When calculating the IOR for the exception handlers, the current
unwind_breg value is needed on 64-bit hppa machines.
Restore that value by calling cpu_restore_state() earlier, which in turn
calls hppa_restore_state_to_opc() which restores the unwind_breg for the
current instruction.
Signed-off-by: Helge Deller <deller@gmx.de>
Fixes: 3824e0d643f3 ("target/hppa: Export function hppa_set_ior_and_isr()")
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
		
	
			
		
			
				
	
	
		
			755 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			755 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  HPPA memory access helper routines
 | |
|  *
 | |
|  *  Copyright (c) 2017 Helge Deller
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/log.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "hw/core/cpu.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr)
 | |
| {
 | |
|     /*
 | |
|      * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes
 | |
|      * an algorithm in which a 62-bit absolute address is transformed to
 | |
|      * a 64-bit physical address.  This must then be combined with that
 | |
|      * pictured in Figure H-11 "Physical Address Space Mapping", in which
 | |
|      * the full physical address is truncated to the N-bit physical address
 | |
|      * supported by the implementation.
 | |
|      *
 | |
|      * Since the supported physical address space is below 54 bits, the
 | |
|      * H-8 algorithm is moot and all that is left is to truncate.
 | |
|      */
 | |
|     QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54);
 | |
|     return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS);
 | |
| }
 | |
| 
 | |
| hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr)
 | |
| {
 | |
|     /*
 | |
|      * See Figure H-10, "Absolute Accesses when PSW W-bit is 0",
 | |
|      * combined with Figure H-11, as above.
 | |
|      */
 | |
|     if (likely(extract32(addr, 28, 4) != 0xf)) {
 | |
|         /* Memory address space */
 | |
|         addr = (uint32_t)addr;
 | |
|     } else if (extract32(addr, 24, 4) != 0) {
 | |
|         /* I/O address space */
 | |
|         addr = (int32_t)addr;
 | |
|     } else {
 | |
|         /*
 | |
|          * PDC address space:
 | |
|          * Figures H-10 and H-11 of the parisc2.0 spec do not specify
 | |
|          * where to map into the 64-bit PDC address space.
 | |
|          * We map with an offset which equals the 32-bit address, which
 | |
|          * is what can be seen on physical machines too.
 | |
|          */
 | |
|         addr = (uint32_t)addr;
 | |
|         addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4);
 | |
|     }
 | |
|     return addr;
 | |
| }
 | |
| 
 | |
| static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
 | |
| {
 | |
|     IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr);
 | |
| 
 | |
|     if (i) {
 | |
|         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
 | |
|         trace_hppa_tlb_find_entry(env, ent, ent->entry_valid,
 | |
|                                   ent->itree.start, ent->itree.last, ent->pa);
 | |
|         return ent;
 | |
|     }
 | |
|     trace_hppa_tlb_find_entry_not_found(env, addr);
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent,
 | |
|                                bool force_flush_btlb)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     bool is_btlb;
 | |
| 
 | |
|     if (!ent->entry_valid) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     trace_hppa_tlb_flush_ent(env, ent, ent->itree.start,
 | |
|                              ent->itree.last, ent->pa);
 | |
| 
 | |
|     tlb_flush_range_by_mmuidx(cs, ent->itree.start,
 | |
|                               ent->itree.last - ent->itree.start + 1,
 | |
|                               HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS);
 | |
| 
 | |
|     /* Never clear BTLBs, unless forced to do so. */
 | |
|     is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)];
 | |
|     if (is_btlb && !force_flush_btlb) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     interval_tree_remove(&ent->itree, &env->tlb_root);
 | |
|     memset(ent, 0, sizeof(*ent));
 | |
| 
 | |
|     if (!is_btlb) {
 | |
|         ent->unused_next = env->tlb_unused;
 | |
|         env->tlb_unused = ent;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e)
 | |
| {
 | |
|     IntervalTreeNode *i, *n;
 | |
| 
 | |
|     i = interval_tree_iter_first(&env->tlb_root, va_b, va_e);
 | |
|     for (; i ; i = n) {
 | |
|         HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree);
 | |
| 
 | |
|         /*
 | |
|          * Find the next entry now: In the normal case the current entry
 | |
|          * will be removed, but in the BTLB case it will remain.
