Use device_class_set_legacy_reset() instead of opencoding an
assignment to DeviceClass::reset. This change was produced
with:
 spatch --macro-file scripts/cocci-macro-file.h \
    --sp-file scripts/coccinelle/device-reset.cocci \
    --keep-comments --smpl-spacing --in-place --dir hw
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20240830145812.1967042-8-peter.maydell@linaro.org
		
	
			
		
			
				
	
	
		
			1087 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1087 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * NeXT Cube System Driver
 | 
						|
 *
 | 
						|
 * Copyright (c) 2011 Bryce Lanham
 | 
						|
 *
 | 
						|
 * This code is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public License as published
 | 
						|
 * by the Free Software Foundation; either version 2 of the License,
 | 
						|
 * or (at your option) any later version.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "exec/hwaddr.h"
 | 
						|
#include "sysemu/sysemu.h"
 | 
						|
#include "sysemu/qtest.h"
 | 
						|
#include "hw/irq.h"
 | 
						|
#include "hw/m68k/next-cube.h"
 | 
						|
#include "hw/boards.h"
 | 
						|
#include "hw/loader.h"
 | 
						|
#include "hw/scsi/esp.h"
 | 
						|
#include "hw/sysbus.h"
 | 
						|
#include "qom/object.h"
 | 
						|
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
 | 
						|
#include "hw/block/fdc.h"
 | 
						|
#include "hw/qdev-properties.h"
 | 
						|
#include "qapi/error.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "ui/console.h"
 | 
						|
#include "target/m68k/cpu.h"
 | 
						|
#include "migration/vmstate.h"
 | 
						|
 | 
						|
/* #define DEBUG_NEXT */
 | 
						|
#ifdef DEBUG_NEXT
 | 
						|
#define DPRINTF(fmt, ...) \
 | 
						|
    do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
 | 
						|
#else
 | 
						|
#define DPRINTF(fmt, ...) do { } while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
 | 
						|
OBJECT_DECLARE_SIMPLE_TYPE(NeXTState, NEXT_MACHINE)
 | 
						|
 | 
						|
#define ENTRY       0x0100001e
 | 
						|
#define RAM_SIZE    0x4000000
 | 
						|
#define ROM_FILE    "Rev_2.5_v66.bin"
 | 
						|
 | 
						|
typedef struct next_dma {
 | 
						|
    uint32_t csr;
 | 
						|
 | 
						|
    uint32_t saved_next;
 | 
						|
    uint32_t saved_limit;
 | 
						|
    uint32_t saved_start;
 | 
						|
    uint32_t saved_stop;
 | 
						|
 | 
						|
    uint32_t next;
 | 
						|
    uint32_t limit;
 | 
						|
    uint32_t start;
 | 
						|
    uint32_t stop;
 | 
						|
 | 
						|
    uint32_t next_initbuf;
 | 
						|
    uint32_t size;
 | 
						|
} next_dma;
 | 
						|
 | 
						|
typedef struct NextRtc {
 | 
						|
    int8_t phase;
 | 
						|
    uint8_t ram[32];
 | 
						|
    uint8_t command;
 | 
						|
    uint8_t value;
 | 
						|
    uint8_t status;
 | 
						|
    uint8_t control;
 | 
						|
    uint8_t retval;
 | 
						|
} NextRtc;
 | 
						|
 | 
						|
struct NeXTState {
 | 
						|
    MachineState parent;
 | 
						|
 | 
						|
    MemoryRegion rom;
 | 
						|
    MemoryRegion rom2;
 | 
						|
    MemoryRegion dmamem;
 | 
						|
    MemoryRegion bmapm1;
 | 
						|
    MemoryRegion bmapm2;
 | 
						|
 | 
						|
    next_dma dma[10];
 | 
						|
};
 | 
						|
 | 
						|
#define TYPE_NEXT_PC "next-pc"
 | 
						|
OBJECT_DECLARE_SIMPLE_TYPE(NeXTPC, NEXT_PC)
 | 
						|
 | 
						|
/* NeXT Peripheral Controller */
 | 
						|
struct NeXTPC {
 | 
						|
    SysBusDevice parent_obj;
 | 
						|
 | 
						|
    M68kCPU *cpu;
 | 
						|
 | 
						|
    MemoryRegion mmiomem;
 | 
						|
    MemoryRegion scrmem;
 | 
						|
 | 
						|
    uint32_t scr1;
 | 
						|
    uint32_t scr2;
 | 
						|
    uint32_t old_scr2;
 | 
						|
    uint32_t int_mask;
 | 
						|
    uint32_t int_status;
 | 
						|
    uint32_t led;
 | 
						|
    uint8_t scsi_csr_1;
 | 
						|
    uint8_t scsi_csr_2;
 | 
						|
 | 
						|
    qemu_irq scsi_reset;
 | 
						|
    qemu_irq scsi_dma;
 | 
						|
 | 
						|
    NextRtc rtc;
 | 
						|
};
 | 
						|
 | 
						|
/* Thanks to NeXT forums for this */
 | 
						|
/*
 | 
						|
static const uint8_t rtc_ram3[32] = {
 | 
						|
    0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
 | 
						|
    0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
 | 
						|
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
 | 
						|
};
 | 
						|
*/
 | 
						|
static const uint8_t rtc_ram2[32] = {
 | 
						|
    0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
 | 
						|
    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
 | 
						|
    0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
 | 
						|
    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
 | 
						|
};
 | 
						|
 | 
						|
#define SCR2_RTCLK 0x2
 | 
						|
#define SCR2_RTDATA 0x4
 | 
						|
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
 | 
						|
 | 
						|
static void next_scr2_led_update(NeXTPC *s)
 | 
						|
{
 | 
						|
    if (s->scr2 & 0x1) {
 | 
						|
        DPRINTF("fault!\n");
 | 
						|
        s->led++;
 | 
						|
        if (s->led == 10) {
 | 
						|
            DPRINTF("LED flashing, possible fault!\n");
 | 
						|
            s->led = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void next_scr2_rtc_update(NeXTPC *s)
 | 
						|
{
 | 
						|
    uint8_t old_scr2, scr2_2;
 | 
						|
