloatFmt float16_params_ahp = {
 | 
						|
    FLOAT_PARAMS(5, 10),
 | 
						|
    .arm_althp = true
 | 
						|
};
 | 
						|
 | 
						|
static const FloatFmt bfloat16_params = {
 | 
						|
    FLOAT_PARAMS(8, 7)
 | 
						|
};
 | 
						|
 | 
						|
static const FloatFmt float32_params = {
 | 
						|
    FLOAT_PARAMS(8, 23)
 | 
						|
};
 | 
						|
 | 
						|
static const FloatFmt float64_params = {
 | 
						|
    FLOAT_PARAMS(11, 52)
 | 
						|
};
 | 
						|
 | 
						|
/* Unpack a float to parts, but do not canonicalize.  */
 | 
						|
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
 | 
						|
{
 | 
						|
    const int sign_pos = fmt.frac_size + fmt.exp_size;
 | 
						|
 | 
						|
    return (FloatParts) {
 | 
						|
        .cls = float_class_unclassified,
 | 
						|
        .sign = extract64(raw, sign_pos, 1),
 | 
						|
        .exp = extract64(raw, fmt.frac_size, fmt.exp_size),
 | 
						|
        .frac = extract64(raw, 0, fmt.frac_size),
 | 
						|
    };
 | 
						|
}
 | 
						|
 | 
						|
static inline FloatParts float16_unpack_raw(float16 f)
 | 
						|
{
 | 
						|
    return unpack_raw(float16_params, f);
 | 
						|
}
 | 
						|
 | 
						|
static inline FloatParts bfloat16_unpack_raw(bfloat16 f)
 | 
						|
{
 | 
						|
    return unpack_raw(bfloat16_params, f);
 | 
						|
}
 | 
						|
 | 
						|
static inline FloatParts float32_unpack_raw(float32 f)
 | 
						|
{
 | 
						|
    return unpack_raw(float32_params, f);
 | 
						|
}
 | 
						|
 | 
						|
static inline FloatParts float64_unpack_raw(float64 f)
 | 
						|
{
 | 
						|
    return unpack_raw(float64_params, f);
 | 
						|
}
 | 
						|
 | 
						|
/* Pack a float from parts, but do not canonicalize.  */
 | 
						|
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
 | 
						|
{
 | 
						|
    const int sign_pos = fmt.frac_size + fmt.exp_size;
 | 
						|
    uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
 | 
						|
    return deposit64(ret, sign_pos, 1, p.sign);
 | 
						|
}
 | 
						|
 | 
						|
static inline float16 float16_pack_raw(FloatParts p)
 | 
						|
{
 | 
						|
    return make_float16(pack_raw(float16_params, p));
 | 
						|
}
 | 
						|
 | 
						|
static inline bfloat16 bfloat16_pack_raw(FloatParts p)
 | 
						|
{
 | 
						|
    return pack_raw(bfloat16_params, p);
 | 
						|
}
 | 
						|
 | 
						|
static inline float32 float32_pack_raw(FloatParts p)
 | 
						|
{
 | 
						|
    return make_float32(pack_raw(float32_params, p));
 | 
						|
}
 | 
						|
 | 
						|
static inline float64 float64_pack_raw(FloatParts p)
 | 
						|
{
 | 
						|
    return make_float64(pack_raw(float64_params, p));
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Functions and definitions to determine:  (1) whether tininess for underflow
 | 
						|
| is detected before or after rounding by default, (2) what (if anything)
 | 
						|
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | 
						|
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 | 
						|
| are propagated from function inputs to output.  These details are target-
 | 
						|
| specific.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
#include "softfloat-specialize.c.inc"
 | 
						|
 | 
						|
/* Canonicalize EXP and FRAC, setting CLS.  */
 | 
						|
static FloatParts sf_canonicalize(FloatParts part, const FloatFmt *parm,
 | 
						|
                                  float_status *status)
 | 
						|
{
 | 
						|
    if (part.exp == parm->exp_max && !parm->arm_althp) {
 | 
						|
        if (part.frac == 0) {
 | 
						|
            part.cls = float_class_inf;
 | 
						|
        } else {
 | 
						|
            part.frac <<= parm->frac_shift;
 | 
						|
            part.cls = (parts_is_snan_frac(part.frac, status)
 | 
						|
                        ? float_class_snan : float_class_qnan);
 | 
						|
        }
 | 
						|
    } else if (part.exp == 0) {
 | 
						|
        if (likely(part.frac == 0)) {
 | 
						|
            part.cls = float_class_zero;
 | 
						|
        } else if (status->flush_inputs_to_zero) {
 | 
						|
            float_raise(float_flag_input_denormal, status);
 | 
						|
            part.cls = float_class_zero;
 | 
						|
            part.frac = 0;
 | 
						|
        } else {
 | 
						|
            int shift = clz64(part.frac) - 1;
 | 
						|
            part.cls = float_class_normal;
 | 
						|
            part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
 | 
						|
            part.frac <<= shift;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        part.cls = float_class_normal;
 | 
						|
        part.exp -= parm->exp_bias;
 | 
						|
        part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
 | 
						|
    }
 | 
						|
    return part;
 | 
						|
}
 | 
						|
 | 
						|
/* Round and uncanonicalize a floating-point number by parts. There
 | 
						|
 * are FRAC_SHIFT bits that may require rounding at the bottom of the
 | 
						|
 * fraction; these bits will be removed. The exponent will be biased
 | 
						|
 * by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts round_canonical(FloatParts p, float_status *s,
 | 
						|
                                  const FloatFmt *parm)
 | 
						|
{
 | 
						|
    const uint64_t frac_lsb = parm->frac_lsb;
 | 
						|
    const uint64_t frac_lsbm1 = parm->frac_lsbm1;
 | 
						|
    const uint64_t round_mask = parm->round_mask;
 | 
						|
    const uint64_t roundeven_mask = parm->roundeven_mask;
 | 
						|
    const int exp_max = parm->exp_max;
 | 
						|
    const int frac_shift = parm->frac_shift;
 | 
						|
    uint64_t frac, inc;
 | 
						|
    int exp, flags = 0;
 | 
						|
    bool overflow_norm;
 | 
						|
 | 
						|
    frac = p.frac;
 | 
						|
    exp = p.exp;
 | 
						|
 | 
						|
    switch (p.cls) {
 | 
						|
    case float_class_normal:
 | 
						|
        switch (s->float_rounding_mode) {
 | 
						|
        case float_round_nearest_even:
 | 
						|
            overflow_norm = false;
 | 
						|
            inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
 | 
						|
            break;
 | 
						|
        case float_round_ties_away:
 | 
						|
            overflow_norm = false;
 | 
						|
            inc = frac_lsbm1;
 | 
						|
            break;
 | 
						|
        case float_round_to_zero:
 | 
						|
            overflow_norm = true;
 | 
						|
            inc = 0;
 | 
						|
            break;
 | 
						|
        case float_round_up:
 | 
						|
            inc = p.sign ? 0 : round_mask;
 | 
						|
            overflow_norm = p.sign;
 | 
						|
            break;
 | 
						|
        case float_round_down:
 | 
						|
            inc = p.sign ? round_mask : 0;
 | 
						|
            overflow_norm = !p.sign;
 | 
						|
            break;
 | 
						|
        case float_round_to_odd:
 | 
						|
            overflow_norm = true;
 | 
						|
            inc = frac & frac_lsb ? 0 : round_mask;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
 | 
						|
        exp += parm->exp_bias;
 | 
						|
        if (likely(exp > 0)) {
 | 
						|
            if (frac & round_mask) {
 | 
						|
                flags |= float_flag_inexact;
 | 
						|
                frac += inc;
 | 
						|
                if (frac & DECOMPOSED_OVERFLOW_BIT) {
 | 
						|
                    frac >>= 1;
 | 
						|
                    exp++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            frac >>= frac_shift;
 | 
						|
 | 
						|
            if (parm->arm_althp) {
 | 
						|
                /* ARM Alt HP eschews Inf and NaN for a wider exponent.  */
 | 
						|
                if (unlikely(exp > exp_max)) {
 | 
						|
                    /* Overflow.  Return the maximum normal.  */
 | 
						|
                    flags = float_flag_invalid;
 | 
						|
                    exp = exp_max;
 | 
						|
                    frac = -1;
 | 
						|
                }
 | 
						|
            } else if (unlikely(exp >= exp_max)) {
 | 
						|
                flags |= float_flag_overflow | float_flag_inexact;
 | 
						|
                if (overflow_norm) {
 | 
						|
                    exp = exp_max - 1;
 | 
						|
                    frac = -1;
 | 
						|
                } else {
 | 
						|
                    p.cls = float_class_inf;
 | 
						|
                    goto do_inf;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        } else if (s->flush_to_zero) {
 | 
						|
            flags |= float_flag_output_denormal;
 | 
						|
            p.cls = float_class_zero;
 | 
						|
            goto do_zero;
 | 
						|
        } else {
 | 
						|
            bool is_tiny = s->tininess_before_rounding
 | 
						|
                        || (exp < 0)
 | 
						|
                        || !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
 | 
						|
 | 
						|
            shift64RightJamming(frac, 1 - exp, &frac);
 | 
						|
            if (frac & round_mask) {
 | 
						|
                /* Need to recompute round-to-even.  */
 | 
						|
                switch (s->float_rounding_mode) {
 | 
						|
                case float_round_nearest_even:
 | 
						|
                    inc = ((frac & roundeven_mask) != frac_lsbm1
 | 
						|
                           ? frac_lsbm1 : 0);
 | 
						|
                    break;
 | 
						|
                case float_round_to_odd:
 | 
						|
                    inc = frac & frac_lsb ? 0 : round_mask;
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                flags |= float_flag_inexact;
 | 
						|
                frac += inc;
 | 
						|
            }
 | 
						|
 | 
						|
            exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
 | 
						|
            frac >>= frac_shift;
 | 
						|
 | 
						|
            if (is_tiny && (flags & float_flag_inexact)) {
 | 
						|
                flags |= float_flag_underflow;
 | 
						|
            }
 | 
						|
            if (exp == 0 && frac == 0) {
 | 
						|
                p.cls = float_class_zero;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case float_class_zero:
 | 
						|
    do_zero:
 | 
						|
        exp = 0;
 | 
						|
        frac = 0;
 | 
						|
        break;
 | 
						|
 | 
						|
    case float_class_inf:
 | 
						|
    do_inf:
 | 
						|
        assert(!parm->arm_althp);
 | 
						|
        exp = exp_max;
 | 
						|
        frac = 0;
 | 
						|
        break;
 | 
						|
 | 
						|
    case float_class_qnan:
 | 
						|
    case float_class_snan:
 | 
						|
        assert(!parm->arm_althp);
 | 
						|
        exp = exp_max;
 | 
						|
        frac >>= parm->frac_shift;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    float_raise(flags, s);
 | 
						|
    p.exp = exp;
 | 
						|
    p.frac = frac;
 | 
						|
    return p;
 | 
						|
}
 | 
						|
 | 
						|
/* Explicit FloatFmt version */
 | 
						|
static FloatParts float16a_unpack_canonical(float16 f, float_status *s,
 | 
						|
                                            const FloatFmt *params)
 | 
						|
{
 | 
						|
    return sf_canonicalize(float16_unpack_raw(f), params, s);
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
 | 
						|
{
 | 
						|
    return float16a_unpack_canonical(f, s, &float16_params);
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts bfloat16_unpack_canonical(bfloat16 f, float_status *s)
 | 
						|
{
 | 
						|
    return sf_canonicalize(bfloat16_unpack_raw(f), &bfloat16_params, s);
 | 
						|
}
 | 
						|
 | 
						|
static float16 float16a_round_pack_canonical(FloatParts p, float_status *s,
 | 
						|
                                             const FloatFmt *params)
 | 
						|
{
 | 
						|
    return float16_pack_raw(round_canonical(p, s, params));
 | 
						|
}
 | 
						|
 | 
						|
static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
 | 
						|
{
 | 
						|
    return float16a_round_pack_canonical(p, s, &float16_params);
 | 
						|
}
 | 
						|
 | 
						|
static bfloat16 bfloat16_round_pack_canonical(FloatParts p, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_pack_raw(round_canonical(p, s, &bfloat16_params));
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts float32_unpack_canonical(float32 f, float_status *s)
 | 
						|
{
 | 
						|
    return sf_canonicalize(float32_unpack_raw(f), &float32_params, s);
 | 
						|
}
 | 
						|
 | 
						|
static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
 | 
						|
{
 | 
						|
    return float32_pack_raw(round_canonical(p, s, &float32_params));
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts float64_unpack_canonical(float64 f, float_status *s)
 | 
						|
{
 | 
						|
    return sf_canonicalize(float64_unpack_raw(f), &float64_params, s);
 | 
						|
}
 | 
						|
 | 
						|
static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
 | 
						|
{
 | 
						|
    return float64_pack_raw(round_canonical(p, s, &float64_params));
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts return_nan(FloatParts a, float_status *s)
 | 
						|
{
 | 
						|
    switch (a.cls) {
 | 
						|
    case float_class_snan:
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
        a = parts_silence_nan(a, s);
 | 
						|
        /* fall through */
 | 
						|
    case float_class_qnan:
 | 
						|
        if (s->default_nan_mode) {
 | 
						|
            return parts_default_nan(s);
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
 | 
						|
{
 | 
						|
    if (is_snan(a.cls) || is_snan(b.cls)) {
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->default_nan_mode) {
 | 
						|
        return parts_default_nan(s);
 | 
						|
    } else {
 | 
						|
        if (pickNaN(a.cls, b.cls,
 | 
						|
                    a.frac > b.frac ||
 | 
						|
                    (a.frac == b.frac && a.sign < b.sign), s)) {
 | 
						|
            a = b;
 | 
						|
        }
 | 
						|
        if (is_snan(a.cls)) {
 | 
						|
            return parts_silence_nan(a, s);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
static FloatParts pick_nan_muladd(FloatParts a, FloatParts b, FloatParts c,
 | 
						|
                                  bool inf_zero, float_status *s)
 | 
						|
{
 | 
						|
    int which;
 | 
						|
 | 
						|
    if (is_snan(a.cls) || is_snan(b.cls) || is_snan(c.cls)) {
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
    }
 | 
						|
 | 
						|
    which = pickNaNMulAdd(a.cls, b.cls, c.cls, inf_zero, s);
 | 
						|
 | 
						|
    if (s->default_nan_mode) {
 | 
						|
        /* Note that this check is after pickNaNMulAdd so that function
 | 
						|
         * has an opportunity to set the Invalid flag.
 | 
						|
         */
 | 
						|
        which = 3;
 | 
						|
    }
 | 
						|
 | 
						|
    switch (which) {
 | 
						|
    case 0:
 | 
						|
        break;
 | 
						|
    case 1:
 | 
						|
        a = b;
 | 
						|
        break;
 | 
						|
    case 2:
 | 
						|
        a = c;
 | 
						|
        break;
 | 
						|
    case 3:
 | 
						|
        return parts_default_nan(s);
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
 | 
						|
    if (is_snan(a.cls)) {
 | 
						|
        return parts_silence_nan(a, s);
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of adding or subtracting the values of the
 | 
						|
 * floating-point values `a' and `b'. The operation is performed
 | 
						|
 * according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
 * Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    bool a_sign = a.sign;
 | 
						|
    bool b_sign = b.sign ^ subtract;
 | 
						|
 | 
						|
    if (a_sign != b_sign) {
 | 
						|
        /* Subtraction */
 | 
						|
 | 
						|
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | 
						|
            if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
 | 
						|
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
 | 
						|
                a.frac = a.frac - b.frac;
 | 
						|
            } else {
 | 
						|
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
 | 
						|
                a.frac = b.frac - a.frac;
 | 
						|
                a.exp = b.exp;
 | 
						|
                a_sign ^= 1;
 | 
						|
            }
 | 
						|
 | 
						|
            if (a.frac == 0) {
 | 
						|
                a.cls = float_class_zero;
 | 
						|
                a.sign = s->float_rounding_mode == float_round_down;
 | 
						|
            } else {
 | 
						|
                int shift = clz64(a.frac) - 1;
 | 
						|
                a.frac = a.frac << shift;
 | 
						|
                a.exp = a.exp - shift;
 | 
						|
                a.sign = a_sign;
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if (is_nan(a.cls) || is_nan(b.cls)) {
 | 
						|
            return pick_nan(a, b, s);
 | 
						|
        }
 | 
						|
        if (a.cls == float_class_inf) {
 | 
						|
            if (b.cls == float_class_inf) {
 | 
						|
                float_raise(float_flag_invalid, s);
 | 
						|
                return parts_default_nan(s);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if (a.cls == float_class_zero && b.cls == float_class_zero) {
 | 
						|
            a.sign = s->float_rounding_mode == float_round_down;
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if (a.cls == float_class_zero || b.cls == float_class_inf) {
 | 
						|
            b.sign = a_sign ^ 1;
 | 
						|
            return b;
 | 
						|
        }
 | 
						|
        if (b.cls == float_class_zero) {
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Addition */
 | 
						|
        if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | 
						|
            if (a.exp > b.exp) {
 | 
						|
                shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
 | 
						|
            } else if (a.exp < b.exp) {
 | 
						|
                shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
 | 
						|
                a.exp = b.exp;
 | 
						|
            }
 | 
						|
            a.frac += b.frac;
 | 
						|
            if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
 | 
						|
                shift64RightJamming(a.frac, 1, &a.frac);
 | 
						|
                a.exp += 1;
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if (is_nan(a.cls) || is_nan(b.cls)) {
 | 
						|
            return pick_nan(a, b, s);
 | 
						|
        }
 | 
						|
        if (a.cls == float_class_inf || b.cls == float_class_zero) {
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if (b.cls == float_class_inf || a.cls == float_class_zero) {
 | 
						|
            b.sign = b_sign;
 | 
						|
            return b;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of adding or subtracting the floating-point
 | 
						|
 * values `a' and `b'. The operation is performed according to the
 | 
						|
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
float16 QEMU_FLATTEN float16_add(float16 a, float16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = addsub_floats(pa, pb, false, status);
 | 
						|
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 QEMU_FLATTEN float16_sub(float16 a, float16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = addsub_floats(pa, pb, true, status);
 | 
						|
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float32 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f32_addsub(float32 a, float32 b, bool subtract, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float32_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = addsub_floats(pa, pb, subtract, status);
 | 
						|
 | 
						|
    return float32_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static inline float32 soft_f32_add(float32 a, float32 b, float_status *status)
 | 
						|
{
 | 
						|
    return soft_f32_addsub(a, b, false, status);
 | 
						|
}
 | 
						|
 | 
						|
static inline float32 soft_f32_sub(float32 a, float32 b, float_status *status)
 | 
						|
{
 | 
						|
    return soft_f32_addsub(a, b, true, status);
 | 
						|
}
 | 
						|
 | 
						|
static float64 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f64_addsub(float64 a, float64 b, bool subtract, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float64_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = addsub_floats(pa, pb, subtract, status);
 | 
						|
 | 
						|
    return float64_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static inline float64 soft_f64_add(float64 a, float64 b, float_status *status)
 | 
						|
{
 | 
						|
    return soft_f64_addsub(a, b, false, status);
 | 
						|
}
 | 
						|
 | 
						|
static inline float64 soft_f64_sub(float64 a, float64 b, float_status *status)
 | 
						|
{
 | 
						|
    return soft_f64_addsub(a, b, true, status);
 | 
						|
}
 | 
						|
 | 
						|
static float hard_f32_add(float a, float b)
 | 
						|
{
 | 
						|
    return a + b;
 | 
						|
}
 | 
						|
 | 
						|
static float hard_f32_sub(float a, float b)
 | 
						|
{
 | 
						|
    return a - b;
 | 
						|
}
 | 
						|
 | 
						|
static double hard_f64_add(double a, double b)
 | 
						|
{
 | 
						|
    return a + b;
 | 
						|
}
 | 
						|
 | 
						|
static double hard_f64_sub(double a, double b)
 | 
						|
{
 | 
						|
    return a - b;
 | 
						|
}
 | 
						|
 | 
						|
static bool f32_addsubmul_post(union_float32 a, union_float32 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | 
						|
        return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
 | 
						|
    }
 | 
						|
    return !(float32_is_zero(a.s) && float32_is_zero(b.s));
 | 
						|
}
 | 
						|
 | 
						|
static bool f64_addsubmul_post(union_float64 a, union_float64 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | 
						|
        return !(fpclassify(a.h) == FP_ZERO && fpclassify(b.h) == FP_ZERO);
 | 
						|
    } else {
 | 
						|
        return !(float64_is_zero(a.s) && float64_is_zero(b.s));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static float32 float32_addsub(float32 a, float32 b, float_status *s,
 | 
						|
                              hard_f32_op2_fn hard, soft_f32_op2_fn soft)
 | 
						|
{
 | 
						|
    return float32_gen2(a, b, s, hard, soft,
 | 
						|
                        f32_is_zon2, f32_addsubmul_post);
 | 
						|
}
 | 
						|
 | 
						|
static float64 float64_addsub(float64 a, float64 b, float_status *s,
 | 
						|
                              hard_f64_op2_fn hard, soft_f64_op2_fn soft)
 | 
						|
{
 | 
						|
    return float64_gen2(a, b, s, hard, soft,
 | 
						|
                        f64_is_zon2, f64_addsubmul_post);
 | 
						|
}
 | 
						|
 | 
						|
float32 QEMU_FLATTEN
 | 
						|
float32_add(float32 a, float32 b, float_status *s)
 | 
						|
{
 | 
						|
    return float32_addsub(a, b, s, hard_f32_add, soft_f32_add);
 | 
						|
}
 | 
						|
 | 
						|
float32 QEMU_FLATTEN
 | 
						|
float32_sub(float32 a, float32 b, float_status *s)
 | 
						|
{
 | 
						|
    return float32_addsub(a, b, s, hard_f32_sub, soft_f32_sub);
 | 
						|
}
 | 
						|
 | 
						|
float64 QEMU_FLATTEN
 | 
						|
float64_add(float64 a, float64 b, float_status *s)
 | 
						|
{
 | 
						|
    return float64_addsub(a, b, s, hard_f64_add, soft_f64_add);
 | 
						|
}
 | 
						|
 | 
						|
float64 QEMU_FLATTEN
 | 
						|
float64_sub(float64 a, float64 b, float_status *s)
 | 
						|
{
 | 
						|
    return float64_addsub(a, b, s, hard_f64_sub, soft_f64_sub);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of adding or subtracting the bfloat16
 | 
						|
 * values `a' and `b'.
 | 
						|
 */
 | 
						|
bfloat16 QEMU_FLATTEN bfloat16_add(bfloat16 a, bfloat16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = addsub_floats(pa, pb, false, status);
 | 
						|
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 QEMU_FLATTEN bfloat16_sub(bfloat16 a, bfloat16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = addsub_floats(pa, pb, true, status);
 | 
						|
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of multiplying the floating-point values `a' and
 | 
						|
 * `b'. The operation is performed according to the IEC/IEEE Standard
 | 
						|
 * for Binary Floating-Point Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts mul_floats(FloatParts a, FloatParts b, float_status *s)
 | 
						|
{
 | 
						|
    bool sign = a.sign ^ b.sign;
 | 
						|
 | 
						|
    if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | 
						|
        uint64_t hi, lo;
 | 
						|
        int exp = a.exp + b.exp;
 | 
						|
 | 
						|
        mul64To128(a.frac, b.frac, &hi, &lo);
 | 
						|
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | 
						|
        if (lo & DECOMPOSED_OVERFLOW_BIT) {
 | 
						|
            shift64RightJamming(lo, 1, &lo);
 | 
						|
            exp += 1;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Re-use a */
 | 
						|
        a.exp = exp;
 | 
						|
        a.sign = sign;
 | 
						|
        a.frac = lo;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    /* handle all the NaN cases */
 | 
						|
    if (is_nan(a.cls) || is_nan(b.cls)) {
 | 
						|
        return pick_nan(a, b, s);
 | 
						|
    }
 | 
						|
    /* Inf * Zero == NaN */
 | 
						|
    if ((a.cls == float_class_inf && b.cls == float_class_zero) ||
 | 
						|
        (a.cls == float_class_zero && b.cls == float_class_inf)) {
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
        return parts_default_nan(s);
 | 
						|
    }
 | 
						|
    /* Multiply by 0 or Inf */
 | 
						|
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
 | 
						|
        a.sign = sign;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if (b.cls == float_class_inf || b.cls == float_class_zero) {
 | 
						|
        b.sign = sign;
 | 
						|
        return b;
 | 
						|
    }
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
float16 QEMU_FLATTEN float16_mul(float16 a, float16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = mul_floats(pa, pb, status);
 | 
						|
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float32 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f32_mul(float32 a, float32 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float32_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = mul_floats(pa, pb, status);
 | 
						|
 | 
						|
    return float32_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float64 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f64_mul(float64 a, float64 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float64_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = mul_floats(pa, pb, status);
 | 
						|
 | 
						|
    return float64_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float hard_f32_mul(float a, float b)
 | 
						|
{
 | 
						|
    return a * b;
 | 
						|
}
 | 
						|
 | 
						|
static double hard_f64_mul(double a, double b)
 | 
						|
{
 | 
						|
    return a * b;
 | 
						|
}
 | 
						|
 | 
						|
float32 QEMU_FLATTEN
 | 
						|
float32_mul(float32 a, float32 b, float_status *s)
 | 
						|
{
 | 
						|
    return float32_gen2(a, b, s, hard_f32_mul, soft_f32_mul,
 | 
						|
                        f32_is_zon2, f32_addsubmul_post);
 | 
						|
}
 | 
						|
 | 
						|
float64 QEMU_FLATTEN
 | 
						|
float64_mul(float64 a, float64 b, float_status *s)
 | 
						|
{
 | 
						|
    return float64_gen2(a, b, s, hard_f64_mul, soft_f64_mul,
 | 
						|
                        f64_is_zon2, f64_addsubmul_post);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of multiplying the bfloat16
 | 
						|
 * values `a' and `b'.
 | 
						|
 */
 | 
						|
 | 
						|
bfloat16 QEMU_FLATTEN bfloat16_mul(bfloat16 a, bfloat16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = mul_floats(pa, pb, status);
 | 
						|
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of multiplying the floating-point values `a' and
 | 
						|
 * `b' then adding 'c', with no intermediate rounding step after the
 | 
						|
 * multiplication. The operation is performed according to the
 | 
						|
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic 754-2008.
 | 
						|
 * The flags argument allows the caller to select negation of the
 | 
						|
 * addend, the intermediate product, or the final result. (The
 | 
						|
 * difference between this and having the caller do a separate
 | 
						|
 * negation is that negating externally will flip the sign bit on
 | 
						|
 * NaNs.)
