 b86f59c715
			
		
	
	
		b86f59c715
		
	
	
	
	
		
			
			This will allow us to centralize the registration of the cpus.c module accelerator operations (in accel/accel-softmmu.c), and trigger it automatically using object hierarchy lookup from the new accel_init_interfaces() initialization step, depending just on which accelerators are available in the code. Rename all tcg-cpus.c, kvm-cpus.c, etc to tcg-accel-ops.c, kvm-accel-ops.c, etc, matching the object type names. Signed-off-by: Claudio Fontana <cfontana@suse.de> Message-Id: <20210204163931.7358-18-cfontana@suse.de> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			1141 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1141 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU HAX support
 | |
|  *
 | |
|  * Copyright IBM, Corp. 2008
 | |
|  *           Red Hat, Inc. 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Anthony Liguori   <aliguori@us.ibm.com>
 | |
|  *  Glauber Costa     <gcosta@redhat.com>
 | |
|  *
 | |
|  * Copyright (c) 2011 Intel Corporation
 | |
|  *  Written by:
 | |
|  *  Jiang Yunhong<yunhong.jiang@intel.com>
 | |
|  *  Xin Xiaohui<xiaohui.xin@intel.com>
 | |
|  *  Zhang Xiantao<xiantao.zhang@intel.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * HAX common code for both windows and darwin
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/address-spaces.h"
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/accel.h"
 | |
| #include "sysemu/reset.h"
 | |
| #include "sysemu/runstate.h"
 | |
| #include "hw/boards.h"
 | |
| 
 | |
| #include "hax-accel-ops.h"
 | |
| 
 | |
| #define DEBUG_HAX 0
 | |
| 
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { \
 | |
|         if (DEBUG_HAX) { \
 | |
|             fprintf(stdout, fmt, ## __VA_ARGS__); \
 | |
|         } \
 | |
|     } while (0)
 | |
| 
 | |
| /* Current version */
 | |
| const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */
 | |
| /* Minimum HAX kernel version */
 | |
| const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */
 | |
| 
 | |
| static bool hax_allowed;
 | |
| 
 | |
| struct hax_state hax_global;
 | |
| 
 | |
| static void hax_vcpu_sync_state(CPUArchState *env, int modified);
 | |
| static int hax_arch_get_registers(CPUArchState *env);
 | |
| 
 | |
| int hax_enabled(void)
 | |
| {
 | |
|     return hax_allowed;
 | |
| }
 | |
| 
 | |
| int valid_hax_tunnel_size(uint16_t size)
 | |
| {
 | |
|     return size >= sizeof(struct hax_tunnel);
 | |
| }
 | |
| 
 | |
| hax_fd hax_vcpu_get_fd(CPUArchState *env)
 | |
| {
 | |
|     struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu;
 | |
|     if (!vcpu) {
 | |
|         return HAX_INVALID_FD;
 | |
|     }
 | |
|     return vcpu->fd;
 | |
| }
 | |
| 
 | |
| static int hax_get_capability(struct hax_state *hax)
 | |
| {
 | |
|     int ret;
 | |
|     struct hax_capabilityinfo capinfo, *cap = &capinfo;
 | |
| 
 | |
|     ret = hax_capability(hax, cap);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) {
 | |
|         if (cap->winfo & HAX_CAP_FAILREASON_VT) {
 | |
|             DPRINTF
 | |
|                 ("VTX feature is not enabled, HAX driver will not work.\n");
 | |
|         } else if (cap->winfo & HAX_CAP_FAILREASON_NX) {
 | |
|             DPRINTF
 | |
|                 ("NX feature is not enabled, HAX driver will not work.\n");
 | |
|         }
 | |
|         return -ENXIO;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     if (!(cap->winfo & HAX_CAP_UG)) {
 | |
|         fprintf(stderr, "UG mode is not supported by the hardware.\n");
 | |
|         return -ENOTSUP;
 | |
|     }
 | |
| 
 | |
|     hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK);
 | |
| 
 | |
|     if (cap->wstatus & HAX_CAP_MEMQUOTA) {
 | |
|         if (cap->mem_quota < hax->mem_quota) {
 | |
|             fprintf(stderr, "The VM memory needed exceeds the driver limit.\n");
 | |
|             return -ENOSPC;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_version_support(struct hax_state *hax)
 | |
| {
 | |
|     int ret;
 | |
|     struct hax_module_version version;
 | |
| 
 | |
|     ret = hax_mod_version(hax, &version);
 | |
|     if (ret < 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (hax_min_version > version.cur_version) {
 | |