    NextRtc *rtc = &s->rtc;
 | 
						|
 | 
						|
    old_scr2 = extract32(s->old_scr2, 8, 8);
 | 
						|
    scr2_2 = extract32(s->scr2, 8, 8);
 | 
						|
 | 
						|
    if (scr2_2 & 0x1) {
 | 
						|
        /* DPRINTF("RTC %x phase %i\n", scr2_2, rtc->phase); */
 | 
						|
        if (rtc->phase == -1) {
 | 
						|
            rtc->phase = 0;
 | 
						|
        }
 | 
						|
        /* If we are in going down clock... do something */
 | 
						|
        if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
 | 
						|
                ((scr2_2 & SCR2_RTCLK) == 0)) {
 | 
						|
            if (rtc->phase < 8) {
 | 
						|
                rtc->command = (rtc->command << 1) |
 | 
						|
                               ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | 
						|
            }
 | 
						|
            if (rtc->phase >= 8 && rtc->phase < 16) {
 | 
						|
                rtc->value = (rtc->value << 1) |
 | 
						|
                             ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | 
						|
 | 
						|
                /* if we read RAM register, output RT_DATA bit */
 | 
						|
                if (rtc->command <= 0x1F) {
 | 
						|
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | 
						|
                    if (rtc->ram[rtc->command] & (0x80 >> (rtc->phase - 8))) {
 | 
						|
                        scr2_2 |= SCR2_RTDATA;
 | 
						|
                    }
 | 
						|
 | 
						|
                    rtc->retval = (rtc->retval << 1) |
 | 
						|
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | 
						|
                }
 | 
						|
                /* read the status 0x30 */
 | 
						|
                if (rtc->command == 0x30) {
 | 
						|
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | 
						|
                    /* for now status = 0x98 (new rtc + FTU) */
 | 
						|
                    if (rtc->status & (0x80 >> (rtc->phase - 8))) {
 | 
						|
                        scr2_2 |= SCR2_RTDATA;
 | 
						|
                    }
 | 
						|
 | 
						|
                    rtc->retval = (rtc->retval << 1) |
 | 
						|
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | 
						|
                }
 | 
						|
                /* read the status 0x31 */
 | 
						|
                if (rtc->command == 0x31) {
 | 
						|
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | 
						|
                    if (rtc->control & (0x80 >> (rtc->phase - 8))) {
 | 
						|
                        scr2_2 |= SCR2_RTDATA;
 | 
						|
                    }
 | 
						|
                    rtc->retval = (rtc->retval << 1) |
 | 
						|
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | 
						|
                }
 | 
						|
 | 
						|
                if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
 | 
						|
                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
 | 
						|
                    /* for now 0x00 */
 | 
						|
                    time_t time_h = time(NULL);
 | 
						|
                    struct tm *info = localtime(&time_h);
 | 
						|
                    int ret = 0;
 | 
						|
 | 
						|
                    switch (rtc->command) {
 | 
						|
                    case 0x20:
 | 
						|
                        ret = SCR2_TOBCD(info->tm_sec);
 | 
						|
                        break;
 | 
						|
                    case 0x21:
 | 
						|
                        ret = SCR2_TOBCD(info->tm_min);
 | 
						|
                        break;
 | 
						|
                    case 0x22:
 | 
						|
                        ret = SCR2_TOBCD(info->tm_hour);
 | 
						|
                        break;
 | 
						|
                    case 0x24:
 | 
						|
                        ret = SCR2_TOBCD(info->tm_mday);
 | 
						|
                        break;
 | 
						|
                    case 0x25:
 | 
						|
                        ret = SCR2_TOBCD((info->tm_mon + 1));
 | 
						|
                        break;
 | 
						|
                    case 0x26:
 | 
						|
                        ret = SCR2_TOBCD((info->tm_year - 100));
 | 
						|
                        break;
 | 
						|
 | 
						|
                    }
 | 
						|
 | 
						|
                    if (ret & (0x80 >> (rtc->phase - 8))) {
 | 
						|
                        scr2_2 |= SCR2_RTDATA;
 | 
						|
                    }
 | 
						|
                    rtc->retval = (rtc->retval << 1) |
 | 
						|
                                  ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
 | 
						|
                }
 | 
						|
 | 
						|
            }
 | 
						|
 | 
						|
            rtc->phase++;
 | 
						|
            if (rtc->phase == 16) {
 | 
						|
                if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
 | 
						|
                    rtc->ram[rtc->command - 0x80] = rtc->value;
 | 
						|
                }
 | 
						|
                /* write to x30 register */
 | 
						|
                if (rtc->command == 0xB1) {
 | 
						|
                    /* clear FTU */
 | 
						|
                    if (rtc->value & 0x04) {
 | 
						|
                        rtc->status = rtc->status & (~0x18);
 | 
						|
                        s->int_status = s->int_status & (~0x04);
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        /* else end or abort */
 | 
						|
        rtc->phase = -1;
 | 
						|
