 f2ce39b4f0
			
		
	
	
		f2ce39b4f0
		
	
	
	
	
		
			
			Machine options can be retrieved as properties of the machine object. Encourage that by removing the "easy" accessor to machine options. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			1331 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1331 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM kernel loader.
 | |
|  *
 | |
|  * Copyright (c) 2006-2007 CodeSourcery.
 | |
|  * Written by Paul Brook
 | |
|  *
 | |
|  * This code is licensed under the GPL.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/datadir.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qapi/error.h"
 | |
| #include <libfdt.h>
 | |
| #include "hw/arm/boot.h"
 | |
| #include "hw/arm/linux-boot-if.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/numa.h"
 | |
| #include "hw/boards.h"
 | |
| #include "sysemu/reset.h"
 | |
| #include "hw/loader.h"
 | |
| #include "elf.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "qemu/config-file.h"
 | |
| #include "qemu/option.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "qemu/units.h"
 | |
| 
 | |
| /* Kernel boot protocol is specified in the kernel docs
 | |
|  * Documentation/arm/Booting and Documentation/arm64/booting.txt
 | |
|  * They have different preferred image load offsets from system RAM base.
 | |
|  */
 | |
| #define KERNEL_ARGS_ADDR   0x100
 | |
| #define KERNEL_NOLOAD_ADDR 0x02000000
 | |
| #define KERNEL_LOAD_ADDR   0x00010000
 | |
| #define KERNEL64_LOAD_ADDR 0x00080000
 | |
| 
 | |
| #define ARM64_TEXT_OFFSET_OFFSET    8
 | |
| #define ARM64_MAGIC_OFFSET          56
 | |
| 
 | |
| #define BOOTLOADER_MAX_SIZE         (4 * KiB)
 | |
| 
 | |
| AddressSpace *arm_boot_address_space(ARMCPU *cpu,
 | |
|                                      const struct arm_boot_info *info)
 | |
| {
 | |
|     /* Return the address space to use for bootloader reads and writes.
 | |
|      * We prefer the secure address space if the CPU has it and we're
 | |
|      * going to boot the guest into it.
 | |
|      */
 | |
|     int asidx;
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
 | |
|         asidx = ARMASIdx_S;
 | |
|     } else {
 | |
|         asidx = ARMASIdx_NS;
 | |
|     }
 | |
| 
 | |
|     return cpu_get_address_space(cs, asidx);
 | |
| }
 | |
| 
 | |
| typedef enum {
 | |
|     FIXUP_NONE = 0,     /* do nothing */
 | |
|     FIXUP_TERMINATOR,   /* end of insns */
 | |
|     FIXUP_BOARDID,      /* overwrite with board ID number */
 | |
|     FIXUP_BOARD_SETUP,  /* overwrite with board specific setup code address */
 | |
|     FIXUP_ARGPTR_LO,    /* overwrite with pointer to kernel args */
 | |
|     FIXUP_ARGPTR_HI,    /* overwrite with pointer to kernel args (high half) */
 | |
|     FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
 | |
|     FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
 | |
|     FIXUP_GIC_CPU_IF,   /* overwrite with GIC CPU interface address */
 | |
|     FIXUP_BOOTREG,      /* overwrite with boot register address */
 | |
|     FIXUP_DSB,          /* overwrite with correct DSB insn for cpu */
 | |
|     FIXUP_MAX,
 | |
| } FixupType;
 | |
| 
 | |
| typedef struct ARMInsnFixup {
 | |
|     uint32_t insn;
 | |
|     FixupType fixup;
 | |
| } ARMInsnFixup;
 | |
| 
 | |
| static const ARMInsnFixup bootloader_aarch64[] = {
 | |
|     { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
 | |
|     { 0xaa1f03e1 }, /* mov x1, xzr */
 | |
|     { 0xaa1f03e2 }, /* mov x2, xzr */
 | |
|     { 0xaa1f03e3 }, /* mov x3, xzr */
 | |
|     { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
 | |
|     { 0xd61f0080 }, /* br x4      ; Jump to the kernel entry point */
 | |
|     { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
 | |
|     { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
 | |
|     { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
 | |
|     { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
 | |
|     { 0, FIXUP_TERMINATOR }
 | |
| };
 | |
| 
 | |
| /* A very small bootloader: call the board-setup code (if needed),
 | |
|  * set r0-r2, then jump to the kernel.
 | |
|  * If we're not calling boot setup code then we don't copy across
 | |
|  * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
 | |
|  */
 | |
| 
 | |
| static const ARMInsnFixup bootloader[] = {
 | |
|     { 0xe28fe004 }, /* add     lr, pc, #4 */
 | |
|     { 0xe51ff004 }, /* ldr     pc, [pc, #-4] */
 | |
|     { 0, FIXUP_BOARD_SETUP },
 | |
| #define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
 | |
|     { 0xe3a00000 }, /* mov     r0, #0 */
 | |
|     { 0xe59f1004 }, /* ldr     r1, [pc, #4] */
 | |
|     { 0xe59f2004 }, /* ldr     r2, [pc, #4] */
 | |
|     { 0xe59ff004 }, /* ldr     pc, [pc, #4] */
 | |
|     { 0, FIXUP_BOARDID },
 | |
|     { 0, FIXUP_ARGPTR_LO },
 | |
|     { 0, FIXUP_ENTRYPOINT_LO },
 | |
|     { 0, FIXUP_TERMINATOR }
 | |
| };
 | |
| 
 | |
| /* Handling for secondary CPU boot in a multicore system.
 | |
|  * Unlike the uniprocessor/primary CPU boot, this is platform
 | |
|  * dependent. The default code here is based on the secondary
 | |
|  * CPU boot protocol used on realview/vexpress boards, with
 | |
|  * some parameterisation to increase its flexibility.
 | |
|  * QEMU platform models for which this code is not appropriate
 | |
|  * should override write_secondary_boot and secondary_cpu_reset_hook
 | |
|  * instead.
 | |
|  *
 | |
|  * This code enables the interrupt controllers for the secondary
 | |
|  * CPUs and then puts all the secondary CPUs into a loop waiting
 | |
|  * for an interprocessor interrupt and polling a configurable
 | |
|  * location for the kernel secondary CPU entry point.