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts muladd_floats(FloatParts a, FloatParts b, FloatParts c,
 | 
						|
                                int flags, float_status *s)
 | 
						|
{
 | 
						|
    bool inf_zero = ((1 << a.cls) | (1 << b.cls)) ==
 | 
						|
                    ((1 << float_class_inf) | (1 << float_class_zero));
 | 
						|
    bool p_sign;
 | 
						|
    bool sign_flip = flags & float_muladd_negate_result;
 | 
						|
    FloatClass p_class;
 | 
						|
    uint64_t hi, lo;
 | 
						|
    int p_exp;
 | 
						|
 | 
						|
    /* It is implementation-defined whether the cases of (0,inf,qnan)
 | 
						|
     * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
 | 
						|
     * they return if they do), so we have to hand this information
 | 
						|
     * off to the target-specific pick-a-NaN routine.
 | 
						|
     */
 | 
						|
    if (is_nan(a.cls) || is_nan(b.cls) || is_nan(c.cls)) {
 | 
						|
        return pick_nan_muladd(a, b, c, inf_zero, s);
 | 
						|
    }
 | 
						|
 | 
						|
    if (inf_zero) {
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
        return parts_default_nan(s);
 | 
						|
    }
 | 
						|
 | 
						|
    if (flags & float_muladd_negate_c) {
 | 
						|
        c.sign ^= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    p_sign = a.sign ^ b.sign;
 | 
						|
 | 
						|
    if (flags & float_muladd_negate_product) {
 | 
						|
        p_sign ^= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a.cls == float_class_inf || b.cls == float_class_inf) {
 | 
						|
        p_class = float_class_inf;
 | 
						|
    } else if (a.cls == float_class_zero || b.cls == float_class_zero) {
 | 
						|
        p_class = float_class_zero;
 | 
						|
    } else {
 | 
						|
        p_class = float_class_normal;
 | 
						|
    }
 | 
						|
 | 
						|
    if (c.cls == float_class_inf) {
 | 
						|
        if (p_class == float_class_inf && p_sign != c.sign) {
 | 
						|
            s->float_exception_flags |= float_flag_invalid;
 | 
						|
            return parts_default_nan(s);
 | 
						|
        } else {
 | 
						|
            a.cls = float_class_inf;
 | 
						|
            a.sign = c.sign ^ sign_flip;
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (p_class == float_class_inf) {
 | 
						|
        a.cls = float_class_inf;
 | 
						|
        a.sign = p_sign ^ sign_flip;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    if (p_class == float_class_zero) {
 | 
						|
        if (c.cls == float_class_zero) {
 | 
						|
            if (p_sign != c.sign) {
 | 
						|
                p_sign = s->float_rounding_mode == float_round_down;
 | 
						|
            }
 | 
						|
            c.sign = p_sign;
 | 
						|
        } else if (flags & float_muladd_halve_result) {
 | 
						|
            c.exp -= 1;
 | 
						|
        }
 | 
						|
        c.sign ^= sign_flip;
 | 
						|
        return c;
 | 
						|
    }
 | 
						|
 | 
						|
    /* a & b should be normals now... */
 | 
						|
    assert(a.cls == float_class_normal &&
 | 
						|
           b.cls == float_class_normal);
 | 
						|
 | 
						|
    p_exp = a.exp + b.exp;
 | 
						|
 | 
						|
    /* Multiply of 2 62-bit numbers produces a (2*62) == 124-bit
 | 
						|
     * result.
 | 
						|
     */
 | 
						|
    mul64To128(a.frac, b.frac, &hi, &lo);
 | 
						|
    /* binary point now at bit 124 */
 | 
						|
 | 
						|
    /* check for overflow */
 | 
						|
    if (hi & (1ULL << (DECOMPOSED_BINARY_POINT * 2 + 1 - 64))) {
 | 
						|
        shift128RightJamming(hi, lo, 1, &hi, &lo);
 | 
						|
        p_exp += 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* + add/sub */
 | 
						|
    if (c.cls == float_class_zero) {
 | 
						|
        /* move binary point back to 62 */
 | 
						|
        shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | 
						|
    } else {
 | 
						|
        int exp_diff = p_exp - c.exp;
 | 
						|
        if (p_sign == c.sign) {
 | 
						|
            /* Addition */
 | 
						|
            if (exp_diff <= 0) {
 | 
						|
                shift128RightJamming(hi, lo,
 | 
						|
                                     DECOMPOSED_BINARY_POINT - exp_diff,
 | 
						|
                                     &hi, &lo);
 | 
						|
                lo += c.frac;
 | 
						|
                p_exp = c.exp;
 | 
						|
            } else {
 | 
						|
                uint64_t c_hi, c_lo;
 | 
						|
                /* shift c to the same binary point as the product (124) */
 | 
						|
                c_hi = c.frac >> 2;
 | 
						|
                c_lo = 0;
 | 
						|
                shift128RightJamming(c_hi, c_lo,
 | 
						|
                                     exp_diff,
 | 
						|
                                     &c_hi, &c_lo);
 | 
						|
                add128(hi, lo, c_hi, c_lo, &hi, &lo);
 | 
						|
                /* move binary point back to 62 */
 | 
						|
                shift128RightJamming(hi, lo, DECOMPOSED_BINARY_POINT, &hi, &lo);
 | 
						|
            }
 | 
						|
 | 
						|
            if (lo & DECOMPOSED_OVERFLOW_BIT) {
 | 
						|
                shift64RightJamming(lo, 1, &lo);
 | 
						|
                p_exp += 1;
 | 
						|
            }
 | 
						|
 | 
						|
        } else {
 | 
						|
            /* Subtraction */
 | 
						|
            uint64_t c_hi, c_lo;
 | 
						|
            /* make C binary point match product at bit 124 */
 | 
						|
            c_hi = c.frac >> 2;
 | 
						|
            c_lo = 0;
 | 
						|
 | 
						|
            if (exp_diff <= 0) {
 | 
						|
                shift128RightJamming(hi, lo, -exp_diff, &hi, &lo);
 | 
						|
                if (exp_diff == 0
 | 
						|
                    &&
 | 
						|
                    (hi > c_hi || (hi == c_hi && lo >= c_lo))) {
 | 
						|
                    sub128(hi, lo, c_hi, c_lo, &hi, &lo);
 | 
						|
                } else {
 | 
						|
                    sub128(c_hi, c_lo, hi, lo, &hi, &lo);
 | 
						|
                    p_sign ^= 1;
 | 
						|
                    p_exp = c.exp;
 | 
						|
                }
 | 
						|
            } else {
 | 
						|
                shift128RightJamming(c_hi, c_lo,
 | 
						|
                                     exp_diff,
 | 
						|
                                     &c_hi, &c_lo);
 | 
						|
                sub128(hi, lo, c_hi, c_lo, &hi, &lo);
 | 
						|
            }
 | 
						|
 | 
						|
            if (hi == 0 && lo == 0) {
 | 
						|
                a.cls = float_class_zero;
 | 
						|
                a.sign = s->float_rounding_mode == float_round_down;
 | 
						|
                a.sign ^= sign_flip;
 | 
						|
                return a;
 | 
						|
            } else {
 | 
						|
                int shift;
 | 
						|
                if (hi != 0) {
 | 
						|
                    shift = clz64(hi);
 | 
						|
                } else {
 | 
						|
                    shift = clz64(lo) + 64;
 | 
						|
                }
 | 
						|
                /* Normalizing to a binary point of 124 is the
 | 
						|
                   correct adjust for the exponent.  However since we're
 | 
						|
                   shifting, we might as well put the binary point back
 | 
						|
                   at 62 where we really want it.  Therefore shift as
 | 
						|
                   if we're leaving 1 bit at the top of the word, but
 | 
						|
                   adjust the exponent as if we're leaving 3 bits.  */
 | 
						|
                shift -= 1;
 | 
						|
                if (shift >= 64) {
 | 
						|
                    lo = lo << (shift - 64);
 | 
						|
                } else {
 | 
						|
                    hi = (hi << shift) | (lo >> (64 - shift));
 | 
						|
                    lo = hi | ((lo << shift) != 0);
 | 
						|
                }
 | 
						|
                p_exp -= shift - 2;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (flags & float_muladd_halve_result) {
 | 
						|
        p_exp -= 1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* finally prepare our result */
 | 
						|
    a.cls = float_class_normal;
 | 
						|
    a.sign = p_sign ^ sign_flip;
 | 
						|
    a.exp = p_exp;
 | 
						|
    a.frac = lo;
 | 
						|
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float16 QEMU_FLATTEN float16_muladd(float16 a, float16 b, float16 c,
 | 
						|
                                                int flags, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float16_unpack_canonical(b, status);
 | 
						|
    FloatParts pc = float16_unpack_canonical(c, status);
 | 
						|
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | 
						|
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float32 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f32_muladd(float32 a, float32 b, float32 c, int flags,
 | 
						|
                float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float32_unpack_canonical(b, status);
 | 
						|
    FloatParts pc = float32_unpack_canonical(c, status);
 | 
						|
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | 
						|
 | 
						|
    return float32_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float64 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f64_muladd(float64 a, float64 b, float64 c, int flags,
 | 
						|
                float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float64_unpack_canonical(b, status);
 | 
						|
    FloatParts pc = float64_unpack_canonical(c, status);
 | 
						|
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | 
						|
 | 
						|
    return float64_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static bool force_soft_fma;
 | 
						|
 | 
						|
float32 QEMU_FLATTEN
 | 
						|
float32_muladd(float32 xa, float32 xb, float32 xc, int flags, float_status *s)
 | 
						|
{
 | 
						|
    union_float32 ua, ub, uc, ur;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    ub.s = xb;
 | 
						|
    uc.s = xc;
 | 
						|
 | 
						|
    if (unlikely(!can_use_fpu(s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
    if (unlikely(flags & float_muladd_halve_result)) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float32_input_flush3(&ua.s, &ub.s, &uc.s, s);
 | 
						|
    if (unlikely(!f32_is_zon3(ua, ub, uc))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(force_soft_fma)) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * When (a || b) == 0, there's no need to check for under/over flow,
 | 
						|
     * since we know the addend is (normal || 0) and the product is 0.
 | 
						|
     */
 | 
						|
    if (float32_is_zero(ua.s) || float32_is_zero(ub.s)) {
 | 
						|
        union_float32 up;
 | 
						|
        bool prod_sign;
 | 
						|
 | 
						|
        prod_sign = float32_is_neg(ua.s) ^ float32_is_neg(ub.s);
 | 
						|
        prod_sign ^= !!(flags & float_muladd_negate_product);
 | 
						|
        up.s = float32_set_sign(float32_zero, prod_sign);
 | 
						|
 | 
						|
        if (flags & float_muladd_negate_c) {
 | 
						|
            uc.h = -uc.h;
 | 
						|
        }
 | 
						|
        ur.h = up.h + uc.h;
 | 
						|
    } else {
 | 
						|
        union_float32 ua_orig = ua;
 | 
						|
        union_float32 uc_orig = uc;
 | 
						|
 | 
						|
        if (flags & float_muladd_negate_product) {
 | 
						|
            ua.h = -ua.h;
 | 
						|
        }
 | 
						|
        if (flags & float_muladd_negate_c) {
 | 
						|
            uc.h = -uc.h;
 | 
						|
        }
 | 
						|
 | 
						|
        ur.h = fmaf(ua.h, ub.h, uc.h);
 | 
						|
 | 
						|
        if (unlikely(f32_is_inf(ur))) {
 | 
						|
            s->float_exception_flags |= float_flag_overflow;
 | 
						|
        } else if (unlikely(fabsf(ur.h) <= FLT_MIN)) {
 | 
						|
            ua = ua_orig;
 | 
						|
            uc = uc_orig;
 | 
						|
            goto soft;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (flags & float_muladd_negate_result) {
 | 
						|
        return float32_chs(ur.s);
 | 
						|
    }
 | 
						|
    return ur.s;
 | 
						|
 | 
						|
 soft:
 | 
						|
    return soft_f32_muladd(ua.s, ub.s, uc.s, flags, s);
 | 
						|
}
 | 
						|
 | 
						|
float64 QEMU_FLATTEN
 | 
						|
float64_muladd(float64 xa, float64 xb, float64 xc, int flags, float_status *s)
 | 
						|
{
 | 
						|
    union_float64 ua, ub, uc, ur;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    ub.s = xb;
 | 
						|
    uc.s = xc;
 | 
						|
 | 
						|
    if (unlikely(!can_use_fpu(s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
    if (unlikely(flags & float_muladd_halve_result)) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float64_input_flush3(&ua.s, &ub.s, &uc.s, s);
 | 
						|
    if (unlikely(!f64_is_zon3(ua, ub, uc))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    if (unlikely(force_soft_fma)) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * When (a || b) == 0, there's no need to check for under/over flow,
 | 
						|
     * since we know the addend is (normal || 0) and the product is 0.
 | 
						|
     */
 | 
						|
    if (float64_is_zero(ua.s) || float64_is_zero(ub.s)) {
 | 
						|
        union_float64 up;
 | 
						|
        bool prod_sign;
 | 
						|
 | 
						|
        prod_sign = float64_is_neg(ua.s) ^ float64_is_neg(ub.s);
 | 
						|
        prod_sign ^= !!(flags & float_muladd_negate_product);
 | 
						|
        up.s = float64_set_sign(float64_zero, prod_sign);
 | 
						|
 | 
						|
        if (flags & float_muladd_negate_c) {
 | 
						|
            uc.h = -uc.h;
 | 
						|
        }
 | 
						|
        ur.h = up.h + uc.h;
 | 
						|
    } else {
 | 
						|
        union_float64 ua_orig = ua;
 | 
						|
        union_float64 uc_orig = uc;
 | 
						|
 | 
						|
        if (flags & float_muladd_negate_product) {
 | 
						|
            ua.h = -ua.h;
 | 
						|
        }
 | 
						|
        if (flags & float_muladd_negate_c) {
 | 
						|
            uc.h = -uc.h;
 | 
						|
        }
 | 
						|
 | 
						|
        ur.h = fma(ua.h, ub.h, uc.h);
 | 
						|
 | 
						|
        if (unlikely(f64_is_inf(ur))) {
 | 
						|
            s->float_exception_flags |= float_flag_overflow;
 | 
						|
        } else if (unlikely(fabs(ur.h) <= FLT_MIN)) {
 | 
						|
            ua = ua_orig;
 | 
						|
            uc = uc_orig;
 | 
						|
            goto soft;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (flags & float_muladd_negate_result) {
 | 
						|
        return float64_chs(ur.s);
 | 
						|
    }
 | 
						|
    return ur.s;
 | 
						|
 | 
						|
 soft:
 | 
						|
    return soft_f64_muladd(ua.s, ub.s, uc.s, flags, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of multiplying the bfloat16 values `a'
 | 
						|
 * and `b' then adding 'c', with no intermediate rounding step after the
 | 
						|
 * multiplication.
 | 
						|
 */
 | 
						|
 | 
						|
bfloat16 QEMU_FLATTEN bfloat16_muladd(bfloat16 a, bfloat16 b, bfloat16 c,
 | 
						|
                                      int flags, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, status);
 | 
						|
    FloatParts pc = bfloat16_unpack_canonical(c, status);
 | 
						|
    FloatParts pr = muladd_floats(pa, pb, pc, flags, status);
 | 
						|
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of dividing the floating-point value `a' by the
 | 
						|
 * corresponding value `b'. The operation is performed according to
 | 
						|
 * the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
 | 
						|
{
 | 
						|
    bool sign = a.sign ^ b.sign;
 | 
						|
 | 
						|
    if (a.cls == float_class_normal && b.cls == float_class_normal) {
 | 
						|
        uint64_t n0, n1, q, r;
 | 
						|
        int exp = a.exp - b.exp;
 | 
						|
 | 
						|
        /*
 | 
						|
         * We want a 2*N / N-bit division to produce exactly an N-bit
 | 
						|
         * result, so that we do not lose any precision and so that we
 | 
						|
         * do not have to renormalize afterward.  If A.frac < B.frac,
 | 
						|
         * then division would produce an (N-1)-bit result; shift A left
 | 
						|
         * by one to produce the an N-bit result, and decrement the
 | 
						|
         * exponent to match.
 | 
						|
         *
 | 
						|
         * The udiv_qrnnd algorithm that we're using requires normalization,
 | 
						|
         * i.e. the msb of the denominator must be set.  Since we know that
 | 
						|
         * DECOMPOSED_BINARY_POINT is msb-1, the inputs must be shifted left
 | 
						|
         * by one (more), and the remainder must be shifted right by one.
 | 
						|
         */
 | 
						|
        if (a.frac < b.frac) {
 | 
						|
            exp -= 1;
 | 
						|
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 2, &n1, &n0);
 | 
						|
        } else {
 | 
						|
            shift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1, &n1, &n0);
 | 
						|
        }
 | 
						|
        q = udiv_qrnnd(&r, n1, n0, b.frac << 1);
 | 
						|
 | 
						|
        /*
 | 
						|
         * Set lsb if there is a remainder, to set inexact.
 | 
						|
         * As mentioned above, to find the actual value of the remainder we
 | 
						|
         * would need to shift right, but (1) we are only concerned about
 | 
						|
         * non-zero-ness, and (2) the remainder will always be even because
 | 
						|
         * both inputs to the division primitive are even.
 | 
						|
         */
 | 
						|
        a.frac = q | (r != 0);
 | 
						|
        a.sign = sign;
 | 
						|
        a.exp = exp;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    /* handle all the NaN cases */
 | 
						|
    if (is_nan(a.cls) || is_nan(b.cls)) {
 | 
						|
        return pick_nan(a, b, s);
 | 
						|
    }
 | 
						|
    /* 0/0 or Inf/Inf */
 | 
						|
    if (a.cls == b.cls
 | 
						|
        &&
 | 
						|
        (a.cls == float_class_inf || a.cls == float_class_zero)) {
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
        return parts_default_nan(s);
 | 
						|
    }
 | 
						|
    /* Inf / x or 0 / x */
 | 
						|
    if (a.cls == float_class_inf || a.cls == float_class_zero) {
 | 
						|
        a.sign = sign;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    /* Div 0 => Inf */
 | 
						|
    if (b.cls == float_class_zero) {
 | 
						|
        s->float_exception_flags |= float_flag_divbyzero;
 | 
						|
        a.cls = float_class_inf;
 | 
						|
        a.sign = sign;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    /* Div by Inf */
 | 
						|
    if (b.cls == float_class_inf) {
 | 
						|
        a.cls = float_class_zero;
 | 
						|
        a.sign = sign;
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
float16 float16_div(float16 a, float16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = div_floats(pa, pb, status);
 | 
						|
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float32 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f32_div(float32 a, float32 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float32_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = div_floats(pa, pb, status);
 | 
						|
 | 
						|
    return float32_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float64 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f64_div(float64 a, float64 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = float64_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = div_floats(pa, pb, status);
 | 
						|
 | 
						|
    return float64_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float hard_f32_div(float a, float b)
 | 
						|
{
 | 
						|
    return a / b;
 | 
						|
}
 | 
						|
 | 
						|
static double hard_f64_div(double a, double b)
 | 
						|
{
 | 
						|
    return a / b;
 | 
						|
}
 | 
						|
 | 
						|
static bool f32_div_pre(union_float32 a, union_float32 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | 
						|
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | 
						|
               fpclassify(b.h) == FP_NORMAL;
 | 
						|
    }
 | 
						|
    return float32_is_zero_or_normal(a.s) && float32_is_normal(b.s);
 | 
						|
}
 | 
						|
 | 
						|
static bool f64_div_pre(union_float64 a, union_float64 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | 
						|
        return (fpclassify(a.h) == FP_NORMAL || fpclassify(a.h) == FP_ZERO) &&
 | 
						|
               fpclassify(b.h) == FP_NORMAL;
 | 
						|
    }
 | 
						|
    return float64_is_zero_or_normal(a.s) && float64_is_normal(b.s);
 | 
						|
}
 | 
						|
 | 
						|
static bool f32_div_post(union_float32 a, union_float32 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F32_USE_FP) {
 | 
						|
        return fpclassify(a.h) != FP_ZERO;
 | 
						|
    }
 | 
						|
    return !float32_is_zero(a.s);
 | 
						|
}
 | 
						|
 | 
						|
static bool f64_div_post(union_float64 a, union_float64 b)
 | 
						|
{
 | 
						|
    if (QEMU_HARDFLOAT_2F64_USE_FP) {
 | 
						|
        return fpclassify(a.h) != FP_ZERO;
 | 
						|
    }
 | 
						|
    return !float64_is_zero(a.s);
 | 
						|
}
 | 
						|
 | 
						|
float32 QEMU_FLATTEN
 | 
						|
float32_div(float32 a, float32 b, float_status *s)
 | 
						|
{
 | 
						|
    return float32_gen2(a, b, s, hard_f32_div, soft_f32_div,
 | 
						|
                        f32_div_pre, f32_div_post);
 | 
						|
}
 | 
						|
 | 
						|
float64 QEMU_FLATTEN
 | 
						|
float64_div(float64 a, float64 b, float_status *s)
 | 
						|
{
 | 
						|
    return float64_gen2(a, b, s, hard_f64_div, soft_f64_div,
 | 
						|
                        f64_div_pre, f64_div_post);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of dividing the bfloat16
 | 
						|
 * value `a' by the corresponding value `b'.
 | 
						|
 */
 | 
						|
 | 
						|
bfloat16 bfloat16_div(bfloat16 a, bfloat16 b, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, status);
 | 
						|
    FloatParts pr = div_floats(pa, pb, status);
 | 
						|
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Float to Float conversions
 | 
						|
 *
 | 
						|
 * Returns the result of converting one float format to another. The
 | 
						|
 * conversion is performed according to the IEC/IEEE Standard for
 | 
						|
 * Binary Floating-Point Arithmetic.
 | 
						|
 *
 | 
						|
 * The float_to_float helper only needs to take care of raising
 | 
						|
 * invalid exceptions and handling the conversion on NaNs.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts float_to_float(FloatParts a, const FloatFmt *dstf,
 | 
						|
                                 float_status *s)
 | 
						|
{
 | 
						|
    if (dstf->arm_althp) {
 | 
						|
        switch (a.cls) {
 | 
						|
        case float_class_qnan:
 | 
						|
        case float_class_snan:
 | 
						|
            /* There is no NaN in the destination format.  Raise Invalid
 | 
						|
             * and return a zero with the sign of the input NaN.
 | 
						|
             */
 | 
						|
            s->float_exception_flags |= float_flag_invalid;
 | 
						|
            a.cls = float_class_zero;
 | 
						|
            a.frac = 0;
 | 
						|
            a.exp = 0;
 | 
						|
            break;
 | 
						|
 | 
						|
        case float_class_inf:
 | 
						|
            /* There is no Inf in the destination format.  Raise Invalid
 | 
						|
             * and return the maximum normal with the correct sign.