 | |
|          */
 | |
|         n = interval_tree_iter_next(i, va_b, va_e);
 | |
|         hppa_flush_tlb_ent(env, ent, false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env)
 | |
| {
 | |
|     HPPATLBEntry *ent = env->tlb_unused;
 | |
| 
 | |
|     if (ent == NULL) {
 | |
|         uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
 | |
|         uint32_t i = env->tlb_last;
 | |
| 
 | |
|         if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) {
 | |
|             i = btlb_entries;
 | |
|         }
 | |
|         env->tlb_last = i + 1;
 | |
| 
 | |
|         ent = &env->tlb[i];
 | |
|         hppa_flush_tlb_ent(env, ent, false);
 | |
|     }
 | |
| 
 | |
|     env->tlb_unused = ent->unused_next;
 | |
|     return ent;
 | |
| }
 | |
| 
 | |
| int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
 | |
|                               int type, hwaddr *pphys, int *pprot,
 | |
|                               HPPATLBEntry **tlb_entry)
 | |
| {
 | |
|     hwaddr phys;
 | |
|     int prot, r_prot, w_prot, x_prot, priv;
 | |
|     HPPATLBEntry *ent;
 | |
|     int ret = -1;
 | |
| 
 | |
|     if (tlb_entry) {
 | |
|         *tlb_entry = NULL;
 | |
|     }
 | |
| 
 | |
|     /* Virtual translation disabled.  Map absolute to physical.  */
 | |
|     if (MMU_IDX_MMU_DISABLED(mmu_idx)) {
 | |
|         switch (mmu_idx) {
 | |
|         case MMU_ABS_W_IDX:
 | |
|             phys = hppa_abs_to_phys_pa2_w1(addr);
 | |
|             break;
 | |
|         case MMU_ABS_IDX:
 | |
|             if (hppa_is_pa20(env)) {
 | |
|                 phys = hppa_abs_to_phys_pa2_w0(addr);
 | |
|             } else {
 | |
|                 phys = (uint32_t)addr;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         goto egress;
 | |
|     }
 | |
| 
 | |
|     /* Find a valid tlb entry that matches the virtual address.  */
 | |
|     ent = hppa_find_tlb(env, addr);
 | |
|     if (ent == NULL) {
 | |
|         phys = 0;
 | |
|         prot = 0;
 | |
|         ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
 | |
|         goto egress;
 | |
|     }
 | |
| 
 | |
|     if (tlb_entry) {
 | |
|         *tlb_entry = ent;
 | |
|     }
 | |
| 
 | |
|     /* We now know the physical address.  */
 | |
|     phys = ent->pa + (addr - ent->itree.start);
 | |
| 
 | |
|     /* Map TLB access_rights field to QEMU protection.  */
 | |
|     priv = MMU_IDX_TO_PRIV(mmu_idx);
 | |
|     r_prot = (priv <= ent->ar_pl1) * PAGE_READ;
 | |
|     w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE;
 | |
|     x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC;
 | |
|     switch (ent->ar_type) {
 | |
|     case 0: /* read-only: data page */
 | |
|         prot = r_prot;
 | |
|         break;
 | |
|     case 1: /* read/write: dynamic data page */
 | |
|         prot = r_prot | w_prot;
 | |
|         break;
 | |
|     case 2: /* read/execute: normal code page */
 | |
|         prot = r_prot | x_prot;
 | |
|         break;
 | |
|     case 3: /* read/write/execute: dynamic code page */
 | |
|         prot = r_prot | w_prot | x_prot;
 | |
|         break;
 | |
|     default: /* execute: promote to privilege level type & 3 */
 | |
|         prot = x_prot;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* access_id == 0 means public page and no check is performed */
 | |
|     if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) {
 | |
|         /* If bits [31:1] match, and bit 0 is set, suppress write.  */
 | |
|         int match = ent->access_id * 2 + 1;
 | |
| 
 | |
|         if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
 | |
|             match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
 | |
|             prot &= PAGE_READ | PAGE_EXEC;
 | |
|             if (type == PAGE_WRITE) {
 | |
|                 ret = EXCP_DMPI;
 | |
|                 goto egress;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No guest access type indicates a non-architectural access from
 | |
|        within QEMU.  Bypass checks for access, D, B and T bits.  */
 | |
|     if (type == 0) {
 | |
|         goto egress;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(!(prot & type))) {
 | |
|         /* The access isn't allowed -- Inst/Data Memory Protection Fault.  */
 | |
|         ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
 | |
|         goto egress;
 | |
|     }
 | |
| 
 | |
|     /* In reverse priority order, check for conditions which raise faults.