 | |
|  */
 | |
| #define DSB_INSN 0xf57ff04f
 | |
| #define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
 | |
| 
 | |
| static const ARMInsnFixup smpboot[] = {
 | |
|     { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
 | |
|     { 0xe59f0028 }, /* ldr r0, bootreg_addr */
 | |
|     { 0xe3a01001 }, /* mov r1, #1 */
 | |
|     { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
 | |
|     { 0xe3a010ff }, /* mov r1, #0xff */
 | |
|     { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
 | |
|     { 0, FIXUP_DSB },   /* dsb */
 | |
|     { 0xe320f003 }, /* wfi */
 | |
|     { 0xe5901000 }, /* ldr     r1, [r0] */
 | |
|     { 0xe1110001 }, /* tst     r1, r1 */
 | |
|     { 0x0afffffb }, /* beq     <wfi> */
 | |
|     { 0xe12fff11 }, /* bx      r1 */
 | |
|     { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
 | |
|     { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
 | |
|     { 0, FIXUP_TERMINATOR }
 | |
| };
 | |
| 
 | |
| static void write_bootloader(const char *name, hwaddr addr,
 | |
|                              const ARMInsnFixup *insns, uint32_t *fixupcontext,
 | |
|                              AddressSpace *as)
 | |
| {
 | |
|     /* Fix up the specified bootloader fragment and write it into
 | |
|      * guest memory using rom_add_blob_fixed(). fixupcontext is
 | |
|      * an array giving the values to write in for the fixup types
 | |
|      * which write a value into the code array.
 | |
|      */
 | |
|     int i, len;
 | |
|     uint32_t *code;
 | |
| 
 | |
|     len = 0;
 | |
|     while (insns[len].fixup != FIXUP_TERMINATOR) {
 | |
|         len++;
 | |
|     }
 | |
| 
 | |
|     code = g_new0(uint32_t, len);
 | |
| 
 | |
|     for (i = 0; i < len; i++) {
 | |
|         uint32_t insn = insns[i].insn;
 | |
|         FixupType fixup = insns[i].fixup;
 | |
| 
 | |
|         switch (fixup) {
 | |
|         case FIXUP_NONE:
 | |
|             break;
 | |
|         case FIXUP_BOARDID:
 | |
|         case FIXUP_BOARD_SETUP:
 | |
|         case FIXUP_ARGPTR_LO:
 | |
|         case FIXUP_ARGPTR_HI:
 | |
|         case FIXUP_ENTRYPOINT_LO:
 | |
|         case FIXUP_ENTRYPOINT_HI:
 | |
|         case FIXUP_GIC_CPU_IF:
 | |
|         case FIXUP_BOOTREG:
 | |
|         case FIXUP_DSB:
 | |
|             insn = fixupcontext[fixup];
 | |
|             break;
 | |
|         default:
 | |
|             abort();
 | |
|         }
 | |
|         code[i] = tswap32(insn);
 | |
|     }
 | |
| 
 | |
|     assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
 | |
| 
 | |
|     rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
 | |
| 
 | |
|     g_free(code);
 | |
| }
 | |
| 
 | |
| static void default_write_secondary(ARMCPU *cpu,
 | |
|                                     const struct arm_boot_info *info)
 | |
| {
 | |
|     uint32_t fixupcontext[FIXUP_MAX];
 | |
|     AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
| 
 | |
|     fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
 | |
|     fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
 | |
|         fixupcontext[FIXUP_DSB] = DSB_INSN;
 | |
|     } else {
 | |
|         fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
 | |
|     }
 | |
| 
 | |
|     write_bootloader("smpboot", info->smp_loader_start,
 | |
|                      smpboot, fixupcontext, as);
 | |
| }
 | |
| 
 | |
| void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
 | |
|                                             const struct arm_boot_info *info,
 | |
|                                             hwaddr mvbar_addr)
 | |
| {
 | |
|     AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
|     int n;
 | |
|     uint32_t mvbar_blob[] = {
 | |
|         /* mvbar_addr: secure monitor vectors
 | |
|          * Default unimplemented and unused vectors to spin. Makes it
 | |
|          * easier to debug (as opposed to the CPU running away).
 | |
|          */
 | |
|         0xeafffffe, /* (spin) */
 | |
|         0xeafffffe, /* (spin) */
 | |
|         0xe1b0f00e, /* movs pc, lr ;SMC exception return */
 | |
|         0xeafffffe, /* (spin) */
 | |
|         0xeafffffe, /* (spin) */
 | |
|         0xeafffffe, /* (spin) */
 | |
|         0xeafffffe, /* (spin) */
 | |
|         0xeafffffe, /* (spin) */
 | |
|     };
 | |
|     uint32_t board_setup_blob[] = {
 | |
|         /* board setup addr */
 | |
|         0xee110f51, /* mrc     p15, 0, r0, c1, c1, 2  ;read NSACR */
 | |
|         0xe3800b03, /* orr     r0, #0xc00             ;set CP11, CP10 */
 | |
|         0xee010f51, /* mcr     p15, 0, r0, c1, c1, 2  ;write NSACR */
 | |
|         0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
 | |
|         0xee0c0f30, /* mcr     p15, 0, r0, c12, c0, 1 ;set MVBAR */
 | |
|         0xee110f11, /* mrc     p15, 0, r0, c1 , c1, 0 ;read SCR */
 | |
|         0xe3800031, /* orr     r0, #0x31              ;enable AW, FW, NS */
 | |
|         0xee010f11, /* mcr     p15, 0, r0, c1, c1, 0  ;write SCR */
 | |
|         0xe1a0100e, /* mov     r1, lr                 ;save LR across SMC */
 | |
|         0xe1600070, /* smc     #0                     ;call monitor to flush SCR */
 | |
|         0xe1a0f001, /* mov     pc, r1                 ;return */
 | |
|     };
 | |
| 
 | |
|     /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
 | |
|     assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
 | |
| 
 | |
|     /* check that these blobs don't overlap */
 | |
|     assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
 | |
|           || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
 | |
| 
 | |
|     for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
 | |
|         mvbar_blob[n] = tswap32(mvbar_blob[n]);
 | |
|     }
 | |
|     rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
 | |
|                           mvbar_addr, as);
 | |
| 
 | |
|     for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
 | |
|         board_setup_blob[n] = tswap32(board_setup_blob[n]);
 | |
|     }
 | |
|     rom_add_blob_fixed_as("board-setup", board_setup_blob,
 | |
|                           sizeof(board_setup_blob), info->board_setup_addr, as);
 | |
| }
 | |
| 
 | |
| static void default_reset_secondary(ARMCPU *cpu,
 | |
|                                     const struct arm_boot_info *info)
 | |
| {
 | |
|     AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     address_space_stl_notdirty(as, info->smp_bootreg_addr,
 | |
|                                0, MEMTXATTRS_UNSPECIFIED, NULL);
 | |
|     cpu_set_pc(cs, info->smp_loader_start);
 | |
| }
 | |
| 
 | |
| static inline bool have_dtb(const struct arm_boot_info *info)
 | |
| {
 | |
|     return info->dtb_filename || info->get_dtb;
 | |
| }
 | |
| 
 | |
| #define WRITE_WORD(p, value) do { \
 | |
|     address_space_stl_notdirty(as, p, value, \
 | |
|                                MEMTXATTRS_UNSPECIFIED, NULL);  \
 | |
|     p += 4;                       \
 | |
| } while (0)
 | |
| 
 | |
| static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
 | |
| {
 | |
|     int initrd_size = info->initrd_size;
 | |
|     hwaddr base = info->loader_start;
 | |
|     hwaddr p;
 | |
| 
 | |
|     p = base + KERNEL_ARGS_ADDR;
 | |
|     /* ATAG_CORE */
 | |
|     WRITE_WORD(p, 5);
 | |
|     WRITE_WORD(p, 0x54410001);
 | |
|     WRITE_WORD(p, 1);
 | |
|     WRITE_WORD(p, 0x1000);
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* ATAG_MEM */
 | |
|     /* TODO: handle multiple chips on one ATAG list */
 | |
|     WRITE_WORD(p, 4);
 | |