|         fprintf(stderr, "Incompatible HAX module version %d,",
 | |
|                 version.cur_version);
 | |
|         fprintf(stderr, "requires minimum version %d\n", hax_min_version);
 | |
|         return 0;
 | |
|     }
 | |
|     if (hax_cur_version < version.compat_version) {
 | |
|         fprintf(stderr, "Incompatible QEMU HAX API version %x,",
 | |
|                 hax_cur_version);
 | |
|         fprintf(stderr, "requires minimum HAX API version %x\n",
 | |
|                 version.compat_version);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| int hax_vcpu_create(int id)
 | |
| {
 | |
|     struct hax_vcpu_state *vcpu = NULL;
 | |
|     int ret;
 | |
| 
 | |
|     if (!hax_global.vm) {
 | |
|         fprintf(stderr, "vcpu %x created failed, vm is null\n", id);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (hax_global.vm->vcpus[id]) {
 | |
|         fprintf(stderr, "vcpu %x allocated already\n", id);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     vcpu = g_new0(struct hax_vcpu_state, 1);
 | |
| 
 | |
|     ret = hax_host_create_vcpu(hax_global.vm->fd, id);
 | |
|     if (ret) {
 | |
|         fprintf(stderr, "Failed to create vcpu %x\n", id);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     vcpu->vcpu_id = id;
 | |
|     vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id);
 | |
|     if (hax_invalid_fd(vcpu->fd)) {
 | |
|         fprintf(stderr, "Failed to open the vcpu\n");
 | |
|         ret = -ENODEV;
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     hax_global.vm->vcpus[id] = vcpu;
 | |
| 
 | |
|     ret = hax_host_setup_vcpu_channel(vcpu);
 | |
|     if (ret) {
 | |
|         fprintf(stderr, "Invalid hax tunnel size\n");
 | |
|         ret = -EINVAL;
 | |
|         goto error;
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
|   error:
 | |
|     /* vcpu and tunnel will be closed automatically */
 | |
|     if (vcpu && !hax_invalid_fd(vcpu->fd)) {
 | |
|         hax_close_fd(vcpu->fd);
 | |
|     }
 | |
| 
 | |
|     hax_global.vm->vcpus[id] = NULL;
 | |
|     g_free(vcpu);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| int hax_vcpu_destroy(CPUState *cpu)
 | |
| {
 | |
|     struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 | |
| 
 | |
|     if (!hax_global.vm) {
 | |
|         fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (!vcpu) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * 1. The hax_tunnel is also destroyed when vcpu is destroyed
 | |
|      * 2. close fd will cause hax module vcpu be cleaned
 | |
|      */
 | |
|     hax_close_fd(vcpu->fd);
 | |
|     hax_global.vm->vcpus[vcpu->vcpu_id] = NULL;
 | |
|     g_free(vcpu);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int hax_init_vcpu(CPUState *cpu)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = hax_vcpu_create(cpu->cpu_index);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Failed to create HAX vcpu\n");
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index];
 | |
|     cpu->vcpu_dirty = true;
 | |
|     qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| struct hax_vm *hax_vm_create(struct hax_state *hax, int max_cpus)
 | |
| {
 | |
|     struct hax_vm *vm;
 | |
|     int vm_id = 0, ret, i;
 | |
| 
 | |
|     if (hax_invalid_fd(hax->fd)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (hax->vm) {
 | |
|         return hax->vm;
 | |
|     }
 | |
| 
 | |
|     if (max_cpus > HAX_MAX_VCPU) {
 | |
|         fprintf(stderr, "Maximum VCPU number QEMU supported is %d\n", HAX_MAX_VCPU);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     vm = g_new0(struct hax_vm, 1);
 | |
| 
 | |
|     ret = hax_host_create_vm(hax, &vm_id);
 | |
|     if (ret) {
 | |
|         fprintf(stderr, "Failed to create vm %x\n", ret);
 | |
|         goto error;
 | |
|     }
 | |
|     vm->id = vm_id;
 | |
|     vm->fd = hax_host_open_vm(hax, vm_id);
 | |
|     if (hax_invalid_fd(vm->fd)) {
 | |
|         fprintf(stderr, "Failed to open vm %d\n", vm_id);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     vm->numvcpus = max_cpus;
 | |
|     vm->vcpus = g_new0(struct hax_vcpu_state *, vm->numvcpus);
 | |
|     for (i = 0; i < vm->numvcpus; i++) {
 | |
|         vm->vcpus[i] = NULL;
 | |
|     }
 | |
| 
 | |
|     hax->vm = vm;
 | |
|     return vm;