        rtc->command = 0;
 | 
						|
        rtc->value = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    s->scr2 = deposit32(s->scr2, 8, 8, scr2_2);
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t next_mmio_read(void *opaque, hwaddr addr, unsigned size)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(opaque);
 | 
						|
    uint64_t val;
 | 
						|
 | 
						|
    switch (addr) {
 | 
						|
    case 0x7000:
 | 
						|
        /* DPRINTF("Read INT status: %x\n", s->int_status); */
 | 
						|
        val = s->int_status;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0x7800:
 | 
						|
        DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
 | 
						|
        val = s->int_mask;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0xc000 ... 0xc003:
 | 
						|
        val = extract32(s->scr1, (4 - (addr - 0xc000) - size) << 3,
 | 
						|
                        size << 3);
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0xd000 ... 0xd003:
 | 
						|
        val = extract32(s->scr2, (4 - (addr - 0xd000) - size) << 3,
 | 
						|
                        size << 3);
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0x14020:
 | 
						|
        val = 0x7f;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        val = 0;
 | 
						|
        DPRINTF("MMIO Read @ 0x%"HWADDR_PRIx" size %d\n", addr, size);
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static void next_mmio_write(void *opaque, hwaddr addr, uint64_t val,
 | 
						|
                            unsigned size)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(opaque);
 | 
						|
 | 
						|
    switch (addr) {
 | 
						|
    case 0x7000:
 | 
						|
        DPRINTF("INT Status old: %x new: %x\n", s->int_status,
 | 
						|
                (unsigned int)val);
 | 
						|
        s->int_status = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0x7800:
 | 
						|
        DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, (unsigned int)val);
 | 
						|
        s->int_mask  = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0xc000 ... 0xc003:
 | 
						|
        DPRINTF("SCR1 Write: %x\n", (unsigned int)val);
 | 
						|
        s->scr1 = deposit32(s->scr1, (4 - (addr - 0xc000) - size) << 3,
 | 
						|
                            size << 3, val);
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0xd000 ... 0xd003:
 | 
						|
        s->scr2 = deposit32(s->scr2, (4 - (addr - 0xd000) - size) << 3,
 | 
						|
                            size << 3, val);
 | 
						|
        next_scr2_led_update(s);
 | 
						|
        next_scr2_rtc_update(s);
 | 
						|
        s->old_scr2 = s->scr2;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        DPRINTF("MMIO Write @ 0x%"HWADDR_PRIx " with 0x%x size %u\n", addr,
 | 
						|
                (unsigned int)val, size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps next_mmio_ops = {
 | 
						|
    .read = next_mmio_read,
 | 
						|
    .write = next_mmio_write,
 | 
						|
    .valid.min_access_size = 1,
 | 
						|
    .valid.max_access_size = 4,
 | 
						|
    .endianness = DEVICE_BIG_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
#define SCSICSR_ENABLE  0x01
 | 
						|
#define SCSICSR_RESET   0x02  /* reset scsi dma */
 | 
						|
#define SCSICSR_FIFOFL  0x04
 | 
						|
#define SCSICSR_DMADIR  0x08  /* if set, scsi to mem */
 | 
						|
#define SCSICSR_CPUDMA  0x10  /* if set, dma enabled */
 | 
						|
#define SCSICSR_INTMASK 0x20  /* if set, interrupt enabled */
 | 
						|
 | 
						|
static uint64_t next_scr_readfn(void *opaque, hwaddr addr, unsigned size)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(opaque);
 | 
						|
    uint64_t val;
 | 
						|
 | 
						|
    switch (addr) {
 | 
						|
    case 0x14108:
 | 
						|
        DPRINTF("FD read @ %x\n", (unsigned int)addr);
 | 
						|
        val = 0x40 | 0x04 | 0x2 | 0x1;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0x14020:
 | 
						|
        DPRINTF("SCSI 4020  STATUS READ %X\n", s->scsi_csr_1);
 | 
						|
        val = s->scsi_csr_1;
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0x14021:
 | 
						|
        DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
 | 
						|
        val = 0x40;
 | 
						|
        break;
 | 
						|
 | 
						|
    /*
 | 
						|
     * These 4 registers are the hardware timer, not sure which register
 | 
						|
     * is the latch instead of data, but no problems so far.
 | 
						|
     *
 | 
						|
     * Hack: We need to have the LSB change consistently to make it work
 | 
						|
     */
 | 
						|
    case 0x1a000 ... 0x1a003:
 | 
						|
        val = extract32(clock(), (4 - (addr - 0x1a000) - size) << 3,
 | 
						|
                        size << 3);
 | 
						|
        break;
 | 
						|
 | 
						|
    /* For now return dummy byte to allow the Ethernet test to timeout */
 | 
						|
    case 0x6000:
 | 
						|
        val = 0xff;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        DPRINTF("BMAP Read @ 0x%x size %u\n", (unsigned int)addr, size);
 | 
						|
        val = 0;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static void next_scr_writefn(void *opaque, hwaddr addr, uint64_t val,
 | 
						|
                             unsigned size)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(opaque);
 | 
						|
 | 
						|
    switch (addr) {
 | 
						|