 | 
						|
             */
 | 
						|
            s->float_exception_flags |= float_flag_invalid;
 | 
						|
            a.cls = float_class_normal;
 | 
						|
            a.exp = dstf->exp_max;
 | 
						|
            a.frac = ((1ull << dstf->frac_size) - 1) << dstf->frac_shift;
 | 
						|
            break;
 | 
						|
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } else if (is_nan(a.cls)) {
 | 
						|
        if (is_snan(a.cls)) {
 | 
						|
            s->float_exception_flags |= float_flag_invalid;
 | 
						|
            a = parts_silence_nan(a, s);
 | 
						|
        }
 | 
						|
        if (s->default_nan_mode) {
 | 
						|
            return parts_default_nan(s);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float32 float16_to_float32(float16 a, bool ieee, float_status *s)
 | 
						|
{
 | 
						|
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | 
						|
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
 | 
						|
    FloatParts pr = float_to_float(p, &float32_params, s);
 | 
						|
    return float32_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float64 float16_to_float64(float16 a, bool ieee, float_status *s)
 | 
						|
{
 | 
						|
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | 
						|
    FloatParts p = float16a_unpack_canonical(a, s, fmt16);
 | 
						|
    FloatParts pr = float_to_float(p, &float64_params, s);
 | 
						|
    return float64_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float16 float32_to_float16(float32 a, bool ieee, float_status *s)
 | 
						|
{
 | 
						|
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | 
						|
    FloatParts p = float32_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, fmt16, s);
 | 
						|
    return float16a_round_pack_canonical(pr, s, fmt16);
 | 
						|
}
 | 
						|
 | 
						|
static float64 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_float32_to_float64(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts p = float32_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, &float64_params, s);
 | 
						|
    return float64_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float64 float32_to_float64(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    if (likely(float32_is_normal(a))) {
 | 
						|
        /* Widening conversion can never produce inexact results.  */
 | 
						|
        union_float32 uf;
 | 
						|
        union_float64 ud;
 | 
						|
        uf.s = a;
 | 
						|
        ud.h = uf.h;
 | 
						|
        return ud.s;
 | 
						|
    } else if (float32_is_zero(a)) {
 | 
						|
        return float64_set_sign(float64_zero, float32_is_neg(a));
 | 
						|
    } else {
 | 
						|
        return soft_float32_to_float64(a, s);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
float16 float64_to_float16(float64 a, bool ieee, float_status *s)
 | 
						|
{
 | 
						|
    const FloatFmt *fmt16 = ieee ? &float16_params : &float16_params_ahp;
 | 
						|
    FloatParts p = float64_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, fmt16, s);
 | 
						|
    return float16a_round_pack_canonical(pr, s, fmt16);
 | 
						|
}
 | 
						|
 | 
						|
float32 float64_to_float32(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts p = float64_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, &float32_params, s);
 | 
						|
    return float32_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float32 bfloat16_to_float32(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts p = bfloat16_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, &float32_params, s);
 | 
						|
    return float32_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float64 bfloat16_to_float64(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts p = bfloat16_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, &float64_params, s);
 | 
						|
    return float64_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 float32_to_bfloat16(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts p = float32_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, &bfloat16_params, s);
 | 
						|
    return bfloat16_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 float64_to_bfloat16(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts p = float64_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = float_to_float(p, &bfloat16_params, s);
 | 
						|
    return bfloat16_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Rounds the floating-point value `a' to an integer, and returns the
 | 
						|
 * result as a floating-point value. The operation is performed
 | 
						|
 * according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
 * Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts round_to_int(FloatParts a, FloatRoundMode rmode,
 | 
						|
                               int scale, float_status *s)
 | 
						|
{
 | 
						|
    switch (a.cls) {
 | 
						|
    case float_class_qnan:
 | 
						|
    case float_class_snan:
 | 
						|
        return return_nan(a, s);
 | 
						|
 | 
						|
    case float_class_zero:
 | 
						|
    case float_class_inf:
 | 
						|
        /* already "integral" */
 | 
						|
        break;
 | 
						|
 | 
						|
    case float_class_normal:
 | 
						|
        scale = MIN(MAX(scale, -0x10000), 0x10000);
 | 
						|
        a.exp += scale;
 | 
						|
 | 
						|
        if (a.exp >= DECOMPOSED_BINARY_POINT) {
 | 
						|
            /* already integral */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        if (a.exp < 0) {
 | 
						|
            bool one;
 | 
						|
            /* all fractional */
 | 
						|
            s->float_exception_flags |= float_flag_inexact;
 | 
						|
            switch (rmode) {
 | 
						|
            case float_round_nearest_even:
 | 
						|
                one = a.exp == -1 && a.frac > DECOMPOSED_IMPLICIT_BIT;
 | 
						|
                break;
 | 
						|
            case float_round_ties_away:
 | 
						|
                one = a.exp == -1 && a.frac >= DECOMPOSED_IMPLICIT_BIT;
 | 
						|
                break;
 | 
						|
            case float_round_to_zero:
 | 
						|
                one = false;
 | 
						|
                break;
 | 
						|
            case float_round_up:
 | 
						|
                one = !a.sign;
 | 
						|
                break;
 | 
						|
            case float_round_down:
 | 
						|
                one = a.sign;
 | 
						|
                break;
 | 
						|
            case float_round_to_odd:
 | 
						|
                one = true;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                g_assert_not_reached();
 | 
						|
            }
 | 
						|
 | 
						|
            if (one) {
 | 
						|
                a.frac = DECOMPOSED_IMPLICIT_BIT;
 | 
						|
                a.exp = 0;
 | 
						|
            } else {
 | 
						|
                a.cls = float_class_zero;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            uint64_t frac_lsb = DECOMPOSED_IMPLICIT_BIT >> a.exp;
 | 
						|
            uint64_t frac_lsbm1 = frac_lsb >> 1;
 | 
						|
            uint64_t rnd_even_mask = (frac_lsb - 1) | frac_lsb;
 | 
						|
            uint64_t rnd_mask = rnd_even_mask >> 1;
 | 
						|
            uint64_t inc;
 | 
						|
 | 
						|
            switch (rmode) {
 | 
						|
            case float_round_nearest_even:
 | 
						|
                inc = ((a.frac & rnd_even_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
 | 
						|
                break;
 | 
						|
            case float_round_ties_away:
 | 
						|
                inc = frac_lsbm1;
 | 
						|
                break;
 | 
						|
            case float_round_to_zero:
 | 
						|
                inc = 0;
 | 
						|
                break;
 | 
						|
            case float_round_up:
 | 
						|
                inc = a.sign ? 0 : rnd_mask;
 | 
						|
                break;
 | 
						|
            case float_round_down:
 | 
						|
                inc = a.sign ? rnd_mask : 0;
 | 
						|
                break;
 | 
						|
            case float_round_to_odd:
 | 
						|
                inc = a.frac & frac_lsb ? 0 : rnd_mask;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                g_assert_not_reached();
 | 
						|
            }
 | 
						|
 | 
						|
            if (a.frac & rnd_mask) {
 | 
						|
                s->float_exception_flags |= float_flag_inexact;
 | 
						|
                a.frac += inc;
 | 
						|
                a.frac &= ~rnd_mask;
 | 
						|
                if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
 | 
						|
                    a.frac >>= 1;
 | 
						|
                    a.exp++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float16 float16_round_to_int(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | 
						|
    return float16_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float32 float32_round_to_int(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | 
						|
    return float32_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
float64 float64_round_to_int(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | 
						|
    return float64_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Rounds the bfloat16 value `a' to an integer, and returns the
 | 
						|
 * result as a bfloat16 value.
 | 
						|
 */
 | 
						|
 | 
						|
bfloat16 bfloat16_round_to_int(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, s);
 | 
						|
    FloatParts pr = round_to_int(pa, s->float_rounding_mode, 0, s);
 | 
						|
    return bfloat16_round_pack_canonical(pr, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of converting the floating-point value `a' to
 | 
						|
 * the two's complement integer format. The conversion is performed
 | 
						|
 * according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
 * Arithmetic---which means in particular that the conversion is
 | 
						|
 * rounded according to the current rounding mode. If `a' is a NaN,
 | 
						|
 * the largest positive integer is returned. Otherwise, if the
 | 
						|
 * conversion overflows, the largest integer with the same sign as `a'
 | 
						|
 * is returned.
 | 
						|
*/
 | 
						|
 | 
						|
static int64_t round_to_int_and_pack(FloatParts in, FloatRoundMode rmode,
 | 
						|
                                     int scale, int64_t min, int64_t max,
 | 
						|
                                     float_status *s)
 | 
						|
{
 | 
						|
    uint64_t r;
 | 
						|
    int orig_flags = get_float_exception_flags(s);
 | 
						|
    FloatParts p = round_to_int(in, rmode, scale, s);
 | 
						|
 | 
						|
    switch (p.cls) {
 | 
						|
    case float_class_snan:
 | 
						|
    case float_class_qnan:
 | 
						|
        s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
        return max;
 | 
						|
    case float_class_inf:
 | 
						|
        s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
        return p.sign ? min : max;
 | 
						|
    case float_class_zero:
 | 
						|
        return 0;
 | 
						|
    case float_class_normal:
 | 
						|
        if (p.exp < DECOMPOSED_BINARY_POINT) {
 | 
						|
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
 | 
						|
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
 | 
						|
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
 | 
						|
        } else {
 | 
						|
            r = UINT64_MAX;
 | 
						|
        }
 | 
						|
        if (p.sign) {
 | 
						|
            if (r <= -(uint64_t) min) {
 | 
						|
                return -r;
 | 
						|
            } else {
 | 
						|
                s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
                return min;
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            if (r <= max) {
 | 
						|
                return r;
 | 
						|
            } else {
 | 
						|
                s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
                return max;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int8_t float16_to_int8_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                              float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT8_MIN, INT8_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float16_to_int16_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float16_to_int32_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float16_to_int64_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float32_to_int16_scalbn(float32 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float32_to_int32_scalbn(float32 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float32_to_int64_scalbn(float32 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float32_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float64_to_int16_scalbn(float64 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float64_to_int32_scalbn(float64 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float64_to_int64_scalbn(float64 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(float64_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int8_t float16_to_int8(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int8_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float16_to_int16(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float16_to_int32(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float16_to_int64(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float32_to_int16(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float32_to_int32(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float32_to_int64(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float64_to_int16(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float64_to_int32(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float64_to_int64(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float16_to_int16_round_to_zero(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float16_to_int32_round_to_zero(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float16_to_int64_round_to_zero(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float32_to_int16_round_to_zero(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float32_to_int32_round_to_zero(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float32_to_int64_round_to_zero(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t float64_to_int16_round_to_zero(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t float64_to_int32_round_to_zero(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t float64_to_int64_round_to_zero(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of converting the floating-point value `a' to
 | 
						|
 * the two's complement integer format.
 | 
						|
 */
 | 
						|
 | 
						|
int16_t bfloat16_to_int16_scalbn(bfloat16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                 float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(bfloat16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT16_MIN, INT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t bfloat16_to_int32_scalbn(bfloat16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                 float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(bfloat16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT32_MIN, INT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t bfloat16_to_int64_scalbn(bfloat16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                 float_status *s)
 | 
						|
{
 | 
						|
    return round_to_int_and_pack(bfloat16_unpack_canonical(a, s),
 | 
						|
                                 rmode, scale, INT64_MIN, INT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t bfloat16_to_int16(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_int16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t bfloat16_to_int32(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_int32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t bfloat16_to_int64(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_int64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int16_t bfloat16_to_int16_round_to_zero(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_int16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int32_t bfloat16_to_int32_round_to_zero(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_int32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
int64_t bfloat16_to_int64_round_to_zero(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_int64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Returns the result of converting the floating-point value `a' to
 | 
						|
 *  the unsigned integer format. The conversion is performed according
 | 
						|
 *  to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
 *  Arithmetic---which means in particular that the conversion is
 | 
						|
 *  rounded according to the current rounding mode. If `a' is a NaN,
 | 
						|
 *  the largest unsigned integer is returned. Otherwise, if the
 | 
						|
 *  conversion overflows, the largest unsigned integer is returned. If
 | 
						|
 *  the 'a' is negative, the result is rounded and zero is returned;
 | 
						|
 *  values that do not round to zero will raise the inexact exception
 | 
						|
 *  flag.
 | 
						|
 */
 | 
						|
 | 
						|
static uint64_t round_to_uint_and_pack(FloatParts in, FloatRoundMode rmode,
 | 
						|
                                       int scale, uint64_t max,
 | 
						|
                                       float_status *s)
 | 
						|
{
 | 
						|
    int orig_flags = get_float_exception_flags(s);
 | 
						|
    FloatParts p = round_to_int(in, rmode, scale, s);
 | 
						|
    uint64_t r;
 | 
						|
 | 
						|
    switch (p.cls) {
 | 
						|
    case float_class_snan:
 | 
						|
    case float_class_qnan:
 | 
						|
        s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
        return max;
 | 
						|
    case float_class_inf:
 | 
						|
        s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
        return p.sign ? 0 : max;
 | 
						|
    case float_class_zero:
 | 
						|
        return 0;
 | 
						|
    case float_class_normal:
 | 
						|
        if (p.sign) {
 | 
						|
            s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (p.exp < DECOMPOSED_BINARY_POINT) {
 | 
						|
            r = p.frac >> (DECOMPOSED_BINARY_POINT - p.exp);
 | 
						|
        } else if (p.exp - DECOMPOSED_BINARY_POINT < 2) {
 | 
						|
            r = p.frac << (p.exp - DECOMPOSED_BINARY_POINT);
 | 
						|
        } else {
 | 
						|
            s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
            return max;
 | 
						|
        }
 | 
						|
 | 
						|
        /* For uint64 this will never trip, but if p.exp is too large
 | 
						|
         * to shift a decomposed fraction we shall have exited via the
 | 
						|
         * 3rd leg above.
 | 
						|
         */
 | 
						|
        if (r > max) {
 | 
						|
            s->float_exception_flags = orig_flags | float_flag_invalid;
 | 
						|
            return max;
 | 
						|
        }
 | 
						|
        return r;
 | 
						|
    default:
 | 
						|
        g_assert_not_reached();
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT8_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float32_to_uint16_scalbn(float32 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float32_to_uint32_scalbn(float32 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float32_to_uint64_scalbn(float32 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float32_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float64_to_uint16_scalbn(float64 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float64_to_uint32_scalbn(float64 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float64_to_uint64_scalbn(float64 a, FloatRoundMode rmode, int scale,
 | 
						|
                                  float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(float64_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint8_t float16_to_uint8(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint8_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float16_to_uint16(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float16_to_uint32(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float16_to_uint64(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float32_to_uint16(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float32_to_uint32(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float32_to_uint64(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float64_to_uint16(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float64_to_uint32(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float64_to_uint64(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *s)
 | 
						|
{
 | 
						|
    return float16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float32_to_uint16_round_to_zero(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float32_to_uint32_round_to_zero(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float32_to_uint64_round_to_zero(float32 a, float_status *s)
 | 
						|
{
 | 
						|
    return float32_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t float64_to_uint16_round_to_zero(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t float64_to_uint32_round_to_zero(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *s)
 | 
						|
{
 | 
						|
    return float64_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 *  Returns the result of converting the bfloat16 value `a' to
 | 
						|
 *  the unsigned integer format.
 | 
						|
 */
 | 
						|
 | 
						|
uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode rmode,
 | 
						|
                                   int scale, float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(bfloat16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT16_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode rmode,
 | 
						|
                                   int scale, float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(bfloat16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT32_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode rmode,
 | 
						|
                                   int scale, float_status *s)
 | 
						|
{
 | 
						|
    return round_to_uint_and_pack(bfloat16_unpack_canonical(a, s),
 | 
						|
                                  rmode, scale, UINT64_MAX, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t bfloat16_to_uint16(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_uint16_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t bfloat16_to_uint32(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_uint32_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t bfloat16_to_uint64(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_uint64_scalbn(a, s->float_rounding_mode, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_uint16_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_uint32_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *s)
 | 
						|
{
 | 
						|
    return bfloat16_to_uint64_scalbn(a, float_round_to_zero, 0, s);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Integer to float conversions
 | 
						|
 *
 | 
						|
 * Returns the result of converting the two's complement integer `a'
 | 
						|
 * to the floating-point format. The conversion is performed according
 | 
						|
 * to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts int_to_float(int64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts r = { .sign = false };
 | 
						|
 | 
						|
    if (a == 0) {
 | 
						|
        r.cls = float_class_zero;
 | 
						|
    } else {
 | 
						|
        uint64_t f = a;
 | 
						|
        int shift;
 | 
						|
 | 
						|
        r.cls = float_class_normal;
 | 
						|
        if (a < 0) {
 | 
						|
            f = -f;
 | 
						|
            r.sign = true;
 | 
						|
        }
 | 
						|
        shift = clz64(f) - 1;
 | 
						|
        scale = MIN(MAX(scale, -0x10000), 0x10000);
 | 
						|
 | 
						|
        r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
 | 
						|
        r.frac = (shift < 0 ? DECOMPOSED_IMPLICIT_BIT : f << shift);
 | 
						|
    }
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
float16 int64_to_float16_scalbn(int64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = int_to_float(a, scale, status);
 | 
						|
    return float16_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 int32_to_float16_scalbn(int32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 int16_to_float16_scalbn(int16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 int64_to_float16(int64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 int32_to_float16(int32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 int16_to_float16(int16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 int8_to_float16(int8_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 int64_to_float32_scalbn(int64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = int_to_float(a, scale, status);
 | 
						|
    return float32_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 int32_to_float32_scalbn(int32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float32_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 int16_to_float32_scalbn(int16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float32_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 int64_to_float32(int64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float32_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 int32_to_float32(int32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float32_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 int16_to_float32(int16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float32_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 int64_to_float64_scalbn(int64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = int_to_float(a, scale, status);
 | 
						|
    return float64_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 int32_to_float64_scalbn(int32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float64_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 int16_to_float64_scalbn(int16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float64_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 int64_to_float64(int64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float64_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 int32_to_float64(int32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float64_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 int16_to_float64(int16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_float64_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of converting the two's complement integer `a'
 | 
						|
 * to the bfloat16 format.
 | 
						|
 */
 | 
						|
 | 
						|
bfloat16 int64_to_bfloat16_scalbn(int64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = int_to_float(a, scale, status);
 | 
						|
    return bfloat16_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 int32_to_bfloat16_scalbn(int32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_bfloat16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 int16_to_bfloat16_scalbn(int16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_bfloat16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 int64_to_bfloat16(int64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_bfloat16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 int32_to_bfloat16(int32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_bfloat16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 int16_to_bfloat16(int16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return int64_to_bfloat16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Unsigned Integer to float conversions
 | 
						|
 *
 | 
						|
 * Returns the result of converting the unsigned integer `a' to the
 | 
						|
 * floating-point format. The conversion is performed according to the
 | 
						|
 * IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts uint_to_float(uint64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts r = { .sign = false };
 | 
						|
 | 
						|
    if (a == 0) {
 | 
						|
        r.cls = float_class_zero;
 | 
						|
    } else {
 | 
						|
        scale = MIN(MAX(scale, -0x10000), 0x10000);
 | 
						|
        r.cls = float_class_normal;
 | 
						|
        if ((int64_t)a < 0) {
 | 
						|
            r.exp = DECOMPOSED_BINARY_POINT + 1 + scale;
 | 
						|
            shift64RightJamming(a, 1, &a);
 | 
						|
            r.frac = a;
 | 
						|
        } else {
 | 
						|
            int shift = clz64(a) - 1;
 | 
						|
            r.exp = DECOMPOSED_BINARY_POINT - shift + scale;
 | 
						|
            r.frac = a << shift;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
float16 uint64_to_float16_scalbn(uint64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = uint_to_float(a, scale, status);
 | 
						|
    return float16_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 uint32_to_float16_scalbn(uint32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 uint16_to_float16_scalbn(uint16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 uint64_to_float16(uint64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 uint32_to_float16(uint32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 uint16_to_float16(uint16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float16 uint8_to_float16(uint8_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 uint64_to_float32_scalbn(uint64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = uint_to_float(a, scale, status);
 | 
						|
    return float32_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 uint32_to_float32_scalbn(uint32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float32_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 uint16_to_float32_scalbn(uint16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float32_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 uint64_to_float32(uint64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float32_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 uint32_to_float32(uint32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float32_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 uint16_to_float32(uint16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float32_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 uint64_to_float64_scalbn(uint64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = uint_to_float(a, scale, status);
 | 
						|
    return float64_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 uint32_to_float64_scalbn(uint32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float64_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 uint16_to_float64_scalbn(uint16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float64_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 uint64_to_float64(uint64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float64_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 uint32_to_float64(uint32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float64_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 uint16_to_float64(uint16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_float64_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Returns the result of converting the unsigned integer `a' to the
 | 
						|
 * bfloat16 format.
 | 
						|
 */
 | 
						|
 | 
						|
bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = uint_to_float(a, scale, status);
 | 
						|
    return bfloat16_round_pack_canonical(pa, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_bfloat16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int scale, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_bfloat16_scalbn(a, scale, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_bfloat16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_bfloat16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status)
 | 
						|
{
 | 
						|
    return uint64_to_bfloat16_scalbn(a, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
/* Float Min/Max */
 | 
						|
/* min() and max() functions. These can't be implemented as
 | 
						|
 * 'compare and pick one input' because that would mishandle
 | 
						|
 * NaNs and +0 vs -0.
 | 
						|
 *
 | 
						|
 * minnum() and maxnum() functions. These are similar to the min()
 | 
						|
 * and max() functions but if one of the arguments is a QNaN and
 | 
						|
 * the other is numerical then the numerical argument is returned.
 | 
						|
 * SNaNs will get quietened before being returned.
 | 
						|
 * minnum() and maxnum correspond to the IEEE 754-2008 minNum()
 | 
						|
 * and maxNum() operations. min() and max() are the typical min/max
 | 
						|
 * semantics provided by many CPUs which predate that specification.
 | 
						|
 *
 | 
						|
 * minnummag() and maxnummag() functions correspond to minNumMag()
 | 
						|
 * and minNumMag() from the IEEE-754 2008.
 | 
						|
 */
 | 
						|
static FloatParts minmax_floats(FloatParts a, FloatParts b, bool ismin,
 | 
						|
                                bool ieee, bool ismag, float_status *s)
 | 
						|
{
 | 
						|
    if (unlikely(is_nan(a.cls) || is_nan(b.cls))) {
 | 
						|
        if (ieee) {
 | 
						|
            /* Takes two floating-point values `a' and `b', one of
 | 
						|
             * which is a NaN, and returns the appropriate NaN
 | 
						|
             * result. If either `a' or `b' is a signaling NaN,
 | 
						|
             * the invalid exception is raised.
 | 
						|
             */
 | 
						|
            if (is_snan(a.cls) || is_snan(b.cls)) {
 | 
						|
                return pick_nan(a, b, s);
 | 
						|
            } else if (is_nan(a.cls) && !is_nan(b.cls)) {
 | 
						|
                return b;
 | 
						|
            } else if (is_nan(b.cls) && !is_nan(a.cls)) {
 | 
						|
                return a;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return pick_nan(a, b, s);
 | 
						|
    } else {
 | 
						|
        int a_exp, b_exp;
 | 
						|
 | 
						|
        switch (a.cls) {
 | 
						|
        case float_class_normal:
 | 
						|
            a_exp = a.exp;
 | 
						|
            break;
 | 
						|
        case float_class_inf:
 | 
						|
            a_exp = INT_MAX;
 | 
						|
            break;
 | 
						|
        case float_class_zero:
 | 
						|
            a_exp = INT_MIN;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        switch (b.cls) {
 | 
						|
        case float_class_normal:
 | 
						|
            b_exp = b.exp;
 | 
						|
            break;
 | 
						|
        case float_class_inf:
 | 
						|
            b_exp = INT_MAX;
 | 
						|
            break;
 | 
						|
        case float_class_zero:
 | 
						|
            b_exp = INT_MIN;
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (ismag && (a_exp != b_exp || a.frac != b.frac)) {
 | 
						|
            bool a_less = a_exp < b_exp;
 | 
						|
            if (a_exp == b_exp) {
 | 
						|
                a_less = a.frac < b.frac;
 | 
						|
            }
 | 
						|
            return a_less ^ ismin ? b : a;
 | 
						|
        }
 | 
						|
 | 
						|
        if (a.sign == b.sign) {
 | 
						|
            bool a_less = a_exp < b_exp;
 | 
						|
            if (a_exp == b_exp) {
 | 
						|
                a_less = a.frac < b.frac;
 | 
						|
            }
 | 
						|
            return a.sign ^ a_less ^ ismin ? b : a;
 | 
						|
        } else {
 | 
						|
            return a.sign ^ ismin ? b : a;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define MINMAX(sz, name, ismin, isiee, ismag)                           \
 | 
						|
float ## sz float ## sz ## _ ## name(float ## sz a, float ## sz b,      \
 | 
						|
                                     float_status *s)                   \
 | 
						|
{                                                                       \
 | 
						|
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
 | 
						|
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
 | 
						|
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
 | 
						|
                                                                        \
 | 
						|
    return float ## sz ## _round_pack_canonical(pr, s);                 \
 | 
						|
}
 | 
						|
 | 
						|
MINMAX(16, min, true, false, false)
 | 
						|
MINMAX(16, minnum, true, true, false)
 | 
						|
MINMAX(16, minnummag, true, true, true)
 | 
						|
MINMAX(16, max, false, false, false)
 | 
						|
MINMAX(16, maxnum, false, true, false)
 | 
						|
MINMAX(16, maxnummag, false, true, true)
 | 
						|
 | 
						|
MINMAX(32, min, true, false, false)
 | 
						|
MINMAX(32, minnum, true, true, false)
 | 
						|
MINMAX(32, minnummag, true, true, true)
 | 
						|
MINMAX(32, max, false, false, false)
 | 
						|
MINMAX(32, maxnum, false, true, false)
 | 
						|
MINMAX(32, maxnummag, false, true, true)
 | 
						|
 | 
						|
MINMAX(64, min, true, false, false)
 | 
						|
MINMAX(64, minnum, true, true, false)
 | 
						|
MINMAX(64, minnummag, true, true, true)
 | 
						|
MINMAX(64, max, false, false, false)
 | 
						|
MINMAX(64, maxnum, false, true, false)
 | 
						|
MINMAX(64, maxnummag, false, true, true)
 | 
						|
 | 
						|
#undef MINMAX
 | 
						|
 | 
						|
#define BF16_MINMAX(name, ismin, isiee, ismag)                          \
 | 
						|
bfloat16 bfloat16_ ## name(bfloat16 a, bfloat16 b, float_status *s)     \
 | 
						|
{                                                                       \
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, s);                    \
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, s);                    \
 | 
						|
    FloatParts pr = minmax_floats(pa, pb, ismin, isiee, ismag, s);      \
 | 
						|
                                                                        \
 | 
						|
    return bfloat16_round_pack_canonical(pr, s);                        \
 | 
						|
}
 | 
						|
 | 
						|
BF16_MINMAX(min, true, false, false)
 | 
						|
BF16_MINMAX(minnum, true, true, false)
 | 
						|
BF16_MINMAX(minnummag, true, true, true)
 | 
						|
BF16_MINMAX(max, false, false, false)
 | 
						|
BF16_MINMAX(maxnum, false, true, false)
 | 
						|
BF16_MINMAX(maxnummag, false, true, true)
 | 
						|
 | 
						|
#undef BF16_MINMAX
 | 
						|
 | 
						|
/* Floating point compare */
 | 
						|
static FloatRelation compare_floats(FloatParts a, FloatParts b, bool is_quiet,
 | 
						|
                                    float_status *s)
 | 
						|
{
 | 
						|
    if (is_nan(a.cls) || is_nan(b.cls)) {
 | 
						|
        if (!is_quiet ||
 | 
						|
            a.cls == float_class_snan ||
 | 
						|
            b.cls == float_class_snan) {
 | 
						|
            s->float_exception_flags |= float_flag_invalid;
 | 
						|
        }
 | 
						|
        return float_relation_unordered;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a.cls == float_class_zero) {
 | 
						|
        if (b.cls == float_class_zero) {
 | 
						|
            return float_relation_equal;
 | 
						|
        }
 | 
						|
        return b.sign ? float_relation_greater : float_relation_less;
 | 
						|
    } else if (b.cls == float_class_zero) {
 | 
						|
        return a.sign ? float_relation_less : float_relation_greater;
 | 
						|
    }
 | 
						|
 | 
						|
    /* The only really important thing about infinity is its sign. If
 | 
						|
     * both are infinities the sign marks the smallest of the two.