 | |
|        As we go, remove PROT bits that cover the condition we want to check.
 | |
|        In this way, the resulting PROT will force a re-check of the
 | |
|        architectural TLB entry for the next access.  */
 | |
|     if (unlikely(!ent->d)) {
 | |
|         if (type & PAGE_WRITE) {
 | |
|             /* The D bit is not set -- TLB Dirty Bit Fault.  */
 | |
|             ret = EXCP_TLB_DIRTY;
 | |
|         }
 | |
|         prot &= PAGE_READ | PAGE_EXEC;
 | |
|     }
 | |
|     if (unlikely(ent->b)) {
 | |
|         if (type & PAGE_WRITE) {
 | |
|             /* The B bit is set -- Data Memory Break Fault.  */
 | |
|             ret = EXCP_DMB;
 | |
|         }
 | |
|         prot &= PAGE_READ | PAGE_EXEC;
 | |
|     }
 | |
|     if (unlikely(ent->t)) {
 | |
|         if (!(type & PAGE_EXEC)) {
 | |
|             /* The T bit is set -- Page Reference Fault.  */
 | |
|             ret = EXCP_PAGE_REF;
 | |
|         }
 | |
|         prot &= PAGE_EXEC;
 | |
|     }
 | |
| 
 | |
|  egress:
 | |
|     *pphys = phys;
 | |
|     *pprot = prot;
 | |
|     trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
 | |
| {
 | |
|     HPPACPU *cpu = HPPA_CPU(cs);
 | |
|     hwaddr phys;
 | |
|     int prot, excp, mmu_idx;
 | |
| 
 | |
|     /* If the (data) mmu is disabled, bypass translation.  */
 | |
|     /* ??? We really ought to know if the code mmu is disabled too,
 | |
|        in order to get the correct debugging dumps.  */
 | |
|     mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX :
 | |
|                cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX);
 | |
| 
 | |
|     excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0,
 | |
|                                      &phys, &prot, NULL);
 | |
| 
 | |
|     /* Since we're translating for debugging, the only error that is a
 | |
|        hard error is no translation at all.  Otherwise, while a real cpu
 | |
|        access might not have permission, the debugger does.  */
 | |
|     return excp == EXCP_DTLB_MISS ? -1 : phys;
 | |
| }
 | |
| 
 | |
| void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled)
 | |
| {
 | |
|     if (env->psw & PSW_Q) {
 | |
|         /*
 | |
|          * For pa1.x, the offset and space never overlap, and so we
 | |
|          * simply extract the high and low part of the virtual address.
 | |
|          *
 | |
|          * For pa2.0, the formation of these are described in section
 | |
|          * "Interruption Parameter Registers", page 2-15.
 | |
|          */
 | |
|         env->cr[CR_IOR] = (uint32_t)addr;
 | |
|         env->cr[CR_ISR] = addr >> 32;
 | |
| 
 | |
|         if (hppa_is_pa20(env)) {
 | |
|             if (mmu_disabled) {
 | |
|                 /*
 | |
|                  * If data translation was disabled, the ISR contains
 | |
|                  * the upper portion of the abs address, zero-extended.
 | |
|                  */
 | |
|                 env->cr[CR_ISR] &= 0x3fffffff;
 | |
|             } else {
 | |
|                 /*
 | |
|                  * If data translation was enabled, the upper two bits
 | |
|                  * of the IOR (the b field) are equal to the two space
 | |
|                  * bits from the base register used to form the gva.