 | |
| 
 | |
|   error:
 | |
|     g_free(vm);
 | |
|     hax->vm = NULL;
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int hax_vm_destroy(struct hax_vm *vm)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < vm->numvcpus; i++)
 | |
|         if (vm->vcpus[i]) {
 | |
|             fprintf(stderr, "VCPU should be cleaned before vm clean\n");
 | |
|             return -1;
 | |
|         }
 | |
|     hax_close_fd(vm->fd);
 | |
|     vm->numvcpus = 0;
 | |
|     g_free(vm->vcpus);
 | |
|     g_free(vm);
 | |
|     hax_global.vm = NULL;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_init(ram_addr_t ram_size, int max_cpus)
 | |
| {
 | |
|     struct hax_state *hax = NULL;
 | |
|     struct hax_qemu_version qversion;
 | |
|     int ret;
 | |
| 
 | |
|     hax = &hax_global;
 | |
| 
 | |
|     memset(hax, 0, sizeof(struct hax_state));
 | |
|     hax->mem_quota = ram_size;
 | |
| 
 | |
|     hax->fd = hax_mod_open();
 | |
|     if (hax_invalid_fd(hax->fd)) {
 | |
|         hax->fd = 0;
 | |
|         ret = -ENODEV;
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     ret = hax_get_capability(hax);
 | |
| 
 | |
|     if (ret) {
 | |
|         if (ret != -ENOSPC) {
 | |
|             ret = -EINVAL;
 | |
|         }
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (!hax_version_support(hax)) {
 | |
|         ret = -EINVAL;
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     hax->vm = hax_vm_create(hax, max_cpus);
 | |
|     if (!hax->vm) {
 | |
|         fprintf(stderr, "Failed to create HAX VM\n");
 | |
|         ret = -EINVAL;
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     hax_memory_init();
 | |
| 
 | |
|     qversion.cur_version = hax_cur_version;
 | |
|     qversion.min_version = hax_min_version;
 | |
|     hax_notify_qemu_version(hax->vm->fd, &qversion);
 | |
| 
 | |
|     return ret;
 | |
|   error:
 | |
|     if (hax->vm) {
 | |
|         hax_vm_destroy(hax->vm);
 | |
|     }
 | |
|     if (hax->fd) {
 | |
|         hax_mod_close(hax);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int hax_accel_init(MachineState *ms)
 | |
| {
 | |
|     int ret = hax_init(ms->ram_size, (int)ms->smp.max_cpus);
 | |
| 
 | |
|     if (ret && (ret != -ENOSPC)) {
 | |
|         fprintf(stderr, "No accelerator found.\n");
 | |
|     } else {
 | |
|         fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n",
 | |
|                 !ret ? "working" : "not working",
 | |
|                 !ret ? "fast virt" : "emulation");
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft)
 | |
| {
 | |
|     if (hft->direction < 2) {
 | |
|         cpu_physical_memory_rw(hft->gpa, &hft->value, hft->size,
 | |
|                                hft->direction);
 | |
|     } else {
 | |
|         /*
 | |
|          * HAX API v4 supports transferring data between two MMIO addresses,
 | |
|          * hft->gpa and hft->gpa2 (instructions such as MOVS require this):
 | |
|          *  hft->direction == 2: gpa ==> gpa2
 | |
|          */
 | |
|         uint64_t value;
 | |
|         cpu_physical_memory_read(hft->gpa, &value, hft->size);
 | |
|         cpu_physical_memory_write(hft->gpa2, &value, hft->size);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port,
 | |
|                          int direction, int size, int count, void *buffer)
 | |
| {
 | |
|     uint8_t *ptr;
 | |
|     int i;
 | |
|     MemTxAttrs attrs = { 0 };
 | |
| 
 | |
|     if (!df) {
 | |
|         ptr = (uint8_t *) buffer;
 | |
|     } else {
 | |
|         ptr = buffer + size * count - size;
 | |
|     }
 | |
|     for (i = 0; i < count; i++) {
 | |
|         address_space_rw(&address_space_io, port, attrs,
 | |
|                          ptr, size, direction == HAX_EXIT_IO_OUT);
 | |
|         if (!df) {
 | |
|             ptr += size;
 | |
|         } else {
 | |
|             ptr -= size;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_vcpu_interrupt(CPUArchState *env)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 | |
|     struct hax_tunnel *ht = vcpu->tunnel;
 | |
| 
 | |
|     /*
 | |
|      * Try to inject an interrupt if the guest can accept it
 | |
|      * Unlike KVM, HAX kernel check for the eflags, instead of qemu
 | |
|      */
 | |
|     if (ht->ready_for_interrupt_injection &&