 | 
						|
     */
 | 
						|
    if (a.cls == float_class_inf) {
 | 
						|
        if ((b.cls == float_class_inf) && (a.sign == b.sign)) {
 | 
						|
            return float_relation_equal;
 | 
						|
        }
 | 
						|
        return a.sign ? float_relation_less : float_relation_greater;
 | 
						|
    } else if (b.cls == float_class_inf) {
 | 
						|
        return b.sign ? float_relation_greater : float_relation_less;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a.sign != b.sign) {
 | 
						|
        return a.sign ? float_relation_less : float_relation_greater;
 | 
						|
    }
 | 
						|
 | 
						|
    if (a.exp == b.exp) {
 | 
						|
        if (a.frac == b.frac) {
 | 
						|
            return float_relation_equal;
 | 
						|
        }
 | 
						|
        if (a.sign) {
 | 
						|
            return a.frac > b.frac ?
 | 
						|
                float_relation_less : float_relation_greater;
 | 
						|
        } else {
 | 
						|
            return a.frac > b.frac ?
 | 
						|
                float_relation_greater : float_relation_less;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (a.sign) {
 | 
						|
            return a.exp > b.exp ? float_relation_less : float_relation_greater;
 | 
						|
        } else {
 | 
						|
            return a.exp > b.exp ? float_relation_greater : float_relation_less;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define COMPARE(name, attr, sz)                                         \
 | 
						|
static int attr                                                         \
 | 
						|
name(float ## sz a, float ## sz b, bool is_quiet, float_status *s)      \
 | 
						|
{                                                                       \
 | 
						|
    FloatParts pa = float ## sz ## _unpack_canonical(a, s);             \
 | 
						|
    FloatParts pb = float ## sz ## _unpack_canonical(b, s);             \
 | 
						|
    return compare_floats(pa, pb, is_quiet, s);                         \
 | 
						|
}
 | 
						|
 | 
						|
COMPARE(soft_f16_compare, QEMU_FLATTEN, 16)
 | 
						|
COMPARE(soft_f32_compare, QEMU_SOFTFLOAT_ATTR, 32)
 | 
						|
COMPARE(soft_f64_compare, QEMU_SOFTFLOAT_ATTR, 64)
 | 
						|
 | 
						|
#undef COMPARE
 | 
						|
 | 
						|
FloatRelation float16_compare(float16 a, float16 b, float_status *s)
 | 
						|
{
 | 
						|
    return soft_f16_compare(a, b, false, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float16_compare_quiet(float16 a, float16 b, float_status *s)
 | 
						|
{
 | 
						|
    return soft_f16_compare(a, b, true, s);
 | 
						|
}
 | 
						|
 | 
						|
static FloatRelation QEMU_FLATTEN
 | 
						|
f32_compare(float32 xa, float32 xb, bool is_quiet, float_status *s)
 | 
						|
{
 | 
						|
    union_float32 ua, ub;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    ub.s = xb;
 | 
						|
 | 
						|
    if (QEMU_NO_HARDFLOAT) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float32_input_flush2(&ua.s, &ub.s, s);
 | 
						|
    if (isgreaterequal(ua.h, ub.h)) {
 | 
						|
        if (isgreater(ua.h, ub.h)) {
 | 
						|
            return float_relation_greater;
 | 
						|
        }
 | 
						|
        return float_relation_equal;
 | 
						|
    }
 | 
						|
    if (likely(isless(ua.h, ub.h))) {
 | 
						|
        return float_relation_less;
 | 
						|
    }
 | 
						|
    /* The only condition remaining is unordered.
 | 
						|
     * Fall through to set flags.
 | 
						|
     */
 | 
						|
 soft:
 | 
						|
    return soft_f32_compare(ua.s, ub.s, is_quiet, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float32_compare(float32 a, float32 b, float_status *s)
 | 
						|
{
 | 
						|
    return f32_compare(a, b, false, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float32_compare_quiet(float32 a, float32 b, float_status *s)
 | 
						|
{
 | 
						|
    return f32_compare(a, b, true, s);
 | 
						|
}
 | 
						|
 | 
						|
static FloatRelation QEMU_FLATTEN
 | 
						|
f64_compare(float64 xa, float64 xb, bool is_quiet, float_status *s)
 | 
						|
{
 | 
						|
    union_float64 ua, ub;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    ub.s = xb;
 | 
						|
 | 
						|
    if (QEMU_NO_HARDFLOAT) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float64_input_flush2(&ua.s, &ub.s, s);
 | 
						|
    if (isgreaterequal(ua.h, ub.h)) {
 | 
						|
        if (isgreater(ua.h, ub.h)) {
 | 
						|
            return float_relation_greater;
 | 
						|
        }
 | 
						|
        return float_relation_equal;
 | 
						|
    }
 | 
						|
    if (likely(isless(ua.h, ub.h))) {
 | 
						|
        return float_relation_less;
 | 
						|
    }
 | 
						|
    /* The only condition remaining is unordered.
 | 
						|
     * Fall through to set flags.
 | 
						|
     */
 | 
						|
 soft:
 | 
						|
    return soft_f64_compare(ua.s, ub.s, is_quiet, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float64_compare(float64 a, float64 b, float_status *s)
 | 
						|
{
 | 
						|
    return f64_compare(a, b, false, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float64_compare_quiet(float64 a, float64 b, float_status *s)
 | 
						|
{
 | 
						|
    return f64_compare(a, b, true, s);
 | 
						|
}
 | 
						|
 | 
						|
static FloatRelation QEMU_FLATTEN
 | 
						|
soft_bf16_compare(bfloat16 a, bfloat16 b, bool is_quiet, float_status *s)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, s);
 | 
						|
    FloatParts pb = bfloat16_unpack_canonical(b, s);
 | 
						|
    return compare_floats(pa, pb, is_quiet, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation bfloat16_compare(bfloat16 a, bfloat16 b, float_status *s)
 | 
						|
{
 | 
						|
    return soft_bf16_compare(a, b, false, s);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation bfloat16_compare_quiet(bfloat16 a, bfloat16 b, float_status *s)
 | 
						|
{
 | 
						|
    return soft_bf16_compare(a, b, true, s);
 | 
						|
}
 | 
						|
 | 
						|
/* Multiply A by 2 raised to the power N.  */
 | 
						|
static FloatParts scalbn_decomposed(FloatParts a, int n, float_status *s)
 | 
						|
{
 | 
						|
    if (unlikely(is_nan(a.cls))) {
 | 
						|
        return return_nan(a, s);
 | 
						|
    }
 | 
						|
    if (a.cls == float_class_normal) {
 | 
						|
        /* The largest float type (even though not supported by FloatParts)
 | 
						|
         * is float128, which has a 15 bit exponent.  Bounding N to 16 bits
 | 
						|
         * still allows rounding to infinity, without allowing overflow
 | 
						|
         * within the int32_t that backs FloatParts.exp.
 | 
						|
         */
 | 
						|
        n = MIN(MAX(n, -0x10000), 0x10000);
 | 
						|
        a.exp += n;
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float16 float16_scalbn(float16 a, int n, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = scalbn_decomposed(pa, n, status);
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 float32_scalbn(float32 a, int n, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = scalbn_decomposed(pa, n, status);
 | 
						|
    return float32_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
float64 float64_scalbn(float64 a, int n, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = scalbn_decomposed(pa, n, status);
 | 
						|
    return float64_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 bfloat16_scalbn(bfloat16 a, int n, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = scalbn_decomposed(pa, n, status);
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Square Root
 | 
						|
 *
 | 
						|
 * The old softfloat code did an approximation step before zeroing in
 | 
						|
 * on the final result. However for simpleness we just compute the
 | 
						|
 * square root by iterating down from the implicit bit to enough extra
 | 
						|
 * bits to ensure we get a correctly rounded result.
 | 
						|
 *
 | 
						|
 * This does mean however the calculation is slower than before,
 | 
						|
 * especially for 64 bit floats.
 | 
						|
 */
 | 
						|
 | 
						|
static FloatParts sqrt_float(FloatParts a, float_status *s, const FloatFmt *p)
 | 
						|
{
 | 
						|
    uint64_t a_frac, r_frac, s_frac;
 | 
						|
    int bit, last_bit;
 | 
						|
 | 
						|
    if (is_nan(a.cls)) {
 | 
						|
        return return_nan(a, s);
 | 
						|
    }
 | 
						|
    if (a.cls == float_class_zero) {
 | 
						|
        return a;  /* sqrt(+-0) = +-0 */
 | 
						|
    }
 | 
						|
    if (a.sign) {
 | 
						|
        s->float_exception_flags |= float_flag_invalid;
 | 
						|
        return parts_default_nan(s);
 | 
						|
    }
 | 
						|
    if (a.cls == float_class_inf) {
 | 
						|
        return a;  /* sqrt(+inf) = +inf */
 | 
						|
    }
 | 
						|
 | 
						|
    assert(a.cls == float_class_normal);
 | 
						|
 | 
						|
    /* We need two overflow bits at the top. Adding room for that is a
 | 
						|
     * right shift. If the exponent is odd, we can discard the low bit
 | 
						|
     * by multiplying the fraction by 2; that's a left shift. Combine
 | 
						|
     * those and we shift right if the exponent is even.
 | 
						|
     */
 | 
						|
    a_frac = a.frac;
 | 
						|
    if (!(a.exp & 1)) {
 | 
						|
        a_frac >>= 1;
 | 
						|
    }
 | 
						|
    a.exp >>= 1;
 | 
						|
 | 
						|
    /* Bit-by-bit computation of sqrt.  */
 | 
						|
    r_frac = 0;
 | 
						|
    s_frac = 0;
 | 
						|
 | 
						|
    /* Iterate from implicit bit down to the 3 extra bits to compute a
 | 
						|
     * properly rounded result. Remember we've inserted one more bit
 | 
						|
     * at the top, so these positions are one less.
 | 
						|
     */
 | 
						|
    bit = DECOMPOSED_BINARY_POINT - 1;
 | 
						|
    last_bit = MAX(p->frac_shift - 4, 0);
 | 
						|
    do {
 | 
						|
        uint64_t q = 1ULL << bit;
 | 
						|
        uint64_t t_frac = s_frac + q;
 | 
						|
        if (t_frac <= a_frac) {
 | 
						|
            s_frac = t_frac + q;
 | 
						|
            a_frac -= t_frac;
 | 
						|
            r_frac += q;
 | 
						|
        }
 | 
						|
        a_frac <<= 1;
 | 
						|
    } while (--bit >= last_bit);
 | 
						|
 | 
						|
    /* Undo the right shift done above. If there is any remaining
 | 
						|
     * fraction, the result is inexact. Set the sticky bit.
 | 
						|
     */
 | 
						|
    a.frac = (r_frac << 1) + (a_frac != 0);
 | 
						|
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float16 QEMU_FLATTEN float16_sqrt(float16 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float16_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = sqrt_float(pa, status, &float16_params);
 | 
						|
    return float16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float32 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f32_sqrt(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float32_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = sqrt_float(pa, status, &float32_params);
 | 
						|
    return float32_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
static float64 QEMU_SOFTFLOAT_ATTR
 | 
						|
soft_f64_sqrt(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = float64_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = sqrt_float(pa, status, &float64_params);
 | 
						|
    return float64_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
float32 QEMU_FLATTEN float32_sqrt(float32 xa, float_status *s)
 | 
						|
{
 | 
						|
    union_float32 ua, ur;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    if (unlikely(!can_use_fpu(s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float32_input_flush1(&ua.s, s);
 | 
						|
    if (QEMU_HARDFLOAT_1F32_USE_FP) {
 | 
						|
        if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
 | 
						|
                       fpclassify(ua.h) == FP_ZERO) ||
 | 
						|
                     signbit(ua.h))) {
 | 
						|
            goto soft;
 | 
						|
        }
 | 
						|
    } else if (unlikely(!float32_is_zero_or_normal(ua.s) ||
 | 
						|
                        float32_is_neg(ua.s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
    ur.h = sqrtf(ua.h);
 | 
						|
    return ur.s;
 | 
						|
 | 
						|
 soft:
 | 
						|
    return soft_f32_sqrt(ua.s, s);
 | 
						|
}
 | 
						|
 | 
						|
float64 QEMU_FLATTEN float64_sqrt(float64 xa, float_status *s)
 | 
						|
{
 | 
						|
    union_float64 ua, ur;
 | 
						|
 | 
						|
    ua.s = xa;
 | 
						|
    if (unlikely(!can_use_fpu(s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
 | 
						|
    float64_input_flush1(&ua.s, s);
 | 
						|
    if (QEMU_HARDFLOAT_1F64_USE_FP) {
 | 
						|
        if (unlikely(!(fpclassify(ua.h) == FP_NORMAL ||
 | 
						|
                       fpclassify(ua.h) == FP_ZERO) ||
 | 
						|
                     signbit(ua.h))) {
 | 
						|
            goto soft;
 | 
						|
        }
 | 
						|
    } else if (unlikely(!float64_is_zero_or_normal(ua.s) ||
 | 
						|
                        float64_is_neg(ua.s))) {
 | 
						|
        goto soft;
 | 
						|
    }
 | 
						|
    ur.h = sqrt(ua.h);
 | 
						|
    return ur.s;
 | 
						|
 | 
						|
 soft:
 | 
						|
    return soft_f64_sqrt(ua.s, s);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 QEMU_FLATTEN bfloat16_sqrt(bfloat16 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts pa = bfloat16_unpack_canonical(a, status);
 | 
						|
    FloatParts pr = sqrt_float(pa, status, &bfloat16_params);
 | 
						|
    return bfloat16_round_pack_canonical(pr, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| The pattern for a default generated NaN.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float16 float16_default_nan(float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = parts_default_nan(status);
 | 
						|
    p.frac >>= float16_params.frac_shift;
 | 
						|
    return float16_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
float32 float32_default_nan(float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = parts_default_nan(status);
 | 
						|
    p.frac >>= float32_params.frac_shift;
 | 
						|
    return float32_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
float64 float64_default_nan(float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = parts_default_nan(status);
 | 
						|
    p.frac >>= float64_params.frac_shift;
 | 
						|
    return float64_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
float128 float128_default_nan(float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = parts_default_nan(status);
 | 
						|
    float128 r;
 | 
						|
 | 
						|
    /* Extrapolate from the choices made by parts_default_nan to fill
 | 
						|
     * in the quad-floating format.  If the low bit is set, assume we
 | 
						|
     * want to set all non-snan bits.
 | 
						|
     */
 | 
						|
    r.low = -(p.frac & 1);
 | 
						|
    r.high = p.frac >> (DECOMPOSED_BINARY_POINT - 48);
 | 
						|
    r.high |= UINT64_C(0x7FFF000000000000);
 | 
						|
    r.high |= (uint64_t)p.sign << 63;
 | 
						|
 | 
						|
    return r;
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 bfloat16_default_nan(float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = parts_default_nan(status);
 | 
						|
    p.frac >>= bfloat16_params.frac_shift;
 | 
						|
    return bfloat16_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns a quiet NaN from a signalling NaN for the floating point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float16 float16_silence_nan(float16 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = float16_unpack_raw(a);
 | 
						|
    p.frac <<= float16_params.frac_shift;
 | 
						|
    p = parts_silence_nan(p, status);
 | 
						|
    p.frac >>= float16_params.frac_shift;
 | 
						|
    return float16_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
float32 float32_silence_nan(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = float32_unpack_raw(a);
 | 
						|
    p.frac <<= float32_params.frac_shift;
 | 
						|
    p = parts_silence_nan(p, status);
 | 
						|
    p.frac >>= float32_params.frac_shift;
 | 
						|
    return float32_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
float64 float64_silence_nan(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = float64_unpack_raw(a);
 | 
						|
    p.frac <<= float64_params.frac_shift;
 | 
						|
    p = parts_silence_nan(p, status);
 | 
						|
    p.frac >>= float64_params.frac_shift;
 | 
						|
    return float64_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 bfloat16_silence_nan(bfloat16 a, float_status *status)
 | 
						|
{
 | 
						|
    FloatParts p = bfloat16_unpack_raw(a);
 | 
						|
    p.frac <<= bfloat16_params.frac_shift;
 | 
						|
    p = parts_silence_nan(p, status);
 | 
						|
    p.frac >>= bfloat16_params.frac_shift;
 | 
						|
    return bfloat16_pack_raw(p);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| If `a' is denormal and we are in flush-to-zero mode then set the
 | 
						|
| input-denormal exception and return zero. Otherwise just return the value.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static bool parts_squash_denormal(FloatParts p, float_status *status)
 | 
						|
{
 | 
						|
    if (p.exp == 0 && p.frac != 0) {
 | 
						|
        float_raise(float_flag_input_denormal, status);
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
float16 float16_squash_input_denormal(float16 a, float_status *status)
 | 
						|
{
 | 
						|
    if (status->flush_inputs_to_zero) {
 | 
						|
        FloatParts p = float16_unpack_raw(a);
 | 
						|
        if (parts_squash_denormal(p, status)) {
 | 
						|
            return float16_set_sign(float16_zero, p.sign);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float32 float32_squash_input_denormal(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    if (status->flush_inputs_to_zero) {
 | 
						|
        FloatParts p = float32_unpack_raw(a);
 | 
						|
        if (parts_squash_denormal(p, status)) {
 | 
						|
            return float32_set_sign(float32_zero, p.sign);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
float64 float64_squash_input_denormal(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    if (status->flush_inputs_to_zero) {
 | 
						|
        FloatParts p = float64_unpack_raw(a);
 | 
						|
        if (parts_squash_denormal(p, status)) {
 | 
						|
            return float64_set_sign(float64_zero, p.sign);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status)
 | 
						|
{
 | 
						|
    if (status->flush_inputs_to_zero) {
 | 
						|
        FloatParts p = bfloat16_unpack_raw(a);
 | 
						|
        if (parts_squash_denormal(p, status)) {
 | 
						|
            return bfloat16_set_sign(bfloat16_zero, p.sign);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | 
						|
| and 7, and returns the properly rounded 32-bit integer corresponding to the
 | 
						|
| input.  If `zSign' is 1, the input is negated before being converted to an
 | 
						|
| integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
 | 
						|
| is simply rounded to an integer, with the inexact exception raised if the
 | 
						|
| input cannot be represented exactly as an integer.  However, if the fixed-
 | 
						|
| point input is too large, the invalid exception is raised and the largest
 | 
						|
| positive or negative integer is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static int32_t roundAndPackInt32(bool zSign, uint64_t absZ,
 | 
						|
                                 float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven;
 | 
						|
    int8_t roundIncrement, roundBits;
 | 
						|
    int32_t z;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        roundIncrement = 0x40;
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        roundIncrement = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        roundIncrement = zSign ? 0 : 0x7f;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        roundIncrement = zSign ? 0x7f : 0;
 | 
						|
        break;
 | 
						|
    case float_round_to_odd:
 | 
						|
        roundIncrement = absZ & 0x80 ? 0 : 0x7f;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    roundBits = absZ & 0x7F;
 | 
						|
    absZ = ( absZ + roundIncrement )>>7;
 | 
						|
    if (!(roundBits ^ 0x40) && roundNearestEven) {
 | 
						|
        absZ &= ~1;
 | 
						|
    }
 | 
						|
    z = absZ;
 | 
						|
    if ( zSign ) z = - z;
 | 
						|
    if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return zSign ? INT32_MIN : INT32_MAX;
 | 
						|
    }
 | 
						|
    if (roundBits) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | 
						|
| `absZ1', with binary point between bits 63 and 64 (between the input words),
 | 
						|
| and returns the properly rounded 64-bit integer corresponding to the input.
 | 
						|
| If `zSign' is 1, the input is negated before being converted to an integer.
 | 
						|
| Ordinarily, the fixed-point input is simply rounded to an integer, with
 | 
						|
| the inexact exception raised if the input cannot be represented exactly as
 | 
						|
| an integer.  However, if the fixed-point input is too large, the invalid
 | 
						|
| exception is raised and the largest positive or negative integer is
 | 
						|
| returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static int64_t roundAndPackInt64(bool zSign, uint64_t absZ0, uint64_t absZ1,
 | 
						|
                               float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven, increment;
 | 
						|
    int64_t z;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        increment = ((int64_t) absZ1 < 0);
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        increment = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        increment = !zSign && absZ1;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        increment = zSign && absZ1;
 | 
						|
        break;
 | 
						|
    case float_round_to_odd:
 | 
						|
        increment = !(absZ0 & 1) && absZ1;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    if ( increment ) {
 | 
						|
        ++absZ0;
 | 
						|
        if ( absZ0 == 0 ) goto overflow;
 | 
						|
        if (!(absZ1 << 1) && roundNearestEven) {
 | 
						|
            absZ0 &= ~1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    z = absZ0;
 | 
						|
    if ( zSign ) z = - z;
 | 
						|
    if ( z && ( ( z < 0 ) ^ zSign ) ) {
 | 
						|
 overflow:
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return zSign ? INT64_MIN : INT64_MAX;
 | 
						|
    }
 | 
						|
    if (absZ1) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | 
						|
| `absZ1', with binary point between bits 63 and 64 (between the input words),
 | 
						|
| and returns the properly rounded 64-bit unsigned integer corresponding to the
 | 
						|
| input.  Ordinarily, the fixed-point input is simply rounded to an integer,
 | 
						|
| with the inexact exception raised if the input cannot be represented exactly
 | 
						|
| as an integer.  However, if the fixed-point input is too large, the invalid
 | 
						|
| exception is raised and the largest unsigned integer is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static int64_t roundAndPackUint64(bool zSign, uint64_t absZ0,
 | 
						|
                                uint64_t absZ1, float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven, increment;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = (roundingMode == float_round_nearest_even);
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        increment = ((int64_t)absZ1 < 0);
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        increment = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        increment = !zSign && absZ1;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        increment = zSign && absZ1;
 | 
						|
        break;
 | 
						|
    case float_round_to_odd:
 | 
						|
        increment = !(absZ0 & 1) && absZ1;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    if (increment) {
 | 
						|
        ++absZ0;
 | 
						|
        if (absZ0 == 0) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return UINT64_MAX;
 | 
						|
        }
 | 
						|
        if (!(absZ1 << 1) && roundNearestEven) {
 | 
						|
            absZ0 &= ~1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (zSign && absZ0) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (absZ1) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return absZ0;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Normalizes the subnormal single-precision floating-point value represented
 | 
						|
| by the denormalized significand `aSig'.  The normalized exponent and
 | 
						|
| significand are stored at the locations pointed to by `zExpPtr' and
 | 
						|
| `zSigPtr', respectively.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static void
 | 
						|
 normalizeFloat32Subnormal(uint32_t aSig, int *zExpPtr, uint32_t *zSigPtr)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    shiftCount = clz32(aSig) - 8;
 | 
						|
    *zSigPtr = aSig<<shiftCount;
 | 
						|
    *zExpPtr = 1 - shiftCount;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and significand `zSig', and returns the proper single-precision floating-
 | 
						|
| point value corresponding to the abstract input.  Ordinarily, the abstract
 | 
						|
| value is simply rounded and packed into the single-precision format, with
 | 
						|
| the inexact exception raised if the abstract input cannot be represented
 | 
						|
| exactly.  However, if the abstract value is too large, the overflow and
 | 
						|
| inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
| returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
| a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
| the abstract input cannot be represented exactly as a subnormal single-
 | 
						|
| precision floating-point number.
 | 
						|
|     The input significand `zSig' has its binary point between bits 30
 | 
						|
| and 29, which is 7 bits to the left of the usual location.  This shifted
 | 
						|
| significand must be normalized or smaller.  If `zSig' is not normalized,
 | 
						|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
 | 
						|
| and it must not require rounding.  In the usual case that `zSig' is
 | 
						|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | 
						|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
 | 
						|
| Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32 roundAndPackFloat32(bool zSign, int zExp, uint32_t zSig,
 | 
						|
                                   float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven;
 | 
						|
    int8_t roundIncrement, roundBits;
 | 
						|
    bool isTiny;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        roundIncrement = 0x40;
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        roundIncrement = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        roundIncrement = zSign ? 0 : 0x7f;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        roundIncrement = zSign ? 0x7f : 0;
 | 
						|
        break;
 | 
						|
    case float_round_to_odd:
 | 
						|
        roundIncrement = zSig & 0x80 ? 0 : 0x7f;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
        break;
 | 
						|
    }
 | 
						|
    roundBits = zSig & 0x7F;
 | 
						|
    if ( 0xFD <= (uint16_t) zExp ) {
 | 
						|
        if (    ( 0xFD < zExp )
 | 
						|
             || (    ( zExp == 0xFD )
 | 
						|
                  && ( (int32_t) ( zSig + roundIncrement ) < 0 ) )
 | 
						|
           ) {
 | 
						|
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
 | 
						|
                                   roundIncrement != 0;
 | 
						|
            float_raise(float_flag_overflow | float_flag_inexact, status);
 | 
						|
            return packFloat32(zSign, 0xFF, -!overflow_to_inf);
 | 
						|
        }
 | 
						|
        if ( zExp < 0 ) {
 | 
						|
            if (status->flush_to_zero) {
 | 
						|
                float_raise(float_flag_output_denormal, status);
 | 
						|
                return packFloat32(zSign, 0, 0);
 | 
						|
            }
 | 
						|
            isTiny = status->tininess_before_rounding
 | 
						|
                  || (zExp < -1)
 | 
						|
                  || (zSig + roundIncrement < 0x80000000);
 | 
						|
            shift32RightJamming( zSig, - zExp, &zSig );
 | 
						|
            zExp = 0;
 | 
						|
            roundBits = zSig & 0x7F;
 | 
						|
            if (isTiny && roundBits) {
 | 
						|
                float_raise(float_flag_underflow, status);
 | 
						|
            }
 | 
						|
            if (roundingMode == float_round_to_odd) {
 | 
						|
                /*
 | 
						|
                 * For round-to-odd case, the roundIncrement depends on
 | 
						|
                 * zSig which just changed.