    case 0x14108:
 | 
						|
        DPRINTF("FDCSR Write: %x\n", value);
 | 
						|
        if (val == 0x0) {
 | 
						|
            /* qemu_irq_raise(s->fd_irq[0]); */
 | 
						|
        }
 | 
						|
        break;
 | 
						|
 | 
						|
    case 0x14020: /* SCSI Control Register */
 | 
						|
        if (val & SCSICSR_FIFOFL) {
 | 
						|
            DPRINTF("SCSICSR FIFO Flush\n");
 | 
						|
            /* will have to add another irq to the esp if this is needed */
 | 
						|
            /* esp_puflush_fifo(esp_g); */
 | 
						|
        }
 | 
						|
 | 
						|
        if (val & SCSICSR_ENABLE) {
 | 
						|
            DPRINTF("SCSICSR Enable\n");
 | 
						|
            /*
 | 
						|
             * qemu_irq_raise(s->scsi_dma);
 | 
						|
             * s->scsi_csr_1 = 0xc0;
 | 
						|
             * s->scsi_csr_1 |= 0x1;
 | 
						|
             * qemu_irq_pulse(s->scsi_dma);
 | 
						|
             */
 | 
						|
        }
 | 
						|
        /*
 | 
						|
         * else
 | 
						|
         *     s->scsi_csr_1 &= ~SCSICSR_ENABLE;
 | 
						|
         */
 | 
						|
 | 
						|
        if (val & SCSICSR_RESET) {
 | 
						|
            DPRINTF("SCSICSR Reset\n");
 | 
						|
            /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
 | 
						|
            qemu_irq_raise(s->scsi_reset);
 | 
						|
            s->scsi_csr_1 &= ~(SCSICSR_INTMASK | 0x80 | 0x1);
 | 
						|
            qemu_irq_lower(s->scsi_reset);
 | 
						|
        }
 | 
						|
        if (val & SCSICSR_DMADIR) {
 | 
						|
            DPRINTF("SCSICSR DMAdir\n");
 | 
						|
        }
 | 
						|
        if (val & SCSICSR_CPUDMA) {
 | 
						|
            DPRINTF("SCSICSR CPUDMA\n");
 | 
						|
            /* qemu_irq_raise(s->scsi_dma); */
 | 
						|
            s->int_status |= 0x4000000;
 | 
						|
        } else {
 | 
						|
            /* fprintf(stderr,"SCSICSR CPUDMA disabled\n"); */
 | 
						|
            s->int_status &= ~(0x4000000);
 | 
						|
            /* qemu_irq_lower(s->scsi_dma); */
 | 
						|
        }
 | 
						|
        if (val & SCSICSR_INTMASK) {
 | 
						|
            DPRINTF("SCSICSR INTMASK\n");
 | 
						|
            /*
 | 
						|
             * int_mask &= ~0x1000;
 | 
						|
             * s->scsi_csr_1 |= val;
 | 
						|
             * s->scsi_csr_1 &= ~SCSICSR_INTMASK;
 | 
						|
             * if (s->scsi_queued) {
 | 
						|
             *     s->scsi_queued = 0;
 | 
						|
             *     next_irq(s, NEXT_SCSI_I, level);
 | 
						|
             * }
 | 
						|
             */
 | 
						|
        } else {
 | 
						|
            /* int_mask |= 0x1000; */
 | 
						|
        }
 | 
						|
        if (val & 0x80) {
 | 
						|
            /* int_mask |= 0x1000; */
 | 
						|
            /* s->scsi_csr_1 |= 0x80; */
 | 
						|
        }
 | 
						|
        DPRINTF("SCSICSR Write: %x\n", val);
 | 
						|
        /* s->scsi_csr_1 = val; */
 | 
						|
        break;
 | 
						|
 | 
						|
    /* Hardware timer latch - not implemented yet */
 | 
						|
    case 0x1a000:
 | 
						|
    default:
 | 
						|
        DPRINTF("BMAP Write @ 0x%x with 0x%x size %u\n", (unsigned int)addr,
 | 
						|
                val, size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps next_scr_ops = {
 | 
						|
    .read = next_scr_readfn,
 | 
						|
    .write = next_scr_writefn,
 | 
						|
    .valid.min_access_size = 1,
 | 
						|
    .valid.max_access_size = 4,
 | 
						|
    .endianness = DEVICE_BIG_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
#define NEXTDMA_SCSI(x)      (0x10 + x)
 | 
						|
#define NEXTDMA_FD(x)        (0x10 + x)
 | 
						|
#define NEXTDMA_ENTX(x)      (0x110 + x)
 | 
						|
#define NEXTDMA_ENRX(x)      (0x150 + x)
 | 
						|
#define NEXTDMA_CSR          0x0
 | 
						|
#define NEXTDMA_NEXT         0x4000
 | 
						|
#define NEXTDMA_LIMIT        0x4004
 | 
						|
#define NEXTDMA_START        0x4008
 | 
						|
#define NEXTDMA_STOP         0x400c
 | 
						|
#define NEXTDMA_NEXT_INIT    0x4200
 | 
						|
#define NEXTDMA_SIZE         0x4204
 | 
						|
 | 
						|
static void next_dma_write(void *opaque, hwaddr addr, uint64_t val,
 | 
						|
                           unsigned int size)
 | 
						|
{
 | 
						|
    NeXTState *next_state = NEXT_MACHINE(opaque);
 | 
						|
 | 
						|
    switch (addr) {
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_CSR):
 | 
						|
        if (val & DMA_DEV2M) {
 | 
						|
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
 | 
						|
        }
 | 
						|
 | 
						|
        if (val & DMA_SETENABLE) {
 | 
						|
            /* DPRINTF("SCSI DMA ENABLE\n"); */
 | 
						|
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
 | 
						|
        }
 | 
						|
        if (val & DMA_SETSUPDATE) {
 | 
						|
            next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
 | 
						|
        }
 | 
						|
        if (val & DMA_CLRCOMPLETE) {
 | 
						|
            next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
 | 
						|
        }
 | 
						|
 | 
						|
        if (val & DMA_RESET) {
 | 
						|
            next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
 | 
						|
                                                  DMA_ENABLE | DMA_DEV2M);
 | 
						|
        }
 | 
						|
        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