 | |
|         (cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
 | |
|         int irq;
 | |
| 
 | |
|         irq = cpu_get_pic_interrupt(env);
 | |
|         if (irq >= 0) {
 | |
|             hax_inject_interrupt(env, irq);
 | |
|             cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* If we have an interrupt but the guest is not ready to receive an
 | |
|      * interrupt, request an interrupt window exit.  This will
 | |
|      * cause a return to userspace as soon as the guest is ready to
 | |
|      * receive interrupts. */
 | |
|     if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
 | |
|         ht->request_interrupt_window = 1;
 | |
|     } else {
 | |
|         ht->request_interrupt_window = 0;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void hax_raise_event(CPUState *cpu)
 | |
| {
 | |
|     struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 | |
| 
 | |
|     if (!vcpu) {
 | |
|         return;
 | |
|     }
 | |
|     vcpu->tunnel->user_event_pending = 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Ask hax kernel module to run the CPU for us till:
 | |
|  * 1. Guest crash or shutdown
 | |
|  * 2. Need QEMU's emulation like guest execute MMIO instruction
 | |
|  * 3. Guest execute HLT
 | |
|  * 4. QEMU have Signal/event pending
 | |
|  * 5. An unknown VMX exit happens
 | |
|  */
 | |
| static int hax_vcpu_hax_exec(CPUArchState *env)
 | |
| {
 | |
|     int ret = 0;
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     X86CPU *x86_cpu = X86_CPU(cpu);
 | |
|     struct hax_vcpu_state *vcpu = cpu->hax_vcpu;
 | |
|     struct hax_tunnel *ht = vcpu->tunnel;
 | |
| 
 | |
|     if (!hax_enabled()) {
 | |
|         DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
 | |
|         cpu->interrupt_request &= ~CPU_INTERRUPT_POLL;
 | |
|         apic_poll_irq(x86_cpu->apic_state);
 | |
|     }
 | |
| 
 | |
|     /* After a vcpu is halted (either because it is an AP and has just been
 | |
|      * reset, or because it has executed the HLT instruction), it will not be
 | |
|      * run (hax_vcpu_run()) until it is unhalted. The next few if blocks check
 | |
|      * for events that may change the halted state of this vcpu:
 | |
|      *  a) Maskable interrupt, when RFLAGS.IF is 1;
 | |
|      *     Note: env->eflags may not reflect the current RFLAGS state, because
 | |
|      *           it is not updated after each hax_vcpu_run(). We cannot afford
 | |
|      *           to fail to recognize any unhalt-by-maskable-interrupt event
 | |
|      *           (in which case the vcpu will halt forever), and yet we cannot
 | |
|      *           afford the overhead of hax_vcpu_sync_state(). The current
 | |
|      *           solution is to err on the side of caution and have the HLT
 | |
|      *           handler (see case HAX_EXIT_HLT below) unconditionally set the
 | |
|      *           IF_MASK bit in env->eflags, which, in effect, disables the
 | |
|      *           RFLAGS.IF check.
 | |
|      *  b) NMI;
 | |
|      *  c) INIT signal;
 | |
|      *  d) SIPI signal.
 | |
|      */
 | |
|     if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|          (env->eflags & IF_MASK)) ||
 | |
|         (cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
 | |
|         cpu->halted = 0;
 | |
|     }
 | |
| 
 | |
|     if (cpu->interrupt_request & CPU_INTERRUPT_INIT) {
 | |
|         DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n",
 | |
|                 cpu->cpu_index);
 | |
|         do_cpu_init(x86_cpu);
 | |
|         hax_vcpu_sync_state(env, 1);
 | |
|     }
 | |
| 
 | |
|     if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) {
 | |
|         DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n",
 | |
|                 cpu->cpu_index);
 | |
|         hax_vcpu_sync_state(env, 0);
 | |
|         do_cpu_sipi(x86_cpu);
 | |
|         hax_vcpu_sync_state(env, 1);
 | |
|     }
 | |
| 
 | |
|     if (cpu->halted) {
 | |
|         /* If this vcpu is halted, we must not ask HAXM to run it. Instead, we
 | |
|          * break out of hax_smp_cpu_exec() as if this vcpu had executed HLT.
 | |
|          * That way, this vcpu thread will be trapped in qemu_wait_io_event(),
 | |
|          * until the vcpu is unhalted.