 | 
						|
                 */
 | 
						|
                roundIncrement = zSig & 0x80 ? 0 : 0x7f;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (roundBits) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    zSig = ( zSig + roundIncrement )>>7;
 | 
						|
    if (!(roundBits ^ 0x40) && roundNearestEven) {
 | 
						|
        zSig &= ~1;
 | 
						|
    }
 | 
						|
    if ( zSig == 0 ) zExp = 0;
 | 
						|
    return packFloat32( zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and significand `zSig', and returns the proper single-precision floating-
 | 
						|
| point value corresponding to the abstract input.  This routine is just like
 | 
						|
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
 | 
						|
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | 
						|
| floating-point exponent.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float32
 | 
						|
 normalizeRoundAndPackFloat32(bool zSign, int zExp, uint32_t zSig,
 | 
						|
                              float_status *status)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    shiftCount = clz32(zSig) - 1;
 | 
						|
    return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount,
 | 
						|
                               status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Normalizes the subnormal double-precision floating-point value represented
 | 
						|
| by the denormalized significand `aSig'.  The normalized exponent and
 | 
						|
| significand are stored at the locations pointed to by `zExpPtr' and
 | 
						|
| `zSigPtr', respectively.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static void
 | 
						|
 normalizeFloat64Subnormal(uint64_t aSig, int *zExpPtr, uint64_t *zSigPtr)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    shiftCount = clz64(aSig) - 11;
 | 
						|
    *zSigPtr = aSig<<shiftCount;
 | 
						|
    *zExpPtr = 1 - shiftCount;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | 
						|
| double-precision floating-point value, returning the result.  After being
 | 
						|
| shifted into the proper positions, the three fields are simply added
 | 
						|
| together to form the result.  This means that any integer portion of `zSig'
 | 
						|
| will be added into the exponent.  Since a properly normalized significand
 | 
						|
| will have an integer portion equal to 1, the `zExp' input should be 1 less
 | 
						|
| than the desired result exponent whenever `zSig' is a complete, normalized
 | 
						|
| significand.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline float64 packFloat64(bool zSign, int zExp, uint64_t zSig)
 | 
						|
{
 | 
						|
 | 
						|
    return make_float64(
 | 
						|
        ( ( (uint64_t) zSign )<<63 ) + ( ( (uint64_t) zExp )<<52 ) + zSig);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and significand `zSig', and returns the proper double-precision floating-
 | 
						|
| point value corresponding to the abstract input.  Ordinarily, the abstract
 | 
						|
| value is simply rounded and packed into the double-precision format, with
 | 
						|
| the inexact exception raised if the abstract input cannot be represented
 | 
						|
| exactly.  However, if the abstract value is too large, the overflow and
 | 
						|
| inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
| returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
| a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
| the abstract input cannot be represented exactly as a subnormal double-
 | 
						|
| precision floating-point number.
 | 
						|
|     The input significand `zSig' has its binary point between bits 62
 | 
						|
| and 61, which is 10 bits to the left of the usual location.  This shifted
 | 
						|
| significand must be normalized or smaller.  If `zSig' is not normalized,
 | 
						|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
 | 
						|
| and it must not require rounding.  In the usual case that `zSig' is
 | 
						|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | 
						|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
 | 
						|
| Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64 roundAndPackFloat64(bool zSign, int zExp, uint64_t zSig,
 | 
						|
                                   float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven;
 | 
						|
    int roundIncrement, roundBits;
 | 
						|
    bool isTiny;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        roundIncrement = 0x200;
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        roundIncrement = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        roundIncrement = zSign ? 0 : 0x3ff;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        roundIncrement = zSign ? 0x3ff : 0;
 | 
						|
        break;
 | 
						|
    case float_round_to_odd:
 | 
						|
        roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    roundBits = zSig & 0x3FF;
 | 
						|
    if ( 0x7FD <= (uint16_t) zExp ) {
 | 
						|
        if (    ( 0x7FD < zExp )
 | 
						|
             || (    ( zExp == 0x7FD )
 | 
						|
                  && ( (int64_t) ( zSig + roundIncrement ) < 0 ) )
 | 
						|
           ) {
 | 
						|
            bool overflow_to_inf = roundingMode != float_round_to_odd &&
 | 
						|
                                   roundIncrement != 0;
 | 
						|
            float_raise(float_flag_overflow | float_flag_inexact, status);
 | 
						|
            return packFloat64(zSign, 0x7FF, -(!overflow_to_inf));
 | 
						|
        }
 | 
						|
        if ( zExp < 0 ) {
 | 
						|
            if (status->flush_to_zero) {
 | 
						|
                float_raise(float_flag_output_denormal, status);
 | 
						|
                return packFloat64(zSign, 0, 0);
 | 
						|
            }
 | 
						|
            isTiny = status->tininess_before_rounding
 | 
						|
                  || (zExp < -1)
 | 
						|
                  || (zSig + roundIncrement < UINT64_C(0x8000000000000000));
 | 
						|
            shift64RightJamming( zSig, - zExp, &zSig );
 | 
						|
            zExp = 0;
 | 
						|
            roundBits = zSig & 0x3FF;
 | 
						|
            if (isTiny && roundBits) {
 | 
						|
                float_raise(float_flag_underflow, status);
 | 
						|
            }
 | 
						|
            if (roundingMode == float_round_to_odd) {
 | 
						|
                /*
 | 
						|
                 * For round-to-odd case, the roundIncrement depends on
 | 
						|
                 * zSig which just changed.
 | 
						|
                 */
 | 
						|
                roundIncrement = (zSig & 0x400) ? 0 : 0x3ff;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (roundBits) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    zSig = ( zSig + roundIncrement )>>10;
 | 
						|
    if (!(roundBits ^ 0x200) && roundNearestEven) {
 | 
						|
        zSig &= ~1;
 | 
						|
    }
 | 
						|
    if ( zSig == 0 ) zExp = 0;
 | 
						|
    return packFloat64( zSign, zExp, zSig );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and significand `zSig', and returns the proper double-precision floating-
 | 
						|
| point value corresponding to the abstract input.  This routine is just like
 | 
						|
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
 | 
						|
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | 
						|
| floating-point exponent.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float64
 | 
						|
 normalizeRoundAndPackFloat64(bool zSign, int zExp, uint64_t zSig,
 | 
						|
                              float_status *status)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    shiftCount = clz64(zSig) - 1;
 | 
						|
    return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount,
 | 
						|
                               status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Normalizes the subnormal extended double-precision floating-point value
 | 
						|
| represented by the denormalized significand `aSig'.  The normalized exponent
 | 
						|
| and significand are stored at the locations pointed to by `zExpPtr' and
 | 
						|
| `zSigPtr', respectively.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr,
 | 
						|
                                uint64_t *zSigPtr)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    shiftCount = clz64(aSig);
 | 
						|
    *zSigPtr = aSig<<shiftCount;
 | 
						|
    *zExpPtr = 1 - shiftCount;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
 | 
						|
| and returns the proper extended double-precision floating-point value
 | 
						|
| corresponding to the abstract input.  Ordinarily, the abstract value is
 | 
						|
| rounded and packed into the extended double-precision format, with the
 | 
						|
| inexact exception raised if the abstract input cannot be represented
 | 
						|
| exactly.  However, if the abstract value is too large, the overflow and
 | 
						|
| inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
| returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
| a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
| the abstract input cannot be represented exactly as a subnormal extended
 | 
						|
| double-precision floating-point number.
 | 
						|
|     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 | 
						|
| number of bits as single or double precision, respectively.  Otherwise, the
 | 
						|
| result is rounded to the full precision of the extended double-precision
 | 
						|
| format.
 | 
						|
|     The input significand must be normalized or smaller.  If the input
 | 
						|
| significand is not normalized, `zExp' must be 0; in that case, the result
 | 
						|
| returned is a subnormal number, and it must not require rounding.  The
 | 
						|
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 roundAndPackFloatx80(int8_t roundingPrecision, bool zSign,
 | 
						|
                              int32_t zExp, uint64_t zSig0, uint64_t zSig1,
 | 
						|
                              float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven, increment, isTiny;
 | 
						|
    int64_t roundIncrement, roundMask, roundBits;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    if ( roundingPrecision == 80 ) goto precision80;
 | 
						|
    if ( roundingPrecision == 64 ) {
 | 
						|
        roundIncrement = UINT64_C(0x0000000000000400);
 | 
						|
        roundMask = UINT64_C(0x00000000000007FF);
 | 
						|
    }
 | 
						|
    else if ( roundingPrecision == 32 ) {
 | 
						|
        roundIncrement = UINT64_C(0x0000008000000000);
 | 
						|
        roundMask = UINT64_C(0x000000FFFFFFFFFF);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        goto precision80;
 | 
						|
    }
 | 
						|
    zSig0 |= ( zSig1 != 0 );
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        roundIncrement = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        roundIncrement = zSign ? 0 : roundMask;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        roundIncrement = zSign ? roundMask : 0;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    roundBits = zSig0 & roundMask;
 | 
						|
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
 | 
						|
        if (    ( 0x7FFE < zExp )
 | 
						|
             || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 | 
						|
           ) {
 | 
						|
            goto overflow;
 | 
						|
        }
 | 
						|
        if ( zExp <= 0 ) {
 | 
						|
            if (status->flush_to_zero) {
 | 
						|
                float_raise(float_flag_output_denormal, status);
 | 
						|
                return packFloatx80(zSign, 0, 0);
 | 
						|
            }
 | 
						|
            isTiny = status->tininess_before_rounding
 | 
						|
                  || (zExp < 0 )
 | 
						|
                  || (zSig0 <= zSig0 + roundIncrement);
 | 
						|
            shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 | 
						|
            zExp = 0;
 | 
						|
            roundBits = zSig0 & roundMask;
 | 
						|
            if (isTiny && roundBits) {
 | 
						|
                float_raise(float_flag_underflow, status);
 | 
						|
            }
 | 
						|
            if (roundBits) {
 | 
						|
                status->float_exception_flags |= float_flag_inexact;
 | 
						|
            }
 | 
						|
            zSig0 += roundIncrement;
 | 
						|
            if ( (int64_t) zSig0 < 0 ) zExp = 1;
 | 
						|
            roundIncrement = roundMask + 1;
 | 
						|
            if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | 
						|
                roundMask |= roundIncrement;
 | 
						|
            }
 | 
						|
            zSig0 &= ~ roundMask;
 | 
						|
            return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (roundBits) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    zSig0 += roundIncrement;
 | 
						|
    if ( zSig0 < roundIncrement ) {
 | 
						|
        ++zExp;
 | 
						|
        zSig0 = UINT64_C(0x8000000000000000);
 | 
						|
    }
 | 
						|
    roundIncrement = roundMask + 1;
 | 
						|
    if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | 
						|
        roundMask |= roundIncrement;
 | 
						|
    }
 | 
						|
    zSig0 &= ~ roundMask;
 | 
						|
    if ( zSig0 == 0 ) zExp = 0;
 | 
						|
    return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
 precision80:
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        increment = ((int64_t)zSig1 < 0);
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        increment = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        increment = !zSign && zSig1;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        increment = zSign && zSig1;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    if ( 0x7FFD <= (uint32_t) ( zExp - 1 ) ) {
 | 
						|
        if (    ( 0x7FFE < zExp )
 | 
						|
             || (    ( zExp == 0x7FFE )
 | 
						|
                  && ( zSig0 == UINT64_C(0xFFFFFFFFFFFFFFFF) )
 | 
						|
                  && increment
 | 
						|
                )
 | 
						|
           ) {
 | 
						|
            roundMask = 0;
 | 
						|
 overflow:
 | 
						|
            float_raise(float_flag_overflow | float_flag_inexact, status);
 | 
						|
            if (    ( roundingMode == float_round_to_zero )
 | 
						|
                 || ( zSign && ( roundingMode == float_round_up ) )
 | 
						|
                 || ( ! zSign && ( roundingMode == float_round_down ) )
 | 
						|
               ) {
 | 
						|
                return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 | 
						|
            }
 | 
						|
            return packFloatx80(zSign,
 | 
						|
                                floatx80_infinity_high,
 | 
						|
                                floatx80_infinity_low);
 | 
						|
        }
 | 
						|
        if ( zExp <= 0 ) {
 | 
						|
            isTiny = status->tininess_before_rounding
 | 
						|
                  || (zExp < 0)
 | 
						|
                  || !increment
 | 
						|
                  || (zSig0 < UINT64_C(0xFFFFFFFFFFFFFFFF));
 | 
						|
            shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 | 
						|
            zExp = 0;
 | 
						|
            if (isTiny && zSig1) {
 | 
						|
                float_raise(float_flag_underflow, status);
 | 
						|
            }
 | 
						|
            if (zSig1) {
 | 
						|
                status->float_exception_flags |= float_flag_inexact;
 | 
						|
            }
 | 
						|
            switch (roundingMode) {
 | 
						|
            case float_round_nearest_even:
 | 
						|
            case float_round_ties_away:
 | 
						|
                increment = ((int64_t)zSig1 < 0);
 | 
						|
                break;
 | 
						|
            case float_round_to_zero:
 | 
						|
                increment = 0;
 | 
						|
                break;
 | 
						|
            case float_round_up:
 | 
						|
                increment = !zSign && zSig1;
 | 
						|
                break;
 | 
						|
            case float_round_down:
 | 
						|
                increment = zSign && zSig1;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                abort();
 | 
						|
            }
 | 
						|
            if ( increment ) {
 | 
						|
                ++zSig0;
 | 
						|
                if (!(zSig1 << 1) && roundNearestEven) {
 | 
						|
                    zSig0 &= ~1;
 | 
						|
                }
 | 
						|
                if ( (int64_t) zSig0 < 0 ) zExp = 1;
 | 
						|
            }
 | 
						|
            return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (zSig1) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    if ( increment ) {
 | 
						|
        ++zSig0;
 | 
						|
        if ( zSig0 == 0 ) {
 | 
						|
            ++zExp;
 | 
						|
            zSig0 = UINT64_C(0x8000000000000000);
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            if (!(zSig1 << 1) && roundNearestEven) {
 | 
						|
                zSig0 &= ~1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( zSig0 == 0 ) zExp = 0;
 | 
						|
    }
 | 
						|
    return packFloatx80( zSign, zExp, zSig0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent
 | 
						|
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 | 
						|
| and returns the proper extended double-precision floating-point value
 | 
						|
| corresponding to the abstract input.  This routine is just like
 | 
						|
| `roundAndPackFloatx80' except that the input significand does not have to be
 | 
						|
| normalized.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 normalizeRoundAndPackFloatx80(int8_t roundingPrecision,
 | 
						|
                                       bool zSign, int32_t zExp,
 | 
						|
                                       uint64_t zSig0, uint64_t zSig1,
 | 
						|
                                       float_status *status)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    if ( zSig0 == 0 ) {
 | 
						|
        zSig0 = zSig1;
 | 
						|
        zSig1 = 0;
 | 
						|
        zExp -= 64;
 | 
						|
    }
 | 
						|
    shiftCount = clz64(zSig0);
 | 
						|
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | 
						|
    zExp -= shiftCount;
 | 
						|
    return roundAndPackFloatx80(roundingPrecision, zSign, zExp,
 | 
						|
                                zSig0, zSig1, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the least-significant 64 fraction bits of the quadruple-precision
 | 
						|
| floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline uint64_t extractFloat128Frac1( float128 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a.low;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the most-significant 48 fraction bits of the quadruple-precision
 | 
						|
| floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline uint64_t extractFloat128Frac0( float128 a )
 | 
						|
{
 | 
						|
 | 
						|
    return a.high & UINT64_C(0x0000FFFFFFFFFFFF);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the exponent bits of the quadruple-precision floating-point value
 | 
						|
| `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline int32_t extractFloat128Exp( float128 a )
 | 
						|
{
 | 
						|
 | 
						|
    return ( a.high>>48 ) & 0x7FFF;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the sign bit of the quadruple-precision floating-point value `a'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline bool extractFloat128Sign(float128 a)
 | 
						|
{
 | 
						|
    return a.high >> 63;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Normalizes the subnormal quadruple-precision floating-point value
 | 
						|
| represented by the denormalized significand formed by the concatenation of
 | 
						|
| `aSig0' and `aSig1'.  The normalized exponent is stored at the location
 | 
						|
| pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
 | 
						|
| significand are stored at the location pointed to by `zSig0Ptr', and the
 | 
						|
| least significant 64 bits of the normalized significand are stored at the
 | 
						|
| location pointed to by `zSig1Ptr'.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static void
 | 
						|
 normalizeFloat128Subnormal(
 | 
						|
     uint64_t aSig0,
 | 
						|
     uint64_t aSig1,
 | 
						|
     int32_t *zExpPtr,
 | 
						|
     uint64_t *zSig0Ptr,
 | 
						|
     uint64_t *zSig1Ptr
 | 
						|
 )
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    if ( aSig0 == 0 ) {
 | 
						|
        shiftCount = clz64(aSig1) - 15;
 | 
						|
        if ( shiftCount < 0 ) {
 | 
						|
            *zSig0Ptr = aSig1>>( - shiftCount );
 | 
						|
            *zSig1Ptr = aSig1<<( shiftCount & 63 );
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            *zSig0Ptr = aSig1<<shiftCount;
 | 
						|
            *zSig1Ptr = 0;
 | 
						|
        }
 | 
						|
        *zExpPtr = - shiftCount - 63;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shiftCount = clz64(aSig0) - 15;
 | 
						|
        shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
 | 
						|
        *zExpPtr = 1 - shiftCount;
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Packs the sign `zSign', the exponent `zExp', and the significand formed
 | 
						|
| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
 | 
						|
| floating-point value, returning the result.  After being shifted into the
 | 
						|
| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
 | 
						|
| added together to form the most significant 32 bits of the result.  This
 | 
						|
| means that any integer portion of `zSig0' will be added into the exponent.
 | 
						|
| Since a properly normalized significand will have an integer portion equal
 | 
						|
| to 1, the `zExp' input should be 1 less than the desired result exponent
 | 
						|
| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
 | 
						|
| significand.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static inline float128
 | 
						|
packFloat128(bool zSign, int32_t zExp, uint64_t zSig0, uint64_t zSig1)
 | 
						|
{
 | 
						|
    float128 z;
 | 
						|
 | 
						|
    z.low = zSig1;
 | 
						|
    z.high = ((uint64_t)zSign << 63) + ((uint64_t)zExp << 48) + zSig0;
 | 
						|
    return z;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and extended significand formed by the concatenation of `zSig0', `zSig1',
 | 
						|
| and `zSig2', and returns the proper quadruple-precision floating-point value
 | 
						|
| corresponding to the abstract input.  Ordinarily, the abstract value is
 | 
						|
| simply rounded and packed into the quadruple-precision format, with the
 | 
						|
| inexact exception raised if the abstract input cannot be represented
 | 
						|
| exactly.  However, if the abstract value is too large, the overflow and
 | 
						|
| inexact exceptions are raised and an infinity or maximal finite value is
 | 
						|
| returned.  If the abstract value is too small, the input value is rounded to
 | 
						|
| a subnormal number, and the underflow and inexact exceptions are raised if
 | 
						|
| the abstract input cannot be represented exactly as a subnormal quadruple-
 | 
						|
| precision floating-point number.
 | 
						|
|     The input significand must be normalized or smaller.  If the input
 | 
						|
| significand is not normalized, `zExp' must be 0; in that case, the result
 | 
						|
| returned is a subnormal number, and it must not require rounding.  In the
 | 
						|
| usual case that the input significand is normalized, `zExp' must be 1 less
 | 
						|
| than the ``true'' floating-point exponent.  The handling of underflow and
 | 
						|
| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 roundAndPackFloat128(bool zSign, int32_t zExp,
 | 
						|
                                     uint64_t zSig0, uint64_t zSig1,
 | 
						|
                                     uint64_t zSig2, float_status *status)
 | 
						|
{
 | 
						|
    int8_t roundingMode;
 | 
						|
    bool roundNearestEven, increment, isTiny;
 | 
						|
 | 
						|
    roundingMode = status->float_rounding_mode;
 | 
						|
    roundNearestEven = ( roundingMode == float_round_nearest_even );
 | 
						|
    switch (roundingMode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
    case float_round_ties_away:
 | 
						|
        increment = ((int64_t)zSig2 < 0);
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        increment = 0;
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        increment = !zSign && zSig2;
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        increment = zSign && zSig2;
 | 
						|
        break;
 | 
						|
    case float_round_to_odd:
 | 
						|
        increment = !(zSig1 & 0x1) && zSig2;
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    if ( 0x7FFD <= (uint32_t) zExp ) {
 | 
						|
        if (    ( 0x7FFD < zExp )
 | 
						|
             || (    ( zExp == 0x7FFD )
 | 
						|
                  && eq128(
 | 
						|
                         UINT64_C(0x0001FFFFFFFFFFFF),
 | 
						|
                         UINT64_C(0xFFFFFFFFFFFFFFFF),
 | 
						|
                         zSig0,
 | 
						|
                         zSig1
 | 
						|
                     )
 | 
						|
                  && increment
 | 
						|
                )
 | 
						|
           ) {
 | 
						|
            float_raise(float_flag_overflow | float_flag_inexact, status);
 | 
						|
            if (    ( roundingMode == float_round_to_zero )
 | 
						|
                 || ( zSign && ( roundingMode == float_round_up ) )
 | 
						|
                 || ( ! zSign && ( roundingMode == float_round_down ) )
 | 
						|
                 || (roundingMode == float_round_to_odd)
 | 
						|
               ) {
 | 
						|
                return
 | 
						|
                    packFloat128(
 | 
						|
                        zSign,
 | 
						|
                        0x7FFE,
 | 
						|
                        UINT64_C(0x0000FFFFFFFFFFFF),
 | 
						|
                        UINT64_C(0xFFFFFFFFFFFFFFFF)
 | 
						|
                    );
 | 
						|
            }
 | 
						|
            return packFloat128( zSign, 0x7FFF, 0, 0 );
 | 
						|
        }
 | 
						|
        if ( zExp < 0 ) {
 | 
						|
            if (status->flush_to_zero) {
 | 
						|
                float_raise(float_flag_output_denormal, status);
 | 
						|
                return packFloat128(zSign, 0, 0, 0);
 | 
						|
            }
 | 
						|
            isTiny = status->tininess_before_rounding
 | 
						|
                  || (zExp < -1)
 | 
						|
                  || !increment
 | 
						|
                  || lt128(zSig0, zSig1,
 | 
						|
                           UINT64_C(0x0001FFFFFFFFFFFF),
 | 
						|
                           UINT64_C(0xFFFFFFFFFFFFFFFF));
 | 
						|
            shift128ExtraRightJamming(
 | 
						|
                zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
 | 
						|
            zExp = 0;
 | 
						|
            if (isTiny && zSig2) {
 | 
						|
                float_raise(float_flag_underflow, status);
 | 
						|
            }
 | 
						|
            switch (roundingMode) {
 | 
						|
            case float_round_nearest_even:
 | 
						|
            case float_round_ties_away:
 | 
						|
                increment = ((int64_t)zSig2 < 0);
 | 
						|
                break;
 | 
						|
            case float_round_to_zero:
 | 
						|
                increment = 0;
 | 
						|
                break;
 | 
						|
            case float_round_up:
 | 
						|
                increment = !zSign && zSig2;
 | 
						|
                break;
 | 
						|
            case float_round_down:
 | 
						|
                increment = zSign && zSig2;
 | 
						|
                break;
 | 
						|
            case float_round_to_odd:
 | 
						|
                increment = !(zSig1 & 0x1) && zSig2;
 | 
						|
                break;
 | 
						|
            default:
 | 
						|
                abort();
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (zSig2) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    if ( increment ) {
 | 
						|
        add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
 | 
						|
        if ((zSig2 + zSig2 == 0) && roundNearestEven) {
 | 
						|
            zSig1 &= ~1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
 | 
						|
    }
 | 
						|
    return packFloat128( zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | 
						|
| and significand formed by the concatenation of `zSig0' and `zSig1', and
 | 
						|
| returns the proper quadruple-precision floating-point value corresponding
 | 
						|
| to the abstract input.  This routine is just like `roundAndPackFloat128'
 | 
						|
| except that the input significand has fewer bits and does not have to be
 | 
						|
| normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | 
						|
| point exponent.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 normalizeRoundAndPackFloat128(bool zSign, int32_t zExp,
 | 
						|
                                              uint64_t zSig0, uint64_t zSig1,
 | 
						|
                                              float_status *status)
 | 
						|
{
 | 
						|
    int8_t shiftCount;
 | 
						|
    uint64_t zSig2;
 | 
						|
 | 
						|
    if ( zSig0 == 0 ) {
 | 
						|
        zSig0 = zSig1;
 | 
						|
        zSig1 = 0;
 | 
						|
        zExp -= 64;
 | 
						|
    }
 | 
						|
    shiftCount = clz64(zSig0) - 15;
 | 
						|
    if ( 0 <= shiftCount ) {
 | 
						|
        zSig2 = 0;
 | 
						|
        shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shift128ExtraRightJamming(
 | 
						|
            zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
 | 
						|
    }
 | 
						|
    zExp -= shiftCount;
 | 
						|
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the 32-bit two's complement integer `a'
 | 
						|
| to the extended double-precision floating-point format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 int32_to_floatx80(int32_t a, float_status *status)
 | 
						|
{
 | 
						|
    bool zSign;
 | 
						|
    uint32_t absA;
 | 
						|
    int8_t shiftCount;
 | 
						|
    uint64_t zSig;
 | 
						|
 | 
						|
    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | 
						|
    zSign = ( a < 0 );
 | 
						|
    absA = zSign ? - a : a;
 | 
						|
    shiftCount = clz32(absA) + 32;
 | 
						|
    zSig = absA;
 | 
						|
    return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the 32-bit two's complement integer `a' to
 | 
						|
| the quadruple-precision floating-point format.  The conversion is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 int32_to_float128(int32_t a, float_status *status)
 | 
						|
{
 | 
						|
    bool zSign;
 | 
						|
    uint32_t absA;
 | 
						|
    int8_t shiftCount;
 | 
						|
    uint64_t zSig0;
 | 
						|
 | 
						|
    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | 
						|
    zSign = ( a < 0 );
 | 
						|
    absA = zSign ? - a : a;
 | 
						|
    shiftCount = clz32(absA) + 17;
 | 
						|
    zSig0 = absA;
 | 
						|
    return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the 64-bit two's complement integer `a'
 | 
						|
| to the extended double-precision floating-point format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 int64_to_floatx80(int64_t a, float_status *status)
 | 
						|
{
 | 
						|
    bool zSign;
 | 
						|
    uint64_t absA;
 | 
						|
    int8_t shiftCount;
 | 
						|
 | 
						|
    if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | 
						|
    zSign = ( a < 0 );
 | 
						|
    absA = zSign ? - a : a;
 | 
						|
    shiftCount = clz64(absA);
 | 
						|
    return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the 64-bit two's complement integer `a' to
 | 
						|
| the quadruple-precision floating-point format.  The conversion is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 int64_to_float128(int64_t a, float_status *status)
 | 
						|
{
 | 
						|
    bool zSign;
 | 
						|
    uint64_t absA;
 | 
						|
    int8_t shiftCount;
 | 
						|
    int32_t zExp;
 | 
						|
    uint64_t zSig0, zSig1;
 | 
						|
 | 
						|
    if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | 
						|
    zSign = ( a < 0 );
 | 
						|
    absA = zSign ? - a : a;
 | 
						|
    shiftCount = clz64(absA) + 49;
 | 
						|
    zExp = 0x406E - shiftCount;
 | 
						|
    if ( 64 <= shiftCount ) {
 | 
						|
        zSig1 = 0;
 | 
						|
        zSig0 = absA;
 | 
						|
        shiftCount -= 64;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        zSig1 = absA;
 | 
						|
        zSig0 = 0;
 | 
						|
    }
 | 
						|
    shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | 
						|
    return packFloat128( zSign, zExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the 64-bit unsigned integer `a'
 | 
						|
| to the quadruple-precision floating-point format.  The conversion is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 uint64_to_float128(uint64_t a, float_status *status)
 | 
						|
{
 | 
						|
    if (a == 0) {
 | 
						|
        return float128_zero;
 | 
						|
    }
 | 
						|
    return normalizeRoundAndPackFloat128(0, 0x406E, 0, a, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the single-precision floating-point value
 | 
						|
| `a' to the extended double-precision floating-point format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 float32_to_floatx80(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    uint32_t aSig;
 | 
						|
 | 
						|
    a = float32_squash_input_denormal(a, status);
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if (aSig) {
 | 
						|
            floatx80 res = commonNaNToFloatx80(float32ToCommonNaN(a, status),
 | 
						|
                                               status);
 | 
						|
            return floatx80_silence_nan(res, status);
 | 
						|
        }
 | 
						|
        return packFloatx80(aSign,
 | 
						|
                            floatx80_infinity_high,
 | 
						|
                            floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    aSig |= 0x00800000;
 | 
						|
    return packFloatx80( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<40 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the single-precision floating-point value
 | 
						|
| `a' to the double-precision floating-point format.  The conversion is
 | 
						|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float32_to_float128(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    uint32_t aSig;
 | 
						|
 | 
						|
    a = float32_squash_input_denormal(a, status);
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if (aSig) {
 | 
						|
            return commonNaNToFloat128(float32ToCommonNaN(a, status), status);
 | 
						|
        }
 | 
						|
        return packFloat128( aSign, 0x7FFF, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
        --aExp;
 | 
						|
    }
 | 
						|
    return packFloat128( aSign, aExp + 0x3F80, ( (uint64_t) aSig )<<25, 0 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the remainder of the single-precision floating-point value `a'
 | 
						|
| with respect to the corresponding value `b'.  The operation is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float32 float32_rem(float32 a, float32 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, zSign;
 | 
						|
    int aExp, bExp, expDiff;
 | 
						|
    uint32_t aSig, bSig;
 | 
						|
    uint32_t q;
 | 
						|
    uint64_t aSig64, bSig64, q64;
 | 
						|
    uint32_t alternateASig;
 | 
						|
    int32_t sigMean;
 | 
						|
    a = float32_squash_input_denormal(a, status);
 | 
						|
    b = float32_squash_input_denormal(b, status);
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
    bSig = extractFloat32Frac( b );
 | 
						|
    bExp = extractFloat32Exp( b );
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | 
						|
            return propagateFloat32NaN(a, b, status);
 | 
						|
        }
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float32_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( bExp == 0xFF ) {
 | 
						|
        if (bSig) {
 | 
						|
            return propagateFloat32NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return float32_default_nan(status);
 | 
						|
        }
 | 
						|
        normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return a;
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig |= 0x00800000;
 | 
						|
    bSig |= 0x00800000;
 | 
						|
    if ( expDiff < 32 ) {
 | 
						|
        aSig <<= 8;
 | 
						|
        bSig <<= 8;
 | 
						|
        if ( expDiff < 0 ) {
 | 
						|
            if ( expDiff < -1 ) return a;
 | 
						|
            aSig >>= 1;
 | 
						|
        }
 | 
						|
        q = ( bSig <= aSig );
 | 
						|
        if ( q ) aSig -= bSig;
 | 
						|
        if ( 0 < expDiff ) {
 | 
						|
            q = ( ( (uint64_t) aSig )<<32 ) / bSig;
 | 
						|
            q >>= 32 - expDiff;
 | 
						|
            bSig >>= 2;
 | 
						|
            aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig >>= 2;
 | 
						|
            bSig >>= 2;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( bSig <= aSig ) aSig -= bSig;
 | 
						|
        aSig64 = ( (uint64_t) aSig )<<40;
 | 
						|
        bSig64 = ( (uint64_t) bSig )<<40;
 | 
						|
        expDiff -= 64;
 | 
						|
        while ( 0 < expDiff ) {
 | 
						|
            q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | 
						|
            q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | 
						|
            aSig64 = - ( ( bSig * q64 )<<38 );
 | 
						|
            expDiff -= 62;
 | 
						|
        }
 | 
						|
        expDiff += 64;
 | 
						|
        q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | 
						|
        q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | 
						|
        q = q64>>( 64 - expDiff );
 | 
						|
        bSig <<= 6;
 | 
						|
        aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 | 
						|
    }
 | 
						|
    do {
 | 
						|
        alternateASig = aSig;
 | 
						|
        ++q;
 | 
						|
        aSig -= bSig;
 | 
						|
    } while ( 0 <= (int32_t) aSig );
 | 
						|
    sigMean = aSig + alternateASig;
 | 
						|
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | 
						|
        aSig = alternateASig;
 | 
						|
    }
 | 
						|
    zSign = ( (int32_t) aSig < 0 );
 | 
						|
    if ( zSign ) aSig = - aSig;
 | 
						|
    return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the binary exponential of the single-precision floating-point value
 | 
						|
| `a'. The operation is performed according to the IEC/IEEE Standard for
 | 
						|
| Binary Floating-Point Arithmetic.
