 43e229a52b
			
		
	
	
		43e229a52b
		
	
	
	
	
		
			
			gcc is not smart enough to figure out length was validated before use as
strncpy limit, resulting in this warning:
inlined from ‘virt_set_oem_table_id’ at ../../hw/arm/virt.c:2197:5:
/usr/include/aarch64-linux-gnu/bits/string_fortified.h:106:10: error:
‘__builtin_strncpy’ specified bound depends on the length of the
source argument [-Werror=stringop-overflow=]
Simplify things by using a constant limit instead.
Fixes: 97fc5d507fca ("acpi: Permit OEM ID and OEM table ID fields to be changed")
Signed-off-by: Michael S. Tsirkin <mst@redhat.com>
		
	
			
		
			
				
	
	
		
			2886 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2886 lines
		
	
	
		
			105 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM mach-virt emulation
 | |
|  *
 | |
|  * Copyright (c) 2013 Linaro Limited
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2 or later, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * Emulate a virtual board which works by passing Linux all the information
 | |
|  * it needs about what devices are present via the device tree.
 | |
|  * There are some restrictions about what we can do here:
 | |
|  *  + we can only present devices whose Linux drivers will work based
 | |
|  *    purely on the device tree with no platform data at all
 | |
|  *  + we want to present a very stripped-down minimalist platform,
 | |
|  *    both because this reduces the security attack surface from the guest
 | |
|  *    and also because it reduces our exposure to being broken when
 | |
|  *    the kernel updates its device tree bindings and requires further
 | |
|  *    information in a device binding that we aren't providing.
 | |
|  * This is essentially the same approach kvmtool uses.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/datadir.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qemu/option.h"
 | |
| #include "monitor/qdev.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/boards.h"
 | |
| #include "hw/arm/boot.h"
 | |
| #include "hw/arm/primecell.h"
 | |
| #include "hw/arm/virt.h"
 | |
| #include "hw/block/flash.h"
 | |
| #include "hw/vfio/vfio-calxeda-xgmac.h"
 | |
| #include "hw/vfio/vfio-amd-xgbe.h"
 | |
| #include "hw/display/ramfb.h"
 | |
| #include "net/net.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "sysemu/numa.h"
 | |
| #include "sysemu/runstate.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/tpm.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "hw/loader.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/module.h"
 | |
| #include "hw/pci-host/gpex.h"
 | |
| #include "hw/virtio/virtio-pci.h"
 | |
| #include "hw/arm/sysbus-fdt.h"
 | |
| #include "hw/platform-bus.h"
 | |
| #include "hw/qdev-properties.h"
 | |
| #include "hw/arm/fdt.h"
 | |
| #include "hw/intc/arm_gic.h"
 | |
| #include "hw/intc/arm_gicv3_common.h"
 | |
| #include "hw/irq.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "hw/firmware/smbios.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "qapi/qapi-visit-common.h"
 | |
| #include "standard-headers/linux/input.h"
 | |
| #include "hw/arm/smmuv3.h"
 | |
| #include "hw/acpi/acpi.h"
 | |
| #include "target/arm/internals.h"
 | |
| #include "hw/mem/pc-dimm.h"
 | |
| #include "hw/mem/nvdimm.h"
 | |
| #include "hw/acpi/generic_event_device.h"
 | |
| #include "hw/virtio/virtio-iommu.h"
 | |
| #include "hw/char/pl011.h"
 | |
| #include "qemu/guest-random.h"
 | |
| 
 | |
| #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
 | |
|     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
 | |
|                                                     void *data) \
 | |
|     { \
 | |
|         MachineClass *mc = MACHINE_CLASS(oc); \
 | |
|         virt_machine_##major##_##minor##_options(mc); \
 | |
|         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
 | |
|         if (latest) { \
 | |
|             mc->alias = "virt"; \
 | |
|         } \
 | |
|     } \
 | |
|     static const TypeInfo machvirt_##major##_##minor##_info = { \
 | |
|         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
 | |
|         .parent = TYPE_VIRT_MACHINE, \
 | |
|         .class_init = virt_##major##_##minor##_class_init, \
 | |
|     }; \
 | |
|     static void machvirt_machine_##major##_##minor##_init(void) \
 | |
|     { \
 | |
|         type_register_static(&machvirt_##major##_##minor##_info); \
 | |
|     } \
 | |
|     type_init(machvirt_machine_##major##_##minor##_init);
 | |
| 
 | |
| #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 | |
|     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 | |
| #define DEFINE_VIRT_MACHINE(major, minor) \
 | |
|     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 | |
| 
 | |
| 
 | |
| /* Number of external interrupt lines to configure the GIC with */
 | |
| #define NUM_IRQS 256
 | |
| 
 | |
| #define PLATFORM_BUS_NUM_IRQS 64
 | |
| 
 | |
| /* Legacy RAM limit in GB (< version 4.0) */
 | |
| #define LEGACY_RAMLIMIT_GB 255
 | |
| #define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
 | |
| 
 | |
| /* Addresses and sizes of our components.
 | |
|  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 | |
|  * 128MB..256MB is used for miscellaneous device I/O.
 | |
|  * 256MB..1GB is reserved for possible future PCI support (ie where the
 | |
|  * PCI memory window will go if we add a PCI host controller).
 | |
|  * 1GB and up is RAM (which may happily spill over into the
 | |
|  * high memory region beyond 4GB).
 | |
|  * This represents a compromise between how much RAM can be given to
 | |
|  * a 32 bit VM and leaving space for expansion and in particular for PCI.
 | |
|  * Note that devices should generally be placed at multiples of 0x10000,
 | |
|  * to accommodate guests using 64K pages.
 | |
|  */
 | |
| static const MemMapEntry base_memmap[] = {
 | |
|     /* Space up to 0x8000000 is reserved for a boot ROM */
 | |
|     [VIRT_FLASH] =              {          0, 0x08000000 },
 | |
|     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 | |
|     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 | |
|     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 | |
|     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 | |
|     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 | |
|     [VIRT_GIC_HYP] =            { 0x08030000, 0x00010000 },
 | |
|     [VIRT_GIC_VCPU] =           { 0x08040000, 0x00010000 },
 | |
|     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 | |
|     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 | |
|     /* This redistributor space allows up to 2*64kB*123 CPUs */
 | |
|     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 | |
|     [VIRT_UART] =               { 0x09000000, 0x00001000 },
 | |
|     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 | |
|     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 | |
|     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 | |
|     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 | |
|     [VIRT_SMMU] =               { 0x09050000, 0x00020000 },
 | |
|     [VIRT_PCDIMM_ACPI] =        { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
 | |
|     [VIRT_ACPI_GED] =           { 0x09080000, ACPI_GED_EVT_SEL_LEN },
 | |
|     [VIRT_NVDIMM_ACPI] =        { 0x09090000, NVDIMM_ACPI_IO_LEN},
 | |
|     [VIRT_PVTIME] =             { 0x090a0000, 0x00010000 },
 | |
|     [VIRT_SECURE_GPIO] =        { 0x090b0000, 0x00001000 },
 | |
|     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 | |
|     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 | |
|     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 | |
|     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 | |
|     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 | |
|     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 | |
|     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 | |
|     /* Actual RAM size depends on initial RAM and device memory settings */
 | |
|     [VIRT_MEM] =                { GiB, LEGACY_RAMLIMIT_BYTES },
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Highmem IO Regions: This memory map is floating, located after the RAM.
 | |
|  * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
 | |
|  * top of the RAM, so that its base get the same alignment as the size,
 | |
|  * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
 | |
|  * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
 | |
|  * Note the extended_memmap is sized so that it eventually also includes the
 | |
|  * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
 | |
|  * index of base_memmap).
 | |
|  */
 | |
| static MemMapEntry extended_memmap[] = {
 | |
|     /* Additional 64 MB redist region (can contain up to 512 redistributors) */
 | |
|     [VIRT_HIGH_GIC_REDIST2] =   { 0x0, 64 * MiB },
 | |
|     [VIRT_HIGH_PCIE_ECAM] =     { 0x0, 256 * MiB },
 | |
|     /* Second PCIe window */
 | |
|     [VIRT_HIGH_PCIE_MMIO] =     { 0x0, 512 * GiB },
 | |
| };
 | |
| 
 | |
| static const int a15irqmap[] = {
 | |
|     [VIRT_UART] = 1,
 | |
|     [VIRT_RTC] = 2,
 | |
|     [VIRT_PCIE] = 3, /* ... to 6 */
 | |
|     [VIRT_GPIO] = 7,
 | |
|     [VIRT_SECURE_UART] = 8,
 | |
|     [VIRT_ACPI_GED] = 9,
 | |
|     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 | |
|     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 | |
|     [VIRT_SMMU] = 74,    /* ...to 74 + NUM_SMMU_IRQS - 1 */
 | |
|     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 | |
| };
 | |
| 
 | |
| static const char *valid_cpus[] = {
 | |
|     ARM_CPU_TYPE_NAME("cortex-a7"),
 | |
|     ARM_CPU_TYPE_NAME("cortex-a15"),
 | |
|     ARM_CPU_TYPE_NAME("cortex-a53"),
 | |
|     ARM_CPU_TYPE_NAME("cortex-a57"),
 | |
|     ARM_CPU_TYPE_NAME("cortex-a72"),
 | |
|     ARM_CPU_TYPE_NAME("host"),
 | |
|     ARM_CPU_TYPE_NAME("max"),
 | |
| };
 | |
| 
 | |
| static bool cpu_type_valid(const char *cpu)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 | |
|         if (strcmp(cpu, valid_cpus[i]) == 0) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void create_kaslr_seed(VirtMachineState *vms, const char *node)
 | |
| {
 | |
|     uint64_t seed;
 | |
| 
 | |
|     if (qemu_guest_getrandom(&seed, sizeof(seed), NULL)) {
 | |
|         return;
 | |
|     }
 | |
|     qemu_fdt_setprop_u64(vms->fdt, node, "kaslr-seed", seed);
 | |
| }
 | |
| 
 | |
| static void create_fdt(VirtMachineState *vms)
 | |
| {
 | |
|     MachineState *ms = MACHINE(vms);
 | |
|     int nb_numa_nodes = ms->numa_state->num_nodes;
 | |
|     void *fdt = create_device_tree(&vms->fdt_size);
 | |
| 
 | |
|     if (!fdt) {
 | |
|         error_report("create_device_tree() failed");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     vms->fdt = fdt;
 | |
| 
 | |
|     /* Header */
 | |
|     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 | |
|     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 | |
|     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 | |
| 
 | |
|     /* /chosen must exist for load_dtb to fill in necessary properties later */
 | |
|     qemu_fdt_add_subnode(fdt, "/chosen");
 | |
|     create_kaslr_seed(vms, "/chosen");
 | |
| 
 | |
|     if (vms->secure) {
 | |
|         qemu_fdt_add_subnode(fdt, "/secure-chosen");
 | |
|         create_kaslr_seed(vms, "/secure-chosen");
 | |
|     }
 | |
| 
 | |
|     /* Clock node, for the benefit of the UART. The kernel device tree
 | |
|      * binding documentation claims the PL011 node clock properties are
 | |
|      * optional but in practice if you omit them the kernel refuses to
 | |
|      * probe for the device.
 | |
|      */
 | |
|     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 | |
|     qemu_fdt_add_subnode(fdt, "/apb-pclk");
 | |
|     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 | |
|     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 | |
|     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 | |
|     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 | |
|                                 "clk24mhz");
 | |
|     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 | |
| 
 | |
|     if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
 | |
|         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 | |
|         uint32_t *matrix = g_malloc0(size);
 | |
|         int idx, i, j;
 | |
| 
 | |
|         for (i = 0; i < nb_numa_nodes; i++) {
 | |
|             for (j = 0; j < nb_numa_nodes; j++) {
 | |
|                 idx = (i * nb_numa_nodes + j) * 3;
 | |
|                 matrix[idx + 0] = cpu_to_be32(i);
 | |
|                 matrix[idx + 1] = cpu_to_be32(j);
 | |
|                 matrix[idx + 2] =
 | |
|                     cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         qemu_fdt_add_subnode(fdt, "/distance-map");
 | |
|         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 | |
|                                 "numa-distance-map-v1");
 | |
|         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 | |
|                          matrix, size);
 | |
|         g_free(matrix);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdt_add_timer_nodes(const VirtMachineState *vms)
 | |
| {
 | |
|     /* On real hardware these interrupts are level-triggered.