|     WRITE_WORD(p, 0x54410002);
 | |
|     WRITE_WORD(p, info->ram_size);
 | |
|     WRITE_WORD(p, info->loader_start);
 | |
|     if (initrd_size) {
 | |
|         /* ATAG_INITRD2 */
 | |
|         WRITE_WORD(p, 4);
 | |
|         WRITE_WORD(p, 0x54420005);
 | |
|         WRITE_WORD(p, info->initrd_start);
 | |
|         WRITE_WORD(p, initrd_size);
 | |
|     }
 | |
|     if (info->kernel_cmdline && *info->kernel_cmdline) {
 | |
|         /* ATAG_CMDLINE */
 | |
|         int cmdline_size;
 | |
| 
 | |
|         cmdline_size = strlen(info->kernel_cmdline);
 | |
|         address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
 | |
|                             info->kernel_cmdline, cmdline_size + 1);
 | |
|         cmdline_size = (cmdline_size >> 2) + 1;
 | |
|         WRITE_WORD(p, cmdline_size + 2);
 | |
|         WRITE_WORD(p, 0x54410009);
 | |
|         p += cmdline_size * 4;
 | |
|     }
 | |
|     if (info->atag_board) {
 | |
|         /* ATAG_BOARD */
 | |
|         int atag_board_len;
 | |
|         uint8_t atag_board_buf[0x1000];
 | |
| 
 | |
|         atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
 | |
|         WRITE_WORD(p, (atag_board_len + 8) >> 2);
 | |
|         WRITE_WORD(p, 0x414f4d50);
 | |
|         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
 | |
|                             atag_board_buf, atag_board_len);
 | |
|         p += atag_board_len;
 | |
|     }
 | |
|     /* ATAG_END */
 | |
|     WRITE_WORD(p, 0);
 | |
|     WRITE_WORD(p, 0);
 | |
| }
 | |
| 
 | |
| static void set_kernel_args_old(const struct arm_boot_info *info,
 | |
|                                 AddressSpace *as)
 | |
| {
 | |
|     hwaddr p;
 | |
|     const char *s;
 | |
|     int initrd_size = info->initrd_size;
 | |
|     hwaddr base = info->loader_start;
 | |
| 
 | |
|     /* see linux/include/asm-arm/setup.h */
 | |
|     p = base + KERNEL_ARGS_ADDR;
 | |
|     /* page_size */
 | |
|     WRITE_WORD(p, 4096);
 | |
|     /* nr_pages */
 | |
|     WRITE_WORD(p, info->ram_size / 4096);
 | |
|     /* ramdisk_size */
 | |
|     WRITE_WORD(p, 0);
 | |
| #define FLAG_READONLY	1
 | |
| #define FLAG_RDLOAD	4
 | |
| #define FLAG_RDPROMPT	8
 | |
|     /* flags */
 | |
|     WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
 | |
|     /* rootdev */
 | |
|     WRITE_WORD(p, (31 << 8) | 0);	/* /dev/mtdblock0 */
 | |
|     /* video_num_cols */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* video_num_rows */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* video_x */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* video_y */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* memc_control_reg */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* unsigned char sounddefault */
 | |
|     /* unsigned char adfsdrives */
 | |
|     /* unsigned char bytes_per_char_h */
 | |
|     /* unsigned char bytes_per_char_v */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* pages_in_bank[4] */
 | |
|     WRITE_WORD(p, 0);
 | |
|     WRITE_WORD(p, 0);
 | |
|     WRITE_WORD(p, 0);
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* pages_in_vram */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* initrd_start */
 | |
|     if (initrd_size) {
 | |
|         WRITE_WORD(p, info->initrd_start);
 | |
|     } else {
 | |
|         WRITE_WORD(p, 0);
 | |
|     }
 | |
|     /* initrd_size */
 | |
|     WRITE_WORD(p, initrd_size);
 | |
|     /* rd_start */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* system_rev */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* system_serial_low */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* system_serial_high */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* mem_fclk_21285 */
 | |
|     WRITE_WORD(p, 0);
 | |
|     /* zero unused fields */
 | |
|     while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
 | |
|         WRITE_WORD(p, 0);
 | |
|     }
 | |
|     s = info->kernel_cmdline;
 | |
|     if (s) {
 | |
|         address_space_write(as, p, MEMTXATTRS_UNSPECIFIED, s, strlen(s) + 1);
 | |
|     } else {
 | |
|         WRITE_WORD(p, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
 | |
|                                uint32_t scells, hwaddr mem_len,
 | |
|                                int numa_node_id)
 | |
| {
 | |
|     char *nodename;
 | |
|     int ret;
 | |
| 
 | |
|     nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
 | |
|     qemu_fdt_add_subnode(fdt, nodename);
 | |
|     qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
 | |
|     ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
 | |
|                                        scells, mem_len);
 | |
|     if (ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* only set the NUMA ID if it is specified */
 | |
|     if (numa_node_id >= 0) {
 | |
|         ret = qemu_fdt_setprop_cell(fdt, nodename,
 | |
|                                     "numa-node-id", numa_node_id);
 | |
|     }
 | |
| out:
 | |
|     g_free(nodename);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void fdt_add_psci_node(void *fdt)
 | |
| {
 | |
|     uint32_t cpu_suspend_fn;
 | |
|     uint32_t cpu_off_fn;
 | |
|     uint32_t cpu_on_fn;
 | |
|     uint32_t migrate_fn;
 | |
|     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 | |
|     const char *psci_method;
 | |
|     int64_t psci_conduit;
 | |
|     int rc;
 | |
| 
 | |
|     psci_conduit = object_property_get_int(OBJECT(armcpu),
 | |
|                                            "psci-conduit",
 | |
|                                            &error_abort);
 | |
|     switch (psci_conduit) {
 | |
|     case QEMU_PSCI_CONDUIT_DISABLED:
 | |
|         return;
 | |
|     case QEMU_PSCI_CONDUIT_HVC:
 | |
|         psci_method = "hvc";
 | |
|         break;
 | |
|     case QEMU_PSCI_CONDUIT_SMC:
 | |
|         psci_method = "smc";
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If /psci node is present in provided DTB, assume that no fixup
 | |
|      * is necessary and all PSCI configuration should be taken as-is
 | |
|      */
 | |
|     rc = fdt_path_offset(fdt, "/psci");
 | |
|     if (rc >= 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(fdt, "/psci");
 | |
|     if (armcpu->psci_version == 2) {
 | |
|         const char comp[] = "arm,psci-0.2\0arm,psci";
 | |
|         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 | |
| 
 | |
|         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 | |
|         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 | |
|             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 | |
|             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 | |
|             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 | |
|         } else {
 | |
|             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 | |
|             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 | |
|             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 | |
|         }
 | |
|     } else {
 | |
|         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 | |
| 
 | |
|         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 | |
|         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 | |
|         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 | |
|         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 | |
|     }
 | |
| 
 | |
|     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 | |
|      * to the instruction that should be used to invoke PSCI functions.