 | |
|                  */
 | |
|                 uint64_t b;
 | |
| 
 | |
|                 b = env->unwind_breg ? env->gr[env->unwind_breg] : 0;
 | |
|                 b >>= (env->psw & PSW_W ? 62 : 30);
 | |
|                 env->cr[CR_IOR] |= b << 62;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| G_NORETURN static void
 | |
| raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr,
 | |
|                          vaddr addr, bool mmu_disabled)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
| 
 | |
|     cs->exception_index = excp;
 | |
|     cpu_restore_state(cs, retaddr);
 | |
|     hppa_set_ior_and_isr(env, addr, mmu_disabled);
 | |
| 
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
 | |
|                                      vaddr addr, unsigned size,
 | |
|                                      MMUAccessType access_type,
 | |
|                                      int mmu_idx, MemTxAttrs attrs,
 | |
|                                      MemTxResult response, uintptr_t retaddr)
 | |
| {
 | |
|     CPUHPPAState *env = cpu_env(cs);
 | |
| 
 | |
|     qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx
 | |
|                 " while accessing I/O at %#08" HWADDR_PRIx "\n",
 | |
|                 env->iasq_f, env->iaoq_f, physaddr);
 | |
| 
 | |
|     /* FIXME: Enable HPMC exceptions when firmware has clean device probing */
 | |
|     if (0) {
 | |
|         raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr,
 | |
|                                  MMU_IDX_MMU_DISABLED(mmu_idx));
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool hppa_cpu_tlb_fill(CPUState *cs, vaddr addr, int size,
 | |
|                        MMUAccessType type, int mmu_idx,
 | |
|                        bool probe, uintptr_t retaddr)
 | |
| {
 | |
|     HPPACPU *cpu = HPPA_CPU(cs);
 | |
|     CPUHPPAState *env = &cpu->env;
 | |
|     HPPATLBEntry *ent;
 | |
|     int prot, excp, a_prot;
 | |
|     hwaddr phys;
 | |
| 
 | |
|     switch (type) {
 | |
|     case MMU_INST_FETCH:
 | |
|         a_prot = PAGE_EXEC;
 | |
|         break;
 | |
|     case MMU_DATA_STORE:
 | |
|         a_prot = PAGE_WRITE;
 | |
|         break;
 | |
|     default:
 | |
|         a_prot = PAGE_READ;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     excp = hppa_get_physical_address(env, addr, mmu_idx,
 | |
|                                      a_prot, &phys, &prot, &ent);
 | |
|     if (unlikely(excp >= 0)) {
 | |
|         if (probe) {
 | |
|             return false;
 | |
|         }
 | |
|         trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
 | |
| 
 | |
|         /* Failure.  Raise the indicated exception.  */
 | |
|         raise_exception_with_ior(env, excp, retaddr, addr,
 | |
|                                  MMU_IDX_MMU_DISABLED(mmu_idx));
 | |
|     }
 | |
| 
 | |
|     trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
 | |
|                                 phys & TARGET_PAGE_MASK, size, type, mmu_idx);
 | |
| 
 | |
|     /*
 | |
|      * Success!  Store the translation into the QEMU TLB.
 | |
|      * Note that we always install a single-page entry, because that
 | |
|      * is what works best with softmmu -- anything else will trigger
 | |
|      * the large page protection mask.  We do not require this,
 | |
|      * because we record the large page here in the hppa tlb.