 | |
|      * On KVM they were edge-triggered before host kernel version 4.4,
 | |
|      * and level-triggered afterwards.
 | |
|      * On emulated QEMU they are level-triggered.
 | |
|      *
 | |
|      * Getting the DTB info about them wrong is awkward for some
 | |
|      * guest kernels:
 | |
|      *  pre-4.8 ignore the DT and leave the interrupt configured
 | |
|      *   with whatever the GIC reset value (or the bootloader) left it at
 | |
|      *  4.8 before rc6 honour the incorrect data by programming it back
 | |
|      *   into the GIC, causing problems
 | |
|      *  4.8rc6 and later ignore the DT and always write "level triggered"
 | |
|      *   into the GIC
 | |
|      *
 | |
|      * For backwards-compatibility, virt-2.8 and earlier will continue
 | |
|      * to say these are edge-triggered, but later machines will report
 | |
|      * the correct information.
 | |
|      */
 | |
|     ARMCPU *armcpu;
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
|     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 | |
| 
 | |
|     if (vmc->claim_edge_triggered_timers) {
 | |
|         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 | |
|     }
 | |
| 
 | |
|     if (vms->gic_version == VIRT_GIC_VERSION_2) {
 | |
|         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 | |
|                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
 | |
|                              (1 << MACHINE(vms)->smp.cpus) - 1);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/timer");
 | |
| 
 | |
|     armcpu = ARM_CPU(qemu_get_cpu(0));
 | |
|     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 | |
|         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 | |
|         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 | |
|                          compat, sizeof(compat));
 | |
|     } else {
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 | |
|                                 "arm,armv7-timer");
 | |
|     }
 | |
|     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 | |
| }
 | |
| 
 | |
| static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 | |
| {
 | |
|     int cpu;
 | |
|     int addr_cells = 1;
 | |
|     const MachineState *ms = MACHINE(vms);
 | |
|     int smp_cpus = ms->smp.cpus;
 | |
| 
 | |
|     /*
 | |
|      * From Documentation/devicetree/bindings/arm/cpus.txt
 | |
|      *  On ARM v8 64-bit systems value should be set to 2,
 | |
|      *  that corresponds to the MPIDR_EL1 register size.
 | |
|      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 | |
|      *  in the system, #address-cells can be set to 1, since
 | |
|      *  MPIDR_EL1[63:32] bits are not used for CPUs
 | |
|      *  identification.
 | |
|      *
 | |
|      *  Here we actually don't know whether our system is 32- or 64-bit one.
 | |
|      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 | |
|      *  at least one of them has Aff3 populated, we set #address-cells to 2.
 | |
|      */
 | |
|     for (cpu = 0; cpu < smp_cpus; cpu++) {
 | |
|         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 | |
| 
 | |
|         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 | |
|             addr_cells = 2;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/cpus");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 | |
| 
 | |
|     for (cpu = smp_cpus - 1; cpu >= 0; cpu--) {
 | |
|         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 | |
|         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 | |
|         CPUState *cs = CPU(armcpu);
 | |
| 
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 | |
|                                     armcpu->dtb_compatible);
 | |
| 
 | |
|         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED && smp_cpus > 1) {
 | |
|             qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                                         "enable-method", "psci");
 | |
|         }
 | |
| 
 | |
|         if (addr_cells == 2) {
 | |
|             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 | |
|                                  armcpu->mp_affinity);
 | |
|         } else {
 | |
|             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 | |
|                                   armcpu->mp_affinity);
 | |
|         }
 | |
| 
 | |
|         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 | |
|             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 | |
|                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 | |
|         }
 | |
| 
 | |
|         g_free(nodename);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdt_add_its_gic_node(VirtMachineState *vms)
 | |
| {
 | |
|     char *nodename;
 | |
| 
 | |
|     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     nodename = g_strdup_printf("/intc/its@%" PRIx64,
 | |
|                                vms->memmap[VIRT_GIC_ITS].base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 | |
|                             "arm,gic-v3-its");
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, vms->memmap[VIRT_GIC_ITS].base,
 | |
|                                  2, vms->memmap[VIRT_GIC_ITS].size);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 | |
| {
 | |
|     char *nodename;
 | |
| 
 | |
|     nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
 | |
|                                vms->memmap[VIRT_GIC_V2M].base);
 | |
|     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 | |
|                             "arm,gic-v2m-frame");
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, vms->memmap[VIRT_GIC_V2M].base,
 | |
|                                  2, vms->memmap[VIRT_GIC_V2M].size);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void fdt_add_gic_node(VirtMachineState *vms)
 | |
| {
 | |
|     char *nodename;
 | |
| 
 | |
|     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 | |
| 
 | |
|     nodename = g_strdup_printf("/intc@%" PRIx64,
 | |
|                                vms->memmap[VIRT_GIC_DIST].base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
 | |
|     if (vms->gic_version == VIRT_GIC_VERSION_3) {
 | |
|         int nb_redist_regions = virt_gicv3_redist_region_count(vms);
 | |
| 
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 | |
|                                 "arm,gic-v3");
 | |
| 
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename,
 | |
|                               "#redistributor-regions", nb_redist_regions);
 | |
| 
 | |
|         if (nb_redist_regions == 1) {
 | |
|             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                          2, vms->memmap[VIRT_GIC_DIST].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_DIST].size,
 | |
|                                          2, vms->memmap[VIRT_GIC_REDIST].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_REDIST].size);
 | |
|         } else {
 | |
|             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, vms->memmap[VIRT_GIC_DIST].base,
 | |
|                                  2, vms->memmap[VIRT_GIC_DIST].size,
 | |
|                                  2, vms->memmap[VIRT_GIC_REDIST].base,
 | |
|                                  2, vms->memmap[VIRT_GIC_REDIST].size,
 | |
|                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
 | |
|                                  2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
 | |
|         }
 | |
| 
 | |
|         if (vms->virt) {
 | |
|             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 | |
|                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|         }
 | |
|     } else {
 | |
|         /* 'cortex-a15-gic' means 'GIC v2' */
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 | |
|                                 "arm,cortex-a15-gic");
 | |
|         if (!vms->virt) {
 | |
|             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                          2, vms->memmap[VIRT_GIC_DIST].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_DIST].size,
 | |
|                                          2, vms->memmap[VIRT_GIC_CPU].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_CPU].size);
 | |
|         } else {
 | |
|             qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                          2, vms->memmap[VIRT_GIC_DIST].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_DIST].size,
 | |
|                                          2, vms->memmap[VIRT_GIC_CPU].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_CPU].size,
 | |
|                                          2, vms->memmap[VIRT_GIC_HYP].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_HYP].size,
 | |
|                                          2, vms->memmap[VIRT_GIC_VCPU].base,
 | |
|                                          2, vms->memmap[VIRT_GIC_VCPU].size);
 | |
|             qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
 | |
|                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 | |
| {
 | |
|     ARMCPU *armcpu = ARM_CPU(first_cpu);
 | |
|     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 | |
| 
 | |
|     if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
 | |
|         assert(!object_property_get_bool(OBJECT(armcpu), "pmu", NULL));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (vms->gic_version == VIRT_GIC_VERSION_2) {
 | |
|         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 | |
|                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
 | |
|                              (1 << MACHINE(vms)->smp.cpus) - 1);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/pmu");
 | |
|     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 | |
|         const char compat[] = "arm,armv8-pmuv3";
 | |
|         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 | |
|                          compat, sizeof(compat));
 | |
|         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 | |
|                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
 | |
| {
 | |
|     DeviceState *dev;
 | |
|     MachineState *ms = MACHINE(vms);
 | |
|     int irq = vms->irqmap[VIRT_ACPI_GED];
 | |
|     uint32_t event = ACPI_GED_PWR_DOWN_EVT;
 | |
| 
 | |
|     if (ms->ram_slots) {
 | |
|         event |= ACPI_GED_MEM_HOTPLUG_EVT;
 | |
|     }
 | |
| 
 | |
|     if (ms->nvdimms_state->is_enabled) {
 | |
|         event |= ACPI_GED_NVDIMM_HOTPLUG_EVT;
 | |
|     }
 | |
| 
 | |
|     dev = qdev_new(TYPE_ACPI_GED);
 | |
|     qdev_prop_set_uint32(dev, "ged-event", event);
 | |
| 
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
 | |
|     sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
 | |
| 
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
| 
 | |
|     return dev;
 | |
| }
 | |
| 
 | |
| static void create_its(VirtMachineState *vms)
 | |
| {
 | |
|     const char *itsclass = its_class_name();
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     if (!itsclass) {
 | |
|         /* Do nothing if not supported */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dev = qdev_new(itsclass);
 | |
| 
 | |
|     object_property_set_link(OBJECT(dev), "parent-gicv3", OBJECT(vms->gic),
 | |
|                              &error_abort);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 | |
| 
 | |
|     fdt_add_its_gic_node(vms);
 | |
|     vms->msi_controller = VIRT_MSI_CTRL_ITS;
 | |
| }
 | |
| 
 | |
| static void create_v2m(VirtMachineState *vms)
 | |
| {
 | |
|     int i;
 | |
|     int irq = vms->irqmap[VIRT_GIC_V2M];
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     dev = qdev_new("arm-gicv2m");
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 | |
|     qdev_prop_set_uint32(dev, "base-spi", irq);
 | |
|     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
| 
 | |
|     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 | |
|         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 | |
|                            qdev_get_gpio_in(vms->gic, irq + i));
 | |
|     }
 | |
| 
 | |
|     fdt_add_v2m_gic_node(vms);
 | |
|     vms->msi_controller = VIRT_MSI_CTRL_GICV2M;
 | |
| }
 | |
| 
 | |
| static void create_gic(VirtMachineState *vms)
 | |
| {
 | |
|     MachineState *ms = MACHINE(vms);
 | |
|     /* We create a standalone GIC */
 | |
|     SysBusDevice *gicbusdev;
 | |
|     const char *gictype;
 | |
|     int type = vms->gic_version, i;
 | |
|     unsigned int smp_cpus = ms->smp.cpus;
 | |
|     uint32_t nb_redist_regions = 0;
 | |
| 
 | |
|     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 | |
| 
 | |
|     vms->gic = qdev_new(gictype);
 | |
|     qdev_prop_set_uint32(vms->gic, "revision", type);
 | |
|     qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
 | |
|     /* Note that the num-irq property counts both internal and external
 | |
|      * interrupts; there are always 32 of the former (mandated by GIC spec).
 | |
|      */
 | |
|     qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
 | |
|     }
 | |
| 
 | |
|     if (type == 3) {
 | |
|         uint32_t redist0_capacity =
 | |
|                     vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 | |
|         uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
 | |
| 
 | |
|         nb_redist_regions = virt_gicv3_redist_region_count(vms);
 | |
| 
 | |
|         qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
 | |
|                              nb_redist_regions);
 | |
|         qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
 | |
| 
 | |
|         if (nb_redist_regions == 2) {
 | |
|             uint32_t redist1_capacity =
 | |
|                     vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 | |
| 
 | |
|             qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
 | |
|                 MIN(smp_cpus - redist0_count, redist1_capacity));
 | |
|         }
 | |
|     } else {
 | |
|         if (!kvm_irqchip_in_kernel()) {
 | |
|             qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
 | |
|                               vms->virt);
 | |
|         }
 | |
|     }
 | |
|     gicbusdev = SYS_BUS_DEVICE(vms->gic);
 | |
|     sysbus_realize_and_unref(gicbusdev, &error_fatal);
 | |
|     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 | |
|     if (type == 3) {
 | |
|         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 | |
|         if (nb_redist_regions == 2) {
 | |
|             sysbus_mmio_map(gicbusdev, 2,
 | |
|                             vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
 | |
|         }
 | |
|     } else {
 | |
|         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 | |
|         if (vms->virt) {
 | |
|             sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
 | |
|             sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Wire the outputs from each CPU's generic timer and the GICv3
 | |
|      * maintenance interrupt signal to the appropriate GIC PPI inputs,
 | |
|      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 | |
|      */
 | |
|     for (i = 0; i < smp_cpus; i++) {
 | |
|         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 | |
|         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 | |
|         int irq;
 | |
|         /* Mapping from the output timer irq lines from the CPU to the
 | |
|          * GIC PPI inputs we use for the virt board.