 | |
|      * However, the device tree binding uses 'method' instead, so that is
 | |
|      * what we should use here.
 | |
|      */
 | |
|     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 | |
| 
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 | |
| }
 | |
| 
 | |
| int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
 | |
|                  hwaddr addr_limit, AddressSpace *as, MachineState *ms)
 | |
| {
 | |
|     void *fdt = NULL;
 | |
|     int size, rc, n = 0;
 | |
|     uint32_t acells, scells;
 | |
|     unsigned int i;
 | |
|     hwaddr mem_base, mem_len;
 | |
|     char **node_path;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     if (binfo->dtb_filename) {
 | |
|         char *filename;
 | |
|         filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
 | |
|         if (!filename) {
 | |
|             fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         fdt = load_device_tree(filename, &size);
 | |
|         if (!fdt) {
 | |
|             fprintf(stderr, "Couldn't open dtb file %s\n", filename);
 | |
|             g_free(filename);
 | |
|             goto fail;
 | |
|         }
 | |
|         g_free(filename);
 | |
|     } else {
 | |
|         fdt = binfo->get_dtb(binfo, &size);
 | |
|         if (!fdt) {
 | |
|             fprintf(stderr, "Board was unable to create a dtb blob\n");
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (addr_limit > addr && size > (addr_limit - addr)) {
 | |
|         /* Installing the device tree blob at addr would exceed addr_limit.
 | |
|          * Whether this constitutes failure is up to the caller to decide,
 | |
|          * so just return 0 as size, i.e., no error.
 | |
|          */
 | |
|         g_free(fdt);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
 | |
|                                    NULL, &error_fatal);
 | |
|     scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
 | |
|                                    NULL, &error_fatal);
 | |
|     if (acells == 0 || scells == 0) {
 | |
|         fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if (scells < 2 && binfo->ram_size >= 4 * GiB) {
 | |
|         /* This is user error so deserves a friendlier error message
 | |
|          * than the failure of setprop_sized_cells would provide
 | |
|          */
 | |
|         fprintf(stderr, "qemu: dtb file not compatible with "
 | |
|                 "RAM size > 4GB\n");
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     /* nop all root nodes matching /memory or /memory@unit-address */
 | |
|     node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
 | |
|     if (err) {
 | |
|         error_report_err(err);
 | |
|         goto fail;
 | |
|     }
 | |
|     while (node_path[n]) {
 | |
|         if (g_str_has_prefix(node_path[n], "/memory")) {
 | |
|             qemu_fdt_nop_node(fdt, node_path[n]);
 | |
|         }
 | |
|         n++;
 | |
|     }
 | |
|     g_strfreev(node_path);
 | |
| 
 | |
|     if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
 | |
|         mem_base = binfo->loader_start;
 | |
|         for (i = 0; i < ms->numa_state->num_nodes; i++) {
 | |
|             mem_len = ms->numa_state->nodes[i].node_mem;
 | |
|             rc = fdt_add_memory_node(fdt, acells, mem_base,
 | |
|                                      scells, mem_len, i);
 | |
|             if (rc < 0) {
 | |
|                 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 | |
|                         mem_base);
 | |
|                 goto fail;
 | |
|             }
 | |
| 
 | |
|             mem_base += mem_len;
 | |
|         }
 | |
|     } else {
 | |
|         rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
 | |
|                                  scells, binfo->ram_size, -1);
 | |
|         if (rc < 0) {
 | |
|             fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
 | |
|                     binfo->loader_start);
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     rc = fdt_path_offset(fdt, "/chosen");
 | |
|     if (rc < 0) {
 | |
|         qemu_fdt_add_subnode(fdt, "/chosen");
 | |
|     }
 | |
| 
 | |
|     if (ms->kernel_cmdline && *ms->kernel_cmdline) {
 | |
|         rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
 | |
|                                      ms->kernel_cmdline);
 | |
|         if (rc < 0) {
 | |
|             fprintf(stderr, "couldn't set /chosen/bootargs\n");
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (binfo->initrd_size) {
 | |
|         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
 | |
|                                    binfo->initrd_start);
 | |
|         if (rc < 0) {
 | |
|             fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
 | |
|                                    binfo->initrd_start + binfo->initrd_size);
 | |
|         if (rc < 0) {
 | |
|             fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fdt_add_psci_node(fdt);
 | |
| 
 | |
|     if (binfo->modify_dtb) {
 | |
|         binfo->modify_dtb(binfo, fdt);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_dumpdtb(fdt, size);
 | |
| 
 | |
|     /* Put the DTB into the memory map as a ROM image: this will ensure
 | |
|      * the DTB is copied again upon reset, even if addr points into RAM.