 | |
|      */
 | |
|     tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
 | |
|                  prot, mmu_idx, TARGET_PAGE_SIZE);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Insert (Insn/Data) TLB Address.  Note this is PA 1.1 only.  */
 | |
| void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
 | |
| {
 | |
|     HPPATLBEntry *ent;
 | |
| 
 | |
|     /* Zap any old entries covering ADDR. */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1);
 | |
| 
 | |
|     ent = env->tlb_partial;
 | |
|     if (ent == NULL) {
 | |
|         ent = hppa_alloc_tlb_ent(env);
 | |
|         env->tlb_partial = ent;
 | |
|     }
 | |
| 
 | |
|     /* Note that ent->entry_valid == 0 already.  */
 | |
|     ent->itree.start = addr;
 | |
|     ent->itree.last = addr + TARGET_PAGE_SIZE - 1;
 | |
|     ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
 | |
|     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
 | |
| }
 | |
| 
 | |
| static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent,
 | |
|                                  target_ulong reg)
 | |
| {
 | |
|     ent->access_id = extract32(reg, 1, 18);
 | |
|     ent->u = extract32(reg, 19, 1);
 | |
|     ent->ar_pl2 = extract32(reg, 20, 2);
 | |
|     ent->ar_pl1 = extract32(reg, 22, 2);
 | |
|     ent->ar_type = extract32(reg, 24, 3);
 | |
|     ent->b = extract32(reg, 27, 1);
 | |
|     ent->d = extract32(reg, 28, 1);
 | |
|     ent->t = extract32(reg, 29, 1);
 | |
|     ent->entry_valid = 1;
 | |
| 
 | |
|     interval_tree_insert(&ent->itree, &env->tlb_root);
 | |
|     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
 | |
|                          ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
 | |
| }
 | |
| 
 | |
| /* Insert (Insn/Data) TLB Protection.  Note this is PA 1.1 only.  */
 | |
| void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg)
 | |
| {
 | |
|     HPPATLBEntry *ent = env->tlb_partial;
 | |
| 
 | |
|     if (ent) {
 | |
|         env->tlb_partial = NULL;
 | |
|         if (ent->itree.start <= addr && addr <= ent->itree.last) {
 | |
|             set_access_bits_pa11(env, ent, reg);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
 | |
| }
 | |
| 
 | |
| static void itlbt_pa20(CPUHPPAState *env, target_ulong r1,
 | |
|                        target_ulong r2, vaddr va_b)
 | |
| {
 | |
|     HPPATLBEntry *ent;
 | |
|     vaddr va_e;
 | |
|     uint64_t va_size;
 | |
|     int mask_shift;
 | |
| 
 | |
|     mask_shift = 2 * (r1 & 0xf);
 | |
|     va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift;
 | |
|     va_b &= -va_size;
 | |
|     va_e = va_b + va_size - 1;
 | |
| 
 | |
|     hppa_flush_tlb_range(env, va_b, va_e);
 | |
|     ent = hppa_alloc_tlb_ent(env);
 | |
| 
 | |
|     ent->itree.start = va_b;
 | |
|     ent->itree.last = va_e;
 | |
| 
 | |
|     /* Extract all 52 bits present in the page table entry. */
 | |
|     ent->pa = r1 << (TARGET_PAGE_BITS - 5);
 | |
|     /* Align per the page size. */
 | |
|     ent->pa &= TARGET_PAGE_MASK << mask_shift;
 | |
|     /* Ignore the bits beyond physical address space. */
 | |
|     ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS);
 | |
| 
 | |
|     ent->t = extract64(r2, 61, 1);
 | |
|     ent->d = extract64(r2, 60, 1);
 | |
|     ent->b = extract64(r2, 59, 1);
 | |
|     ent->ar_type = extract64(r2, 56, 3);
 | |
|     ent->ar_pl1 = extract64(r2, 54, 2);
 | |
|     ent->ar_pl2 = extract64(r2, 52, 2);
 | |
|     ent->u = extract64(r2, 51, 1);
 | |
|     /* o = bit 50 */
 | |
|     /* p = bit 49 */
 | |
|     ent->access_id = extract64(r2, 1, 31);
 | |
|     ent->entry_valid = 1;
 | |
| 
 | |
|     interval_tree_insert(&ent->itree, &env->tlb_root);
 | |
|     trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa);
 | |
|     trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u,
 | |
|                          ent->ar_pl2, ent->ar_pl1, ent->ar_type,
 | |
|                          ent->b, ent->d, ent->t);
 | |
| }
 | |
| 
 | |
| void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
 | |
| {
 | |
|     vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]);
 | |
|     itlbt_pa20(env, r1, r2, va_b);
 | |
| }
 | |
| 
 | |
| void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2)
 | |
| {
 | |
|     vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]);
 | |
|     itlbt_pa20(env, r1, r2, va_b);
 | |
| }
 | |
| 
 | |
| /* Purge (Insn/Data) TLB. */
 | |
| static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
 | |
| {
 | |
|     CPUHPPAState *env = cpu_env(cpu);
 | |
|     vaddr start = data.target_ptr;
 | |
|     vaddr end;
 | |
| 
 | |
|     /*
 | |
|      * PA2.0 allows a range of pages encoded into GR[b], which we have
 | |
|      * copied into the bottom bits of the otherwise page-aligned address.