 | |
|          */
 | |
|         cpu->exception_index = EXCP_HLT;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         int hax_ret;
 | |
| 
 | |
|         if (cpu->exit_request) {
 | |
|             ret = 1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         hax_vcpu_interrupt(env);
 | |
| 
 | |
|         qemu_mutex_unlock_iothread();
 | |
|         cpu_exec_start(cpu);
 | |
|         hax_ret = hax_vcpu_run(vcpu);
 | |
|         cpu_exec_end(cpu);
 | |
|         qemu_mutex_lock_iothread();
 | |
| 
 | |
|         /* Simply continue the vcpu_run if system call interrupted */
 | |
|         if (hax_ret == -EINTR || hax_ret == -EAGAIN) {
 | |
|             DPRINTF("io window interrupted\n");
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (hax_ret < 0) {
 | |
|             fprintf(stderr, "vcpu run failed for vcpu  %x\n", vcpu->vcpu_id);
 | |
|             abort();
 | |
|         }
 | |
|         switch (ht->_exit_status) {
 | |
|         case HAX_EXIT_IO:
 | |
|             ret = hax_handle_io(env, ht->pio._df, ht->pio._port,
 | |
|                             ht->pio._direction,
 | |
|                             ht->pio._size, ht->pio._count, vcpu->iobuf);
 | |
|             break;
 | |
|         case HAX_EXIT_FAST_MMIO:
 | |
|             ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf);
 | |
|             break;
 | |
|         /* Guest state changed, currently only for shutdown */
 | |
|         case HAX_EXIT_STATECHANGE:
 | |
|             fprintf(stdout, "VCPU shutdown request\n");
 | |
|             qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
 | |
|             hax_vcpu_sync_state(env, 0);
 | |
|             ret = 1;
 | |
|             break;
 | |
|         case HAX_EXIT_UNKNOWN_VMEXIT:
 | |
|             fprintf(stderr, "Unknown VMX exit %x from guest\n",
 | |
|                     ht->_exit_reason);
 | |
|             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 | |
|             hax_vcpu_sync_state(env, 0);
 | |
|             cpu_dump_state(cpu, stderr, 0);
 | |
|             ret = -1;
 | |
|             break;
 | |
|         case HAX_EXIT_HLT:
 | |
|             if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
 | |
|                 !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) {
 | |
|                 /* hlt instruction with interrupt disabled is shutdown */
 | |
|                 env->eflags |= IF_MASK;
 | |
|                 cpu->halted = 1;
 | |
|                 cpu->exception_index = EXCP_HLT;
 | |
|                 ret = 1;
 | |
|             }
 | |
|             break;
 | |
|         /* these situations will continue to hax module */
 | |
|         case HAX_EXIT_INTERRUPT:
 | |
|         case HAX_EXIT_PAUSED:
 | |
|             break;
 | |
|         case HAX_EXIT_MMIO:
 | |
|             /* Should not happen on UG system */
 | |
|             fprintf(stderr, "HAX: unsupported MMIO emulation\n");
 | |
|             ret = -1;
 | |
|             break;
 | |
|         case HAX_EXIT_REAL:
 | |
|             /* Should not happen on UG system */
 | |
|             fprintf(stderr, "HAX: unimplemented real mode emulation\n");
 | |
|             ret = -1;
 | |
|             break;
 | |
|         default:
 | |
|             fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status);
 | |
|             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
 | |
|             hax_vcpu_sync_state(env, 0);
 | |
|             cpu_dump_state(cpu, stderr, 0);
 | |
|             ret = 1;
 | |
|             break;
 | |
|         }
 | |
|     } while (!ret);
 | |
| 
 | |
|     if (cpu->exit_request) {
 | |
|         cpu->exit_request = 0;
 | |
|         cpu->exception_index = EXCP_INTERRUPT;
 | |
|     }
 | |
|     return ret < 0;
 | |
| }
 | |
| 
 | |
| static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
| 
 | |
|     hax_arch_get_registers(env);
 | |
|     cpu->vcpu_dirty = true;
 | |
| }
 | |
| 
 | |
| void hax_cpu_synchronize_state(CPUState *cpu)
 | |
| {
 | |
|     if (!cpu->vcpu_dirty) {
 | |
|         run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_hax_cpu_synchronize_post_reset(CPUState *cpu,
 | |
|                                               run_on_cpu_data arg)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
| 
 | |
|     hax_vcpu_sync_state(env, 1);
 | |
|     cpu->vcpu_dirty = false;
 | |
| }
 | |
| 
 | |
| void hax_cpu_synchronize_post_reset(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
| 
 | |
|     hax_vcpu_sync_state(env, 1);
 | |
|     cpu->vcpu_dirty = false;
 | |
| }
 | |
| 
 | |
| void hax_cpu_synchronize_post_init(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg)
 | |
| {
 | |
|     cpu->vcpu_dirty = true;
 | |