 | |
|      */
 | |
|     rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
 | |
| 
 | |
|     g_free(fdt);
 | |
| 
 | |
|     return size;
 | |
| 
 | |
| fail:
 | |
|     g_free(fdt);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void do_cpu_reset(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     const struct arm_boot_info *info = env->boot_info;
 | |
| 
 | |
|     cpu_reset(cs);
 | |
|     if (info) {
 | |
|         if (!info->is_linux) {
 | |
|             int i;
 | |
|             /* Jump to the entry point.  */
 | |
|             uint64_t entry = info->entry;
 | |
| 
 | |
|             switch (info->endianness) {
 | |
|             case ARM_ENDIANNESS_LE:
 | |
|                 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
 | |
|                 for (i = 1; i < 4; ++i) {
 | |
|                     env->cp15.sctlr_el[i] &= ~SCTLR_EE;
 | |
|                 }
 | |
|                 env->uncached_cpsr &= ~CPSR_E;
 | |
|                 break;
 | |
|             case ARM_ENDIANNESS_BE8:
 | |
|                 env->cp15.sctlr_el[1] |= SCTLR_E0E;
 | |
|                 for (i = 1; i < 4; ++i) {
 | |
|                     env->cp15.sctlr_el[i] |= SCTLR_EE;
 | |
|                 }
 | |
|                 env->uncached_cpsr |= CPSR_E;
 | |
|                 break;
 | |
|             case ARM_ENDIANNESS_BE32:
 | |
|                 env->cp15.sctlr_el[1] |= SCTLR_B;
 | |
|                 break;
 | |
|             case ARM_ENDIANNESS_UNKNOWN:
 | |
|                 break; /* Board's decision */
 | |
|             default:
 | |
|                 g_assert_not_reached();
 | |
|             }
 | |
| 
 | |
|             cpu_set_pc(cs, entry);
 | |
|         } else {
 | |
|             /* If we are booting Linux then we need to check whether we are
 | |
|              * booting into secure or non-secure state and adjust the state
 | |
|              * accordingly.  Out of reset, ARM is defined to be in secure state
 | |
|              * (SCR.NS = 0), we change that here if non-secure boot has been
 | |
|              * requested.
 | |
|              */
 | |
|             if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|                 /* AArch64 is defined to come out of reset into EL3 if enabled.
 | |
|                  * If we are booting Linux then we need to adjust our EL as
 | |
|                  * Linux expects us to be in EL2 or EL1.  AArch32 resets into
 | |
|                  * SVC, which Linux expects, so no privilege/exception level to
 | |
|                  * adjust.
 | |
|                  */
 | |
|                 if (env->aarch64) {
 | |
|                     env->cp15.scr_el3 |= SCR_RW;
 | |
|                     if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|                         env->cp15.hcr_el2 |= HCR_RW;
 | |
|                         env->pstate = PSTATE_MODE_EL2h;
 | |
|                     } else {
 | |
|                         env->pstate = PSTATE_MODE_EL1h;
 | |
|                     }
 | |
|                     if (cpu_isar_feature(aa64_pauth, cpu)) {
 | |
|                         env->cp15.scr_el3 |= SCR_API | SCR_APK;
 | |
|                     }
 | |
|                     if (cpu_isar_feature(aa64_mte, cpu)) {
 | |
|                         env->cp15.scr_el3 |= SCR_ATA;
 | |
|                     }
 | |
|                     if (cpu_isar_feature(aa64_sve, cpu)) {
 | |
|                         env->cp15.cptr_el[3] |= CPTR_EZ;
 | |
|                     }
 | |
|                     /* AArch64 kernels never boot in secure mode */
 | |
|                     assert(!info->secure_boot);
 | |
|                     /* This hook is only supported for AArch32 currently:
 | |
|                      * bootloader_aarch64[] will not call the hook, and
 | |
|                      * the code above has already dropped us into EL2 or EL1.
 | |
|                      */
 | |
|                     assert(!info->secure_board_setup);
 | |
|                 }
 | |
| 
 | |
|                 if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|                     /* If we have EL2 then Linux expects the HVC insn to work */
 | |
|                     env->cp15.scr_el3 |= SCR_HCE;
 | |
|                 }
 | |
| 
 | |
|                 /* Set to non-secure if not a secure boot */
 | |
|                 if (!info->secure_boot &&
 | |
|                     (cs != first_cpu || !info->secure_board_setup)) {
 | |
|                     /* Linux expects non-secure state */
 | |
|                     env->cp15.scr_el3 |= SCR_NS;
 | |
|                     /* Set NSACR.{CP11,CP10} so NS can access the FPU */
 | |
|                     env->cp15.nsacr |= 3 << 10;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (!env->aarch64 && !info->secure_boot &&
 | |
|                 arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|                 /*
 | |
|                  * This is an AArch32 boot not to Secure state, and
 | |
|                  * we have Hyp mode available, so boot the kernel into
 | |
|                  * Hyp mode. This is not how the CPU comes out of reset,
 | |
|                  * so we need to manually put it there.
 | |
|                  */
 | |
|                 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
 | |
|             }
 | |
| 
 | |
|             if (cs == first_cpu) {
 | |
|                 AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
| 
 | |
|                 cpu_set_pc(cs, info->loader_start);
 | |
| 
 | |
|                 if (!have_dtb(info)) {
 | |
|                     if (old_param) {
 | |
|                         set_kernel_args_old(info, as);
 | |
|                     } else {
 | |
|                         set_kernel_args(info, as);
 | |
|                     }
 | |
|                 }
 | |
|             } else {
 | |
|                 info->secondary_cpu_reset_hook(cpu, info);
 | |
|             }
 | |
|         }
 | |
|         arm_rebuild_hflags(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
 | |
|  *                          by key.
 | |
|  * @fw_cfg:         The firmware config instance to store the data in.
 | |
|  * @size_key:       The firmware config key to store the size of the loaded
 | |
|  *                  data under, with fw_cfg_add_i32().
 | |
|  * @data_key:       The firmware config key to store the loaded data under,
 | |
|  *                  with fw_cfg_add_bytes().
 | |
|  * @image_name:     The name of the image file to load. If it is NULL, the
 | |
|  *                  function returns without doing anything.
 | |
|  * @try_decompress: Whether the image should be decompressed (gunzipped) before
 | |
|  *                  adding it to fw_cfg. If decompression fails, the image is
 | |
|  *                  loaded as-is.
 | |
|  *
 | |
|  * In case of failure, the function prints an error message to stderr and the
 | |
|  * process exits with status 1.
