Update our copy of libvixl to upstream's 1.4 release. Note that we no longer need any local fixes for compilation on 32 bit hosts -- they have all been integrated upstream. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1399040419-9227-1-git-send-email-peter.maydell@linaro.org Acked-by: Richard Henderson <rth@twiddle.net>
		
			
				
	
	
		
			191 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			191 lines
		
	
	
		
			6.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// Copyright 2013, ARM Limited
 | 
						|
// All rights reserved.
 | 
						|
//
 | 
						|
// Redistribution and use in source and binary forms, with or without
 | 
						|
// modification, are permitted provided that the following conditions are met:
 | 
						|
//
 | 
						|
//   * Redistributions of source code must retain the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer.
 | 
						|
//   * Redistributions in binary form must reproduce the above copyright notice,
 | 
						|
//     this list of conditions and the following disclaimer in the documentation
 | 
						|
//     and/or other materials provided with the distribution.
 | 
						|
//   * Neither the name of ARM Limited nor the names of its contributors may be
 | 
						|
//     used to endorse or promote products derived from this software without
 | 
						|
//     specific prior written permission.
 | 
						|
//
 | 
						|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
 | 
						|
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 | 
						|
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 | 
						|
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
 | 
						|
// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 | 
						|
// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 | 
						|
// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 | 
						|
// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 | 
						|
// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
						|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
						|
 | 
						|
#ifndef VIXL_UTILS_H
 | 
						|
#define VIXL_UTILS_H
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <string.h>
 | 
						|
#include "globals.h"
 | 
						|
 | 
						|
namespace vixl {
 | 
						|
 | 
						|
// Check number width.
 | 
						|
inline bool is_intn(unsigned n, int64_t x) {
 | 
						|
  VIXL_ASSERT((0 < n) && (n < 64));
 | 
						|
  int64_t limit = INT64_C(1) << (n - 1);
 | 
						|
  return (-limit <= x) && (x < limit);
 | 
						|
}
 | 
						|
 | 
						|
inline bool is_uintn(unsigned n, int64_t x) {
 | 
						|
  VIXL_ASSERT((0 < n) && (n < 64));
 | 
						|
  return !(x >> n);
 | 
						|
}
 | 
						|
 | 
						|
inline unsigned truncate_to_intn(unsigned n, int64_t x) {
 | 
						|
  VIXL_ASSERT((0 < n) && (n < 64));
 | 
						|
  return (x & ((INT64_C(1) << n) - 1));
 | 
						|
}
 | 
						|
 | 
						|
#define INT_1_TO_63_LIST(V)                                                    \
 | 
						|
V(1)  V(2)  V(3)  V(4)  V(5)  V(6)  V(7)  V(8)                                 \
 | 
						|
V(9)  V(10) V(11) V(12) V(13) V(14) V(15) V(16)                                \
 | 
						|
V(17) V(18) V(19) V(20) V(21) V(22) V(23) V(24)                                \
 | 
						|
V(25) V(26) V(27) V(28) V(29) V(30) V(31) V(32)                                \
 | 
						|
V(33) V(34) V(35) V(36) V(37) V(38) V(39) V(40)                                \
 | 
						|
V(41) V(42) V(43) V(44) V(45) V(46) V(47) V(48)                                \
 | 
						|
V(49) V(50) V(51) V(52) V(53) V(54) V(55) V(56)                                \
 | 
						|
V(57) V(58) V(59) V(60) V(61) V(62) V(63)
 | 
						|
 | 
						|
#define DECLARE_IS_INT_N(N)                                                    \
 | 
						|
inline bool is_int##N(int64_t x) { return is_intn(N, x); }
 | 
						|
#define DECLARE_IS_UINT_N(N)                                                   \
 | 
						|
inline bool is_uint##N(int64_t x) { return is_uintn(N, x); }
 | 
						|
#define DECLARE_TRUNCATE_TO_INT_N(N)                                           \
 | 
						|
inline int truncate_to_int##N(int x) { return truncate_to_intn(N, x); }
 | 
						|
INT_1_TO_63_LIST(DECLARE_IS_INT_N)
 | 
						|
INT_1_TO_63_LIST(DECLARE_IS_UINT_N)
 | 
						|
INT_1_TO_63_LIST(DECLARE_TRUNCATE_TO_INT_N)
 | 
						|
#undef DECLARE_IS_INT_N
 | 
						|
#undef DECLARE_IS_UINT_N
 | 
						|
#undef DECLARE_TRUNCATE_TO_INT_N
 | 
						|
 | 
						|
// Bit field extraction.
 | 
						|