 | |
|          */
 | |
|         const int timer_irq[] = {
 | |
|             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 | |
|             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 | |
|             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 | |
|             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 | |
|         };
 | |
| 
 | |
|         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 | |
|             qdev_connect_gpio_out(cpudev, irq,
 | |
|                                   qdev_get_gpio_in(vms->gic,
 | |
|                                                    ppibase + timer_irq[irq]));
 | |
|         }
 | |
| 
 | |
|         if (type == 3) {
 | |
|             qemu_irq irq = qdev_get_gpio_in(vms->gic,
 | |
|                                             ppibase + ARCH_GIC_MAINT_IRQ);
 | |
|             qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
 | |
|                                         0, irq);
 | |
|         } else if (vms->virt) {
 | |
|             qemu_irq irq = qdev_get_gpio_in(vms->gic,
 | |
|                                             ppibase + ARCH_GIC_MAINT_IRQ);
 | |
|             sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
 | |
|         }
 | |
| 
 | |
|         qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
 | |
|                                     qdev_get_gpio_in(vms->gic, ppibase
 | |
|                                                      + VIRTUAL_PMU_IRQ));
 | |
| 
 | |
|         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 | |
|         sysbus_connect_irq(gicbusdev, i + smp_cpus,
 | |
|                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 | |
|         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 | |
|                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 | |
|         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 | |
|                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 | |
|     }
 | |
| 
 | |
|     fdt_add_gic_node(vms);
 | |
| 
 | |
|     if (type == 3 && vms->its) {
 | |
|         create_its(vms);
 | |
|     } else if (type == 2) {
 | |
|         create_v2m(vms);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_uart(const VirtMachineState *vms, int uart,
 | |
|                         MemoryRegion *mem, Chardev *chr)
 | |
| {
 | |
|     char *nodename;
 | |
|     hwaddr base = vms->memmap[uart].base;
 | |
|     hwaddr size = vms->memmap[uart].size;
 | |
|     int irq = vms->irqmap[uart];
 | |
|     const char compat[] = "arm,pl011\0arm,primecell";
 | |
|     const char clocknames[] = "uartclk\0apb_pclk";
 | |
|     DeviceState *dev = qdev_new(TYPE_PL011);
 | |
|     SysBusDevice *s = SYS_BUS_DEVICE(dev);
 | |
| 
 | |
|     qdev_prop_set_chr(dev, "chardev", chr);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
|     memory_region_add_subregion(mem, base,
 | |
|                                 sysbus_mmio_get_region(s, 0));
 | |
|     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 | |
| 
 | |
|     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     /* Note that we can't use setprop_string because of the embedded NUL */
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 | |
|                          compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, base, 2, size);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                                GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 | |
|                                vms->clock_phandle, vms->clock_phandle);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 | |
|                          clocknames, sizeof(clocknames));
 | |
| 
 | |
|     if (uart == VIRT_UART) {
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 | |
|     } else {
 | |
|         /* Mark as not usable by the normal world */
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
| 
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
 | |
|                                 nodename);
 | |
|     }
 | |
| 
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void create_rtc(const VirtMachineState *vms)
 | |
| {
 | |
|     char *nodename;
 | |
|     hwaddr base = vms->memmap[VIRT_RTC].base;
 | |
|     hwaddr size = vms->memmap[VIRT_RTC].size;
 | |
|     int irq = vms->irqmap[VIRT_RTC];
 | |
|     const char compat[] = "arm,pl031\0arm,primecell";
 | |
| 
 | |
|     sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
 | |
| 
 | |
|     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base, 2, size);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                            GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static DeviceState *gpio_key_dev;
 | |
| static void virt_powerdown_req(Notifier *n, void *opaque)
 | |
| {
 | |
|     VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
 | |
| 
 | |
|     if (s->acpi_dev) {
 | |
|         acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
 | |
|     } else {
 | |
|         /* use gpio Pin 3 for power button event */
 | |
|         qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_gpio_keys(const VirtMachineState *vms,
 | |
|                              DeviceState *pl061_dev,
 | |
|                              uint32_t phandle)
 | |
| {
 | |
|     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 | |
|                                         qdev_get_gpio_in(pl061_dev, 3));
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 | |
|                             "label", "GPIO Key Poweroff");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 | |
|                           KEY_POWER);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 | |
|                            "gpios", phandle, 3, 0);
 | |
| }
 | |
| 
 | |
| #define SECURE_GPIO_POWEROFF 0
 | |
| #define SECURE_GPIO_RESET    1
 | |
| 
 | |
| static void create_secure_gpio_pwr(const VirtMachineState *vms,
 | |
|                                    DeviceState *pl061_dev,
 | |
|                                    uint32_t phandle)
 | |
| {
 | |
|     DeviceState *gpio_pwr_dev;
 | |
| 
 | |
|     /* gpio-pwr */
 | |
|     gpio_pwr_dev = sysbus_create_simple("gpio-pwr", -1, NULL);
 | |
| 
 | |
|     /* connect secure pl061 to gpio-pwr */
 | |
|     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_RESET,
 | |
|                           qdev_get_gpio_in_named(gpio_pwr_dev, "reset", 0));
 | |
|     qdev_connect_gpio_out(pl061_dev, SECURE_GPIO_POWEROFF,
 | |
|                           qdev_get_gpio_in_named(gpio_pwr_dev, "shutdown", 0));
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/gpio-poweroff");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "compatible",
 | |
|                             "gpio-poweroff");
 | |
|     qemu_fdt_setprop_cells(vms->fdt, "/gpio-poweroff",
 | |
|                            "gpios", phandle, SECURE_GPIO_POWEROFF, 0);
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "status", "disabled");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-poweroff", "secure-status",
 | |
|                             "okay");
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/gpio-restart");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "compatible",
 | |
|                             "gpio-restart");
 | |
|     qemu_fdt_setprop_cells(vms->fdt, "/gpio-restart",
 | |
|                            "gpios", phandle, SECURE_GPIO_RESET, 0);
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "status", "disabled");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-restart", "secure-status",
 | |
|                             "okay");
 | |
| }
 | |
| 
 | |
| static void create_gpio_devices(const VirtMachineState *vms, int gpio,
 | |
|                                 MemoryRegion *mem)
 | |
| {
 | |
|     char *nodename;
 | |
|     DeviceState *pl061_dev;
 | |
|     hwaddr base = vms->memmap[gpio].base;
 | |
|     hwaddr size = vms->memmap[gpio].size;
 | |
|     int irq = vms->irqmap[gpio];
 | |
|     const char compat[] = "arm,pl061\0arm,primecell";
 | |
|     SysBusDevice *s;
 | |
| 
 | |
|     pl061_dev = qdev_new("pl061");
 | |
|     s = SYS_BUS_DEVICE(pl061_dev);
 | |
|     sysbus_realize_and_unref(s, &error_fatal);
 | |
|     memory_region_add_subregion(mem, base, sysbus_mmio_get_region(s, 0));
 | |
|     sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
 | |
| 
 | |
|     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base, 2, size);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                            GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 | |
| 
 | |
|     if (gpio != VIRT_GPIO) {
 | |
|         /* Mark as not usable by the normal world */
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
|     }
 | |
|     g_free(nodename);
 | |
| 
 | |
|     /* Child gpio devices */
 | |
|     if (gpio == VIRT_GPIO) {
 | |
|         create_gpio_keys(vms, pl061_dev, phandle);
 | |
|     } else {
 | |
|         create_secure_gpio_pwr(vms, pl061_dev, phandle);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_virtio_devices(const VirtMachineState *vms)
 | |
| {
 | |
|     int i;
 | |
|     hwaddr size = vms->memmap[VIRT_MMIO].size;
 | |
| 
 | |
|     /* We create the transports in forwards order. Since qbus_realize()
 | |
|      * prepends (not appends) new child buses, the incrementing loop below will
 | |
|      * create a list of virtio-mmio buses with decreasing base addresses.
 | |
|      *
 | |
|      * When a -device option is processed from the command line,
 | |
|      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 | |
|      * order. The upshot is that -device options in increasing command line
 | |
|      * order are mapped to virtio-mmio buses with decreasing base addresses.
 | |
|      *
 | |
|      * When this code was originally written, that arrangement ensured that the
 | |
|      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 | |
|      * the first -device on the command line. (The end-to-end order is a
 | |
|      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 | |
|      * guest kernel's name-to-address assignment strategy.)
 | |
|      *
 | |
|      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 | |
|      * the message, if not necessarily the code, of commit 70161ff336.
 | |
|      * Therefore the loop now establishes the inverse of the original intent.
 | |
|      *
 | |
|      * Unfortunately, we can't counteract the kernel change by reversing the
 | |
|      * loop; it would break existing command lines.
 | |
|      *
 | |
|      * In any case, the kernel makes no guarantee about the stability of
 | |
|      * enumeration order of virtio devices (as demonstrated by it changing
 | |
|      * between kernel versions). For reliable and stable identification
 | |
|      * of disks users must use UUIDs or similar mechanisms.
 | |
|      */
 | |
|     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 | |
|         int irq = vms->irqmap[VIRT_MMIO] + i;
 | |
|         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 | |
| 
 | |
|         sysbus_create_simple("virtio-mmio", base,
 | |
|                              qdev_get_gpio_in(vms->gic, irq));
 | |
|     }
 | |
| 
 | |
|     /* We add dtb nodes in reverse order so that they appear in the finished
 | |
|      * device tree lowest address first.
 | |
|      *
 | |
|      * Note that this mapping is independent of the loop above. The previous
 | |
|      * loop influences virtio device to virtio transport assignment, whereas
 | |
|      * this loop controls how virtio transports are laid out in the dtb.
 | |
|      */
 | |
|     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 | |
|         char *nodename;
 | |
|         int irq = vms->irqmap[VIRT_MMIO] + i;
 | |
|         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 | |
| 
 | |
|         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                                 "compatible", "virtio,mmio");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, base, 2, size);
 | |
|         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                                GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 | |
|         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 | |
|         g_free(nodename);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
 | |
| 
 | |
| static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
 | |
|                                         const char *name,
 | |
|                                         const char *alias_prop_name)
 | |
| {
 | |
|     /*
 | |
|      * Create a single flash device.  We use the same parameters as
 | |
|      * the flash devices on the Versatile Express board.
 | |
|      */
 | |
|     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
 | |
| 
 | |
|     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
 | |
|     qdev_prop_set_uint8(dev, "width", 4);
 | |
|     qdev_prop_set_uint8(dev, "device-width", 2);
 | |
|     qdev_prop_set_bit(dev, "big-endian", false);
 | |
|     qdev_prop_set_uint16(dev, "id0", 0x89);
 | |
|     qdev_prop_set_uint16(dev, "id1", 0x18);
 | |
|     qdev_prop_set_uint16(dev, "id2", 0x00);
 | |
|     qdev_prop_set_uint16(dev, "id3", 0x00);
 | |
|     qdev_prop_set_string(dev, "name", name);
 | |
|     object_property_add_child(OBJECT(vms), name, OBJECT(dev));
 | |
|     object_property_add_alias(OBJECT(vms), alias_prop_name,
 | |
|                               OBJECT(dev), "drive");
 | |
|     return PFLASH_CFI01(dev);
 | |
| }
 | |
| 
 | |
| static void virt_flash_create(VirtMachineState *vms)
 | |
| {
 | |
|     vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
 | |
|     vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
 | |
| }
 | |
| 
 | |
| static void virt_flash_map1(PFlashCFI01 *flash,
 | |
|                             hwaddr base, hwaddr size,
 | |
|                             MemoryRegion *sysmem)
 | |
| {
 | |
|     DeviceState *dev = DEVICE(flash);
 | |
| 
 | |
|     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
 | |
|     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
 | |
|     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
| 
 | |
|     memory_region_add_subregion(sysmem, base,
 | |
|                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
 | |
|                                                        0));
 | |
| }
 | |
| 
 | |
| static void virt_flash_map(VirtMachineState *vms,
 | |
|                            MemoryRegion *sysmem,
 | |
|                            MemoryRegion *secure_sysmem)
 | |
| {
 | |
|     /*
 | |
|      * Map two flash devices to fill the VIRT_FLASH space in the memmap.
 | |
|      * sysmem is the system memory space. secure_sysmem is the secure view
 | |
|      * of the system, and the first flash device should be made visible only
 | |
|      * there. The second flash device is visible to both secure and nonsecure.
 | |
|      * If sysmem == secure_sysmem this means there is no separate Secure
 | |
|      * address space and both flash devices are generally visible.