 | 
						|
|
 | 
						|
| Uses the following identities:
 | 
						|
|
 | 
						|
| 1. -------------------------------------------------------------------------
 | 
						|
|      x    x*ln(2)
 | 
						|
|     2  = e
 | 
						|
|
 | 
						|
| 2. -------------------------------------------------------------------------
 | 
						|
|                      2     3     4     5           n
 | 
						|
|      x        x     x     x     x     x           x
 | 
						|
|     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
 | 
						|
|               1!    2!    3!    4!    5!          n!
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static const float64 float32_exp2_coefficients[15] =
 | 
						|
{
 | 
						|
    const_float64( 0x3ff0000000000000ll ), /*  1 */
 | 
						|
    const_float64( 0x3fe0000000000000ll ), /*  2 */
 | 
						|
    const_float64( 0x3fc5555555555555ll ), /*  3 */
 | 
						|
    const_float64( 0x3fa5555555555555ll ), /*  4 */
 | 
						|
    const_float64( 0x3f81111111111111ll ), /*  5 */
 | 
						|
    const_float64( 0x3f56c16c16c16c17ll ), /*  6 */
 | 
						|
    const_float64( 0x3f2a01a01a01a01all ), /*  7 */
 | 
						|
    const_float64( 0x3efa01a01a01a01all ), /*  8 */
 | 
						|
    const_float64( 0x3ec71de3a556c734ll ), /*  9 */
 | 
						|
    const_float64( 0x3e927e4fb7789f5cll ), /* 10 */
 | 
						|
    const_float64( 0x3e5ae64567f544e4ll ), /* 11 */
 | 
						|
    const_float64( 0x3e21eed8eff8d898ll ), /* 12 */
 | 
						|
    const_float64( 0x3de6124613a86d09ll ), /* 13 */
 | 
						|
    const_float64( 0x3da93974a8c07c9dll ), /* 14 */
 | 
						|
    const_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
 | 
						|
};
 | 
						|
 | 
						|
float32 float32_exp2(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    uint32_t aSig;
 | 
						|
    float64 r, x, xn;
 | 
						|
    int i;
 | 
						|
    a = float32_squash_input_denormal(a, status);
 | 
						|
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
 | 
						|
    if ( aExp == 0xFF) {
 | 
						|
        if (aSig) {
 | 
						|
            return propagateFloat32NaN(a, float32_zero, status);
 | 
						|
        }
 | 
						|
        return (aSign) ? float32_zero : a;
 | 
						|
    }
 | 
						|
    if (aExp == 0) {
 | 
						|
        if (aSig == 0) return float32_one;
 | 
						|
    }
 | 
						|
 | 
						|
    float_raise(float_flag_inexact, status);
 | 
						|
 | 
						|
    /* ******************************* */
 | 
						|
    /* using float64 for approximation */
 | 
						|
    /* ******************************* */
 | 
						|
    x = float32_to_float64(a, status);
 | 
						|
    x = float64_mul(x, float64_ln2, status);
 | 
						|
 | 
						|
    xn = x;
 | 
						|
    r = float64_one;
 | 
						|
    for (i = 0 ; i < 15 ; i++) {
 | 
						|
        float64 f;
 | 
						|
 | 
						|
        f = float64_mul(xn, float32_exp2_coefficients[i], status);
 | 
						|
        r = float64_add(r, f, status);
 | 
						|
 | 
						|
        xn = float64_mul(xn, x, status);
 | 
						|
    }
 | 
						|
 | 
						|
    return float64_to_float32(r, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the binary log of the single-precision floating-point value `a'.
 | 
						|
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
float32 float32_log2(float32 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, zSign;
 | 
						|
    int aExp;
 | 
						|
    uint32_t aSig, zSig, i;
 | 
						|
 | 
						|
    a = float32_squash_input_denormal(a, status);
 | 
						|
    aSig = extractFloat32Frac( a );
 | 
						|
    aExp = extractFloat32Exp( a );
 | 
						|
    aSign = extractFloat32Sign( a );
 | 
						|
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
 | 
						|
        normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float32_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( aExp == 0xFF ) {
 | 
						|
        if (aSig) {
 | 
						|
            return propagateFloat32NaN(a, float32_zero, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    aExp -= 0x7F;
 | 
						|
    aSig |= 0x00800000;
 | 
						|
    zSign = aExp < 0;
 | 
						|
    zSig = aExp << 23;
 | 
						|
 | 
						|
    for (i = 1 << 22; i > 0; i >>= 1) {
 | 
						|
        aSig = ( (uint64_t)aSig * aSig ) >> 23;
 | 
						|
        if ( aSig & 0x01000000 ) {
 | 
						|
            aSig >>= 1;
 | 
						|
            zSig |= i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if ( zSign )
 | 
						|
        zSig = -zSig;
 | 
						|
 | 
						|
    return normalizeRoundAndPackFloat32(zSign, 0x85, zSig, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the double-precision floating-point value
 | 
						|
| `a' to the extended double-precision floating-point format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 float64_to_floatx80(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    uint64_t aSig;
 | 
						|
 | 
						|
    a = float64_squash_input_denormal(a, status);
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if (aSig) {
 | 
						|
            floatx80 res = commonNaNToFloatx80(float64ToCommonNaN(a, status),
 | 
						|
                                               status);
 | 
						|
            return floatx80_silence_nan(res, status);
 | 
						|
        }
 | 
						|
        return packFloatx80(aSign,
 | 
						|
                            floatx80_infinity_high,
 | 
						|
                            floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    return
 | 
						|
        packFloatx80(
 | 
						|
            aSign, aExp + 0x3C00, (aSig | UINT64_C(0x0010000000000000)) << 11);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the double-precision floating-point value
 | 
						|
| `a' to the quadruple-precision floating-point format.  The conversion is
 | 
						|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float64_to_float128(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    uint64_t aSig, zSig0, zSig1;
 | 
						|
 | 
						|
    a = float64_squash_input_denormal(a, status);
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if (aSig) {
 | 
						|
            return commonNaNToFloat128(float64ToCommonNaN(a, status), status);
 | 
						|
        }
 | 
						|
        return packFloat128( aSign, 0x7FFF, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
        --aExp;
 | 
						|
    }
 | 
						|
    shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
 | 
						|
    return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the remainder of the double-precision floating-point value `a'
 | 
						|
| with respect to the corresponding value `b'.  The operation is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float64 float64_rem(float64 a, float64 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, zSign;
 | 
						|
    int aExp, bExp, expDiff;
 | 
						|
    uint64_t aSig, bSig;
 | 
						|
    uint64_t q, alternateASig;
 | 
						|
    int64_t sigMean;
 | 
						|
 | 
						|
    a = float64_squash_input_denormal(a, status);
 | 
						|
    b = float64_squash_input_denormal(b, status);
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
    bSig = extractFloat64Frac( b );
 | 
						|
    bExp = extractFloat64Exp( b );
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | 
						|
            return propagateFloat64NaN(a, b, status);
 | 
						|
        }
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float64_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FF ) {
 | 
						|
        if (bSig) {
 | 
						|
            return propagateFloat64NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return float64_default_nan(status);
 | 
						|
        }
 | 
						|
        normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return a;
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig = (aSig | UINT64_C(0x0010000000000000)) << 11;
 | 
						|
    bSig = (bSig | UINT64_C(0x0010000000000000)) << 11;
 | 
						|
    if ( expDiff < 0 ) {
 | 
						|
        if ( expDiff < -1 ) return a;
 | 
						|
        aSig >>= 1;
 | 
						|
    }
 | 
						|
    q = ( bSig <= aSig );
 | 
						|
    if ( q ) aSig -= bSig;
 | 
						|
    expDiff -= 64;
 | 
						|
    while ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig, 0, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        aSig = - ( ( bSig>>2 ) * q );
 | 
						|
        expDiff -= 62;
 | 
						|
    }
 | 
						|
    expDiff += 64;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig, 0, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        q >>= 64 - expDiff;
 | 
						|
        bSig >>= 2;
 | 
						|
        aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        aSig >>= 2;
 | 
						|
        bSig >>= 2;
 | 
						|
    }
 | 
						|
    do {
 | 
						|
        alternateASig = aSig;
 | 
						|
        ++q;
 | 
						|
        aSig -= bSig;
 | 
						|
    } while ( 0 <= (int64_t) aSig );
 | 
						|
    sigMean = aSig + alternateASig;
 | 
						|
    if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | 
						|
        aSig = alternateASig;
 | 
						|
    }
 | 
						|
    zSign = ( (int64_t) aSig < 0 );
 | 
						|
    if ( zSign ) aSig = - aSig;
 | 
						|
    return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the binary log of the double-precision floating-point value `a'.
 | 
						|
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
float64 float64_log2(float64 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, zSign;
 | 
						|
    int aExp;
 | 
						|
    uint64_t aSig, aSig0, aSig1, zSig, i;
 | 
						|
    a = float64_squash_input_denormal(a, status);
 | 
						|
 | 
						|
    aSig = extractFloat64Frac( a );
 | 
						|
    aExp = extractFloat64Exp( a );
 | 
						|
    aSign = extractFloat64Sign( a );
 | 
						|
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
 | 
						|
        normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float64_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( aExp == 0x7FF ) {
 | 
						|
        if (aSig) {
 | 
						|
            return propagateFloat64NaN(a, float64_zero, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    aExp -= 0x3FF;
 | 
						|
    aSig |= UINT64_C(0x0010000000000000);
 | 
						|
    zSign = aExp < 0;
 | 
						|
    zSig = (uint64_t)aExp << 52;
 | 
						|
    for (i = 1LL << 51; i > 0; i >>= 1) {
 | 
						|
        mul64To128( aSig, aSig, &aSig0, &aSig1 );
 | 
						|
        aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
 | 
						|
        if ( aSig & UINT64_C(0x0020000000000000) ) {
 | 
						|
            aSig >>= 1;
 | 
						|
            zSig |= i;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if ( zSign )
 | 
						|
        zSig = -zSig;
 | 
						|
    return normalizeRoundAndPackFloat64(zSign, 0x408, zSig, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the 32-bit two's complement integer format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic---which means in particular that the conversion
 | 
						|
| is rounded according to the current rounding mode.  If `a' is a NaN, the
 | 
						|
| largest positive integer is returned.  Otherwise, if the conversion
 | 
						|
| overflows, the largest integer with the same sign as `a' is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int32_t floatx80_to_int32(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 1 << 31;
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
 | 
						|
    shiftCount = 0x4037 - aExp;
 | 
						|
    if ( shiftCount <= 0 ) shiftCount = 1;
 | 
						|
    shift64RightJamming( aSig, shiftCount, &aSig );
 | 
						|
    return roundAndPackInt32(aSign, aSig, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the 32-bit two's complement integer format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic, except that the conversion is always rounded
 | 
						|
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | 
						|
| Otherwise, if the conversion overflows, the largest integer with the same
 | 
						|
| sign as `a' is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int32_t floatx80_to_int32_round_to_zero(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig, savedASig;
 | 
						|
    int32_t z;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 1 << 31;
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( 0x401E < aExp ) {
 | 
						|
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) aSign = 0;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    else if ( aExp < 0x3FFF ) {
 | 
						|
        if (aExp || aSig) {
 | 
						|
            status->float_exception_flags |= float_flag_inexact;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    shiftCount = 0x403E - aExp;
 | 
						|
    savedASig = aSig;
 | 
						|
    aSig >>= shiftCount;
 | 
						|
    z = aSig;
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    if ( ( z < 0 ) ^ aSign ) {
 | 
						|
 invalid:
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return aSign ? (int32_t) 0x80000000 : 0x7FFFFFFF;
 | 
						|
    }
 | 
						|
    if ( ( aSig<<shiftCount ) != savedASig ) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the 64-bit two's complement integer format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic---which means in particular that the conversion
 | 
						|
| is rounded according to the current rounding mode.  If `a' is a NaN,
 | 
						|
| the largest positive integer is returned.  Otherwise, if the conversion
 | 
						|
| overflows, the largest integer with the same sign as `a' is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int64_t floatx80_to_int64(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig, aSigExtra;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 1ULL << 63;
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    shiftCount = 0x403E - aExp;
 | 
						|
    if ( shiftCount <= 0 ) {
 | 
						|
        if ( shiftCount ) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            if (!aSign || floatx80_is_any_nan(a)) {
 | 
						|
                return INT64_MAX;
 | 
						|
            }
 | 
						|
            return INT64_MIN;
 | 
						|
        }
 | 
						|
        aSigExtra = 0;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | 
						|
    }
 | 
						|
    return roundAndPackInt64(aSign, aSig, aSigExtra, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the 64-bit two's complement integer format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic, except that the conversion is always rounded
 | 
						|
| toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | 
						|
| Otherwise, if the conversion overflows, the largest integer with the same
 | 
						|
| sign as `a' is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int64_t floatx80_to_int64_round_to_zero(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig;
 | 
						|
    int64_t z;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return 1ULL << 63;
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    shiftCount = aExp - 0x403E;
 | 
						|
    if ( 0 <= shiftCount ) {
 | 
						|
        aSig &= UINT64_C(0x7FFFFFFFFFFFFFFF);
 | 
						|
        if ( ( a.high != 0xC03E ) || aSig ) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
 | 
						|
                return INT64_MAX;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return INT64_MIN;
 | 
						|
    }
 | 
						|
    else if ( aExp < 0x3FFF ) {
 | 
						|
        if (aExp | aSig) {
 | 
						|
            status->float_exception_flags |= float_flag_inexact;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    z = aSig>>( - shiftCount );
 | 
						|
    if ( (uint64_t) ( aSig<<( shiftCount & 63 ) ) ) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the single-precision floating-point format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float32 floatx80_to_float32(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float32_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (uint64_t) ( aSig<<1 ) ) {
 | 
						|
            float32 res = commonNaNToFloat32(floatx80ToCommonNaN(a, status),
 | 
						|
                                             status);
 | 
						|
            return float32_silence_nan(res, status);
 | 
						|
        }
 | 
						|
        return packFloat32( aSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( aSig, 33, &aSig );
 | 
						|
    if ( aExp || aSig ) aExp -= 0x3F81;
 | 
						|
    return roundAndPackFloat32(aSign, aExp, aSig, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the double-precision floating-point format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float64 floatx80_to_float64(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig, zSig;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float64_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (uint64_t) ( aSig<<1 ) ) {
 | 
						|
            float64 res = commonNaNToFloat64(floatx80ToCommonNaN(a, status),
 | 
						|
                                             status);
 | 
						|
            return float64_silence_nan(res, status);
 | 
						|
        }
 | 
						|
        return packFloat64( aSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    shift64RightJamming( aSig, 1, &zSig );
 | 
						|
    if ( aExp || aSig ) aExp -= 0x3C01;
 | 
						|
    return roundAndPackFloat64(aSign, aExp, zSig, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the extended double-precision floating-
 | 
						|
| point value `a' to the quadruple-precision floating-point format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 floatx80_to_float128(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    uint64_t aSig, zSig0, zSig1;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float128_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( ( aExp == 0x7FFF ) && (uint64_t) ( aSig<<1 ) ) {
 | 
						|
        float128 res = commonNaNToFloat128(floatx80ToCommonNaN(a, status),
 | 
						|
                                           status);
 | 
						|
        return float128_silence_nan(res, status);
 | 
						|
    }
 | 
						|
    shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
 | 
						|
    return packFloat128( aSign, aExp, zSig0, zSig1 );
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Rounds the extended double-precision floating-point value `a'
 | 
						|
| to the precision provided by floatx80_rounding_precision and returns the
 | 
						|
| result as an extended double-precision floating-point value.
 | 
						|
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_round(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                extractFloatx80Sign(a),
 | 
						|
                                extractFloatx80Exp(a),
 | 
						|
                                extractFloatx80Frac(a), 0, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Rounds the extended double-precision floating-point value `a' to an integer,
 | 
						|
| and returns the result as an extended quadruple-precision floating-point
 | 
						|
| value.  The operation is performed according to the IEC/IEEE Standard for
 | 
						|
| Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_round_to_int(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t lastBitMask, roundBitsMask;
 | 
						|
    floatx80 z;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    if ( 0x403E <= aExp ) {
 | 
						|
        if ( ( aExp == 0x7FFF ) && (uint64_t) ( extractFloatx80Frac( a )<<1 ) ) {
 | 
						|
            return propagateFloatx80NaN(a, a, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( aExp < 0x3FFF ) {
 | 
						|
        if (    ( aExp == 0 )
 | 
						|
             && ( (uint64_t) ( extractFloatx80Frac( a ) ) == 0 ) ) {
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
        aSign = extractFloatx80Sign( a );
 | 
						|
        switch (status->float_rounding_mode) {
 | 
						|
         case float_round_nearest_even:
 | 
						|
            if ( ( aExp == 0x3FFE ) && (uint64_t) ( extractFloatx80Frac( a )<<1 )
 | 
						|
               ) {
 | 
						|
                return
 | 
						|
                    packFloatx80( aSign, 0x3FFF, UINT64_C(0x8000000000000000));
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_ties_away:
 | 
						|
            if (aExp == 0x3FFE) {
 | 
						|
                return packFloatx80(aSign, 0x3FFF, UINT64_C(0x8000000000000000));
 | 
						|
            }
 | 
						|
            break;
 | 
						|
         case float_round_down:
 | 
						|
            return
 | 
						|
                  aSign ?
 | 
						|
                      packFloatx80( 1, 0x3FFF, UINT64_C(0x8000000000000000))
 | 
						|
                : packFloatx80( 0, 0, 0 );
 | 
						|
         case float_round_up:
 | 
						|
            return
 | 
						|
                  aSign ? packFloatx80( 1, 0, 0 )
 | 
						|
                : packFloatx80( 0, 0x3FFF, UINT64_C(0x8000000000000000));
 | 
						|
 | 
						|
        case float_round_to_zero:
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            g_assert_not_reached();
 | 
						|
        }
 | 
						|
        return packFloatx80( aSign, 0, 0 );
 | 
						|
    }
 | 
						|
    lastBitMask = 1;
 | 
						|
    lastBitMask <<= 0x403E - aExp;
 | 
						|
    roundBitsMask = lastBitMask - 1;
 | 
						|
    z = a;
 | 
						|
    switch (status->float_rounding_mode) {
 | 
						|
    case float_round_nearest_even:
 | 
						|
        z.low += lastBitMask>>1;
 | 
						|
        if ((z.low & roundBitsMask) == 0) {
 | 
						|
            z.low &= ~lastBitMask;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case float_round_ties_away:
 | 
						|
        z.low += lastBitMask >> 1;
 | 
						|
        break;
 | 
						|
    case float_round_to_zero:
 | 
						|
        break;
 | 
						|
    case float_round_up:
 | 
						|
        if (!extractFloatx80Sign(z)) {
 | 
						|
            z.low += roundBitsMask;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    case float_round_down:
 | 
						|
        if (extractFloatx80Sign(z)) {
 | 
						|
            z.low += roundBitsMask;
 | 
						|
        }
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        abort();
 | 
						|
    }
 | 
						|
    z.low &= ~ roundBitsMask;
 | 
						|
    if ( z.low == 0 ) {
 | 
						|
        ++z.high;
 | 
						|
        z.low = UINT64_C(0x8000000000000000);
 | 
						|
    }
 | 
						|
    if (z.low != a.low) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of adding the absolute values of the extended double-
 | 
						|
| precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
 | 
						|
| negated before being returned.  `zSign' is ignored if the result is a NaN.