inline uint32_t unsigned_bitextract_32(int msb, int lsb, uint32_t x) {
 | 
						|
  return (x >> lsb) & ((1 << (1 + msb - lsb)) - 1);
 | 
						|
}
 | 
						|
 | 
						|
inline uint64_t unsigned_bitextract_64(int msb, int lsb, uint64_t x) {
 | 
						|
  return (x >> lsb) & ((static_cast<uint64_t>(1) << (1 + msb - lsb)) - 1);
 | 
						|
}
 | 
						|
 | 
						|
inline int32_t signed_bitextract_32(int msb, int lsb, int32_t x) {
 | 
						|
  return (x << (31 - msb)) >> (lsb + 31 - msb);
 | 
						|
}
 | 
						|
 | 
						|
inline int64_t signed_bitextract_64(int msb, int lsb, int64_t x) {
 | 
						|
  return (x << (63 - msb)) >> (lsb + 63 - msb);
 | 
						|
}
 | 
						|
 | 
						|
// Floating point representation.
 | 
						|
uint32_t float_to_rawbits(float value);
 | 
						|
uint64_t double_to_rawbits(double value);
 | 
						|
float rawbits_to_float(uint32_t bits);
 | 
						|
double rawbits_to_double(uint64_t bits);
 | 
						|
 | 
						|
 | 
						|
// NaN tests.
 | 
						|
inline bool IsSignallingNaN(double num) {
 | 
						|
  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
 | 
						|
  uint64_t raw = double_to_rawbits(num);
 | 
						|
  if (isnan(num) && ((raw & kFP64QuietNaNMask) == 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline bool IsSignallingNaN(float num) {
 | 
						|
  const uint32_t kFP32QuietNaNMask = 0x00400000;
 | 
						|
  uint32_t raw = float_to_rawbits(num);
 | 
						|
  if (isnan(num) && ((raw & kFP32QuietNaNMask) == 0)) {
 | 
						|
    return true;
 | 
						|
  }
 | 
						|
  return false;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
template <typename T>
 | 
						|
inline bool IsQuietNaN(T num) {
 | 
						|
  return isnan(num) && !IsSignallingNaN(num);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Convert the NaN in 'num' to a quiet NaN.
 | 
						|
inline double ToQuietNaN(double num) {
 | 
						|
  const uint64_t kFP64QuietNaNMask = UINT64_C(0x0008000000000000);
 | 
						|
  VIXL_ASSERT(isnan(num));
 | 
						|
  return rawbits_to_double(double_to_rawbits(num) | kFP64QuietNaNMask);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline float ToQuietNaN(float num) {
 | 
						|
  const uint32_t kFP32QuietNaNMask = 0x00400000;
 | 
						|
  VIXL_ASSERT(isnan(num));
 | 
						|
  return rawbits_to_float(float_to_rawbits(num) | kFP32QuietNaNMask);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Fused multiply-add.
 | 
						|
inline double FusedMultiplyAdd(double op1, double op2, double a) {
 | 
						|
  return fma(op1, op2, a);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
inline float FusedMultiplyAdd(float op1, float op2, float a) {
 | 
						|
  return fmaf(op1, op2, a);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
// Bit counting.
 | 
						|
int CountLeadingZeros(uint64_t value, int width);
 | 
						|
int CountLeadingSignBits(int64_t value, int width);
 | 
						|
int CountTrailingZeros(uint64_t value, int width);
 | 
						|
int CountSetBits(uint64_t value, int width);
 | 
						|
 | 
						|
// Pointer alignment
 | 
						|
// TODO: rename/refactor to make it specific to instructions.
 | 
						|
template<typename T>
 | 
						|
bool IsWordAligned(T pointer) {
 | 
						|
  VIXL_ASSERT(sizeof(pointer) == sizeof(intptr_t));   // NOLINT(runtime/sizeof)
 | 
						|
  return (reinterpret_cast<intptr_t>(pointer) & 3) == 0;
 | 
						|
}
 | 
						|
 | 
						|
// Increment a pointer until it has the specified alignment.
 | 
						|
template<class T>
 | 
						|
T AlignUp(T pointer, size_t alignment) {
 | 
						|
  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
 | 
						|
  uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
 | 
						|
  size_t align_step = (alignment - pointer_raw) % alignment;
 | 
						|
  VIXL_ASSERT((pointer_raw + align_step) % alignment == 0);
 | 
						|
  return reinterpret_cast<T>(pointer_raw + align_step);
 | 
						|
}
 | 
						|
 | 
						|
// Decrement a pointer until it has the specified alignment.
 | 
						|
template<class T>
 | 
						|
T AlignDown(T pointer, size_t alignment) {
 | 
						|
  VIXL_STATIC_ASSERT(sizeof(pointer) == sizeof(uintptr_t));
 | 
						|
  uintptr_t pointer_raw = reinterpret_cast<uintptr_t>(pointer);
 | 
						|
  size_t align_step = pointer_raw % alignment;
 | 
						|
  VIXL_ASSERT((pointer_raw - align_step) % alignment == 0);
 | 
						|
  return reinterpret_cast<T>(pointer_raw - align_step);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
}  // namespace vixl
 | 
						|
 | 
						|
#endif  // VIXL_UTILS_H
 |