| }
 | |
| 
 | |
| void hax_cpu_synchronize_pre_loadvm(CPUState *cpu)
 | |
| {
 | |
|     run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL);
 | |
| }
 | |
| 
 | |
| int hax_smp_cpu_exec(CPUState *cpu)
 | |
| {
 | |
|     CPUArchState *env = (CPUArchState *) (cpu->env_ptr);
 | |
|     int fatal;
 | |
|     int ret;
 | |
| 
 | |
|     while (1) {
 | |
|         if (cpu->exception_index >= EXCP_INTERRUPT) {
 | |
|             ret = cpu->exception_index;
 | |
|             cpu->exception_index = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         fatal = hax_vcpu_hax_exec(env);
 | |
| 
 | |
|         if (fatal) {
 | |
|             fprintf(stderr, "Unsupported HAX vcpu return\n");
 | |
|             abort();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
 | |
| {
 | |
|     memset(lhs, 0, sizeof(struct segment_desc_t));
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->type = 3;
 | |
|     lhs->present = 1;
 | |
|     lhs->dpl = 3;
 | |
|     lhs->operand_size = 0;
 | |
|     lhs->desc = 1;
 | |
|     lhs->long_mode = 0;
 | |
|     lhs->granularity = 0;
 | |
|     lhs->available = 0;
 | |
| }
 | |
| 
 | |
| static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs)
 | |
| {
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->flags = (rhs->type << DESC_TYPE_SHIFT)
 | |
|         | (rhs->present * DESC_P_MASK)
 | |
|         | (rhs->dpl << DESC_DPL_SHIFT)
 | |
|         | (rhs->operand_size << DESC_B_SHIFT)
 | |
|         | (rhs->desc * DESC_S_MASK)
 | |
|         | (rhs->long_mode << DESC_L_SHIFT)
 | |
|         | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK);
 | |
| }
 | |
| 
 | |
| static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs)
 | |
| {
 | |
|     unsigned flags = rhs->flags;
 | |
| 
 | |
|     memset(lhs, 0, sizeof(struct segment_desc_t));
 | |
|     lhs->selector = rhs->selector;
 | |
|     lhs->base = rhs->base;
 | |
|     lhs->limit = rhs->limit;
 | |
|     lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
 | |
|     lhs->present = (flags & DESC_P_MASK) != 0;
 | |
|     lhs->dpl = rhs->selector & 3;
 | |
|     lhs->operand_size = (flags >> DESC_B_SHIFT) & 1;
 | |
|     lhs->desc = (flags & DESC_S_MASK) != 0;
 | |
|     lhs->long_mode = (flags >> DESC_L_SHIFT) & 1;
 | |
|     lhs->granularity = (flags & DESC_G_MASK) != 0;
 | |
|     lhs->available = (flags & DESC_AVL_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set)
 | |
| {
 | |
|     target_ulong reg = *hax_reg;
 | |
| 
 | |
|     if (set) {
 | |
|         *hax_reg = *qemu_reg;
 | |
|     } else {
 | |
|         *qemu_reg = reg;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* The sregs has been synced with HAX kernel already before this call */
 | |
| static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs)
 | |
| {
 | |
|     get_seg(&env->segs[R_CS], &sregs->_cs);
 | |
|     get_seg(&env->segs[R_DS], &sregs->_ds);
 | |
|     get_seg(&env->segs[R_ES], &sregs->_es);
 | |
|     get_seg(&env->segs[R_FS], &sregs->_fs);
 | |
|     get_seg(&env->segs[R_GS], &sregs->_gs);
 | |
|     get_seg(&env->segs[R_SS], &sregs->_ss);
 | |
| 
 | |
|     get_seg(&env->tr, &sregs->_tr);
 | |
|     get_seg(&env->ldt, &sregs->_ldt);
 | |
|     env->idt.limit = sregs->_idt.limit;
 | |
|     env->idt.base = sregs->_idt.base;
 | |
|     env->gdt.limit = sregs->_gdt.limit;
 | |
|     env->gdt.base = sregs->_gdt.base;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs)
 | |
| {
 | |
|     if ((env->eflags & VM_MASK)) {
 | |
|         set_v8086_seg(&sregs->_cs, &env->segs[R_CS]);
 | |
|         set_v8086_seg(&sregs->_ds, &env->segs[R_DS]);
 | |
|         set_v8086_seg(&sregs->_es, &env->segs[R_ES]);
 | |
|         set_v8086_seg(&sregs->_fs, &env->segs[R_FS]);
 | |
|         set_v8086_seg(&sregs->_gs, &env->segs[R_GS]);
 | |
|         set_v8086_seg(&sregs->_ss, &env->segs[R_SS]);
 | |
|     } else {
 | |
|         set_seg(&sregs->_cs, &env->segs[R_CS]);
 | |
|         set_seg(&sregs->_ds, &env->segs[R_DS]);
 | |
|         set_seg(&sregs->_es, &env->segs[R_ES]);
 | |
|         set_seg(&sregs->_fs, &env->segs[R_FS]);
 | |
|         set_seg(&sregs->_gs, &env->segs[R_GS]);
 | |
|         set_seg(&sregs->_ss, &env->segs[R_SS]);
 | |
| 
 | |
|         if (env->cr[0] & CR0_PE_MASK) {
 | |
|             /* force ss cpl to cs cpl */
 | |
|             sregs->_ss.selector = (sregs->_ss.selector & ~3) |
 | |
|                                   (sregs->_cs.selector & 3);
 | |
|             sregs->_ss.dpl = sregs->_ss.selector & 3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     set_seg(&sregs->_tr, &env->tr);
 | |
|     set_seg(&sregs->_ldt, &env->ldt);
 | |
|     sregs->_idt.limit = env->idt.limit;
 | |
|     sregs->_idt.base = env->idt.base;