 | 
						|
        next_state->dma[NEXTDMA_ENRX].next_initbuf = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_NEXT):
 | 
						|
        next_state->dma[NEXTDMA_ENRX].next = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
 | 
						|
        next_state->dma[NEXTDMA_ENRX].limit = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_CSR):
 | 
						|
        if (val & DMA_DEV2M) {
 | 
						|
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
 | 
						|
        }
 | 
						|
        if (val & DMA_SETENABLE) {
 | 
						|
            /* DPRINTF("SCSI DMA ENABLE\n"); */
 | 
						|
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
 | 
						|
        }
 | 
						|
        if (val & DMA_SETSUPDATE) {
 | 
						|
            next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
 | 
						|
        }
 | 
						|
        if (val & DMA_CLRCOMPLETE) {
 | 
						|
            next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
 | 
						|
        }
 | 
						|
 | 
						|
        if (val & DMA_RESET) {
 | 
						|
            next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
 | 
						|
                                                  DMA_ENABLE | DMA_DEV2M);
 | 
						|
            /* DPRINTF("SCSI DMA RESET\n"); */
 | 
						|
        }
 | 
						|
        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_NEXT):
 | 
						|
        next_state->dma[NEXTDMA_SCSI].next = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
 | 
						|
        next_state->dma[NEXTDMA_SCSI].limit = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_START):
 | 
						|
        next_state->dma[NEXTDMA_SCSI].start = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_STOP):
 | 
						|
        next_state->dma[NEXTDMA_SCSI].stop = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
 | 
						|
        next_state->dma[NEXTDMA_SCSI].next_initbuf = val;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t next_dma_read(void *opaque, hwaddr addr, unsigned int size)
 | 
						|
{
 | 
						|
    NeXTState *next_state = NEXT_MACHINE(opaque);
 | 
						|
    uint64_t val;
 | 
						|
 | 
						|
    switch (addr) {
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_CSR):
 | 
						|
        DPRINTF("SCSI DMA CSR READ\n");
 | 
						|
        val = next_state->dma[NEXTDMA_SCSI].csr;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_CSR):
 | 
						|
        val = next_state->dma[NEXTDMA_ENRX].csr;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
 | 
						|
        val = next_state->dma[NEXTDMA_ENRX].next_initbuf;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_NEXT):
 | 
						|
        val = next_state->dma[NEXTDMA_ENRX].next;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
 | 
						|
        val = next_state->dma[NEXTDMA_ENRX].limit;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_NEXT):
 | 
						|
        val = next_state->dma[NEXTDMA_SCSI].next;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
 | 
						|
        val = next_state->dma[NEXTDMA_SCSI].next_initbuf;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
 | 
						|
        val = next_state->dma[NEXTDMA_SCSI].limit;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_START):
 | 
						|
        val = next_state->dma[NEXTDMA_SCSI].start;
 | 
						|
        break;
 | 
						|
 | 
						|
    case NEXTDMA_SCSI(NEXTDMA_STOP):
 | 
						|
        val = next_state->dma[NEXTDMA_SCSI].stop;
 | 
						|
        break;
 | 
						|
 | 
						|
    default:
 | 
						|
        DPRINTF("DMA read @ %x\n", (unsigned int)addr);
 | 
						|
        val = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * once the csr's are done, subtract 0x3FEC from the addr, and that will
 | 
						|
     * normalize the upper registers
 | 
						|
     */
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
static const MemoryRegionOps next_dma_ops = {
 | 
						|
    .read = next_dma_read,
 | 
						|
    .write = next_dma_write,
 | 
						|
    .impl.min_access_size = 4,
 | 
						|
    .valid.min_access_size = 4,
 | 
						|
    .valid.max_access_size = 4,
 | 
						|
    .endianness = DEVICE_BIG_ENDIAN,
 | 
						|
};
 | 
						|
 | 
						|
static void next_irq(void *opaque, int number, int level)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(opaque);
 | 
						|
    M68kCPU *cpu = s->cpu;
 | 
						|
    int shift = 0;
 | 
						|
 | 
						|
    /* first switch sets interrupt status */
 | 
						|
    /* DPRINTF("IRQ %i\n",number); */
 | 
						|
    switch (number) {
 | 
						|
    /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
 | 
						|
    case NEXT_FD_I:
 | 
						|
        shift = 7;
 | 
						|
        break;
 | 
						|
    case NEXT_KBD_I:
 | 
						|
        shift = 3;
 | 
						|
        break;
 | 
						|
    case NEXT_PWR_I:
 | 
						|
        shift = 2;
 | 
						|
        break;
 | 
						|
    case NEXT_ENRX_I:
 | 
						|
        shift = 9;
 | 
						|
        break;
 | 
						|
    case NEXT_ENTX_I:
 | 
						|
        shift = 10;
 | 
						|
        break;
 | 
						|
    case NEXT_SCSI_I:
 | 
						|
        shift = 12;
 | 
						|
        break;
 | 
						|
    case NEXT_CLK_I:
 | 
						|
        shift = 5;
 | 
						|
        break;
 | 
						|
 | 
						|
    /* level 5 - scc (serial) */
 | 
						|
    case NEXT_SCC_I:
 | 
						|
        shift = 17;