 | |
|      */
 | |
|     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 | |
|     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 | |
| 
 | |
|     virt_flash_map1(vms->flash[0], flashbase, flashsize,
 | |
|                     secure_sysmem);
 | |
|     virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
 | |
|                     sysmem);
 | |
| }
 | |
| 
 | |
| static void virt_flash_fdt(VirtMachineState *vms,
 | |
|                            MemoryRegion *sysmem,
 | |
|                            MemoryRegion *secure_sysmem)
 | |
| {
 | |
|     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 | |
|     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 | |
|     char *nodename;
 | |
| 
 | |
|     if (sysmem == secure_sysmem) {
 | |
|         /* Report both flash devices as a single node in the DT */
 | |
|         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, flashbase, 2, flashsize,
 | |
|                                      2, flashbase + flashsize, 2, flashsize);
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 | |
|         g_free(nodename);
 | |
|     } else {
 | |
|         /*
 | |
|          * Report the devices as separate nodes so we can mark one as
 | |
|          * only visible to the secure world.
 | |
|          */
 | |
|         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, flashbase, 2, flashsize);
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
|         g_free(nodename);
 | |
| 
 | |
|         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, flashbase + flashsize, 2, flashsize);
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 | |
|         g_free(nodename);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool virt_firmware_init(VirtMachineState *vms,
 | |
|                                MemoryRegion *sysmem,
 | |
|                                MemoryRegion *secure_sysmem)
 | |
| {
 | |
|     int i;
 | |
|     const char *bios_name;
 | |
|     BlockBackend *pflash_blk0;
 | |
| 
 | |
|     /* Map legacy -drive if=pflash to machine properties */
 | |
|     for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
 | |
|         pflash_cfi01_legacy_drive(vms->flash[i],
 | |
|                                   drive_get(IF_PFLASH, 0, i));
 | |
|     }
 | |
| 
 | |
|     virt_flash_map(vms, sysmem, secure_sysmem);
 | |
| 
 | |
|     pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
 | |
| 
 | |
|     bios_name = MACHINE(vms)->firmware;
 | |
|     if (bios_name) {
 | |
|         char *fname;
 | |
|         MemoryRegion *mr;
 | |
|         int image_size;
 | |
| 
 | |
|         if (pflash_blk0) {
 | |
|             error_report("The contents of the first flash device may be "
 | |
|                          "specified with -bios or with -drive if=pflash... "
 | |
|                          "but you cannot use both options at once");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         /* Fall back to -bios */
 | |
| 
 | |
|         fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
 | |
|         if (!fname) {
 | |
|             error_report("Could not find ROM image '%s'", bios_name);
 | |
|             exit(1);
 | |
|         }
 | |
|         mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
 | |
|         image_size = load_image_mr(fname, mr);
 | |
|         g_free(fname);
 | |
|         if (image_size < 0) {
 | |
|             error_report("Could not load ROM image '%s'", bios_name);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return pflash_blk0 || bios_name;
 | |
| }
 | |
| 
 | |
| static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 | |
| {
 | |
|     MachineState *ms = MACHINE(vms);
 | |
|     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 | |
|     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 | |
|     FWCfgState *fw_cfg;
 | |
|     char *nodename;
 | |
| 
 | |
|     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 | |
|     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
 | |
| 
 | |
|     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                             "compatible", "qemu,fw-cfg-mmio");
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base, 2, size);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 | |
|     g_free(nodename);
 | |
|     return fw_cfg;
 | |
| }
 | |
| 
 | |
| static void create_pcie_irq_map(const VirtMachineState *vms,
 | |
|                                 uint32_t gic_phandle,
 | |
|                                 int first_irq, const char *nodename)
 | |
| {
 | |
|     int devfn, pin;
 | |
|     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 | |
|     uint32_t *irq_map = full_irq_map;
 | |
| 
 | |
|     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 | |
|         for (pin = 0; pin < 4; pin++) {
 | |
|             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 | |
|             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 | |
|             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 | |
|             int i;
 | |
| 
 | |
|             uint32_t map[] = {
 | |
|                 devfn << 8, 0, 0,                           /* devfn */
 | |
|                 pin + 1,                                    /* PCI pin */
 | |
|                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 | |
| 
 | |
|             /* Convert map to big endian */
 | |
|             for (i = 0; i < 10; i++) {
 | |
|                 irq_map[i] = cpu_to_be32(map[i]);
 | |
|             }
 | |
|             irq_map += 10;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
 | |
|                      full_irq_map, sizeof(full_irq_map));
 | |
| 
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
 | |
|                            cpu_to_be16(PCI_DEVFN(3, 0)), /* Slot 3 */
 | |
|                            0, 0,
 | |
|                            0x7           /* PCI irq */);
 | |
| }
 | |
| 
 | |
| static void create_smmu(const VirtMachineState *vms,
 | |
|                         PCIBus *bus)
 | |
| {
 | |
|     char *node;
 | |
|     const char compat[] = "arm,smmu-v3";
 | |
|     int irq =  vms->irqmap[VIRT_SMMU];
 | |
|     int i;
 | |
|     hwaddr base = vms->memmap[VIRT_SMMU].base;
 | |
|     hwaddr size = vms->memmap[VIRT_SMMU].size;
 | |
|     const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dev = qdev_new("arm-smmuv3");
 | |
| 
 | |
|     object_property_set_link(OBJECT(dev), "primary-bus", OBJECT(bus),
 | |
|                              &error_abort);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
 | |
|     for (i = 0; i < NUM_SMMU_IRQS; i++) {
 | |
|         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 | |
|                            qdev_get_gpio_in(vms->gic, irq + i));
 | |
|     }
 | |
| 
 | |
|     node = g_strdup_printf("/smmuv3@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, node);
 | |
|     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
 | |
| 
 | |
|     qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
 | |
|             GIC_FDT_IRQ_TYPE_SPI, irq    , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
 | |
|             GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
 | |
|             GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
 | |
|             GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 | |
| 
 | |
|     qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
 | |
|                      sizeof(irq_names));
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
 | |
|     qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
 | |
|     qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
 | |
|     g_free(node);
 | |
| }
 | |
| 
 | |
| static void create_virtio_iommu_dt_bindings(VirtMachineState *vms)
 | |
| {
 | |
|     const char compat[] = "virtio,pci-iommu";
 | |
|     uint16_t bdf = vms->virtio_iommu_bdf;
 | |
|     char *node;
 | |
| 
 | |
|     vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
| 
 | |
|     node = g_strdup_printf("%s/virtio_iommu@%d", vms->pciehb_nodename, bdf);
 | |
|     qemu_fdt_add_subnode(vms->fdt, node);
 | |
|     qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg",
 | |
|                                  1, bdf << 8, 1, 0, 1, 0,
 | |
|                                  1, 0, 1, 0);
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
 | |
|     g_free(node);
 | |
| 
 | |
|     qemu_fdt_setprop_cells(vms->fdt, vms->pciehb_nodename, "iommu-map",
 | |
|                            0x0, vms->iommu_phandle, 0x0, bdf,
 | |
|                            bdf + 1, vms->iommu_phandle, bdf + 1, 0xffff - bdf);
 | |
| }
 | |
| 
 | |
| static void create_pcie(VirtMachineState *vms)
 | |
| {
 | |
|     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
 | |
|     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
 | |
|     hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
 | |
|     hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
 | |
|     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
 | |
|     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
 | |
|     hwaddr base_ecam, size_ecam;
 | |
|     hwaddr base = base_mmio;
 | |
|     int nr_pcie_buses;
 | |
|     int irq = vms->irqmap[VIRT_PCIE];
 | |
|     MemoryRegion *mmio_alias;
 | |
|     MemoryRegion *mmio_reg;
 | |
|     MemoryRegion *ecam_alias;
 | |
|     MemoryRegion *ecam_reg;
 | |
|     DeviceState *dev;
 | |
|     char *nodename;
 | |
|     int i, ecam_id;
 | |
|     PCIHostState *pci;
 | |
| 
 | |
|     dev = qdev_new(TYPE_GPEX_HOST);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
| 
 | |
|     ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
 | |
|     base_ecam = vms->memmap[ecam_id].base;
 | |
|     size_ecam = vms->memmap[ecam_id].size;
 | |
|     nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
 | |
|     /* Map only the first size_ecam bytes of ECAM space */
 | |
|     ecam_alias = g_new0(MemoryRegion, 1);
 | |
|     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 | |
|     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 | |
|                              ecam_reg, 0, size_ecam);
 | |
|     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 | |
| 
 | |
|     /* Map the MMIO window into system address space so as to expose
 | |
|      * the section of PCI MMIO space which starts at the same base address
 | |
|      * (ie 1:1 mapping for that part of PCI MMIO space visible through
 | |
|      * the window).
 | |
|      */
 | |
|     mmio_alias = g_new0(MemoryRegion, 1);
 | |
|     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 | |
|     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 | |
|                              mmio_reg, base_mmio, size_mmio);
 | |
|     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 | |
| 
 | |
|     if (vms->highmem) {
 | |
|         /* Map high MMIO space */
 | |
|         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
 | |
| 
 | |
|         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
 | |
|                                  mmio_reg, base_mmio_high, size_mmio_high);
 | |
|         memory_region_add_subregion(get_system_memory(), base_mmio_high,
 | |
|                                     high_mmio_alias);
 | |
|     }
 | |
| 
 | |
|     /* Map IO port space */
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
 | |
| 
 | |
|     for (i = 0; i < GPEX_NUM_IRQS; i++) {
 | |
|         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
 | |
|                            qdev_get_gpio_in(vms->gic, irq + i));
 | |
|         gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
 | |
|     }
 | |
| 
 | |
|     pci = PCI_HOST_BRIDGE(dev);
 | |
|     vms->bus = pci->bus;
 | |
|     if (vms->bus) {
 | |
|         for (i = 0; i < nb_nics; i++) {
 | |
|             NICInfo *nd = &nd_table[i];
 | |
| 
 | |
|             if (!nd->model) {
 | |
|                 nd->model = g_strdup("virtio");
 | |
|             }
 | |
| 
 | |
|             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nodename = vms->pciehb_nodename = g_strdup_printf("/pcie@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                             "compatible", "pci-host-ecam-generic");
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
 | |
|                            nr_pcie_buses - 1);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 | |
| 
 | |
|     if (vms->msi_phandle) {
 | |
|         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
 | |
|                                vms->msi_phandle);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base_ecam, 2, size_ecam);
 | |
| 
 | |
|     if (vms->highmem) {
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
 | |
|                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
 | |
|                                      2, base_pio, 2, size_pio,
 | |
|                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
 | |
|                                      2, base_mmio, 2, size_mmio,
 | |
|                                      1, FDT_PCI_RANGE_MMIO_64BIT,
 | |
|                                      2, base_mmio_high,
 | |
|                                      2, base_mmio_high, 2, size_mmio_high);
 | |
|     } else {
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
 | |
|                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
 | |
|                                      2, base_pio, 2, size_pio,
 | |
|                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
 | |
|                                      2, base_mmio, 2, size_mmio);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
 | |
|     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
 | |
| 
 | |
|     if (vms->iommu) {
 | |
|         vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
| 
 | |
|         switch (vms->iommu) {
 | |
|         case VIRT_IOMMU_SMMUV3:
 | |
|             create_smmu(vms, vms->bus);
 | |
|             qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
 | |
|                                    0x0, vms->iommu_phandle, 0x0, 0x10000);
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_platform_bus(VirtMachineState *vms)
 | |
| {
 | |
|     DeviceState *dev;
 | |
|     SysBusDevice *s;
 | |
|     int i;
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
| 
 | |
|     dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
 | |
|     dev->id = TYPE_PLATFORM_BUS_DEVICE;
 | |
|     qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
 | |
|     qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
 | |
|     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
 | |
|     vms->platform_bus_dev = dev;
 | |
| 
 | |
|     s = SYS_BUS_DEVICE(dev);
 | |
|     for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
 | |
|         int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
 | |
|         sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
 | |
|     }
 | |
| 
 | |
|     memory_region_add_subregion(sysmem,
 | |
|                                 vms->memmap[VIRT_PLATFORM_BUS].base,
 | |
|                                 sysbus_mmio_get_region(s, 0));
 | |
| }
 | |
| 
 | |
| static void create_tag_ram(MemoryRegion *tag_sysmem,
 | |
|                            hwaddr base, hwaddr size,
 | |
|                            const char *name)
 | |
| {
 | |
|     MemoryRegion *tagram = g_new(MemoryRegion, 1);
 | |
| 
 | |
|     memory_region_init_ram(tagram, NULL, name, size / 32, &error_fatal);
 | |
|     memory_region_add_subregion(tag_sysmem, base / 32, tagram);
 | |
| }
 | |
| 
 | |
| static void create_secure_ram(VirtMachineState *vms,
 | |
|                               MemoryRegion *secure_sysmem,
 | |
|                               MemoryRegion *secure_tag_sysmem)
 | |
| {
 | |
|     MemoryRegion *secram = g_new(MemoryRegion, 1);
 | |
|     char *nodename;
 | |
|     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
 | |
|     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
 | |
| 
 | |
|     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
 | |
|                            &error_fatal);
 | |
|     memory_region_add_subregion(secure_sysmem, base, secram);
 | |
| 
 | |
|     nodename = g_strdup_printf("/secram@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
| 
 | |
|     if (secure_tag_sysmem) {
 | |
|         create_tag_ram(secure_tag_sysmem, base, size, "mach-virt.secure-tag");
 | |
|     }
 | |
| 
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
 | |
| {
 | |
|     const VirtMachineState *board = container_of(binfo, VirtMachineState,
 | |
|                                                  bootinfo);
 | |
| 
 | |
|     *fdt_size = board->fdt_size;
 | |
|     return board->fdt;
 | |
| }
 | |
| 
 | |
| static void virt_build_smbios(VirtMachineState *vms)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(vms);
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
|     uint8_t *smbios_tables, *smbios_anchor;
 | |
|     size_t smbios_tables_len, smbios_anchor_len;
 | |
|     const char *product = "QEMU Virtual Machine";
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         product = "KVM Virtual Machine";
 | |
|     }
 | |
| 
 | |
|     smbios_set_defaults("QEMU", product,
 | |
|                         vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
 | |
|                         true, SMBIOS_ENTRY_POINT_30);
 | |
| 
 | |
|     smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
 | |
|                       &smbios_anchor, &smbios_anchor_len);
 | |
| 
 | |
|     if (smbios_anchor) {
 | |
|         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
 | |
|                         smbios_tables, smbios_tables_len);
 | |
|         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
 | |
|                         smbios_anchor, smbios_anchor_len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static
 | |
| void virt_machine_done(Notifier *notifier, void *data)
 | |
| {
 | |
|     VirtMachineState *vms = container_of(notifier, VirtMachineState,
 | |
|                                          machine_done);
 | |
|     MachineState *ms = MACHINE(vms);
 | |
|     ARMCPU *cpu = ARM_CPU(first_cpu);
 | |
|     struct arm_boot_info *info = &vms->bootinfo;
 | |
|     AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
| 
 | |
|     /*
 | |
|      * If the user provided a dtb, we assume the dynamic sysbus nodes
 | |
|      * already are integrated there. This corresponds to a use case where
 | |
|      * the dynamic sysbus nodes are complex and their generation is not yet
 | |
|      * supported. In that case the user can take charge of the guest dt
 | |
|      * while qemu takes charge of the qom stuff.