 | |
|     sregs->_gdt.limit = env->gdt.limit;
 | |
|     sregs->_gdt.base = env->gdt.base;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_sync_vcpu_register(CPUArchState *env, int set)
 | |
| {
 | |
|     struct vcpu_state_t regs;
 | |
|     int ret;
 | |
|     memset(®s, 0, sizeof(struct vcpu_state_t));
 | |
| 
 | |
|     if (!set) {
 | |
|         ret = hax_sync_vcpu_state(env, ®s, 0);
 | |
|         if (ret < 0) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* generic register */
 | |
|     hax_getput_reg(®s._rax, &env->regs[R_EAX], set);
 | |
|     hax_getput_reg(®s._rbx, &env->regs[R_EBX], set);
 | |
|     hax_getput_reg(®s._rcx, &env->regs[R_ECX], set);
 | |
|     hax_getput_reg(®s._rdx, &env->regs[R_EDX], set);
 | |
|     hax_getput_reg(®s._rsi, &env->regs[R_ESI], set);
 | |
|     hax_getput_reg(®s._rdi, &env->regs[R_EDI], set);
 | |
|     hax_getput_reg(®s._rsp, &env->regs[R_ESP], set);
 | |
|     hax_getput_reg(®s._rbp, &env->regs[R_EBP], set);
 | |
| #ifdef TARGET_X86_64
 | |
|     hax_getput_reg(®s._r8, &env->regs[8], set);
 | |
|     hax_getput_reg(®s._r9, &env->regs[9], set);
 | |
|     hax_getput_reg(®s._r10, &env->regs[10], set);
 | |
|     hax_getput_reg(®s._r11, &env->regs[11], set);
 | |
|     hax_getput_reg(®s._r12, &env->regs[12], set);
 | |
|     hax_getput_reg(®s._r13, &env->regs[13], set);
 | |
|     hax_getput_reg(®s._r14, &env->regs[14], set);
 | |
|     hax_getput_reg(®s._r15, &env->regs[15], set);
 | |
| #endif
 | |
|     hax_getput_reg(®s._rflags, &env->eflags, set);
 | |
|     hax_getput_reg(®s._rip, &env->eip, set);
 | |
| 
 | |
|     if (set) {
 | |
|         regs._cr0 = env->cr[0];
 | |
|         regs._cr2 = env->cr[2];
 | |
|         regs._cr3 = env->cr[3];
 | |
|         regs._cr4 = env->cr[4];
 | |
|         hax_set_segments(env, ®s);
 | |
|     } else {
 | |
|         env->cr[0] = regs._cr0;
 | |
|         env->cr[2] = regs._cr2;
 | |
|         env->cr[3] = regs._cr3;
 | |
|         env->cr[4] = regs._cr4;
 | |
|         hax_get_segments(env, ®s);
 | |
|     }
 | |
| 
 | |
|     if (set) {
 | |
|         ret = hax_sync_vcpu_state(env, ®s, 1);
 | |
|         if (ret < 0) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     item->entry = index;
 | |
|     item->value = value;
 | |
| }
 | |
| 
 | |
| static int hax_get_msrs(CPUArchState *env)
 | |
| {
 | |
|     struct hax_msr_data md;
 | |
|     struct vmx_msr *msrs = md.entries;
 | |
|     int ret, i, n;
 | |
| 
 | |
|     n = 0;
 | |
|     msrs[n++].entry = MSR_IA32_SYSENTER_CS;
 | |
|     msrs[n++].entry = MSR_IA32_SYSENTER_ESP;
 | |
|     msrs[n++].entry = MSR_IA32_SYSENTER_EIP;
 | |
|     msrs[n++].entry = MSR_IA32_TSC;
 | |
| #ifdef TARGET_X86_64
 | |
|     msrs[n++].entry = MSR_EFER;
 | |
|     msrs[n++].entry = MSR_STAR;
 | |
|     msrs[n++].entry = MSR_LSTAR;
 | |
|     msrs[n++].entry = MSR_CSTAR;
 | |
|     msrs[n++].entry = MSR_FMASK;
 | |
|     msrs[n++].entry = MSR_KERNELGSBASE;
 | |
| #endif
 | |
|     md.nr_msr = n;
 | |
|     ret = hax_sync_msr(env, &md, 0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < md.done; i++) {
 | |
|         switch (msrs[i].entry) {
 | |
|         case MSR_IA32_SYSENTER_CS:
 | |
|             env->sysenter_cs = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_IA32_SYSENTER_ESP:
 | |
|             env->sysenter_esp = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_IA32_SYSENTER_EIP:
 | |
|             env->sysenter_eip = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_IA32_TSC:
 | |
|             env->tsc = msrs[i].value;
 | |
|             break;
 | |
| #ifdef TARGET_X86_64
 | |
|         case MSR_EFER:
 | |
|             env->efer = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_STAR:
 | |
|             env->star = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_LSTAR:
 | |
|             env->lstar = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_CSTAR:
 | |
|             env->cstar = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_FMASK:
 | |
|             env->fmask = msrs[i].value;
 | |
|             break;
 | |
|         case MSR_KERNELGSBASE:
 | |
|             env->kernelgsbase = msrs[i].value;
 | |
|             break;
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_set_msrs(CPUArchState *env)
 | |
| {
 | |
|     struct hax_msr_data md;
 | |
|     struct vmx_msr *msrs;
 | |
|     msrs = md.entries;
 | |
|     int n = 0;
 | |
| 
 | |
|     memset(&md, 0, sizeof(struct hax_msr_data));
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
 | |
| #ifdef TARGET_X86_64
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
 | |
|     hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
 | |
| #endif
 | |
|     md.nr_msr = n;