 | 
						|
        break;
 | 
						|
 | 
						|
    /* level 6 - audio etherrx/tx dma */
 | 
						|
    case NEXT_ENTX_DMA_I:
 | 
						|
        shift = 28;
 | 
						|
        break;
 | 
						|
    case NEXT_ENRX_DMA_I:
 | 
						|
        shift = 27;
 | 
						|
        break;
 | 
						|
    case NEXT_SCSI_DMA_I:
 | 
						|
        shift = 26;
 | 
						|
        break;
 | 
						|
    case NEXT_SND_I:
 | 
						|
        shift = 23;
 | 
						|
        break;
 | 
						|
    case NEXT_SCC_DMA_I:
 | 
						|
        shift = 21;
 | 
						|
        break;
 | 
						|
 | 
						|
    }
 | 
						|
    /*
 | 
						|
     * this HAS to be wrong, the interrupt handlers in mach and together
 | 
						|
     * int_status and int_mask and return if there is a hit
 | 
						|
     */
 | 
						|
    if (s->int_mask & (1 << shift)) {
 | 
						|
        DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
 | 
						|
        /* return; */
 | 
						|
    }
 | 
						|
 | 
						|
    /* second switch triggers the correct interrupt */
 | 
						|
    if (level) {
 | 
						|
        s->int_status |= 1 << shift;
 | 
						|
 | 
						|
        switch (number) {
 | 
						|
        /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
 | 
						|
        case NEXT_FD_I:
 | 
						|
        case NEXT_KBD_I:
 | 
						|
        case NEXT_PWR_I:
 | 
						|
        case NEXT_ENRX_I:
 | 
						|
        case NEXT_ENTX_I:
 | 
						|
        case NEXT_SCSI_I:
 | 
						|
        case NEXT_CLK_I:
 | 
						|
            m68k_set_irq_level(cpu, 3, 27);
 | 
						|
            break;
 | 
						|
 | 
						|
        /* level 5 - scc (serial) */
 | 
						|
        case NEXT_SCC_I:
 | 
						|
            m68k_set_irq_level(cpu, 5, 29);
 | 
						|
            break;
 | 
						|
 | 
						|
        /* level 6 - audio etherrx/tx dma */
 | 
						|
        case NEXT_ENTX_DMA_I:
 | 
						|
        case NEXT_ENRX_DMA_I:
 | 
						|
        case NEXT_SCSI_DMA_I:
 | 
						|
        case NEXT_SND_I:
 | 
						|
        case NEXT_SCC_DMA_I:
 | 
						|
            m68k_set_irq_level(cpu, 6, 30);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        s->int_status &= ~(1 << shift);
 | 
						|
        cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void nextdma_write(void *opaque, uint8_t *buf, int size, int type)
 | 
						|
{
 | 
						|
    uint32_t base_addr;
 | 
						|
    int irq = 0;
 | 
						|
    uint8_t align = 16;
 | 
						|
    NeXTState *next_state = NEXT_MACHINE(qdev_get_machine());
 | 
						|
 | 
						|
    if (type == NEXTDMA_ENRX || type == NEXTDMA_ENTX) {
 | 
						|
        align = 32;
 | 
						|
    }
 | 
						|
    /* Most DMA is supposedly 16 byte aligned */
 | 
						|
    if ((size % align) != 0) {
 | 
						|
        size -= size % align;
 | 
						|
        size += align;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * prom sets the dma start using initbuf while the bootloader uses next
 | 
						|
     * so we check to see if initbuf is 0
 | 
						|
     */
 | 
						|
    if (next_state->dma[type].next_initbuf == 0) {
 | 
						|
        base_addr = next_state->dma[type].next;
 | 
						|
    } else {
 | 
						|
        base_addr = next_state->dma[type].next_initbuf;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu_physical_memory_write(base_addr, buf, size);
 | 
						|
 | 
						|
    next_state->dma[type].next_initbuf = 0;
 | 
						|
 | 
						|
    /* saved limit is checked to calculate packet size by both, rom and netbsd */
 | 
						|
    next_state->dma[type].saved_limit = (next_state->dma[type].next + size);
 | 
						|
    next_state->dma[type].saved_next  = (next_state->dma[type].next);
 | 
						|
 | 
						|
    /*
 | 
						|
     * 32 bytes under savedbase seems to be some kind of register
 | 
						|
     * of which the purpose is unknown as of yet
 | 
						|
     */
 | 
						|
    /* stl_phys(s->rx_dma.base-32,0xFFFFFFFF); */
 | 
						|
 | 
						|
    if (!(next_state->dma[type].csr & DMA_SUPDATE)) {
 | 
						|
        next_state->dma[type].next  = next_state->dma[type].start;
 | 
						|
        next_state->dma[type].limit = next_state->dma[type].stop;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Set dma registers and raise an irq */
 | 
						|
    next_state->dma[type].csr |= DMA_COMPLETE; /* DON'T CHANGE THIS! */
 | 
						|
 | 
						|
    switch (type) {
 | 
						|
    case NEXTDMA_SCSI:
 | 
						|
        irq = NEXT_SCSI_DMA_I;
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    next_irq(opaque, irq, 1);
 | 
						|
    next_irq(opaque, irq, 0);
 | 
						|
}
 | 
						|
 | 
						|
static void nextscsi_read(void *opaque, uint8_t *buf, int len)
 | 
						|
{
 | 
						|
    DPRINTF("SCSI READ: %x\n", len);
 | 
						|
    abort();
 | 
						|
}
 | 
						|
 | 
						|
static void nextscsi_write(void *opaque, uint8_t *buf, int size)
 | 
						|
{
 | 
						|
    DPRINTF("SCSI WRITE: %i\n", size);
 | 
						|
    nextdma_write(opaque, buf, size, NEXTDMA_SCSI);
 | 
						|
}
 | 
						|
 | 
						|
static void next_scsi_init(DeviceState *pcdev, M68kCPU *cpu)
 | 
						|
{
 | 
						|
    struct NeXTPC *next_pc = NEXT_PC(pcdev);
 | 
						|
    DeviceState *dev;
 | 
						|
    SysBusDevice *sysbusdev;
 | 
						|
    SysBusESPState *sysbus_esp;
 | 
						|
    ESPState *esp;
 | 
						|
 | 
						|