 | |
|      */
 | |
|     if (info->dtb_filename == NULL) {
 | |
|         platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
 | |
|                                        vms->memmap[VIRT_PLATFORM_BUS].base,
 | |
|                                        vms->memmap[VIRT_PLATFORM_BUS].size,
 | |
|                                        vms->irqmap[VIRT_PLATFORM_BUS]);
 | |
|     }
 | |
|     if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     fw_cfg_add_extra_pci_roots(vms->bus, vms->fw_cfg);
 | |
| 
 | |
|     virt_acpi_setup(vms);
 | |
|     virt_build_smbios(vms);
 | |
| }
 | |
| 
 | |
| static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
 | |
| {
 | |
|     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
| 
 | |
|     if (!vmc->disallow_affinity_adjustment) {
 | |
|         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
 | |
|          * GIC's target-list limitations. 32-bit KVM hosts currently
 | |
|          * always create clusters of 4 CPUs, but that is expected to
 | |
|          * change when they gain support for gicv3. When KVM is enabled
 | |
|          * it will override the changes we make here, therefore our
 | |
|          * purposes are to make TCG consistent (with 64-bit KVM hosts)
 | |
|          * and to improve SGI efficiency.
 | |
|          */
 | |
|         if (vms->gic_version == VIRT_GIC_VERSION_3) {
 | |
|             clustersz = GICV3_TARGETLIST_BITS;
 | |
|         } else {
 | |
|             clustersz = GIC_TARGETLIST_BITS;
 | |
|         }
 | |
|     }
 | |
|     return arm_cpu_mp_affinity(idx, clustersz);
 | |
| }
 | |
| 
 | |
| static void virt_set_memmap(VirtMachineState *vms)
 | |
| {
 | |
|     MachineState *ms = MACHINE(vms);
 | |
|     hwaddr base, device_memory_base, device_memory_size;
 | |
|     int i;
 | |
| 
 | |
|     vms->memmap = extended_memmap;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
 | |
|         vms->memmap[i] = base_memmap[i];
 | |
|     }
 | |
| 
 | |
|     if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
 | |
|         error_report("unsupported number of memory slots: %"PRIu64,
 | |
|                      ms->ram_slots);
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We compute the base of the high IO region depending on the
 | |
|      * amount of initial and device memory. The device memory start/size
 | |
|      * is aligned on 1GiB. We never put the high IO region below 256GiB
 | |
|      * so that if maxram_size is < 255GiB we keep the legacy memory map.
 | |
|      * The device region size assumes 1GiB page max alignment per slot.
 | |
|      */
 | |
|     device_memory_base =
 | |
|         ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
 | |
|     device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
 | |
| 
 | |
|     /* Base address of the high IO region */
 | |
|     base = device_memory_base + ROUND_UP(device_memory_size, GiB);
 | |
|     if (base < device_memory_base) {
 | |
|         error_report("maxmem/slots too huge");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
 | |
|         base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
 | |
|     }
 | |
| 
 | |
|     for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
 | |
|         hwaddr size = extended_memmap[i].size;
 | |
| 
 | |
|         base = ROUND_UP(base, size);
 | |
|         vms->memmap[i].base = base;
 | |
|         vms->memmap[i].size = size;
 | |
|         base += size;
 | |
|     }
 | |
|     vms->highest_gpa = base - 1;
 | |
|     if (device_memory_size > 0) {
 | |
|         ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
 | |
|         ms->device_memory->base = device_memory_base;
 | |
|         memory_region_init(&ms->device_memory->mr, OBJECT(vms),
 | |
|                            "device-memory", device_memory_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * finalize_gic_version - Determines the final gic_version
 | |
|  * according to the gic-version property
 | |
|  *
 | |
|  * Default GIC type is v2
 | |
|  */
 | |
| static void finalize_gic_version(VirtMachineState *vms)
 | |
| {
 | |
|     unsigned int max_cpus = MACHINE(vms)->smp.max_cpus;
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         int probe_bitmap;
 | |
| 
 | |
|         if (!kvm_irqchip_in_kernel()) {
 | |
|             switch (vms->gic_version) {
 | |
|             case VIRT_GIC_VERSION_HOST:
 | |
|                 warn_report(
 | |
|                     "gic-version=host not relevant with kernel-irqchip=off "
 | |
|                      "as only userspace GICv2 is supported. Using v2 ...");
 | |
|                 return;
 | |
|             case VIRT_GIC_VERSION_MAX:
 | |
|             case VIRT_GIC_VERSION_NOSEL:
 | |
|                 vms->gic_version = VIRT_GIC_VERSION_2;
 | |
|                 return;
 | |
|             case VIRT_GIC_VERSION_2:
 | |
|                 return;
 | |
|             case VIRT_GIC_VERSION_3:
 | |
|                 error_report(
 | |
|                     "gic-version=3 is not supported with kernel-irqchip=off");
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         probe_bitmap = kvm_arm_vgic_probe();
 | |
|         if (!probe_bitmap) {
 | |
|             error_report("Unable to determine GIC version supported by host");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         switch (vms->gic_version) {
 | |
|         case VIRT_GIC_VERSION_HOST:
 | |
|         case VIRT_GIC_VERSION_MAX:
 | |
|             if (probe_bitmap & KVM_ARM_VGIC_V3) {
 | |
|                 vms->gic_version = VIRT_GIC_VERSION_3;
 | |
|             } else {
 | |
|                 vms->gic_version = VIRT_GIC_VERSION_2;
 | |
|             }
 | |
|             return;
 | |
|         case VIRT_GIC_VERSION_NOSEL:
 | |
|             if ((probe_bitmap & KVM_ARM_VGIC_V2) && max_cpus <= GIC_NCPU) {
 | |
|                 vms->gic_version = VIRT_GIC_VERSION_2;
 | |
|             } else if (probe_bitmap & KVM_ARM_VGIC_V3) {
 | |
|                 /*
 | |
|                  * in case the host does not support v2 in-kernel emulation or
 | |
|                  * the end-user requested more than 8 VCPUs we now default
 | |
|                  * to v3. In any case defaulting to v2 would be broken.
 | |
|                  */
 | |
|                 vms->gic_version = VIRT_GIC_VERSION_3;
 | |
|             } else if (max_cpus > GIC_NCPU) {
 | |
|                 error_report("host only supports in-kernel GICv2 emulation "
 | |
|                              "but more than 8 vcpus are requested");
 | |
|                 exit(1);
 | |
|             }
 | |
|             break;
 | |
|         case VIRT_GIC_VERSION_2:
 | |
|         case VIRT_GIC_VERSION_3:
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Check chosen version is effectively supported by the host */
 | |
|         if (vms->gic_version == VIRT_GIC_VERSION_2 &&
 | |
|             !(probe_bitmap & KVM_ARM_VGIC_V2)) {
 | |
|             error_report("host does not support in-kernel GICv2 emulation");
 | |
|             exit(1);
 | |
|         } else if (vms->gic_version == VIRT_GIC_VERSION_3 &&
 | |
|                    !(probe_bitmap & KVM_ARM_VGIC_V3)) {
 | |
|             error_report("host does not support in-kernel GICv3 emulation");
 | |
|             exit(1);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* TCG mode */
 | |
|     switch (vms->gic_version) {
 | |
|     case VIRT_GIC_VERSION_NOSEL:
 | |
|         vms->gic_version = VIRT_GIC_VERSION_2;
 | |
|         break;
 | |
|     case VIRT_GIC_VERSION_MAX:
 | |
|         vms->gic_version = VIRT_GIC_VERSION_3;
 | |
|         break;
 | |
|     case VIRT_GIC_VERSION_HOST:
 | |
|         error_report("gic-version=host requires KVM");
 | |
|         exit(1);
 | |
|     case VIRT_GIC_VERSION_2:
 | |
|     case VIRT_GIC_VERSION_3:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * virt_cpu_post_init() must be called after the CPUs have
 | |
|  * been realized and the GIC has been created.