 | 
						|
| The addition is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, bool zSign,
 | 
						|
                                float_status *status)
 | 
						|
{
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig, bSig, zSig0, zSig1;
 | 
						|
    int32_t expDiff;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        if ( aExp == 0x7FFF ) {
 | 
						|
            if ((uint64_t)(aSig << 1)) {
 | 
						|
                return propagateFloatx80NaN(a, b, status);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( bExp == 0 ) --expDiff;
 | 
						|
        shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | 
						|
        zExp = aExp;
 | 
						|
    }
 | 
						|
    else if ( expDiff < 0 ) {
 | 
						|
        if ( bExp == 0x7FFF ) {
 | 
						|
            if ((uint64_t)(bSig << 1)) {
 | 
						|
                return propagateFloatx80NaN(a, b, status);
 | 
						|
            }
 | 
						|
            return packFloatx80(zSign,
 | 
						|
                                floatx80_infinity_high,
 | 
						|
                                floatx80_infinity_low);
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) ++expDiff;
 | 
						|
        shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | 
						|
        zExp = bExp;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp == 0x7FFF ) {
 | 
						|
            if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
 | 
						|
                return propagateFloatx80NaN(a, b, status);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        zSig1 = 0;
 | 
						|
        zSig0 = aSig + bSig;
 | 
						|
        if ( aExp == 0 ) {
 | 
						|
            if ((aSig | bSig) & UINT64_C(0x8000000000000000) && zSig0 < aSig) {
 | 
						|
                /* At least one of the values is a pseudo-denormal,
 | 
						|
                 * and there is a carry out of the result.  */
 | 
						|
                zExp = 1;
 | 
						|
                goto shiftRight1;
 | 
						|
            }
 | 
						|
            if (zSig0 == 0) {
 | 
						|
                return packFloatx80(zSign, 0, 0);
 | 
						|
            }
 | 
						|
            normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
 | 
						|
            goto roundAndPack;
 | 
						|
        }
 | 
						|
        zExp = aExp;
 | 
						|
        goto shiftRight1;
 | 
						|
    }
 | 
						|
    zSig0 = aSig + bSig;
 | 
						|
    if ( (int64_t) zSig0 < 0 ) goto roundAndPack;
 | 
						|
 shiftRight1:
 | 
						|
    shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | 
						|
    zSig0 |= UINT64_C(0x8000000000000000);
 | 
						|
    ++zExp;
 | 
						|
 roundAndPack:
 | 
						|
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                zSign, zExp, zSig0, zSig1, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of subtracting the absolute values of the extended
 | 
						|
| double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | 
						|
| difference is negated before being returned.  `zSign' is ignored if the
 | 
						|
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | 
						|
| Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, bool zSign,
 | 
						|
                                float_status *status)
 | 
						|
{
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig, bSig, zSig0, zSig1;
 | 
						|
    int32_t expDiff;
 | 
						|
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    if ( 0 < expDiff ) goto aExpBigger;
 | 
						|
    if ( expDiff < 0 ) goto bExpBigger;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( (uint64_t) ( ( aSig | bSig )<<1 ) ) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        aExp = 1;
 | 
						|
        bExp = 1;
 | 
						|
    }
 | 
						|
    zSig1 = 0;
 | 
						|
    if ( bSig < aSig ) goto aBigger;
 | 
						|
    if ( aSig < bSig ) goto bBigger;
 | 
						|
    return packFloatx80(status->float_rounding_mode == float_round_down, 0, 0);
 | 
						|
 bExpBigger:
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(bSig << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return packFloatx80(zSign ^ 1, floatx80_infinity_high,
 | 
						|
                            floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) ++expDiff;
 | 
						|
    shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | 
						|
 bBigger:
 | 
						|
    sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 | 
						|
    zExp = bExp;
 | 
						|
    zSign ^= 1;
 | 
						|
    goto normalizeRoundAndPack;
 | 
						|
 aExpBigger:
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(aSig << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) --expDiff;
 | 
						|
    shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | 
						|
 aBigger:
 | 
						|
    sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 | 
						|
    zExp = aExp;
 | 
						|
 normalizeRoundAndPack:
 | 
						|
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                         zSign, zExp, zSig0, zSig1, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of adding the extended double-precision floating-point
 | 
						|
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | 
						|
| Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return addFloatx80Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return subFloatx80Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of subtracting the extended double-precision floating-
 | 
						|
| point values `a' and `b'.  The operation is performed according to the
 | 
						|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return subFloatx80Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return addFloatx80Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of multiplying the extended double-precision floating-
 | 
						|
| point values `a' and `b'.  The operation is performed according to the
 | 
						|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign, zSign;
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig, bSig, zSig0, zSig1;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (    (uint64_t) ( aSig<<1 )
 | 
						|
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if ( ( bExp | bSig ) == 0 ) goto invalid;
 | 
						|
        return packFloatx80(zSign, floatx80_infinity_high,
 | 
						|
                                   floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(bSig << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if ( ( aExp | aSig ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return floatx80_default_nan(status);
 | 
						|
        }
 | 
						|
        return packFloatx80(zSign, floatx80_infinity_high,
 | 
						|
                                   floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    zExp = aExp + bExp - 0x3FFE;
 | 
						|
    mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | 
						|
    if ( 0 < (int64_t) zSig0 ) {
 | 
						|
        shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | 
						|
        --zExp;
 | 
						|
    }
 | 
						|
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                zSign, zExp, zSig0, zSig1, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of dividing the extended double-precision floating-point
 | 
						|
| value `a' by the corresponding value `b'.  The operation is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign, zSign;
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig, bSig, zSig0, zSig1;
 | 
						|
    uint64_t rem0, rem1, rem2, term0, term1, term2;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(aSig << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if ( bExp == 0x7FFF ) {
 | 
						|
            if ((uint64_t)(bSig << 1)) {
 | 
						|
                return propagateFloatx80NaN(a, b, status);
 | 
						|
            }
 | 
						|
            goto invalid;
 | 
						|
        }
 | 
						|
        return packFloatx80(zSign, floatx80_infinity_high,
 | 
						|
                                   floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(bSig << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return packFloatx80( zSign, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
            if ( ( aExp | aSig ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
                float_raise(float_flag_invalid, status);
 | 
						|
                return floatx80_default_nan(status);
 | 
						|
            }
 | 
						|
            float_raise(float_flag_divbyzero, status);
 | 
						|
            return packFloatx80(zSign, floatx80_infinity_high,
 | 
						|
                                       floatx80_infinity_low);
 | 
						|
        }
 | 
						|
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | 
						|
    }
 | 
						|
    zExp = aExp - bExp + 0x3FFE;
 | 
						|
    rem1 = 0;
 | 
						|
    if ( bSig <= aSig ) {
 | 
						|
        shift128Right( aSig, 0, 1, &aSig, &rem1 );
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
    zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 | 
						|
    mul64To128( bSig, zSig0, &term0, &term1 );
 | 
						|
    sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 | 
						|
    while ( (int64_t) rem0 < 0 ) {
 | 
						|
        --zSig0;
 | 
						|
        add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | 
						|
    }
 | 
						|
    zSig1 = estimateDiv128To64( rem1, 0, bSig );
 | 
						|
    if ( (uint64_t) ( zSig1<<1 ) <= 8 ) {
 | 
						|
        mul64To128( bSig, zSig1, &term1, &term2 );
 | 
						|
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | 
						|
        while ( (int64_t) rem1 < 0 ) {
 | 
						|
            --zSig1;
 | 
						|
            add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 | 
						|
        }
 | 
						|
        zSig1 |= ( ( rem1 | rem2 ) != 0 );
 | 
						|
    }
 | 
						|
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                zSign, zExp, zSig0, zSig1, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the remainder of the extended double-precision floating-point value
 | 
						|
| `a' with respect to the corresponding value `b'.  The operation is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic,
 | 
						|
| if 'mod' is false; if 'mod' is true, return the remainder based on truncating
 | 
						|
| the quotient toward zero instead.  '*quotient' is set to the low 64 bits of
 | 
						|
| the absolute value of the integer quotient.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_modrem(floatx80 a, floatx80 b, bool mod, uint64_t *quotient,
 | 
						|
                         float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, zSign;
 | 
						|
    int32_t aExp, bExp, expDiff, aExpOrig;
 | 
						|
    uint64_t aSig0, aSig1, bSig;
 | 
						|
    uint64_t q, term0, term1, alternateASig0, alternateASig1;
 | 
						|
 | 
						|
    *quotient = 0;
 | 
						|
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig0 = extractFloatx80Frac( a );
 | 
						|
    aExpOrig = aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSig = extractFloatx80Frac( b );
 | 
						|
    bExp = extractFloatx80Exp( b );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (    (uint64_t) ( aSig0<<1 )
 | 
						|
             || ( ( bExp == 0x7FFF ) && (uint64_t) ( bSig<<1 ) ) ) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(bSig << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if (aExp == 0 && aSig0 >> 63) {
 | 
						|
            /*
 | 
						|
             * Pseudo-denormal argument must be returned in normalized
 | 
						|
             * form.
 | 
						|
             */
 | 
						|
            return packFloatx80(aSign, 1, aSig0);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( bSig == 0 ) {
 | 
						|
 invalid:
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return floatx80_default_nan(status);
 | 
						|
        }
 | 
						|
        normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig0 == 0 ) return a;
 | 
						|
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | 
						|
    }
 | 
						|
    zSign = aSign;
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    aSig1 = 0;
 | 
						|
    if ( expDiff < 0 ) {
 | 
						|
        if ( mod || expDiff < -1 ) {
 | 
						|
            if (aExp == 1 && aExpOrig == 0) {
 | 
						|
                /*
 | 
						|
                 * Pseudo-denormal argument must be returned in
 | 
						|
                 * normalized form.
 | 
						|
                 */
 | 
						|
                return packFloatx80(aSign, aExp, aSig0);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 | 
						|
        expDiff = 0;
 | 
						|
    }
 | 
						|
    *quotient = q = ( bSig <= aSig0 );
 | 
						|
    if ( q ) aSig0 -= bSig;
 | 
						|
    expDiff -= 64;
 | 
						|
    while ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig0, aSig1, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        mul64To128( bSig, q, &term0, &term1 );
 | 
						|
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | 
						|
        shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 | 
						|
        expDiff -= 62;
 | 
						|
        *quotient <<= 62;
 | 
						|
        *quotient += q;
 | 
						|
    }
 | 
						|
    expDiff += 64;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig0, aSig1, bSig );
 | 
						|
        q = ( 2 < q ) ? q - 2 : 0;
 | 
						|
        q >>= 64 - expDiff;
 | 
						|
        mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 | 
						|
        sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | 
						|
        shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 | 
						|
        while ( le128( term0, term1, aSig0, aSig1 ) ) {
 | 
						|
            ++q;
 | 
						|
            sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | 
						|
        }
 | 
						|
        if (expDiff < 64) {
 | 
						|
            *quotient <<= expDiff;
 | 
						|
        } else {
 | 
						|
            *quotient = 0;
 | 
						|
        }
 | 
						|
        *quotient += q;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        term1 = 0;
 | 
						|
        term0 = bSig;
 | 
						|
    }
 | 
						|
    if (!mod) {
 | 
						|
        sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 | 
						|
        if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | 
						|
                || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | 
						|
                        && ( q & 1 ) )
 | 
						|
            ) {
 | 
						|
            aSig0 = alternateASig0;
 | 
						|
            aSig1 = alternateASig1;
 | 
						|
            zSign = ! zSign;
 | 
						|
            ++*quotient;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return
 | 
						|
        normalizeRoundAndPackFloatx80(
 | 
						|
            80, zSign, bExp + expDiff, aSig0, aSig1, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the remainder of the extended double-precision floating-point value
 | 
						|
| `a' with respect to the corresponding value `b'.  The operation is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    uint64_t quotient;
 | 
						|
    return floatx80_modrem(a, b, false, "ient, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the remainder of the extended double-precision floating-point value
 | 
						|
| `a' with respect to the corresponding value `b', with the quotient truncated
 | 
						|
| toward zero.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_mod(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    uint64_t quotient;
 | 
						|
    return floatx80_modrem(a, b, true, "ient, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the square root of the extended double-precision floating-point
 | 
						|
| value `a'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
| for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 floatx80_sqrt(floatx80 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, zExp;
 | 
						|
    uint64_t aSig0, aSig1, zSig0, zSig1, doubleZSig0;
 | 
						|
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig0 = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ((uint64_t)(aSig0 << 1)) {
 | 
						|
            return propagateFloatx80NaN(a, a, status);
 | 
						|
        }
 | 
						|
        if ( ! aSign ) return a;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        if ( ( aExp | aSig0 ) == 0 ) return a;
 | 
						|
 invalid:
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 | 
						|
        normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | 
						|
    }
 | 
						|
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 | 
						|
    zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 | 
						|
    shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
 | 
						|
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | 
						|
    doubleZSig0 = zSig0<<1;
 | 
						|
    mul64To128( zSig0, zSig0, &term0, &term1 );
 | 
						|
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | 
						|
    while ( (int64_t) rem0 < 0 ) {
 | 
						|
        --zSig0;
 | 
						|
        doubleZSig0 -= 2;
 | 
						|
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | 
						|
    }
 | 
						|
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | 
						|
    if ( ( zSig1 & UINT64_C(0x3FFFFFFFFFFFFFFF) ) <= 5 ) {
 | 
						|
        if ( zSig1 == 0 ) zSig1 = 1;
 | 
						|
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | 
						|
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | 
						|
        mul64To128( zSig1, zSig1, &term2, &term3 );
 | 
						|
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        while ( (int64_t) rem1 < 0 ) {
 | 
						|
            --zSig1;
 | 
						|
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | 
						|
            term3 |= 1;
 | 
						|
            term2 |= doubleZSig0;
 | 
						|
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        }
 | 
						|
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | 
						|
    }
 | 
						|
    shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
 | 
						|
    zSig0 |= doubleZSig0;
 | 
						|
    return roundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                0, zExp, zSig0, zSig1, status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the 32-bit two's complement integer format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic---which means in particular that the conversion is rounded
 | 
						|
| according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
| positive integer is returned.  Otherwise, if the conversion overflows, the
 | 
						|
| largest integer with the same sign as `a' is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int32_t float128_to_int32(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | 
						|
    if ( aExp ) aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    aSig0 |= ( aSig1 != 0 );
 | 
						|
    shiftCount = 0x4028 - aExp;
 | 
						|
    if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
 | 
						|
    return roundAndPackInt32(aSign, aSig0, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the 32-bit two's complement integer format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic, except that the conversion is always rounded toward zero.  If
 | 
						|
| `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | 
						|
| conversion overflows, the largest integer with the same sign as `a' is
 | 
						|
| returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int32_t float128_to_int32_round_to_zero(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig0, aSig1, savedASig;
 | 
						|
    int32_t z;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    aSig0 |= ( aSig1 != 0 );
 | 
						|
    if ( 0x401E < aExp ) {
 | 
						|
        if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    else if ( aExp < 0x3FFF ) {
 | 
						|
        if (aExp || aSig0) {
 | 
						|
            status->float_exception_flags |= float_flag_inexact;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
    aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    shiftCount = 0x402F - aExp;
 | 
						|
    savedASig = aSig0;
 | 
						|
    aSig0 >>= shiftCount;
 | 
						|
    z = aSig0;
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    if ( ( z < 0 ) ^ aSign ) {
 | 
						|
 invalid:
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return aSign ? INT32_MIN : INT32_MAX;
 | 
						|
    }
 | 
						|
    if ( ( aSig0<<shiftCount ) != savedASig ) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the 64-bit two's complement integer format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic---which means in particular that the conversion is rounded
 | 
						|
| according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
| positive integer is returned.  Otherwise, if the conversion overflows, the
 | 
						|
| largest integer with the same sign as `a' is returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int64_t float128_to_int64(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp ) aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    shiftCount = 0x402F - aExp;
 | 
						|
    if ( shiftCount <= 0 ) {
 | 
						|
        if ( 0x403E < aExp ) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            if (    ! aSign
 | 
						|
                 || (    ( aExp == 0x7FFF )
 | 
						|
                      && ( aSig1 || ( aSig0 != UINT64_C(0x0001000000000000) ) )
 | 
						|
                    )
 | 
						|
               ) {
 | 
						|
                return INT64_MAX;
 | 
						|
            }
 | 
						|
            return INT64_MIN;
 | 
						|
        }
 | 
						|
        shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    return roundAndPackInt64(aSign, aSig0, aSig1, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the 64-bit two's complement integer format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic, except that the conversion is always rounded toward zero.
 | 
						|
| If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | 
						|
| the conversion overflows, the largest integer with the same sign as `a' is
 | 
						|
| returned.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
int64_t float128_to_int64_round_to_zero(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, shiftCount;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
    int64_t z;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp ) aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    shiftCount = aExp - 0x402F;
 | 
						|
    if ( 0 < shiftCount ) {
 | 
						|
        if ( 0x403E <= aExp ) {
 | 
						|
            aSig0 &= UINT64_C(0x0000FFFFFFFFFFFF);
 | 
						|
            if (    ( a.high == UINT64_C(0xC03E000000000000) )
 | 
						|
                 && ( aSig1 < UINT64_C(0x0002000000000000) ) ) {
 | 
						|
                if (aSig1) {
 | 
						|
                    status->float_exception_flags |= float_flag_inexact;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                float_raise(float_flag_invalid, status);
 | 
						|
                if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
 | 
						|
                    return INT64_MAX;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            return INT64_MIN;
 | 
						|
        }
 | 
						|
        z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
 | 
						|
        if ( (uint64_t) ( aSig1<<shiftCount ) ) {
 | 
						|
            status->float_exception_flags |= float_flag_inexact;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp < 0x3FFF ) {
 | 
						|
            if ( aExp | aSig0 | aSig1 ) {
 | 
						|
                status->float_exception_flags |= float_flag_inexact;
 | 
						|
            }
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
        z = aSig0>>( - shiftCount );
 | 
						|
        if (    aSig1
 | 
						|
             || ( shiftCount && (uint64_t) ( aSig0<<( shiftCount & 63 ) ) ) ) {
 | 
						|
            status->float_exception_flags |= float_flag_inexact;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if ( aSign ) z = - z;
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point value
 | 
						|
| `a' to the 64-bit unsigned integer format.  The conversion is
 | 
						|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic---which means in particular that the conversion is rounded
 | 
						|
| according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
| positive integer is returned.  If the conversion overflows, the
 | 
						|
| largest unsigned integer is returned.  If 'a' is negative, the value is
 | 
						|
| rounded and zero is returned; negative values that do not round to zero
 | 
						|
| will raise the inexact exception.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
uint64_t float128_to_uint64(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int aExp;
 | 
						|
    int shiftCount;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
 | 
						|
    aSig0 = extractFloat128Frac0(a);
 | 
						|
    aSig1 = extractFloat128Frac1(a);
 | 
						|
    aExp = extractFloat128Exp(a);
 | 
						|
    aSign = extractFloat128Sign(a);
 | 
						|
    if (aSign && (aExp > 0x3FFE)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        if (float128_is_any_nan(a)) {
 | 
						|
            return UINT64_MAX;
 | 
						|
        } else {
 | 
						|
            return 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (aExp) {
 | 
						|
        aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    }
 | 
						|
    shiftCount = 0x402F - aExp;
 | 
						|
    if (shiftCount <= 0) {
 | 
						|
        if (0x403E < aExp) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return UINT64_MAX;
 | 
						|
        }
 | 
						|
        shortShift128Left(aSig0, aSig1, -shiftCount, &aSig0, &aSig1);
 | 
						|
    } else {
 | 
						|
        shift64ExtraRightJamming(aSig0, aSig1, shiftCount, &aSig0, &aSig1);
 | 
						|
    }
 | 
						|
    return roundAndPackUint64(aSign, aSig0, aSig1, status);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t float128_to_uint64_round_to_zero(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    uint64_t v;
 | 
						|
    signed char current_rounding_mode = status->float_rounding_mode;
 | 
						|
 | 
						|
    set_float_rounding_mode(float_round_to_zero, status);
 | 
						|
    v = float128_to_uint64(a, status);
 | 
						|
    set_float_rounding_mode(current_rounding_mode, status);
 | 
						|
 | 
						|
    return v;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the 32-bit unsigned integer format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic except that the conversion is always rounded toward zero.
 | 
						|
| If `a' is a NaN, the largest positive integer is returned.  Otherwise,
 | 
						|
| if the conversion overflows, the largest unsigned integer is returned.
 | 
						|
| If 'a' is negative, the value is rounded and zero is returned; negative
 | 
						|
| values that do not round to zero will raise the inexact exception.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
uint32_t float128_to_uint32_round_to_zero(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    uint64_t v;
 | 
						|
    uint32_t res;
 | 
						|
    int old_exc_flags = get_float_exception_flags(status);
 | 
						|
 | 
						|
    v = float128_to_uint64_round_to_zero(a, status);
 | 
						|
    if (v > 0xffffffff) {
 | 
						|
        res = 0xffffffff;
 | 
						|
    } else {
 | 
						|
        return v;
 | 
						|
    }
 | 
						|
    set_float_exception_flags(old_exc_flags, status);
 | 
						|
    float_raise(float_flag_invalid, status);
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point value
 | 
						|
| `a' to the 32-bit unsigned integer format.  The conversion is
 | 
						|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic---which means in particular that the conversion is rounded
 | 
						|
| according to the current rounding mode.  If `a' is a NaN, the largest
 | 
						|
| positive integer is returned.  If the conversion overflows, the
 | 
						|
| largest unsigned integer is returned.  If 'a' is negative, the value is
 | 
						|
| rounded and zero is returned; negative values that do not round to zero
 | 
						|
| will raise the inexact exception.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
uint32_t float128_to_uint32(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    uint64_t v;
 | 
						|
    uint32_t res;
 | 
						|
    int old_exc_flags = get_float_exception_flags(status);
 | 
						|
 | 
						|
    v = float128_to_uint64(a, status);
 | 
						|
    if (v > 0xffffffff) {
 | 
						|
        res = 0xffffffff;
 | 
						|
    } else {
 | 
						|
        return v;
 | 
						|
    }
 | 
						|
    set_float_exception_flags(old_exc_flags, status);
 | 
						|
    float_raise(float_flag_invalid, status);
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the single-precision floating-point format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float32 float128_to_float32(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
    uint32_t zSig;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( aSig0 | aSig1 ) {
 | 
						|
            return commonNaNToFloat32(float128ToCommonNaN(a, status), status);
 | 
						|
        }
 | 
						|
        return packFloat32( aSign, 0xFF, 0 );
 | 
						|
    }
 | 
						|
    aSig0 |= ( aSig1 != 0 );
 | 
						|
    shift64RightJamming( aSig0, 18, &aSig0 );
 | 
						|
    zSig = aSig0;
 | 
						|
    if ( aExp || zSig ) {
 | 
						|
        zSig |= 0x40000000;
 | 
						|
        aExp -= 0x3F81;
 | 
						|
    }
 | 
						|
    return roundAndPackFloat32(aSign, aExp, zSig, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the double-precision floating-point format.  The conversion
 | 
						|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | 
						|
| Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float64 float128_to_float64(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( aSig0 | aSig1 ) {
 | 
						|
            return commonNaNToFloat64(float128ToCommonNaN(a, status), status);
 | 
						|
        }
 | 
						|
        return packFloat64( aSign, 0x7FF, 0 );
 | 
						|
    }
 | 
						|
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | 
						|
    aSig0 |= ( aSig1 != 0 );
 | 
						|
    if ( aExp || aSig0 ) {
 | 
						|
        aSig0 |= UINT64_C(0x4000000000000000);
 | 
						|
        aExp -= 0x3C01;
 | 
						|
    }
 | 
						|
    return roundAndPackFloat64(aSign, aExp, aSig0, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of converting the quadruple-precision floating-point
 | 
						|
| value `a' to the extended double-precision floating-point format.  The
 | 
						|
| conversion is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
floatx80 float128_to_floatx80(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( aSig0 | aSig1 ) {
 | 
						|
            floatx80 res = commonNaNToFloatx80(float128ToCommonNaN(a, status),
 | 
						|
                                               status);
 | 
						|
            return floatx80_silence_nan(res, status);
 | 
						|
        }
 | 
						|
        return packFloatx80(aSign, floatx80_infinity_high,
 | 
						|
                                   floatx80_infinity_low);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
 | 
						|
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    }
 | 
						|
    shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
 | 
						|
    return roundAndPackFloatx80(80, aSign, aExp, aSig0, aSig1, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Rounds the quadruple-precision floating-point value `a' to an integer, and
 | 
						|
| returns the result as a quadruple-precision floating-point value.  The
 | 
						|
| operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_round_to_int(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t lastBitMask, roundBitsMask;
 | 
						|
    float128 z;
 | 
						|
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    if ( 0x402F <= aExp ) {
 | 
						|
        if ( 0x406F <= aExp ) {
 | 
						|
            if (    ( aExp == 0x7FFF )
 | 
						|
                 && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
 | 
						|
               ) {
 | 
						|
                return propagateFloat128NaN(a, a, status);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        lastBitMask = 1;
 | 
						|
        lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
 | 
						|
        roundBitsMask = lastBitMask - 1;
 | 
						|
        z = a;
 | 
						|
        switch (status->float_rounding_mode) {
 | 
						|
        case float_round_nearest_even:
 | 
						|
            if ( lastBitMask ) {
 | 
						|
                add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 | 
						|
                if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | 
						|
            }
 | 
						|
            else {
 | 
						|
                if ( (int64_t) z.low < 0 ) {
 | 
						|
                    ++z.high;
 | 
						|
                    if ( (uint64_t) ( z.low<<1 ) == 0 ) z.high &= ~1;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_ties_away:
 | 
						|
            if (lastBitMask) {
 | 
						|
                add128(z.high, z.low, 0, lastBitMask >> 1, &z.high, &z.low);
 | 
						|
            } else {
 | 
						|
                if ((int64_t) z.low < 0) {
 | 
						|
                    ++z.high;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_to_zero:
 | 
						|
            break;
 | 
						|
        case float_round_up:
 | 
						|
            if (!extractFloat128Sign(z)) {
 | 
						|
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_down:
 | 
						|
            if (extractFloat128Sign(z)) {
 | 
						|
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_to_odd:
 | 
						|
            /*
 | 
						|
             * Note that if lastBitMask == 0, the last bit is the lsb
 | 
						|
             * of high, and roundBitsMask == -1.