    dev = qdev_new(TYPE_SYSBUS_ESP);
 | 
						|
    sysbus_esp = SYSBUS_ESP(dev);
 | 
						|
    esp = &sysbus_esp->esp;
 | 
						|
    esp->dma_memory_read = nextscsi_read;
 | 
						|
    esp->dma_memory_write = nextscsi_write;
 | 
						|
    esp->dma_opaque = pcdev;
 | 
						|
    sysbus_esp->it_shift = 0;
 | 
						|
    esp->dma_enabled = 1;
 | 
						|
    sysbusdev = SYS_BUS_DEVICE(dev);
 | 
						|
    sysbus_realize_and_unref(sysbusdev, &error_fatal);
 | 
						|
    sysbus_connect_irq(sysbusdev, 0, qdev_get_gpio_in(pcdev, NEXT_SCSI_I));
 | 
						|
    sysbus_mmio_map(sysbusdev, 0, 0x2114000);
 | 
						|
 | 
						|
    next_pc->scsi_reset = qdev_get_gpio_in(dev, 0);
 | 
						|
    next_pc->scsi_dma = qdev_get_gpio_in(dev, 1);
 | 
						|
 | 
						|
    scsi_bus_legacy_handle_cmdline(&esp->bus);
 | 
						|
}
 | 
						|
 | 
						|
static void next_escc_init(DeviceState *pcdev)
 | 
						|
{
 | 
						|
    DeviceState *dev;
 | 
						|
    SysBusDevice *s;
 | 
						|
 | 
						|
    dev = qdev_new(TYPE_ESCC);
 | 
						|
    qdev_prop_set_uint32(dev, "disabled", 0);
 | 
						|
    qdev_prop_set_uint32(dev, "frequency", 9600 * 384);
 | 
						|
    qdev_prop_set_uint32(dev, "it_shift", 0);
 | 
						|
    qdev_prop_set_bit(dev, "bit_swap", true);
 | 
						|
    qdev_prop_set_chr(dev, "chrB", serial_hd(1));
 | 
						|
    qdev_prop_set_chr(dev, "chrA", serial_hd(0));
 | 
						|
    qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
 | 
						|
    qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
 | 
						|
 | 
						|
    s = SYS_BUS_DEVICE(dev);
 | 
						|
    sysbus_realize_and_unref(s, &error_fatal);
 | 
						|
    sysbus_connect_irq(s, 0, qdev_get_gpio_in(pcdev, NEXT_SCC_I));
 | 
						|
    sysbus_connect_irq(s, 1, qdev_get_gpio_in(pcdev, NEXT_SCC_DMA_I));
 | 
						|
    sysbus_mmio_map(s, 0, 0x2118000);
 | 
						|
}
 | 
						|
 | 
						|
static void next_pc_reset(DeviceState *dev)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(dev);
 | 
						|
 | 
						|
    /* Set internal registers to initial values */
 | 
						|
    /*     0x0000XX00 << vital bits */
 | 
						|
    s->scr1 = 0x00011102;
 | 
						|
    s->scr2 = 0x00ff0c80;
 | 
						|
    s->old_scr2 = s->scr2;
 | 
						|
 | 
						|
    s->rtc.status = 0x90;
 | 
						|
 | 
						|
    /* Load RTC RAM - TODO: provide possibility to load contents from file */
 | 
						|
    memcpy(s->rtc.ram, rtc_ram2, 32);
 | 
						|
}
 | 
						|
 | 
						|
static void next_pc_realize(DeviceState *dev, Error **errp)
 | 
						|
{
 | 
						|
    NeXTPC *s = NEXT_PC(dev);
 | 
						|
    SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 | 
						|
 | 
						|
    qdev_init_gpio_in(dev, next_irq, NEXT_NUM_IRQS);
 | 
						|
 | 
						|
    memory_region_init_io(&s->mmiomem, OBJECT(s), &next_mmio_ops, s,
 | 
						|
                          "next.mmio", 0xd0000);
 | 
						|
    memory_region_init_io(&s->scrmem, OBJECT(s), &next_scr_ops, s,
 | 
						|
                          "next.scr", 0x20000);
 | 
						|
    sysbus_init_mmio(sbd, &s->mmiomem);
 | 
						|
    sysbus_init_mmio(sbd, &s->scrmem);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * If the m68k CPU implemented its inbound irq lines as GPIO lines
 | 
						|
 * rather than via the m68k_set_irq_level() function we would not need
 | 
						|
 * this cpu link property and could instead provide outbound IRQ lines
 | 
						|
 * that the board could wire up to the CPU.
 | 
						|
 */
 | 
						|
static Property next_pc_properties[] = {
 | 
						|
    DEFINE_PROP_LINK("cpu", NeXTPC, cpu, TYPE_M68K_CPU, M68kCPU *),
 | 
						|
    DEFINE_PROP_END_OF_LIST(),
 | 
						|
};
 | 
						|
 | 
						|
static const VMStateDescription next_rtc_vmstate = {
 | 
						|
    .name = "next-rtc",
 | 
						|
    .version_id = 2,
 | 
						|
    .minimum_version_id = 2,
 | 
						|
    .fields = (const VMStateField[]) {
 | 
						|
        VMSTATE_INT8(phase, NextRtc),
 | 
						|
        VMSTATE_UINT8_ARRAY(ram, NextRtc, 32),
 | 
						|
        VMSTATE_UINT8(command, NextRtc),
 | 
						|
        VMSTATE_UINT8(value, NextRtc),
 | 
						|
        VMSTATE_UINT8(status, NextRtc),
 | 
						|
        VMSTATE_UINT8(control, NextRtc),
 | 
						|
        VMSTATE_UINT8(retval, NextRtc),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
static const VMStateDescription next_pc_vmstate = {
 | 
						|
    .name = "next-pc",
 | 
						|
    .version_id = 2,
 | 
						|
    .minimum_version_id = 2,
 | 
						|
    .fields = (const VMStateField[]) {
 | 
						|
        VMSTATE_UINT32(scr1, NeXTPC),
 | 
						|
        VMSTATE_UINT32(scr2, NeXTPC),
 | 
						|
        VMSTATE_UINT32(old_scr2, NeXTPC),
 | 
						|
        VMSTATE_UINT32(int_mask, NeXTPC),
 | 
						|
        VMSTATE_UINT32(int_status, NeXTPC),
 | 
						|
        VMSTATE_UINT32(led, NeXTPC),
 | 
						|
        VMSTATE_UINT8(scsi_csr_1, NeXTPC),
 | 
						|
        VMSTATE_UINT8(scsi_csr_2, NeXTPC),
 | 
						|
        VMSTATE_STRUCT(rtc, NeXTPC, 0, next_rtc_vmstate, NextRtc),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    },
 | 
						|
};
 | 
						|
 | 
						|
static void next_pc_class_init(ObjectClass *klass, void *data)
 | 
						|
{
 | 
						|
    DeviceClass *dc = DEVICE_CLASS(klass);
 | 
						|
 | 
						|
    dc->desc = "NeXT Peripheral Controller";
 | 
						|