 | |
|  */
 | |
| static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
 | |
| {
 | |
|     int max_cpus = MACHINE(vms)->smp.max_cpus;
 | |
|     bool aarch64, pmu, steal_time;
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     aarch64 = object_property_get_bool(OBJECT(first_cpu), "aarch64", NULL);
 | |
|     pmu = object_property_get_bool(OBJECT(first_cpu), "pmu", NULL);
 | |
|     steal_time = object_property_get_bool(OBJECT(first_cpu),
 | |
|                                           "kvm-steal-time", NULL);
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         hwaddr pvtime_reg_base = vms->memmap[VIRT_PVTIME].base;
 | |
|         hwaddr pvtime_reg_size = vms->memmap[VIRT_PVTIME].size;
 | |
| 
 | |
|         if (steal_time) {
 | |
|             MemoryRegion *pvtime = g_new(MemoryRegion, 1);
 | |
|             hwaddr pvtime_size = max_cpus * PVTIME_SIZE_PER_CPU;
 | |
| 
 | |
|             /* The memory region size must be a multiple of host page size. */
 | |
|             pvtime_size = REAL_HOST_PAGE_ALIGN(pvtime_size);
 | |
| 
 | |
|             if (pvtime_size > pvtime_reg_size) {
 | |
|                 error_report("pvtime requires a %" HWADDR_PRId
 | |
|                              " byte memory region for %d CPUs,"
 | |
|                              " but only %" HWADDR_PRId " has been reserved",
 | |
|                              pvtime_size, max_cpus, pvtime_reg_size);
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             memory_region_init_ram(pvtime, NULL, "pvtime", pvtime_size, NULL);
 | |
|             memory_region_add_subregion(sysmem, pvtime_reg_base, pvtime);
 | |
|         }
 | |
| 
 | |
|         CPU_FOREACH(cpu) {
 | |
|             if (pmu) {
 | |
|                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
 | |
|                 if (kvm_irqchip_in_kernel()) {
 | |
|                     kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
 | |
|                 }
 | |
|                 kvm_arm_pmu_init(cpu);
 | |
|             }
 | |
|             if (steal_time) {
 | |
|                 kvm_arm_pvtime_init(cpu, pvtime_reg_base +
 | |
|                                          cpu->cpu_index * PVTIME_SIZE_PER_CPU);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         if (aarch64 && vms->highmem) {
 | |
|             int requested_pa_size = 64 - clz64(vms->highest_gpa);
 | |
|             int pamax = arm_pamax(ARM_CPU(first_cpu));
 | |
| 
 | |
|             if (pamax < requested_pa_size) {
 | |
|                 error_report("VCPU supports less PA bits (%d) than "
 | |
|                              "requested by the memory map (%d)",
 | |
|                              pamax, requested_pa_size);
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void machvirt_init(MachineState *machine)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(machine);
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     const CPUArchIdList *possible_cpus;
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
|     MemoryRegion *secure_sysmem = NULL;
 | |
|     MemoryRegion *tag_sysmem = NULL;
 | |
|     MemoryRegion *secure_tag_sysmem = NULL;
 | |
|     int n, virt_max_cpus;
 | |
|     bool firmware_loaded;
 | |
|     bool aarch64 = true;
 | |
|     bool has_ged = !vmc->no_ged;
 | |
|     unsigned int smp_cpus = machine->smp.cpus;
 | |
|     unsigned int max_cpus = machine->smp.max_cpus;
 | |
| 
 | |
|     /*
 | |
|      * In accelerated mode, the memory map is computed earlier in kvm_type()
 | |
|      * to create a VM with the right number of IPA bits.
 | |
|      */
 | |
|     if (!vms->memmap) {
 | |
|         virt_set_memmap(vms);
 | |
|     }
 | |
| 
 | |
|     /* We can probe only here because during property set
 | |
|      * KVM is not available yet
 | |
|      */
 | |
|     finalize_gic_version(vms);
 | |
| 
 | |
|     if (!cpu_type_valid(machine->cpu_type)) {
 | |
|         error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (vms->secure) {
 | |
|         if (kvm_enabled()) {
 | |
|             error_report("mach-virt: KVM does not support Security extensions");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * The Secure view of the world is the same as the NonSecure,
 | |
|          * but with a few extra devices. Create it as a container region
 | |
|          * containing the system memory at low priority; any secure-only
 | |
|          * devices go in at higher priority and take precedence.
 | |
|          */
 | |
|         secure_sysmem = g_new(MemoryRegion, 1);
 | |
|         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
 | |
|                            UINT64_MAX);
 | |
|         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
 | |
|     }
 | |
| 
 | |
|     firmware_loaded = virt_firmware_init(vms, sysmem,
 | |
|                                          secure_sysmem ?: sysmem);
 | |
| 
 | |
|     /* If we have an EL3 boot ROM then the assumption is that it will
 | |
|      * implement PSCI itself, so disable QEMU's internal implementation
 | |
|      * so it doesn't get in the way. Instead of starting secondary
 | |
|      * CPUs in PSCI powerdown state we will start them all running and
 | |
|      * let the boot ROM sort them out.
 | |
|      * The usual case is that we do use QEMU's PSCI implementation;
 | |
|      * if the guest has EL2 then we will use SMC as the conduit,
 | |
|      * and otherwise we will use HVC (for backwards compatibility and
 | |
|      * because if we're using KVM then we must use HVC).
 | |
|      */
 | |
|     if (vms->secure && firmware_loaded) {
 | |
|         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
 | |
|     } else if (vms->virt) {
 | |
|         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
 | |
|     } else {
 | |
|         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
 | |
|     }
 | |
| 
 | |
|     /* The maximum number of CPUs depends on the GIC version, or on how
 | |
|      * many redistributors we can fit into the memory map.
 | |
|      */
 | |
|     if (vms->gic_version == VIRT_GIC_VERSION_3) {
 | |
|         virt_max_cpus =
 | |
|             vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
 | |
|         virt_max_cpus +=
 | |
|             vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
 | |
|     } else {
 | |
|         virt_max_cpus = GIC_NCPU;
 | |
|     }
 | |
| 
 | |
|     if (max_cpus > virt_max_cpus) {
 | |
|         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
 | |
|                      "supported by machine 'mach-virt' (%d)",
 | |
|                      max_cpus, virt_max_cpus);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (vms->virt && kvm_enabled()) {
 | |
|         error_report("mach-virt: KVM does not support providing "
 | |
|                      "Virtualization extensions to the guest CPU");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (vms->mte && kvm_enabled()) {
 | |
|         error_report("mach-virt: KVM does not support providing "
 | |
|                      "MTE to the guest CPU");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     create_fdt(vms);
 | |
| 
 | |
|     possible_cpus = mc->possible_cpu_arch_ids(machine);
 | |
|     assert(possible_cpus->len == max_cpus);
 | |
|     for (n = 0; n < possible_cpus->len; n++) {
 | |
|         Object *cpuobj;
 | |
|         CPUState *cs;
 | |
| 
 | |
|         if (n >= smp_cpus) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         cpuobj = object_new(possible_cpus->cpus[n].type);
 | |
|         object_property_set_int(cpuobj, "mp-affinity",
 | |
|                                 possible_cpus->cpus[n].arch_id, NULL);
 | |
| 
 | |
|         cs = CPU(cpuobj);
 | |
|         cs->cpu_index = n;
 | |
| 
 | |
|         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
 | |
|                           &error_fatal);
 | |
| 
 | |
|         aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
 | |
| 
 | |
|         if (!vms->secure) {
 | |
|             object_property_set_bool(cpuobj, "has_el3", false, NULL);
 | |
|         }
 | |
| 
 | |
|         if (!vms->virt && object_property_find(cpuobj, "has_el2")) {
 | |
|             object_property_set_bool(cpuobj, "has_el2", false, NULL);
 | |
|         }
 | |
| 
 | |
|         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
 | |
|             object_property_set_int(cpuobj, "psci-conduit", vms->psci_conduit,
 | |
|                                     NULL);
 | |
| 
 | |
|             /* Secondary CPUs start in PSCI powered-down state */
 | |
|             if (n > 0) {
 | |
|                 object_property_set_bool(cpuobj, "start-powered-off", true,
 | |
|                                          NULL);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (vmc->kvm_no_adjvtime &&
 | |
|             object_property_find(cpuobj, "kvm-no-adjvtime")) {
 | |
|             object_property_set_bool(cpuobj, "kvm-no-adjvtime", true, NULL);
 | |
|         }
 | |
| 
 | |
|         if (vmc->no_kvm_steal_time &&
 | |
|             object_property_find(cpuobj, "kvm-steal-time")) {
 | |
|             object_property_set_bool(cpuobj, "kvm-steal-time", false, NULL);
 | |
|         }
 | |
| 
 | |
|         if (vmc->no_pmu && object_property_find(cpuobj, "pmu")) {
 | |
|             object_property_set_bool(cpuobj, "pmu", false, NULL);
 | |
|         }
 | |
| 
 | |
|         if (object_property_find(cpuobj, "reset-cbar")) {
 | |
|             object_property_set_int(cpuobj, "reset-cbar",
 | |
|                                     vms->memmap[VIRT_CPUPERIPHS].base,
 | |
|                                     &error_abort);
 | |
|         }
 | |
| 
 | |
|         object_property_set_link(cpuobj, "memory", OBJECT(sysmem),
 | |
|                                  &error_abort);
 | |
|         if (vms->secure) {
 | |
|             object_property_set_link(cpuobj, "secure-memory",
 | |
|                                      OBJECT(secure_sysmem), &error_abort);
 | |
|         }
 | |
| 
 | |
|         if (vms->mte) {
 | |
|             /* Create the memory region only once, but link to all cpus. */
 | |
|             if (!tag_sysmem) {
 | |
|                 /*
 | |
|                  * The property exists only if MemTag is supported.
 | |
|                  * If it is, we must allocate the ram to back that up.
 | |
|                  */
 | |
|                 if (!object_property_find(cpuobj, "tag-memory")) {
 | |
|                     error_report("MTE requested, but not supported "
 | |
|                                  "by the guest CPU");
 | |
|                     exit(1);
 | |
|                 }
 | |
| 
 | |
|                 tag_sysmem = g_new(MemoryRegion, 1);
 | |
|                 memory_region_init(tag_sysmem, OBJECT(machine),
 | |
|                                    "tag-memory", UINT64_MAX / 32);
 | |
| 
 | |
|                 if (vms->secure) {
 | |
|                     secure_tag_sysmem = g_new(MemoryRegion, 1);
 | |
|                     memory_region_init(secure_tag_sysmem, OBJECT(machine),
 | |
|                                        "secure-tag-memory", UINT64_MAX / 32);
 | |
| 
 | |
|                     /* As with ram, secure-tag takes precedence over tag.  */
 | |
|                     memory_region_add_subregion_overlap(secure_tag_sysmem, 0,
 | |
|                                                         tag_sysmem, -1);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             object_property_set_link(cpuobj, "tag-memory", OBJECT(tag_sysmem),
 | |
|                                      &error_abort);
 | |
|             if (vms->secure) {
 | |
|                 object_property_set_link(cpuobj, "secure-tag-memory",
 | |
|                                          OBJECT(secure_tag_sysmem),
 | |
|                                          &error_abort);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         qdev_realize(DEVICE(cpuobj), NULL, &error_fatal);
 | |
|         object_unref(cpuobj);
 | |
|     }
 | |
|     fdt_add_timer_nodes(vms);
 | |
|     fdt_add_cpu_nodes(vms);
 | |
| 
 | |
|     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base,
 | |
|                                 machine->ram);
 | |
|     if (machine->device_memory) {
 | |
|         memory_region_add_subregion(sysmem, machine->device_memory->base,
 | |
|                                     &machine->device_memory->mr);
 | |
|     }
 | |
| 
 | |
|     virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
 | |
| 
 | |
|     create_gic(vms);
 | |
| 
 | |
|     virt_cpu_post_init(vms, sysmem);
 | |
| 
 | |
|     fdt_add_pmu_nodes(vms);
 | |
| 
 | |
|     create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
 | |
| 
 | |
|     if (vms->secure) {
 | |
|         create_secure_ram(vms, secure_sysmem, secure_tag_sysmem);
 | |
|         create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
 | |
|     }
 | |
| 
 | |
|     if (tag_sysmem) {
 | |
|         create_tag_ram(tag_sysmem, vms->memmap[VIRT_MEM].base,
 | |
|                        machine->ram_size, "mach-virt.tag");
 | |
|     }
 | |
| 
 | |
|     vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
 | |
| 
 | |
|     create_rtc(vms);
 | |
| 
 | |
|     create_pcie(vms);
 | |
| 
 | |
|     if (has_ged && aarch64 && firmware_loaded && virt_is_acpi_enabled(vms)) {
 | |
|         vms->acpi_dev = create_acpi_ged(vms);
 | |
|     } else {
 | |
|         create_gpio_devices(vms, VIRT_GPIO, sysmem);
 | |
|     }
 | |
| 
 | |
|     if (vms->secure && !vmc->no_secure_gpio) {
 | |
|         create_gpio_devices(vms, VIRT_SECURE_GPIO, secure_sysmem);
 | |
|     }
 | |
| 
 | |
|      /* connect powerdown request */
 | |
|      vms->powerdown_notifier.notify = virt_powerdown_req;
 | |
|      qemu_register_powerdown_notifier(&vms->powerdown_notifier);
 | |
| 
 | |
|     /* Create mmio transports, so the user can create virtio backends
 | |
|      * (which will be automatically plugged in to the transports). If
 | |
|      * no backend is created the transport will just sit harmlessly idle.