 | |
|  */
 | |
| static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
 | |
|                                  uint16_t data_key, const char *image_name,
 | |
|                                  bool try_decompress)
 | |
| {
 | |
|     size_t size = -1;
 | |
|     uint8_t *data;
 | |
| 
 | |
|     if (image_name == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (try_decompress) {
 | |
|         size = load_image_gzipped_buffer(image_name,
 | |
|                                          LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
 | |
|     }
 | |
| 
 | |
|     if (size == (size_t)-1) {
 | |
|         gchar *contents;
 | |
|         gsize length;
 | |
| 
 | |
|         if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
 | |
|             error_report("failed to load \"%s\"", image_name);
 | |
|             exit(1);
 | |
|         }
 | |
|         size = length;
 | |
|         data = (uint8_t *)contents;
 | |
|     }
 | |
| 
 | |
|     fw_cfg_add_i32(fw_cfg, size_key, size);
 | |
|     fw_cfg_add_bytes(fw_cfg, data_key, data, size);
 | |
| }
 | |
| 
 | |
| static int do_arm_linux_init(Object *obj, void *opaque)
 | |
| {
 | |
|     if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
 | |
|         ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
 | |
|         ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
 | |
|         struct arm_boot_info *info = opaque;
 | |
| 
 | |
|         if (albifc->arm_linux_init) {
 | |
|             albifc->arm_linux_init(albif, info->secure_boot);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
 | |
|                             uint64_t *lowaddr, uint64_t *highaddr,
 | |
|                             int elf_machine, AddressSpace *as)
 | |
| {
 | |
|     bool elf_is64;
 | |
|     union {
 | |
|         Elf32_Ehdr h32;
 | |
|         Elf64_Ehdr h64;
 | |
|     } elf_header;
 | |
|     int data_swab = 0;
 | |
|     bool big_endian;
 | |
|     int64_t ret = -1;
 | |
|     Error *err = NULL;
 | |
| 
 | |
| 
 | |
|     load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
 | |
|     if (err) {
 | |
|         error_free(err);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (elf_is64) {
 | |
|         big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
 | |
|         info->endianness = big_endian ? ARM_ENDIANNESS_BE8
 | |
|                                       : ARM_ENDIANNESS_LE;
 | |
|     } else {
 | |
|         big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
 | |
|         if (big_endian) {
 | |
|             if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
 | |
|                 info->endianness = ARM_ENDIANNESS_BE8;
 | |
|             } else {
 | |
|                 info->endianness = ARM_ENDIANNESS_BE32;
 | |
|                 /* In BE32, the CPU has a different view of the per-byte
 | |
|                  * address map than the rest of the system. BE32 ELF files
 | |
|                  * are organised such that they can be programmed through
 | |
|                  * the CPU's per-word byte-reversed view of the world. QEMU
 | |
|                  * however loads ELF files independently of the CPU. So
 | |
|                  * tell the ELF loader to byte reverse the data for us.
 | |
|                  */
 | |
|                 data_swab = 2;
 | |
|             }
 | |
|         } else {
 | |
|             info->endianness = ARM_ENDIANNESS_LE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
 | |
|                       pentry, lowaddr, highaddr, NULL, big_endian, elf_machine,
 | |
|                       1, data_swab, as);
 | |
|     if (ret <= 0) {
 | |
|         /* The header loaded but the image didn't */
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
 | |
|                                    hwaddr *entry, AddressSpace *as)
 | |
| {
 | |
|     hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
 | |
|     uint64_t kernel_size = 0;
 | |
|     uint8_t *buffer;
 | |
|     int size;
 | |
| 
 | |
|     /* On aarch64, it's the bootloader's job to uncompress the kernel. */
 | |
|     size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
 | |
|                                      &buffer);
 | |
| 
 | |
|     if (size < 0) {
 | |
|         gsize len;
 | |
| 
 | |
|         /* Load as raw file otherwise */
 | |
|         if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
 | |
|             return -1;
 | |
|         }
 | |
|         size = len;
 | |
|     }
 | |
| 
 | |
|     /* check the arm64 magic header value -- very old kernels may not have it */
 | |
|     if (size > ARM64_MAGIC_OFFSET + 4 &&
 | |
|         memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
 | |
|         uint64_t hdrvals[2];
 | |
| 
 | |
|         /* The arm64 Image header has text_offset and image_size fields at 8 and
 | |
|          * 16 bytes into the Image header, respectively. The text_offset field
 | |
|          * is only valid if the image_size is non-zero.
 | |
|          */
 | |
|         memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
 | |
| 
 | |
|         kernel_size = le64_to_cpu(hdrvals[1]);
 | |
| 
 | |
|         if (kernel_size != 0) {
 | |
|             kernel_load_offset = le64_to_cpu(hdrvals[0]);
 | |
| 
 | |
|             /*
 | |
|              * We write our startup "bootloader" at the very bottom of RAM,
 | |
|              * so that bit can't be used for the image. Luckily the Image
 | |
|              * format specification is that the image requests only an offset
 | |
|              * from a 2MB boundary, not an absolute load address. So if the
 | |
|              * image requests an offset that might mean it overlaps with the
 | |
|              * bootloader, we can just load it starting at 2MB+offset rather
 | |
|              * than 0MB + offset.
 | |
|              */
 | |
|             if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
 | |
|                 kernel_load_offset += 2 * MiB;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Kernels before v3.17 don't populate the image_size field, and
 | |
|      * raw images have no header. For those our best guess at the size
 | |
|      * is the size of the Image file itself.
 | |
|      */
 | |
|     if (kernel_size == 0) {
 | |
|         kernel_size = size;
 | |
|     }
 | |
| 
 | |
|     *entry = mem_base + kernel_load_offset;
 | |
|     rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
 | |
| 
 | |
|     g_free(buffer);
 | |
| 
 | |
|     return kernel_size;
 | |
| }
 | |
| 
 | |
| static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
 | |
|                                          struct arm_boot_info *info)
 | |
| {
 | |
|     /* Set up for a direct boot of a kernel image file. */
 | |
|     CPUState *cs;
 | |
|     AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
|     int kernel_size;
 | |
|     int initrd_size;
 | |
|     int is_linux = 0;
 | |
|     uint64_t elf_entry;
 | |
|     /* Addresses of first byte used and first byte not used by the image */
 | |
|     uint64_t image_low_addr = 0, image_high_addr = 0;
 | |
|     int elf_machine;
 | |
|     hwaddr entry;
 | |
|     static const ARMInsnFixup *primary_loader;
 | |
|     uint64_t ram_end = info->loader_start + info->ram_size;
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         primary_loader = bootloader_aarch64;
 | |
|         elf_machine = EM_AARCH64;
 | |
|     } else {
 | |
|         primary_loader = bootloader;
 | |
|         if (!info->write_board_setup) {
 | |
|             primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
 | |
|         }
 | |
|         elf_machine = EM_ARM;
 | |
|     }
 | |
| 
 | |
|     if (!info->secondary_cpu_reset_hook) {
 | |
|         info->secondary_cpu_reset_hook = default_reset_secondary;
 | |
|     }
 | |
|     if (!info->write_secondary_boot) {
 | |
|         info->write_secondary_boot = default_write_secondary;
 | |
|     }
 | |
| 
 | |
|     if (info->nb_cpus == 0)
 | |
|         info->nb_cpus = 1;
 | |
| 
 | |
|     /* Assume that raw images are linux kernels, and ELF images are not.  */
 | |
|     kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
 | |
|                                &image_high_addr, elf_machine, as);
 | |
|     if (kernel_size > 0 && have_dtb(info)) {
 | |
|         /*
 | |
|          * If there is still some room left at the base of RAM, try and put
 | |
|          * the DTB there like we do for images loaded with -bios or -pflash.