 | 
						|
             */
 | 
						|
            if ((lastBitMask ? z.low & lastBitMask : z.high & 1) == 0) {
 | 
						|
                add128(z.high, z.low, 0, roundBitsMask, &z.high, &z.low);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
        z.low &= ~ roundBitsMask;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp < 0x3FFF ) {
 | 
						|
            if ( ( ( (uint64_t) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 | 
						|
            status->float_exception_flags |= float_flag_inexact;
 | 
						|
            aSign = extractFloat128Sign( a );
 | 
						|
            switch (status->float_rounding_mode) {
 | 
						|
            case float_round_nearest_even:
 | 
						|
                if (    ( aExp == 0x3FFE )
 | 
						|
                     && (   extractFloat128Frac0( a )
 | 
						|
                          | extractFloat128Frac1( a ) )
 | 
						|
                   ) {
 | 
						|
                    return packFloat128( aSign, 0x3FFF, 0, 0 );
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case float_round_ties_away:
 | 
						|
                if (aExp == 0x3FFE) {
 | 
						|
                    return packFloat128(aSign, 0x3FFF, 0, 0);
 | 
						|
                }
 | 
						|
                break;
 | 
						|
            case float_round_down:
 | 
						|
                return
 | 
						|
                      aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
 | 
						|
                    : packFloat128( 0, 0, 0, 0 );
 | 
						|
            case float_round_up:
 | 
						|
                return
 | 
						|
                      aSign ? packFloat128( 1, 0, 0, 0 )
 | 
						|
                    : packFloat128( 0, 0x3FFF, 0, 0 );
 | 
						|
 | 
						|
            case float_round_to_odd:
 | 
						|
                return packFloat128(aSign, 0x3FFF, 0, 0);
 | 
						|
 | 
						|
            case float_round_to_zero:
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            return packFloat128( aSign, 0, 0, 0 );
 | 
						|
        }
 | 
						|
        lastBitMask = 1;
 | 
						|
        lastBitMask <<= 0x402F - aExp;
 | 
						|
        roundBitsMask = lastBitMask - 1;
 | 
						|
        z.low = 0;
 | 
						|
        z.high = a.high;
 | 
						|
        switch (status->float_rounding_mode) {
 | 
						|
        case float_round_nearest_even:
 | 
						|
            z.high += lastBitMask>>1;
 | 
						|
            if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 | 
						|
                z.high &= ~ lastBitMask;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_ties_away:
 | 
						|
            z.high += lastBitMask>>1;
 | 
						|
            break;
 | 
						|
        case float_round_to_zero:
 | 
						|
            break;
 | 
						|
        case float_round_up:
 | 
						|
            if (!extractFloat128Sign(z)) {
 | 
						|
                z.high |= ( a.low != 0 );
 | 
						|
                z.high += roundBitsMask;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_down:
 | 
						|
            if (extractFloat128Sign(z)) {
 | 
						|
                z.high |= (a.low != 0);
 | 
						|
                z.high += roundBitsMask;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case float_round_to_odd:
 | 
						|
            if ((z.high & lastBitMask) == 0) {
 | 
						|
                z.high |= (a.low != 0);
 | 
						|
                z.high += roundBitsMask;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            abort();
 | 
						|
        }
 | 
						|
        z.high &= ~ roundBitsMask;
 | 
						|
    }
 | 
						|
    if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 | 
						|
        status->float_exception_flags |= float_flag_inexact;
 | 
						|
    }
 | 
						|
    return z;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of adding the absolute values of the quadruple-precision
 | 
						|
| floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | 
						|
| before being returned.  `zSign' is ignored if the result is a NaN.
 | 
						|
| The addition is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 addFloat128Sigs(float128 a, float128 b, bool zSign,
 | 
						|
                                float_status *status)
 | 
						|
{
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | 
						|
    int32_t expDiff;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    bSig1 = extractFloat128Frac1( b );
 | 
						|
    bSig0 = extractFloat128Frac0( b );
 | 
						|
    bExp = extractFloat128Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    if ( 0 < expDiff ) {
 | 
						|
        if ( aExp == 0x7FFF ) {
 | 
						|
            if (aSig0 | aSig1) {
 | 
						|
                return propagateFloat128NaN(a, b, status);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        if ( bExp == 0 ) {
 | 
						|
            --expDiff;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            bSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
        }
 | 
						|
        shift128ExtraRightJamming(
 | 
						|
            bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 | 
						|
        zExp = aExp;
 | 
						|
    }
 | 
						|
    else if ( expDiff < 0 ) {
 | 
						|
        if ( bExp == 0x7FFF ) {
 | 
						|
            if (bSig0 | bSig1) {
 | 
						|
                return propagateFloat128NaN(a, b, status);
 | 
						|
            }
 | 
						|
            return packFloat128( zSign, 0x7FFF, 0, 0 );
 | 
						|
        }
 | 
						|
        if ( aExp == 0 ) {
 | 
						|
            ++expDiff;
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
        }
 | 
						|
        shift128ExtraRightJamming(
 | 
						|
            aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 | 
						|
        zExp = bExp;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        if ( aExp == 0x7FFF ) {
 | 
						|
            if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | 
						|
                return propagateFloat128NaN(a, b, status);
 | 
						|
            }
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | 
						|
        if ( aExp == 0 ) {
 | 
						|
            if (status->flush_to_zero) {
 | 
						|
                if (zSig0 | zSig1) {
 | 
						|
                    float_raise(float_flag_output_denormal, status);
 | 
						|
                }
 | 
						|
                return packFloat128(zSign, 0, 0, 0);
 | 
						|
            }
 | 
						|
            return packFloat128( zSign, 0, zSig0, zSig1 );
 | 
						|
        }
 | 
						|
        zSig2 = 0;
 | 
						|
        zSig0 |= UINT64_C(0x0002000000000000);
 | 
						|
        zExp = aExp;
 | 
						|
        goto shiftRight1;
 | 
						|
    }
 | 
						|
    aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | 
						|
    --zExp;
 | 
						|
    if ( zSig0 < UINT64_C(0x0002000000000000) ) goto roundAndPack;
 | 
						|
    ++zExp;
 | 
						|
 shiftRight1:
 | 
						|
    shift128ExtraRightJamming(
 | 
						|
        zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | 
						|
 roundAndPack:
 | 
						|
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of subtracting the absolute values of the quadruple-
 | 
						|
| precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | 
						|
| difference is negated before being returned.  `zSign' is ignored if the
 | 
						|
| result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | 
						|
| Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
static float128 subFloat128Sigs(float128 a, float128 b, bool zSign,
 | 
						|
                                float_status *status)
 | 
						|
{
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 | 
						|
    int32_t expDiff;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    bSig1 = extractFloat128Frac1( b );
 | 
						|
    bSig0 = extractFloat128Frac0( b );
 | 
						|
    bExp = extractFloat128Exp( b );
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | 
						|
    shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
 | 
						|
    if ( 0 < expDiff ) goto aExpBigger;
 | 
						|
    if ( expDiff < 0 ) goto bExpBigger;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float128_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        aExp = 1;
 | 
						|
        bExp = 1;
 | 
						|
    }
 | 
						|
    if ( bSig0 < aSig0 ) goto aBigger;
 | 
						|
    if ( aSig0 < bSig0 ) goto bBigger;
 | 
						|
    if ( bSig1 < aSig1 ) goto aBigger;
 | 
						|
    if ( aSig1 < bSig1 ) goto bBigger;
 | 
						|
    return packFloat128(status->float_rounding_mode == float_round_down,
 | 
						|
                        0, 0, 0);
 | 
						|
 bExpBigger:
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if (bSig0 | bSig1) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        ++expDiff;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        aSig0 |= UINT64_C(0x4000000000000000);
 | 
						|
    }
 | 
						|
    shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | 
						|
    bSig0 |= UINT64_C(0x4000000000000000);
 | 
						|
 bBigger:
 | 
						|
    sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | 
						|
    zExp = bExp;
 | 
						|
    zSign ^= 1;
 | 
						|
    goto normalizeRoundAndPack;
 | 
						|
 aExpBigger:
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (aSig0 | aSig1) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        --expDiff;
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        bSig0 |= UINT64_C(0x4000000000000000);
 | 
						|
    }
 | 
						|
    shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 | 
						|
    aSig0 |= UINT64_C(0x4000000000000000);
 | 
						|
 aBigger:
 | 
						|
    sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | 
						|
    zExp = aExp;
 | 
						|
 normalizeRoundAndPack:
 | 
						|
    --zExp;
 | 
						|
    return normalizeRoundAndPackFloat128(zSign, zExp - 14, zSig0, zSig1,
 | 
						|
                                         status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of adding the quadruple-precision floating-point values
 | 
						|
| `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | 
						|
| for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_add(float128 a, float128 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    bSign = extractFloat128Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return addFloat128Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return subFloat128Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of subtracting the quadruple-precision floating-point
 | 
						|
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | 
						|
| Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_sub(float128 a, float128 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign;
 | 
						|
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    bSign = extractFloat128Sign( b );
 | 
						|
    if ( aSign == bSign ) {
 | 
						|
        return subFloat128Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        return addFloat128Sigs(a, b, aSign, status);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of multiplying the quadruple-precision floating-point
 | 
						|
| values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | 
						|
| Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_mul(float128 a, float128 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign, zSign;
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    bSig1 = extractFloat128Frac1( b );
 | 
						|
    bSig0 = extractFloat128Frac0( b );
 | 
						|
    bExp = extractFloat128Exp( b );
 | 
						|
    bSign = extractFloat128Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (    ( aSig0 | aSig1 )
 | 
						|
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 | 
						|
        return packFloat128( zSign, 0x7FFF, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if (bSig0 | bSig1) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return float128_default_nan(status);
 | 
						|
        }
 | 
						|
        return packFloat128( zSign, 0x7FFF, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | 
						|
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | 
						|
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | 
						|
    }
 | 
						|
    zExp = aExp + bExp - 0x4000;
 | 
						|
    aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
 | 
						|
    mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 | 
						|
    add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | 
						|
    zSig2 |= ( zSig3 != 0 );
 | 
						|
    if (UINT64_C( 0x0002000000000000) <= zSig0 ) {
 | 
						|
        shift128ExtraRightJamming(
 | 
						|
            zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the result of dividing the quadruple-precision floating-point value
 | 
						|
| `a' by the corresponding value `b'.  The operation is performed according to
 | 
						|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_div(float128 a, float128 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign, zSign;
 | 
						|
    int32_t aExp, bExp, zExp;
 | 
						|
    uint64_t aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | 
						|
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    bSig1 = extractFloat128Frac1( b );
 | 
						|
    bSig0 = extractFloat128Frac0( b );
 | 
						|
    bExp = extractFloat128Exp( b );
 | 
						|
    bSign = extractFloat128Sign( b );
 | 
						|
    zSign = aSign ^ bSign;
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (aSig0 | aSig1) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        if ( bExp == 0x7FFF ) {
 | 
						|
            if (bSig0 | bSig1) {
 | 
						|
                return propagateFloat128NaN(a, b, status);
 | 
						|
            }
 | 
						|
            goto invalid;
 | 
						|
        }
 | 
						|
        return packFloat128( zSign, 0x7FFF, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if (bSig0 | bSig1) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return packFloat128( zSign, 0, 0, 0 );
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( ( bSig0 | bSig1 ) == 0 ) {
 | 
						|
            if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
                float_raise(float_flag_invalid, status);
 | 
						|
                return float128_default_nan(status);
 | 
						|
            }
 | 
						|
            float_raise(float_flag_divbyzero, status);
 | 
						|
            return packFloat128( zSign, 0x7FFF, 0, 0 );
 | 
						|
        }
 | 
						|
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | 
						|
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    zExp = aExp - bExp + 0x3FFD;
 | 
						|
    shortShift128Left(
 | 
						|
        aSig0 | UINT64_C(0x0001000000000000), aSig1, 15, &aSig0, &aSig1 );
 | 
						|
    shortShift128Left(
 | 
						|
        bSig0 | UINT64_C(0x0001000000000000), bSig1, 15, &bSig0, &bSig1 );
 | 
						|
    if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
 | 
						|
        shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 | 
						|
        ++zExp;
 | 
						|
    }
 | 
						|
    zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | 
						|
    mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 | 
						|
    sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 | 
						|
    while ( (int64_t) rem0 < 0 ) {
 | 
						|
        --zSig0;
 | 
						|
        add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 | 
						|
    }
 | 
						|
    zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
 | 
						|
    if ( ( zSig1 & 0x3FFF ) <= 4 ) {
 | 
						|
        mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 | 
						|
        sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        while ( (int64_t) rem1 < 0 ) {
 | 
						|
            --zSig1;
 | 
						|
            add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 | 
						|
        }
 | 
						|
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | 
						|
    }
 | 
						|
    shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
 | 
						|
    return roundAndPackFloat128(zSign, zExp, zSig0, zSig1, zSig2, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the remainder of the quadruple-precision floating-point value `a'
 | 
						|
| with respect to the corresponding value `b'.  The operation is performed
 | 
						|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_rem(float128 a, float128 b, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, zSign;
 | 
						|
    int32_t aExp, bExp, expDiff;
 | 
						|
    uint64_t aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 | 
						|
    uint64_t allZero, alternateASig0, alternateASig1, sigMean1;
 | 
						|
    int64_t sigMean0;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    bSig1 = extractFloat128Frac1( b );
 | 
						|
    bSig0 = extractFloat128Frac0( b );
 | 
						|
    bExp = extractFloat128Exp( b );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (    ( aSig0 | aSig1 )
 | 
						|
             || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    if ( bExp == 0x7FFF ) {
 | 
						|
        if (bSig0 | bSig1) {
 | 
						|
            return propagateFloat128NaN(a, b, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if ( bExp == 0 ) {
 | 
						|
        if ( ( bSig0 | bSig1 ) == 0 ) {
 | 
						|
 invalid:
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
            return float128_default_nan(status);
 | 
						|
        }
 | 
						|
        normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( ( aSig0 | aSig1 ) == 0 ) return a;
 | 
						|
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    expDiff = aExp - bExp;
 | 
						|
    if ( expDiff < -1 ) return a;
 | 
						|
    shortShift128Left(
 | 
						|
        aSig0 | UINT64_C(0x0001000000000000),
 | 
						|
        aSig1,
 | 
						|
        15 - ( expDiff < 0 ),
 | 
						|
        &aSig0,
 | 
						|
        &aSig1
 | 
						|
    );
 | 
						|
    shortShift128Left(
 | 
						|
        bSig0 | UINT64_C(0x0001000000000000), bSig1, 15, &bSig0, &bSig1 );
 | 
						|
    q = le128( bSig0, bSig1, aSig0, aSig1 );
 | 
						|
    if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | 
						|
    expDiff -= 64;
 | 
						|
    while ( 0 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | 
						|
        q = ( 4 < q ) ? q - 4 : 0;
 | 
						|
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | 
						|
        shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
 | 
						|
        shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
 | 
						|
        sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 | 
						|
        expDiff -= 61;
 | 
						|
    }
 | 
						|
    if ( -64 < expDiff ) {
 | 
						|
        q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | 
						|
        q = ( 4 < q ) ? q - 4 : 0;
 | 
						|
        q >>= - expDiff;
 | 
						|
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | 
						|
        expDiff += 52;
 | 
						|
        if ( expDiff < 0 ) {
 | 
						|
            shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | 
						|
        }
 | 
						|
        else {
 | 
						|
            shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 | 
						|
        }
 | 
						|
        mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | 
						|
        sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    else {
 | 
						|
        shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
 | 
						|
        shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | 
						|
    }
 | 
						|
    do {
 | 
						|
        alternateASig0 = aSig0;
 | 
						|
        alternateASig1 = aSig1;
 | 
						|
        ++q;
 | 
						|
        sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | 
						|
    } while ( 0 <= (int64_t) aSig0 );
 | 
						|
    add128(
 | 
						|
        aSig0, aSig1, alternateASig0, alternateASig1, (uint64_t *)&sigMean0, &sigMean1 );
 | 
						|
    if (    ( sigMean0 < 0 )
 | 
						|
         || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 | 
						|
        aSig0 = alternateASig0;
 | 
						|
        aSig1 = alternateASig1;
 | 
						|
    }
 | 
						|
    zSign = ( (int64_t) aSig0 < 0 );
 | 
						|
    if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 | 
						|
    return normalizeRoundAndPackFloat128(aSign ^ zSign, bExp - 4, aSig0, aSig1,
 | 
						|
                                         status);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------------------------------------------------------
 | 
						|
| Returns the square root of the quadruple-precision floating-point value `a'.
 | 
						|
| The operation is performed according to the IEC/IEEE Standard for Binary
 | 
						|
| Floating-Point Arithmetic.
 | 
						|
*----------------------------------------------------------------------------*/
 | 
						|
 | 
						|
float128 float128_sqrt(float128 a, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp, zExp;
 | 
						|
    uint64_t aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 | 
						|
    uint64_t rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if (aSig0 | aSig1) {
 | 
						|
            return propagateFloat128NaN(a, a, status);
 | 
						|
        }
 | 
						|
        if ( ! aSign ) return a;
 | 
						|
        goto invalid;
 | 
						|
    }
 | 
						|
    if ( aSign ) {
 | 
						|
        if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 | 
						|
 invalid:
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float128_default_nan(status);
 | 
						|
    }
 | 
						|
    if ( aExp == 0 ) {
 | 
						|
        if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
 | 
						|
        normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | 
						|
    }
 | 
						|
    zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
 | 
						|
    aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    zSig0 = estimateSqrt32( aExp, aSig0>>17 );
 | 
						|
    shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
 | 
						|
    zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | 
						|
    doubleZSig0 = zSig0<<1;
 | 
						|
    mul64To128( zSig0, zSig0, &term0, &term1 );
 | 
						|
    sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | 
						|
    while ( (int64_t) rem0 < 0 ) {
 | 
						|
        --zSig0;
 | 
						|
        doubleZSig0 -= 2;
 | 
						|
        add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | 
						|
    }
 | 
						|
    zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | 
						|
    if ( ( zSig1 & 0x1FFF ) <= 5 ) {
 | 
						|
        if ( zSig1 == 0 ) zSig1 = 1;
 | 
						|
        mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | 
						|
        sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | 
						|
        mul64To128( zSig1, zSig1, &term2, &term3 );
 | 
						|
        sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        while ( (int64_t) rem1 < 0 ) {
 | 
						|
            --zSig1;
 | 
						|
            shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | 
						|
            term3 |= 1;
 | 
						|
            term2 |= doubleZSig0;
 | 
						|
            add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | 
						|
        }
 | 
						|
        zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | 
						|
    }
 | 
						|
    shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
 | 
						|
    return roundAndPackFloat128(0, zExp, zSig0, zSig1, zSig2, status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static inline FloatRelation
 | 
						|
floatx80_compare_internal(floatx80 a, floatx80 b, bool is_quiet,
 | 
						|
                          float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a) || floatx80_invalid_encoding(b)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return float_relation_unordered;
 | 
						|
    }
 | 
						|
    if (( ( extractFloatx80Exp( a ) == 0x7fff ) &&
 | 
						|
          ( extractFloatx80Frac( a )<<1 ) ) ||
 | 
						|
        ( ( extractFloatx80Exp( b ) == 0x7fff ) &&
 | 
						|
          ( extractFloatx80Frac( b )<<1 ) )) {
 | 
						|
        if (!is_quiet ||
 | 
						|
            floatx80_is_signaling_nan(a, status) ||
 | 
						|
            floatx80_is_signaling_nan(b, status)) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
        }
 | 
						|
        return float_relation_unordered;
 | 
						|
    }
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
    bSign = extractFloatx80Sign( b );
 | 
						|
    if ( aSign != bSign ) {
 | 
						|
 | 
						|
        if ( ( ( (uint16_t) ( ( a.high | b.high ) << 1 ) ) == 0) &&
 | 
						|
             ( ( a.low | b.low ) == 0 ) ) {
 | 
						|
            /* zero case */
 | 
						|
            return float_relation_equal;
 | 
						|
        } else {
 | 
						|
            return 1 - (2 * aSign);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* Normalize pseudo-denormals before comparison.  */
 | 
						|
        if ((a.high & 0x7fff) == 0 && a.low & UINT64_C(0x8000000000000000)) {
 | 
						|
            ++a.high;
 | 
						|
        }
 | 
						|
        if ((b.high & 0x7fff) == 0 && b.low & UINT64_C(0x8000000000000000)) {
 | 
						|
            ++b.high;
 | 
						|
        }
 | 
						|
        if (a.low == b.low && a.high == b.high) {
 | 
						|
            return float_relation_equal;
 | 
						|
        } else {
 | 
						|
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation floatx80_compare(floatx80 a, floatx80 b, float_status *status)
 | 
						|
{
 | 
						|
    return floatx80_compare_internal(a, b, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation floatx80_compare_quiet(floatx80 a, floatx80 b,
 | 
						|
                                     float_status *status)
 | 
						|
{
 | 
						|
    return floatx80_compare_internal(a, b, 1, status);
 | 
						|
}
 | 
						|
 | 
						|
static inline FloatRelation
 | 
						|
float128_compare_internal(float128 a, float128 b, bool is_quiet,
 | 
						|
                          float_status *status)
 | 
						|
{
 | 
						|
    bool aSign, bSign;
 | 
						|
 | 
						|
    if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
 | 
						|
          ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
 | 
						|
        ( ( extractFloat128Exp( b ) == 0x7fff ) &&
 | 
						|
          ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
 | 
						|
        if (!is_quiet ||
 | 
						|
            float128_is_signaling_nan(a, status) ||
 | 
						|
            float128_is_signaling_nan(b, status)) {
 | 
						|
            float_raise(float_flag_invalid, status);
 | 
						|
        }
 | 
						|
        return float_relation_unordered;
 | 
						|
    }
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    bSign = extractFloat128Sign( b );
 | 
						|
    if ( aSign != bSign ) {
 | 
						|
        if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
 | 
						|
            /* zero case */
 | 
						|
            return float_relation_equal;
 | 
						|
        } else {
 | 
						|
            return 1 - (2 * aSign);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        if (a.low == b.low && a.high == b.high) {
 | 
						|
            return float_relation_equal;
 | 
						|
        } else {
 | 
						|
            return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float128_compare(float128 a, float128 b, float_status *status)
 | 
						|
{
 | 
						|
    return float128_compare_internal(a, b, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
FloatRelation float128_compare_quiet(float128 a, float128 b,
 | 
						|
                                     float_status *status)
 | 
						|
{
 | 
						|
    return float128_compare_internal(a, b, 1, status);
 | 
						|
}
 | 
						|
 | 
						|
floatx80 floatx80_scalbn(floatx80 a, int n, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig;
 | 
						|
 | 
						|
    if (floatx80_invalid_encoding(a)) {
 | 
						|
        float_raise(float_flag_invalid, status);
 | 
						|
        return floatx80_default_nan(status);
 | 
						|
    }
 | 
						|
    aSig = extractFloatx80Frac( a );
 | 
						|
    aExp = extractFloatx80Exp( a );
 | 
						|
    aSign = extractFloatx80Sign( a );
 | 
						|
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( aSig<<1 ) {
 | 
						|
            return propagateFloatx80NaN(a, a, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
 | 
						|
    if (aExp == 0) {
 | 
						|
        if (aSig == 0) {
 | 
						|
            return a;
 | 
						|
        }
 | 
						|
        aExp++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (n > 0x10000) {
 | 
						|
        n = 0x10000;
 | 
						|
    } else if (n < -0x10000) {
 | 
						|
        n = -0x10000;
 | 
						|
    }
 | 
						|
 | 
						|
    aExp += n;
 | 
						|
    return normalizeRoundAndPackFloatx80(status->floatx80_rounding_precision,
 | 
						|
                                         aSign, aExp, aSig, 0, status);
 | 
						|
}
 | 
						|
 | 
						|
float128 float128_scalbn(float128 a, int n, float_status *status)
 | 
						|
{
 | 
						|
    bool aSign;
 | 
						|
    int32_t aExp;
 | 
						|
    uint64_t aSig0, aSig1;
 | 
						|
 | 
						|
    aSig1 = extractFloat128Frac1( a );
 | 
						|
    aSig0 = extractFloat128Frac0( a );
 | 
						|
    aExp = extractFloat128Exp( a );
 | 
						|
    aSign = extractFloat128Sign( a );
 | 
						|
    if ( aExp == 0x7FFF ) {
 | 
						|
        if ( aSig0 | aSig1 ) {
 | 
						|
            return propagateFloat128NaN(a, a, status);
 | 
						|
        }
 | 
						|
        return a;
 | 
						|
    }
 | 
						|
    if (aExp != 0) {
 | 
						|
        aSig0 |= UINT64_C(0x0001000000000000);
 | 
						|
    } else if (aSig0 == 0 && aSig1 == 0) {
 | 
						|
        return a;
 | 
						|
    } else {
 | 
						|
        aExp++;
 | 
						|
    }
 | 
						|
 | 
						|
    if (n > 0x10000) {
 | 
						|
        n = 0x10000;
 | 
						|
    } else if (n < -0x10000) {
 | 
						|
        n = -0x10000;
 | 
						|
    }
 | 
						|
 | 
						|
    aExp += n - 1;
 | 
						|
    return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
 | 
						|
                                         , status);
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
static void __attribute__((constructor)) softfloat_init(void)
 | 
						|
{
 | 
						|
    union_float64 ua, ub, uc, ur;
 | 
						|
 | 
						|
    if (QEMU_NO_HARDFLOAT) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * Test that the host's FMA is not obviously broken. For example,
 | 
						|
     * glibc < 2.23 can perform an incorrect FMA on certain hosts; see
 | 
						|
     *   https://sourceware.org/bugzilla/show_bug.cgi?id=13304
 | 
						|
     */
 | 
						|
    ua.s = 0x0020000000000001ULL;
 | 
						|
    ub.s = 0x3ca0000000000000ULL;
 | 
						|
    uc.s = 0x0020000000000000ULL;
 | 
						|
    ur.h = fma(ua.h, ub.h, uc.h);
 | 
						|
    if (ur.s != 0x0020000000000001ULL) {
 | 
						|
        force_soft_fma = true;
 | 
						|
    }
 | 
						|
}
 |