 | |
|      */
 | |
|     create_virtio_devices(vms);
 | |
| 
 | |
|     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
 | |
|     rom_set_fw(vms->fw_cfg);
 | |
| 
 | |
|     create_platform_bus(vms);
 | |
| 
 | |
|     if (machine->nvdimms_state->is_enabled) {
 | |
|         const struct AcpiGenericAddress arm_virt_nvdimm_acpi_dsmio = {
 | |
|             .space_id = AML_AS_SYSTEM_MEMORY,
 | |
|             .address = vms->memmap[VIRT_NVDIMM_ACPI].base,
 | |
|             .bit_width = NVDIMM_ACPI_IO_LEN << 3
 | |
|         };
 | |
| 
 | |
|         nvdimm_init_acpi_state(machine->nvdimms_state, sysmem,
 | |
|                                arm_virt_nvdimm_acpi_dsmio,
 | |
|                                vms->fw_cfg, OBJECT(vms));
 | |
|     }
 | |
| 
 | |
|     vms->bootinfo.ram_size = machine->ram_size;
 | |
|     vms->bootinfo.nb_cpus = smp_cpus;
 | |
|     vms->bootinfo.board_id = -1;
 | |
|     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
 | |
|     vms->bootinfo.get_dtb = machvirt_dtb;
 | |
|     vms->bootinfo.skip_dtb_autoload = true;
 | |
|     vms->bootinfo.firmware_loaded = firmware_loaded;
 | |
|     arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
 | |
| 
 | |
|     vms->machine_done.notify = virt_machine_done;
 | |
|     qemu_add_machine_init_done_notifier(&vms->machine_done);
 | |
| }
 | |
| 
 | |
| static bool virt_get_secure(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->secure;
 | |
| }
 | |
| 
 | |
| static void virt_set_secure(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->secure = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_virt(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->virt;
 | |
| }
 | |
| 
 | |
| static void virt_set_virt(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->virt = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_highmem(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->highmem;
 | |
| }
 | |
| 
 | |
| static void virt_set_highmem(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->highmem = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_its(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->its;
 | |
| }
 | |
| 
 | |
| static void virt_set_its(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->its = value;
 | |
| }
 | |
| 
 | |
| static char *virt_get_oem_id(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return g_strdup(vms->oem_id);
 | |
| }
 | |
| 
 | |
| static void virt_set_oem_id(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     size_t len = strlen(value);
 | |
| 
 | |
|     if (len > 6) {
 | |
|         error_setg(errp,
 | |
|                    "User specified oem-id value is bigger than 6 bytes in size");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     strncpy(vms->oem_id, value, 6);
 | |
| }
 | |
| 
 | |
| static char *virt_get_oem_table_id(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return g_strdup(vms->oem_table_id);
 | |
| }
 | |
| 
 | |
| static void virt_set_oem_table_id(Object *obj, const char *value,
 | |
|                                   Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     size_t len = strlen(value);
 | |
| 
 | |
|     if (len > 8) {
 | |
|         error_setg(errp,
 | |
|                    "User specified oem-table-id value is bigger than 8 bytes in size");
 | |
|         return;
 | |
|     }
 | |
|     strncpy(vms->oem_table_id, value, 8);
 | |
| }
 | |
| 
 | |
| 
 | |
| bool virt_is_acpi_enabled(VirtMachineState *vms)
 | |
| {
 | |
|     if (vms->acpi == ON_OFF_AUTO_OFF) {
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void virt_get_acpi(Object *obj, Visitor *v, const char *name,
 | |
|                           void *opaque, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     OnOffAuto acpi = vms->acpi;
 | |
| 
 | |
|     visit_type_OnOffAuto(v, name, &acpi, errp);
 | |
| }
 | |
| 
 | |
| static void virt_set_acpi(Object *obj, Visitor *v, const char *name,
 | |
|                           void *opaque, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     visit_type_OnOffAuto(v, name, &vms->acpi, errp);
 | |
| }
 | |
| 
 | |
| static bool virt_get_ras(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->ras;
 | |
| }
 | |
| 
 | |
| static void virt_set_ras(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->ras = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_mte(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->mte;
 | |
| }
 | |
| 
 | |
| static void virt_set_mte(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->mte = value;
 | |
| }
 | |
| 
 | |
| static char *virt_get_gic_version(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     const char *val = vms->gic_version == VIRT_GIC_VERSION_3 ? "3" : "2";
 | |
| 
 | |
|     return g_strdup(val);
 | |
| }
 | |
| 
 | |
| static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     if (!strcmp(value, "3")) {
 | |
|         vms->gic_version = VIRT_GIC_VERSION_3;
 | |
|     } else if (!strcmp(value, "2")) {
 | |
|         vms->gic_version = VIRT_GIC_VERSION_2;
 | |
|     } else if (!strcmp(value, "host")) {
 | |
|         vms->gic_version = VIRT_GIC_VERSION_HOST; /* Will probe later */
 | |
|     } else if (!strcmp(value, "max")) {
 | |
|         vms->gic_version = VIRT_GIC_VERSION_MAX; /* Will probe later */
 | |
|     } else {
 | |
|         error_setg(errp, "Invalid gic-version value");
 | |
|         error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static char *virt_get_iommu(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     switch (vms->iommu) {
 | |
|     case VIRT_IOMMU_NONE:
 | |
|         return g_strdup("none");
 | |
|     case VIRT_IOMMU_SMMUV3:
 | |
|         return g_strdup("smmuv3");
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void virt_set_iommu(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     if (!strcmp(value, "smmuv3")) {
 | |
|         vms->iommu = VIRT_IOMMU_SMMUV3;
 | |
|     } else if (!strcmp(value, "none")) {
 | |
|         vms->iommu = VIRT_IOMMU_NONE;
 | |
|     } else {
 | |
|         error_setg(errp, "Invalid iommu value");
 | |
|         error_append_hint(errp, "Valid values are none, smmuv3.\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CpuInstanceProperties
 | |
| virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(ms);
 | |
|     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
 | |
| 
 | |
|     assert(cpu_index < possible_cpus->len);
 | |
|     return possible_cpus->cpus[cpu_index].props;
 | |
| }
 | |
| 
 | |
| static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
 | |
| {
 | |
|     return idx % ms->numa_state->num_nodes;
 | |
| }
 | |
| 
 | |
| static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
 | |
| {
 | |
|     int n;
 | |
|     unsigned int max_cpus = ms->smp.max_cpus;
 | |
|     VirtMachineState *vms = VIRT_MACHINE(ms);
 | |
| 
 | |
|     if (ms->possible_cpus) {
 | |
|         assert(ms->possible_cpus->len == max_cpus);
 | |
|         return ms->possible_cpus;
 | |
|     }
 | |
| 
 | |
|     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 | |
|                                   sizeof(CPUArchId) * max_cpus);
 | |
|     ms->possible_cpus->len = max_cpus;
 | |
|     for (n = 0; n < ms->possible_cpus->len; n++) {
 | |
|         ms->possible_cpus->cpus[n].type = ms->cpu_type;
 | |
|         ms->possible_cpus->cpus[n].arch_id =
 | |
|             virt_cpu_mp_affinity(vms, n);
 | |
|         ms->possible_cpus->cpus[n].props.has_thread_id = true;
 | |
|         ms->possible_cpus->cpus[n].props.thread_id = n;
 | |
|     }
 | |
|     return ms->possible_cpus;
 | |
| }
 | |
| 
 | |
| static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
 | |
|                                  Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
 | |
|     const MachineState *ms = MACHINE(hotplug_dev);
 | |
|     const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
 | |
| 
 | |
|     if (!vms->acpi_dev) {
 | |
|         error_setg(errp,
 | |
|                    "memory hotplug is not enabled: missing acpi-ged device");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (vms->mte) {
 | |
|         error_setg(errp, "memory hotplug is not enabled: MTE is enabled");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
 | |
|         error_setg(errp, "nvdimm is not enabled: add 'nvdimm=on' to '-M'");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
 | |
| }
 | |
| 
 | |
| static void virt_memory_plug(HotplugHandler *hotplug_dev,
 | |
|                              DeviceState *dev, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
 | |
|     MachineState *ms = MACHINE(hotplug_dev);
 | |
|     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
 | |
| 
 | |
|     pc_dimm_plug(PC_DIMM(dev), MACHINE(vms));
 | |
| 
 | |
|     if (is_nvdimm) {
 | |
|         nvdimm_plug(ms->nvdimms_state);
 | |
|     }
 | |
| 
 | |
|     hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
 | |
|                          dev, &error_abort);
 | |
| }
 | |
| 
 | |
| static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
 | |
|                                             DeviceState *dev, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         virt_memory_pre_plug(hotplug_dev, dev, errp);
 | |
|     } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
 | |
|         hwaddr db_start = 0, db_end = 0;
 | |
|         char *resv_prop_str;
 | |
| 
 | |
|         switch (vms->msi_controller) {
 | |
|         case VIRT_MSI_CTRL_NONE:
 | |
|             return;
 | |
|         case VIRT_MSI_CTRL_ITS:
 | |
|             /* GITS_TRANSLATER page */
 | |
|             db_start = base_memmap[VIRT_GIC_ITS].base + 0x10000;
 | |
|             db_end = base_memmap[VIRT_GIC_ITS].base +
 | |
|                      base_memmap[VIRT_GIC_ITS].size - 1;
 | |
|             break;
 | |
|         case VIRT_MSI_CTRL_GICV2M:
 | |
|             /* MSI_SETSPI_NS page */
 | |
|             db_start = base_memmap[VIRT_GIC_V2M].base;
 | |
|             db_end = db_start + base_memmap[VIRT_GIC_V2M].size - 1;
 | |
|             break;
 | |
|         }
 | |
|         resv_prop_str = g_strdup_printf("0x%"PRIx64":0x%"PRIx64":%u",
 | |
|                                         db_start, db_end,
 | |
|                                         VIRTIO_IOMMU_RESV_MEM_T_MSI);
 | |
| 
 | |
|         qdev_prop_set_uint32(dev, "len-reserved-regions", 1);
 | |
|         qdev_prop_set_string(dev, "reserved-regions[0]", resv_prop_str);
 | |
|         g_free(resv_prop_str);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
 | |
|                                         DeviceState *dev, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
 | |
| 
 | |
|     if (vms->platform_bus_dev) {
 | |
|         if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
 | |
|             platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
 | |
|                                      SYS_BUS_DEVICE(dev));
 | |
|         }
 | |
|     }
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         virt_memory_plug(hotplug_dev, dev, errp);
 | |
|     }
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
 | |
|         PCIDevice *pdev = PCI_DEVICE(dev);
 | |
| 
 | |
|         vms->iommu = VIRT_IOMMU_VIRTIO;
 | |
|         vms->virtio_iommu_bdf = pci_get_bdf(pdev);
 | |
|         create_virtio_iommu_dt_bindings(vms);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void virt_dimm_unplug_request(HotplugHandler *hotplug_dev,
 | |
|                                      DeviceState *dev, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (!vms->acpi_dev) {
 | |
|         error_setg(&local_err,
 | |
|                    "memory hotplug is not enabled: missing acpi-ged device");
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
 | |
|         error_setg(&local_err,
 | |
|                    "nvdimm device hot unplug is not supported yet.");
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     hotplug_handler_unplug_request(HOTPLUG_HANDLER(vms->acpi_dev), dev,
 | |
|                                    &local_err);
 | |
| out:
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| static void virt_dimm_unplug(HotplugHandler *hotplug_dev,
 | |
|                              DeviceState *dev, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     hotplug_handler_unplug(HOTPLUG_HANDLER(vms->acpi_dev), dev, &local_err);
 | |
|     if (local_err) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     pc_dimm_unplug(PC_DIMM(dev), MACHINE(vms));
 | |
|     qdev_unrealize(dev);
 | |
| 
 | |
| out:
 | |
|     error_propagate(errp, local_err);
 | |
| }
 | |
| 
 | |
| static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
 | |
|                                           DeviceState *dev, Error **errp)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         virt_dimm_unplug_request(hotplug_dev, dev, errp);
 | |
|     } else {
 | |
|         error_setg(errp, "device unplug request for unsupported device"
 | |
|                    " type: %s", object_get_typename(OBJECT(dev)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void virt_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
 | |
|                                           DeviceState *dev, Error **errp)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
 | |
|         virt_dimm_unplug(hotplug_dev, dev, errp);
 | |
|     } else {
 | |
|         error_setg(errp, "virt: device unplug for unsupported device"
 | |
|                    " type: %s", object_get_typename(OBJECT(dev)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
 | |
|                                                         DeviceState *dev)
 | |
| {
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
 | |
|        (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
 | |
|         return HOTPLUG_HANDLER(machine);
 | |
|     }
 | |
|     if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_IOMMU_PCI)) {
 | |
|         VirtMachineState *vms = VIRT_MACHINE(machine);
 | |
| 
 | |
|         if (!vms->bootinfo.firmware_loaded || !virt_is_acpi_enabled(vms)) {
 | |
|             return HOTPLUG_HANDLER(machine);
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * for arm64 kvm_type [7-0] encodes the requested number of bits
 | |
|  * in the IPA address space
 | |
|  */
 | |
| static int virt_kvm_type(MachineState *ms, const char *type_str)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(ms);
 | |
|     int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
 | |
|     int requested_pa_size;
 | |
| 
 | |
|     /* we freeze the memory map to compute the highest gpa */
 | |
|     virt_set_memmap(vms);
 | |
| 
 | |
|     requested_pa_size = 64 - clz64(vms->highest_gpa);
 | |
| 
 | |
|     if (requested_pa_size > max_vm_pa_size) {
 | |
|         error_report("-m and ,maxmem option values "
 | |
|                      "require an IPA range (%d bits) larger than "
 | |
|                      "the one supported by the host (%d bits)",
 | |
|                      requested_pa_size, max_vm_pa_size);
 | |
|        exit(1);
 | |
|     }
 | |
|     /*
 | |
|      * By default we return 0 which corresponds to an implicit legacy
 | |
|      * 40b IPA setting. Otherwise we return the actual requested PA
 | |
|      * logsize
 | |
|      */
 | |
|     return requested_pa_size > 40 ? requested_pa_size : 0;
 | |
| }
 | |
| 
 | |
| static void virt_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
|     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
 | |
| 
 | |
|     mc->init = machvirt_init;
 | |
|     /* Start with max_cpus set to 512, which is the maximum supported by KVM.