    dc->realize = next_pc_realize;
 | 
						|
    device_class_set_legacy_reset(dc, next_pc_reset);
 | 
						|
    device_class_set_props(dc, next_pc_properties);
 | 
						|
    dc->vmsd = &next_pc_vmstate;
 | 
						|
}
 | 
						|
 | 
						|
static const TypeInfo next_pc_info = {
 | 
						|
    .name = TYPE_NEXT_PC,
 | 
						|
    .parent = TYPE_SYS_BUS_DEVICE,
 | 
						|
    .instance_size = sizeof(NeXTPC),
 | 
						|
    .class_init = next_pc_class_init,
 | 
						|
};
 | 
						|
 | 
						|
static void next_cube_init(MachineState *machine)
 | 
						|
{
 | 
						|
    NeXTState *m = NEXT_MACHINE(machine);
 | 
						|
    M68kCPU *cpu;
 | 
						|
    CPUM68KState *env;
 | 
						|
    MemoryRegion *sysmem = get_system_memory();
 | 
						|
    const char *bios_name = machine->firmware ?: ROM_FILE;
 | 
						|
    DeviceState *pcdev;
 | 
						|
 | 
						|
    /* Initialize the cpu core */
 | 
						|
    cpu = M68K_CPU(cpu_create(machine->cpu_type));
 | 
						|
    if (!cpu) {
 | 
						|
        error_report("Unable to find m68k CPU definition");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    env = &cpu->env;
 | 
						|
 | 
						|
    /* Initialize CPU registers.  */
 | 
						|
    env->vbr = 0;
 | 
						|
    env->sr  = 0x2700;
 | 
						|
 | 
						|
    /* Peripheral Controller */
 | 
						|
    pcdev = qdev_new(TYPE_NEXT_PC);
 | 
						|
    object_property_set_link(OBJECT(pcdev), "cpu", OBJECT(cpu), &error_abort);
 | 
						|
    sysbus_realize_and_unref(SYS_BUS_DEVICE(pcdev), &error_fatal);
 | 
						|
 | 
						|
    /* 64MB RAM starting at 0x04000000  */
 | 
						|
    memory_region_add_subregion(sysmem, 0x04000000, machine->ram);
 | 
						|
 | 
						|
    /* Framebuffer */
 | 
						|
    sysbus_create_simple(TYPE_NEXTFB, 0x0B000000, NULL);
 | 
						|
 | 
						|
    /* MMIO */
 | 
						|
    sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 0, 0x02000000);
 | 
						|
 | 
						|
    /* BMAP IO - acts as a catch-all for now */
 | 
						|
    sysbus_mmio_map(SYS_BUS_DEVICE(pcdev), 1, 0x02100000);
 | 
						|
 | 
						|
    /* BMAP memory */
 | 
						|
    memory_region_init_ram_flags_nomigrate(&m->bmapm1, NULL, "next.bmapmem",
 | 
						|
                                           64, RAM_SHARED, &error_fatal);
 | 
						|
    memory_region_add_subregion(sysmem, 0x020c0000, &m->bmapm1);
 | 
						|
    /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
 | 
						|
    memory_region_init_alias(&m->bmapm2, NULL, "next.bmapmem2", &m->bmapm1,
 | 
						|
                             0x0, 64);
 | 
						|
    memory_region_add_subregion(sysmem, 0x820c0000, &m->bmapm2);
 | 
						|
 | 
						|
    /* KBD */
 | 
						|
    sysbus_create_simple(TYPE_NEXTKBD, 0x0200e000, NULL);
 | 
						|
 | 
						|
    /* Load ROM here */
 | 
						|
    memory_region_init_rom(&m->rom, NULL, "next.rom", 0x20000, &error_fatal);
 | 
						|
    memory_region_add_subregion(sysmem, 0x01000000, &m->rom);
 | 
						|
    memory_region_init_alias(&m->rom2, NULL, "next.rom2", &m->rom, 0x0,
 | 
						|
                             0x20000);
 | 
						|
    memory_region_add_subregion(sysmem, 0x0, &m->rom2);
 | 
						|
    if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
 | 
						|
        if (!qtest_enabled()) {
 | 
						|
            error_report("Failed to load firmware '%s'.", bios_name);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        uint8_t *ptr;
 | 
						|
        /* Initial PC is always at offset 4 in firmware binaries */
 | 
						|
        ptr = rom_ptr(0x01000004, 4);
 | 
						|
        g_assert(ptr != NULL);
 | 
						|
        env->pc = ldl_p(ptr);
 | 
						|
        if (env->pc >= 0x01020000) {
 | 
						|
            error_report("'%s' does not seem to be a valid firmware image.",
 | 
						|
                         bios_name);
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* Serial */
 | 
						|
    next_escc_init(pcdev);
 | 
						|
 | 
						|
    /* TODO: */
 | 
						|
    /* Network */
 | 
						|
    /* SCSI */
 | 
						|
    next_scsi_init(pcdev, cpu);
 | 
						|
 | 
						|
    /* DMA */
 | 
						|
    memory_region_init_io(&m->dmamem, NULL, &next_dma_ops, machine,
 | 
						|
                          "next.dma", 0x5000);
 | 
						|
    memory_region_add_subregion(sysmem, 0x02000000, &m->dmamem);
 | 
						|
}
 | 
						|
 | 
						|
static void next_machine_class_init(ObjectClass *oc, void *data)
 | 
						|
{
 | 
						|
    MachineClass *mc = MACHINE_CLASS(oc);
 | 
						|
 | 
						|
    mc->desc = "NeXT Cube";
 | 
						|
    mc->init = next_cube_init;
 | 
						|
    mc->block_default_type = IF_SCSI;
 | 
						|
    mc->default_ram_size = RAM_SIZE;
 | 
						|
    mc->default_ram_id = "next.ram";
 | 
						|
    mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
 | 
						|
}
 | 
						|
 | 
						|
static const TypeInfo next_typeinfo = {
 | 
						|
    .name = TYPE_NEXT_MACHINE,
 | 
						|
    .parent = TYPE_MACHINE,
 | 
						|
    .class_init = next_machine_class_init,
 | 
						|
    .instance_size = sizeof(NeXTState),
 | 
						|
};
 | 
						|
 | 
						|
static void next_register_type(void)
 | 
						|
{
 | 
						|
    type_register_static(&next_typeinfo);
 | 
						|
    type_register_static(&next_pc_info);
 | 
						|
}
 | 
						|
 | 
						|
type_init(next_register_type)
 |