 | |
|     md.done = 0;
 | |
| 
 | |
|     return hax_sync_msr(env, &md, 1);
 | |
| }
 | |
| 
 | |
| static int hax_get_fpu(CPUArchState *env)
 | |
| {
 | |
|     struct fx_layout fpu;
 | |
|     int i, ret;
 | |
| 
 | |
|     ret = hax_sync_fpu(env, &fpu, 0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     env->fpstt = (fpu.fsw >> 11) & 7;
 | |
|     env->fpus = fpu.fsw;
 | |
|     env->fpuc = fpu.fcw;
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         env->fptags[i] = !((fpu.ftw >> i) & 1);
 | |
|     }
 | |
|     memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs));
 | |
| 
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]);
 | |
|         env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]);
 | |
|         if (CPU_NB_REGS > 8) {
 | |
|             env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]);
 | |
|             env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]);
 | |
|         }
 | |
|     }
 | |
|     env->mxcsr = fpu.mxcsr;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_set_fpu(CPUArchState *env)
 | |
| {
 | |
|     struct fx_layout fpu;
 | |
|     int i;
 | |
| 
 | |
|     memset(&fpu, 0, sizeof(fpu));
 | |
|     fpu.fsw = env->fpus & ~(7 << 11);
 | |
|     fpu.fsw |= (env->fpstt & 7) << 11;
 | |
|     fpu.fcw = env->fpuc;
 | |
| 
 | |
|     for (i = 0; i < 8; ++i) {
 | |
|         fpu.ftw |= (!env->fptags[i]) << i;
 | |
|     }
 | |
| 
 | |
|     memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs));
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0));
 | |
|         stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1));
 | |
|         if (CPU_NB_REGS > 8) {
 | |
|             stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0));
 | |
|             stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fpu.mxcsr = env->mxcsr;
 | |
| 
 | |
|     return hax_sync_fpu(env, &fpu, 1);
 | |
| }
 | |
| 
 | |
| static int hax_arch_get_registers(CPUArchState *env)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = hax_sync_vcpu_register(env, 0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret = hax_get_fpu(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ret = hax_get_msrs(env);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     x86_update_hflags(env);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int hax_arch_set_registers(CPUArchState *env)
 | |
| {
 | |
|     int ret;
 | |
|     ret = hax_sync_vcpu_register(env, 1);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "Failed to sync vcpu reg\n");
 | |
|         return ret;
 | |
|     }
 | |
|     ret = hax_set_fpu(env);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "FPU failed\n");
 | |
|         return ret;
 | |
|     }
 | |
|     ret = hax_set_msrs(env);
 | |
|     if (ret < 0) {
 | |
|         fprintf(stderr, "MSR failed\n");
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void hax_vcpu_sync_state(CPUArchState *env, int modified)
 | |
| {
 | |
|     if (hax_enabled()) {
 | |
|         if (modified) {
 | |
|             hax_arch_set_registers(env);
 | |
|         } else {
 | |
|             hax_arch_get_registers(env);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * much simpler than kvm, at least in first stage because:
 | |
|  * We don't need consider the device pass-through, we don't need
 | |
|  * consider the framebuffer, and we may even remove the bios at all
 | |
|  */
 | |
| int hax_sync_vcpus(void)
 | |
| {
 | |
|     if (hax_enabled()) {
 | |
|         CPUState *cpu;
 | |
| 
 | |
|         cpu = first_cpu;
 | |
|         if (!cpu) {
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         for (; cpu != NULL; cpu = CPU_NEXT(cpu)) {
 | |
|             int ret;
 | |
| 
 | |
|             ret = hax_arch_set_registers(cpu->env_ptr);
 | |
|             if (ret < 0) {
 | |
|                 return ret;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void hax_reset_vcpu_state(void *opaque)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) {
 | |
|         cpu->hax_vcpu->tunnel->user_event_pending = 0;
 | |
|         cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hax_accel_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     AccelClass *ac = ACCEL_CLASS(oc);
 | |
|     ac->name = "HAX";
 | |
|     ac->init_machine = hax_accel_init;
 | |
|     ac->allowed = &hax_allowed;
 | |
| }
 | |
| 
 | |
| static const TypeInfo hax_accel_type = {
 | |
|     .name = ACCEL_CLASS_NAME("hax"),
 | |
|     .parent = TYPE_ACCEL,
 | |
|     .class_init = hax_accel_class_init,
 | |
| };
 | |
| 
 | |
| static void hax_type_init(void)
 | |
| {
 | |
|     type_register_static(&hax_accel_type);
 | |
| }
 | |
| 
 | |
| type_init(hax_type_init);
 |