 | |
|      * The value may be reduced later when we have more information about the
 | |
|      * configuration of the particular instance.
 | |
|      */
 | |
|     mc->max_cpus = 512;
 | |
|     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
 | |
|     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
 | |
|     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
 | |
|     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
 | |
|     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_TPM_TIS_SYSBUS);
 | |
|     mc->block_default_type = IF_VIRTIO;
 | |
|     mc->no_cdrom = 1;
 | |
|     mc->pci_allow_0_address = true;
 | |
|     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
 | |
|     mc->minimum_page_bits = 12;
 | |
|     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
 | |
|     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
 | |
|     mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
 | |
|     mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
 | |
|     mc->kvm_type = virt_kvm_type;
 | |
|     assert(!mc->get_hotplug_handler);
 | |
|     mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
 | |
|     hc->pre_plug = virt_machine_device_pre_plug_cb;
 | |
|     hc->plug = virt_machine_device_plug_cb;
 | |
|     hc->unplug_request = virt_machine_device_unplug_request_cb;
 | |
|     hc->unplug = virt_machine_device_unplug_cb;
 | |
|     mc->nvdimm_supported = true;
 | |
|     mc->auto_enable_numa_with_memhp = true;
 | |
|     mc->auto_enable_numa_with_memdev = true;
 | |
|     mc->default_ram_id = "mach-virt.ram";
 | |
| 
 | |
|     object_class_property_add(oc, "acpi", "OnOffAuto",
 | |
|         virt_get_acpi, virt_set_acpi,
 | |
|         NULL, NULL);
 | |
|     object_class_property_set_description(oc, "acpi",
 | |
|         "Enable ACPI");
 | |
|     object_class_property_add_bool(oc, "secure", virt_get_secure,
 | |
|                                    virt_set_secure);
 | |
|     object_class_property_set_description(oc, "secure",
 | |
|                                                 "Set on/off to enable/disable the ARM "
 | |
|                                                 "Security Extensions (TrustZone)");
 | |
| 
 | |
|     object_class_property_add_bool(oc, "virtualization", virt_get_virt,
 | |
|                                    virt_set_virt);
 | |
|     object_class_property_set_description(oc, "virtualization",
 | |
|                                           "Set on/off to enable/disable emulating a "
 | |
|                                           "guest CPU which implements the ARM "
 | |
|                                           "Virtualization Extensions");
 | |
| 
 | |
|     object_class_property_add_bool(oc, "highmem", virt_get_highmem,
 | |
|                                    virt_set_highmem);
 | |
|     object_class_property_set_description(oc, "highmem",
 | |
|                                           "Set on/off to enable/disable using "
 | |
|                                           "physical address space above 32 bits");
 | |
| 
 | |
|     object_class_property_add_str(oc, "gic-version", virt_get_gic_version,
 | |
|                                   virt_set_gic_version);
 | |
|     object_class_property_set_description(oc, "gic-version",
 | |
|                                           "Set GIC version. "
 | |
|                                           "Valid values are 2, 3, host and max");
 | |
| 
 | |
|     object_class_property_add_str(oc, "iommu", virt_get_iommu, virt_set_iommu);
 | |
|     object_class_property_set_description(oc, "iommu",
 | |
|                                           "Set the IOMMU type. "
 | |
|                                           "Valid values are none and smmuv3");
 | |
| 
 | |
|     object_class_property_add_bool(oc, "ras", virt_get_ras,
 | |
|                                    virt_set_ras);
 | |
|     object_class_property_set_description(oc, "ras",
 | |
|                                           "Set on/off to enable/disable reporting host memory errors "
 | |
|                                           "to a KVM guest using ACPI and guest external abort exceptions");
 | |
| 
 | |
|     object_class_property_add_bool(oc, "mte", virt_get_mte, virt_set_mte);
 | |
|     object_class_property_set_description(oc, "mte",
 | |
|                                           "Set on/off to enable/disable emulating a "
 | |
|                                           "guest CPU which implements the ARM "
 | |
|                                           "Memory Tagging Extension");
 | |
| 
 | |
|     object_class_property_add_bool(oc, "its", virt_get_its,
 | |
|                                    virt_set_its);
 | |
|     object_class_property_set_description(oc, "its",
 | |
|                                           "Set on/off to enable/disable "
 | |
|                                           "ITS instantiation");
 | |
| 
 | |
|     object_class_property_add_str(oc, "oem-id",
 | |
|                                   virt_get_oem_id,
 | |
|                                   virt_set_oem_id);
 | |
|     object_class_property_set_description(oc, "oem-id",
 | |
|                                           "Override the default value of field OEMID "
 | |
|                                           "in ACPI table header."
 | |
|                                           "The string may be up to 6 bytes in size");
 | |
| 
 | |
| 
 | |
|     object_class_property_add_str(oc, "oem-table-id",
 | |
|                                   virt_get_oem_table_id,
 | |
|                                   virt_set_oem_table_id);
 | |
|     object_class_property_set_description(oc, "oem-table-id",
 | |
|                                           "Override the default value of field OEM Table ID "
 | |
|                                           "in ACPI table header."
 | |
|                                           "The string may be up to 8 bytes in size");
 | |
| 
 | |
| }
 | |
| 
 | |
| static void virt_instance_init(Object *obj)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
| 
 | |
|     /* EL3 is disabled by default on virt: this makes us consistent
 | |
|      * between KVM and TCG for this board, and it also allows us to
 | |
|      * boot UEFI blobs which assume no TrustZone support.
 | |
|      */
 | |
|     vms->secure = false;
 | |
| 
 | |
|     /* EL2 is also disabled by default, for similar reasons */
 | |
|     vms->virt = false;
 | |
| 
 | |
|     /* High memory is enabled by default */
 | |
|     vms->highmem = true;
 | |
|     vms->gic_version = VIRT_GIC_VERSION_NOSEL;
 | |
| 
 | |
|     vms->highmem_ecam = !vmc->no_highmem_ecam;
 | |
| 
 | |
|     if (vmc->no_its) {
 | |
|         vms->its = false;
 | |
|     } else {
 | |
|         /* Default allows ITS instantiation */
 | |
|         vms->its = true;
 | |
|     }
 | |
| 
 | |
|     /* Default disallows iommu instantiation */
 | |
|     vms->iommu = VIRT_IOMMU_NONE;
 | |
| 
 | |
|     /* Default disallows RAS instantiation */
 | |
|     vms->ras = false;
 | |
| 
 | |
|     /* MTE is disabled by default.  */
 | |
|     vms->mte = false;
 | |
| 
 | |
|     vms->irqmap = a15irqmap;
 | |
| 
 | |
|     virt_flash_create(vms);
 | |
| 
 | |
|     vms->oem_id = g_strndup(ACPI_BUILD_APPNAME6, 6);
 | |
|     vms->oem_table_id = g_strndup(ACPI_BUILD_APPNAME8, 8);
 | |
| }
 | |
| 
 | |
| static const TypeInfo virt_machine_info = {
 | |
|     .name          = TYPE_VIRT_MACHINE,
 | |
|     .parent        = TYPE_MACHINE,
 | |
|     .abstract      = true,
 | |
|     .instance_size = sizeof(VirtMachineState),
 | |
|     .class_size    = sizeof(VirtMachineClass),
 | |
|     .class_init    = virt_machine_class_init,
 | |
|     .instance_init = virt_instance_init,
 | |
|     .interfaces = (InterfaceInfo[]) {
 | |
|          { TYPE_HOTPLUG_HANDLER },
 | |
|          { }
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void machvirt_machine_init(void)
 | |
| {
 | |
|     type_register_static(&virt_machine_info);
 | |
| }
 | |
| type_init(machvirt_machine_init);
 | |
| 
 | |
| static void virt_machine_6_0_options(MachineClass *mc)
 | |
| {
 | |
| }
 | |
| DEFINE_VIRT_MACHINE_AS_LATEST(6, 0)
 | |
| 
 | |
| static void virt_machine_5_2_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_6_0_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
 | |
|     vmc->no_secure_gpio = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(5, 2)
 | |
| 
 | |
| static void virt_machine_5_1_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_5_2_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
 | |
|     vmc->no_kvm_steal_time = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(5, 1)
 | |
| 
 | |
| static void virt_machine_5_0_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_5_1_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
 | |
|     mc->numa_mem_supported = true;
 | |
|     vmc->acpi_expose_flash = true;
 | |
|     mc->auto_enable_numa_with_memdev = false;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(5, 0)
 | |
| 
 | |
| static void virt_machine_4_2_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_5_0_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
 | |
|     vmc->kvm_no_adjvtime = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(4, 2)
 | |
| 
 | |
| static void virt_machine_4_1_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_4_2_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
 | |
|     vmc->no_ged = true;
 | |
|     mc->auto_enable_numa_with_memhp = false;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(4, 1)
 | |
| 
 | |
| static void virt_machine_4_0_options(MachineClass *mc)
 | |
| {
 | |
|     virt_machine_4_1_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(4, 0)
 | |
| 
 | |
| static void virt_machine_3_1_options(MachineClass *mc)
 | |
| {
 | |
|     virt_machine_4_0_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(3, 1)
 | |
| 
 | |
| static void virt_machine_3_0_options(MachineClass *mc)
 | |
| {
 | |
|     virt_machine_3_1_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(3, 0)
 | |
| 
 | |
| static void virt_machine_2_12_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_3_0_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
 | |
|     vmc->no_highmem_ecam = true;
 | |
|     mc->max_cpus = 255;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 12)
 | |
| 
 | |
| static void virt_machine_2_11_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_12_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
 | |
|     vmc->smbios_old_sys_ver = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 11)
 | |
| 
 | |
| static void virt_machine_2_10_options(MachineClass *mc)
 | |
| {
 | |
|     virt_machine_2_11_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
 | |
|     /* before 2.11 we never faulted accesses to bad addresses */
 | |
|     mc->ignore_memory_transaction_failures = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 10)
 | |
| 
 | |
| static void virt_machine_2_9_options(MachineClass *mc)
 | |
| {
 | |
|     virt_machine_2_10_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 9)
 | |
| 
 | |
| static void virt_machine_2_8_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_9_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
 | |
|     /* For 2.8 and earlier we falsely claimed in the DT that
 | |
|      * our timers were edge-triggered, not level-triggered.
 | |
|      */
 | |
|     vmc->claim_edge_triggered_timers = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 8)
 | |
| 
 | |
| static void virt_machine_2_7_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_8_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
 | |
|     /* ITS was introduced with 2.8 */
 | |
|     vmc->no_its = true;
 | |
|     /* Stick with 1K pages for migration compatibility */
 | |
|     mc->minimum_page_bits = 0;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 7)
 | |
| 
 | |
| static void virt_machine_2_6_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_7_options(mc);
 | |
|     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
 | |
|     vmc->disallow_affinity_adjustment = true;
 | |
|     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
 | |
|     vmc->no_pmu = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 6)
 |