 | |
|          */
 | |
|         if (image_low_addr > info->loader_start
 | |
|             || image_high_addr < info->loader_start) {
 | |
|             /*
 | |
|              * Set image_low_addr as address limit for arm_load_dtb if it may be
 | |
|              * pointing into RAM, otherwise pass '0' (no limit)
 | |
|              */
 | |
|             if (image_low_addr < info->loader_start) {
 | |
|                 image_low_addr = 0;
 | |
|             }
 | |
|             info->dtb_start = info->loader_start;
 | |
|             info->dtb_limit = image_low_addr;
 | |
|         }
 | |
|     }
 | |
|     entry = elf_entry;
 | |
|     if (kernel_size < 0) {
 | |
|         uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
 | |
|         kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
 | |
|                                      &is_linux, NULL, NULL, as);
 | |
|         if (kernel_size >= 0) {
 | |
|             image_low_addr = loadaddr;
 | |
|             image_high_addr = image_low_addr + kernel_size;
 | |
|         }
 | |
|     }
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
 | |
|         kernel_size = load_aarch64_image(info->kernel_filename,
 | |
|                                          info->loader_start, &entry, as);
 | |
|         is_linux = 1;
 | |
|         if (kernel_size >= 0) {
 | |
|             image_low_addr = entry;
 | |
|             image_high_addr = image_low_addr + kernel_size;
 | |
|         }
 | |
|     } else if (kernel_size < 0) {
 | |
|         /* 32-bit ARM */
 | |
|         entry = info->loader_start + KERNEL_LOAD_ADDR;
 | |
|         kernel_size = load_image_targphys_as(info->kernel_filename, entry,
 | |
|                                              ram_end - KERNEL_LOAD_ADDR, as);
 | |
|         is_linux = 1;
 | |
|         if (kernel_size >= 0) {
 | |
|             image_low_addr = entry;
 | |
|             image_high_addr = image_low_addr + kernel_size;
 | |
|         }
 | |
|     }
 | |
|     if (kernel_size < 0) {
 | |
|         error_report("could not load kernel '%s'", info->kernel_filename);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (kernel_size > info->ram_size) {
 | |
|         error_report("kernel '%s' is too large to fit in RAM "
 | |
|                      "(kernel size %d, RAM size %" PRId64 ")",
 | |
|                      info->kernel_filename, kernel_size, info->ram_size);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     info->entry = entry;
 | |
| 
 | |
|     /*
 | |
|      * We want to put the initrd far enough into RAM that when the
 | |
|      * kernel is uncompressed it will not clobber the initrd. However
 | |
|      * on boards without much RAM we must ensure that we still leave
 | |
|      * enough room for a decent sized initrd, and on boards with large
 | |
|      * amounts of RAM we must avoid the initrd being so far up in RAM
 | |
|      * that it is outside lowmem and inaccessible to the kernel.
 | |
|      * So for boards with less  than 256MB of RAM we put the initrd
 | |
|      * halfway into RAM, and for boards with 256MB of RAM or more we put
 | |
|      * the initrd at 128MB.
 | |
|      * We also refuse to put the initrd somewhere that will definitely
 | |
|      * overlay the kernel we just loaded, though for kernel formats which
 | |
|      * don't tell us their exact size (eg self-decompressing 32-bit kernels)
 | |
|      * we might still make a bad choice here.
 | |
|      */
 | |
|     info->initrd_start = info->loader_start +
 | |
|         MIN(info->ram_size / 2, 128 * MiB);
 | |
|     if (image_high_addr) {
 | |
|         info->initrd_start = MAX(info->initrd_start, image_high_addr);
 | |
|     }
 | |
|     info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
 | |
| 
 | |
|     if (is_linux) {
 | |
|         uint32_t fixupcontext[FIXUP_MAX];
 | |
| 
 | |
|         if (info->initrd_filename) {
 | |
| 
 | |
|             if (info->initrd_start >= ram_end) {
 | |
|                 error_report("not enough space after kernel to load initrd");
 | |
|                 exit(1);
 | |
|             }
 | |
| 
 | |
|             initrd_size = load_ramdisk_as(info->initrd_filename,
 | |
|                                           info->initrd_start,
 | |
|                                           ram_end - info->initrd_start, as);
 | |
|             if (initrd_size < 0) {
 | |
|                 initrd_size = load_image_targphys_as(info->initrd_filename,
 | |
|                                                      info->initrd_start,
 | |
|                                                      ram_end -
 | |
|                                                      info->initrd_start,
 | |
|                                                      as);
 | |
|             }
 | |
|             if (initrd_size < 0) {
 | |
|                 error_report("could not load initrd '%s'",
 | |
|                              info->initrd_filename);
 | |
|                 exit(1);
 | |
|             }
 | |
|             if (info->initrd_start + initrd_size > ram_end) {
 | |
|                 error_report("could not load initrd '%s': "
 | |
|                              "too big to fit into RAM after the kernel",
 | |
|                              info->initrd_filename);
 | |
|                 exit(1);
 | |
|             }
 | |
|         } else {
 | |
|             initrd_size = 0;
 | |
|         }
 | |
|         info->initrd_size = initrd_size;
 | |
| 
 | |
|         fixupcontext[FIXUP_BOARDID] = info->board_id;
 | |
|         fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
 | |
| 
 | |
|         /*
 | |
|          * for device tree boot, we pass the DTB directly in r2. Otherwise
 | |
|          * we point to the kernel args.