 | |
|      * PA1.x will always provide zero here, for a single page flush.
 | |
|      */
 | |
|     end = start & 0xf;
 | |
|     start &= TARGET_PAGE_MASK;
 | |
|     end = (vaddr)TARGET_PAGE_SIZE << (2 * end);
 | |
|     end = start + end - 1;
 | |
| 
 | |
|     hppa_flush_tlb_range(env, start, end);
 | |
| }
 | |
| 
 | |
| /* This is local to the current cpu. */
 | |
| void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr)
 | |
| {
 | |
|     trace_hppa_tlb_ptlb_local(env);
 | |
|     ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr));
 | |
| }
 | |
| 
 | |
| /* This is synchronous across all processors.  */
 | |
| void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
 | |
| {
 | |
|     CPUState *src = env_cpu(env);
 | |
|     CPUState *cpu;
 | |
|     bool wait = false;
 | |
| 
 | |
|     trace_hppa_tlb_ptlb(env);
 | |
|     run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu != src) {
 | |
|             async_run_on_cpu(cpu, ptlb_work, data);
 | |
|             wait = true;
 | |
|         }
 | |
|     }
 | |
|     if (wait) {
 | |
|         async_safe_run_on_cpu(src, ptlb_work, data);
 | |
|     } else {
 | |
|         ptlb_work(src, data);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void hppa_ptlbe(CPUHPPAState *env)
 | |
| {
 | |
|     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
 | |
|     uint32_t i;
 | |
| 
 | |
|     /* Zap the (non-btlb) tlb entries themselves. */
 | |
|     memset(&env->tlb[btlb_entries], 0,
 | |
|            sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0]));
 | |
|     env->tlb_last = btlb_entries;
 | |
|     env->tlb_partial = NULL;
 | |
| 
 | |
|     /* Put them all onto the unused list. */
 | |
|     env->tlb_unused = &env->tlb[btlb_entries];
 | |
|     for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) {
 | |
|         env->tlb[i].unused_next = &env->tlb[i + 1];
 | |
|     }
 | |
| 
 | |
|     /* Re-initialize the interval tree with only the btlb entries. */
 | |
|     memset(&env->tlb_root, 0, sizeof(env->tlb_root));
 | |
|     for (i = 0; i < btlb_entries; ++i) {
 | |
|         if (env->tlb[i].entry_valid) {
 | |
|             interval_tree_insert(&env->tlb[i].itree, &env->tlb_root);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK);
 | |
| }
 | |
| 
 | |
| /* Purge (Insn/Data) TLB entry.  This affects an implementation-defined
 | |
|    number of pages/entries (we choose all), and is local to the cpu.  */
 | |
| void HELPER(ptlbe)(CPUHPPAState *env)
 | |
| {
 | |
|     trace_hppa_tlb_ptlbe(env);
 | |
|     qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n");
 | |
|     hppa_ptlbe(env);
 | |
| }
 | |
| 
 | |
| void cpu_hppa_change_prot_id(CPUHPPAState *env)
 | |
| {
 | |
|     tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK);
 | |
| }
 | |
| 
 | |
| void HELPER(change_prot_id)(CPUHPPAState *env)
 | |
| {
 | |
|     cpu_hppa_change_prot_id(env);
 | |
| }
 | |
| 
 | |
| target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
 | |
| {
 | |
|     hwaddr phys;
 | |
|     int prot, excp;
 | |
| 
 | |
|     excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
 | |
|                                      &phys, &prot, NULL);
 | |
|     if (excp >= 0) {
 | |
|         if (excp == EXCP_DTLB_MISS) {
 | |
|             excp = EXCP_NA_DTLB_MISS;
 | |
|         }
 | |
|         trace_hppa_tlb_lpa_failed(env, addr);
 | |
|         raise_exception_with_ior(env, excp, GETPC(), addr, false);
 | |
|     }
 | |
|     trace_hppa_tlb_lpa_success(env, addr, phys);
 | |
|     return phys;
 | |
| }
 | |
| 
 | |
| /* Return the ar_type of the TLB at VADDR, or -1.  */
 | |
| int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
 | |
| {
 | |
|     HPPATLBEntry *ent = hppa_find_tlb(env, vaddr);
 | |
|     return ent ? ent->ar_type : -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to
 | |
|  * allow operating systems to modify the Block TLB (BTLB) entries.