 | |
|          */
 | |
|         if (have_dtb(info)) {
 | |
|             hwaddr align;
 | |
| 
 | |
|             if (elf_machine == EM_AARCH64) {
 | |
|                 /*
 | |
|                  * Some AArch64 kernels on early bootup map the fdt region as
 | |
|                  *
 | |
|                  *   [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
 | |
|                  *
 | |
|                  * Let's play safe and prealign it to 2MB to give us some space.
 | |
|                  */
 | |
|                 align = 2 * MiB;
 | |
|             } else {
 | |
|                 /*
 | |
|                  * Some 32bit kernels will trash anything in the 4K page the
 | |
|                  * initrd ends in, so make sure the DTB isn't caught up in that.
 | |
|                  */
 | |
|                 align = 4 * KiB;
 | |
|             }
 | |
| 
 | |
|             /* Place the DTB after the initrd in memory with alignment. */
 | |
|             info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
 | |
|                                            align);
 | |
|             if (info->dtb_start >= ram_end) {
 | |
|                 error_report("Not enough space for DTB after kernel/initrd");
 | |
|                 exit(1);
 | |
|             }
 | |
|             fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
 | |
|             fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
 | |
|         } else {
 | |
|             fixupcontext[FIXUP_ARGPTR_LO] =
 | |
|                 info->loader_start + KERNEL_ARGS_ADDR;
 | |
|             fixupcontext[FIXUP_ARGPTR_HI] =
 | |
|                 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
 | |
|             if (info->ram_size >= 4 * GiB) {
 | |
|                 error_report("RAM size must be less than 4GB to boot"
 | |
|                              " Linux kernel using ATAGS (try passing a device tree"
 | |
|                              " using -dtb)");
 | |
|                 exit(1);
 | |
|             }
 | |
|         }
 | |
|         fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
 | |
|         fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
 | |
| 
 | |
|         write_bootloader("bootloader", info->loader_start,
 | |
|                          primary_loader, fixupcontext, as);
 | |
| 
 | |
|         if (info->nb_cpus > 1) {
 | |
|             info->write_secondary_boot(cpu, info);
 | |
|         }
 | |
|         if (info->write_board_setup) {
 | |
|             info->write_board_setup(cpu, info);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Notify devices which need to fake up firmware initialization
 | |
|          * that we're doing a direct kernel boot.
 | |
|          */
 | |
|         object_child_foreach_recursive(object_get_root(),
 | |
|                                        do_arm_linux_init, info);
 | |
|     }
 | |
|     info->is_linux = is_linux;
 | |
| 
 | |
|     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
 | |
|         ARM_CPU(cs)->env.boot_info = info;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
 | |
| {
 | |
|     /* Set up for booting firmware (which might load a kernel via fw_cfg) */
 | |
| 
 | |
|     if (have_dtb(info)) {
 | |
|         /*
 | |
|          * If we have a device tree blob, but no kernel to supply it to (or
 | |
|          * the kernel is supposed to be loaded by the bootloader), copy the
 | |
|          * DTB to the base of RAM for the bootloader to pick up.
 | |
|          */
 | |
|         info->dtb_start = info->loader_start;
 | |
|     }
 | |
| 
 | |
|     if (info->kernel_filename) {
 | |
|         FWCfgState *fw_cfg;
 | |
|         bool try_decompressing_kernel;
 | |
| 
 | |
|         fw_cfg = fw_cfg_find();
 | |
|         try_decompressing_kernel = arm_feature(&cpu->env,
 | |
|                                                ARM_FEATURE_AARCH64);
 | |
| 
 | |
|         /*
 | |
|          * Expose the kernel, the command line, and the initrd in fw_cfg.
 | |
|          * We don't process them here at all, it's all left to the
 | |
|          * firmware.
 | |
|          */
 | |
|         load_image_to_fw_cfg(fw_cfg,
 | |
|                              FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
 | |
|                              info->kernel_filename,
 | |
|                              try_decompressing_kernel);
 | |
|         load_image_to_fw_cfg(fw_cfg,
 | |
|                              FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
 | |
|                              info->initrd_filename, false);
 | |
| 
 | |
|         if (info->kernel_cmdline) {
 | |
|             fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
 | |
|                            strlen(info->kernel_cmdline) + 1);
 | |
|             fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
 | |
|                               info->kernel_cmdline);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We will start from address 0 (typically a boot ROM image) in the
 | |
|      * same way as hardware. Leave env->boot_info NULL, so that
 | |
|      * do_cpu_reset() knows it does not need to alter the PC on reset.
 | |
|      */
 | |
| }
 | |
| 
 | |
| void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
 | |
| {
 | |
|     CPUState *cs;
 | |
|     AddressSpace *as = arm_boot_address_space(cpu, info);
 | |
| 
 | |
|     /*
 | |
|      * CPU objects (unlike devices) are not automatically reset on system
 | |
|      * reset, so we must always register a handler to do so. If we're
 | |
|      * actually loading a kernel, the handler is also responsible for
 | |
|      * arranging that we start it correctly.
 | |
|      */
 | |
|     for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
 | |
|         qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The board code is not supposed to set secure_board_setup unless
 | |
|      * running its code in secure mode is actually possible, and KVM
 | |
|      * doesn't support secure.
 | |
|      */
 | |
|     assert(!(info->secure_board_setup && kvm_enabled()));
 | |
|     info->kernel_filename = ms->kernel_filename;
 | |
|     info->kernel_cmdline = ms->kernel_cmdline;
 | |
|     info->initrd_filename = ms->initrd_filename;
 | |
|     info->dtb_filename = ms->dtb;
 | |
|     info->dtb_limit = 0;
 | |
| 
 | |
|     /* Load the kernel.  */
 | |
|     if (!info->kernel_filename || info->firmware_loaded) {
 | |
|         arm_setup_firmware_boot(cpu, info);
 | |
|     } else {
 | |
|         arm_setup_direct_kernel_boot(cpu, info);
 | |
|     }
 | |
| 
 | |
|     if (!info->skip_dtb_autoload && have_dtb(info)) {
 | |
|         if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const TypeInfo arm_linux_boot_if_info = {
 | |
|     .name = TYPE_ARM_LINUX_BOOT_IF,
 | |
|     .parent = TYPE_INTERFACE,
 | |
|     .class_size = sizeof(ARMLinuxBootIfClass),
 | |
| };
 | |
| 
 | |
| static void arm_linux_boot_register_types(void)
 | |
| {
 | |
|     type_register_static(&arm_linux_boot_if_info);
 | |
| }
 | |
| 
 | |
| type_init(arm_linux_boot_register_types)
 |