 | |
|  * For implementation details see page 1-13 in
 | |
|  * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf
 | |
|  */
 | |
| void HELPER(diag_btlb)(CPUHPPAState *env)
 | |
| {
 | |
|     unsigned int phys_page, len, slot;
 | |
|     int mmu_idx = cpu_mmu_index(env_cpu(env), 0);
 | |
|     uintptr_t ra = GETPC();
 | |
|     HPPATLBEntry *btlb;
 | |
|     uint64_t virt_page;
 | |
|     uint32_t *vaddr;
 | |
|     uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env);
 | |
| 
 | |
|     /* BTLBs are not supported on 64-bit CPUs */
 | |
|     if (btlb_entries == 0) {
 | |
|         env->gr[28] = -1; /* nonexistent procedure */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     env->gr[28] = 0; /* PDC_OK */
 | |
| 
 | |
|     switch (env->gr[25]) {
 | |
|     case 0:
 | |
|         /* return BTLB parameters */
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n");
 | |
|         vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t),
 | |
|                              MMU_DATA_STORE, mmu_idx, ra);
 | |
|         if (vaddr == NULL) {
 | |
|             env->gr[28] = -10; /* invalid argument */
 | |
|         } else {
 | |
|             vaddr[0] = cpu_to_be32(1);
 | |
|             vaddr[1] = cpu_to_be32(16 * 1024);
 | |
|             vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED);
 | |
|             vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE);
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         /* insert BTLB entry */
 | |
|         virt_page = env->gr[24];        /* upper 32 bits */
 | |
|         virt_page <<= 32;
 | |
|         virt_page |= env->gr[23];       /* lower 32 bits */
 | |
|         phys_page = env->gr[22];
 | |
|         len = env->gr[21];
 | |
|         slot = env->gr[19];
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT "
 | |
|                     "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d "
 | |
|                     "into slot %d\n",
 | |
|                     (long long) virt_page << TARGET_PAGE_BITS,
 | |
|                     (long long) (virt_page + len) << TARGET_PAGE_BITS,
 | |
|                     (long long) virt_page, phys_page, len, slot);
 | |
|         if (slot < btlb_entries) {
 | |
|             btlb = &env->tlb[slot];
 | |
| 
 | |
|             /* Force flush of possibly existing BTLB entry. */
 | |
|             hppa_flush_tlb_ent(env, btlb, true);
 | |
| 
 | |
|             /* Create new BTLB entry */
 | |
|             btlb->itree.start = virt_page << TARGET_PAGE_BITS;
 | |
|             btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1;
 | |
|             btlb->pa = phys_page << TARGET_PAGE_BITS;
 | |
|             set_access_bits_pa11(env, btlb, env->gr[20]);
 | |
|             btlb->t = 0;
 | |
|             btlb->d = 1;
 | |
|         } else {
 | |
|             env->gr[28] = -10; /* invalid argument */
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         /* Purge BTLB entry */
 | |
|         slot = env->gr[22];
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n",
 | |
|                                     slot);
 | |
|         if (slot < btlb_entries) {
 | |
|             btlb = &env->tlb[slot];
 | |
|             hppa_flush_tlb_ent(env, btlb, true);
 | |
|         } else {
 | |
|             env->gr[28] = -10; /* invalid argument */
 | |
|         }
 | |
|         break;
 | |
|     case 3:
 | |
|         /* Purge all BTLB entries */
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n");
 | |
|         for (slot = 0; slot < btlb_entries; slot++) {
 | |
|             btlb = &env->tlb[slot];
 | |
|             hppa_flush_tlb_ent(env, btlb, true);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         env->gr[28] = -2; /* nonexistent option */
 | |
|         break;
 | |
|     }
 | |
| }
 |