 afa4f6653d
			
		
	
	
		afa4f6653d
		
	
	
	
	
		
			
			There's a common pattern in QEMU where a function needs to perform a data load or store of an N byte integer in a particular endianness. At the moment this is handled by doing a switch() on the size and calling the appropriate ld*_p or st*_p function for each size. Provide a new family of functions ldn_*_p() and stn_*_p() which take the size as an argument and do the switch() themselves. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20180611171007.4165-2-peter.maydell@linaro.org
		
			
				
	
	
		
			556 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			556 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef BSWAP_H
 | |
| #define BSWAP_H
 | |
| 
 | |
| #include "fpu/softfloat-types.h"
 | |
| 
 | |
| #ifdef CONFIG_MACHINE_BSWAP_H
 | |
| # include <sys/endian.h>
 | |
| # include <machine/bswap.h>
 | |
| #elif defined(__FreeBSD__)
 | |
| # include <sys/endian.h>
 | |
| #elif defined(CONFIG_BYTESWAP_H)
 | |
| # include <byteswap.h>
 | |
| 
 | |
| static inline uint16_t bswap16(uint16_t x)
 | |
| {
 | |
|     return bswap_16(x);
 | |
| }
 | |
| 
 | |
| static inline uint32_t bswap32(uint32_t x)
 | |
| {
 | |
|     return bswap_32(x);
 | |
| }
 | |
| 
 | |
| static inline uint64_t bswap64(uint64_t x)
 | |
| {
 | |
|     return bswap_64(x);
 | |
| }
 | |
| # else
 | |
| static inline uint16_t bswap16(uint16_t x)
 | |
| {
 | |
|     return (((x & 0x00ff) << 8) |
 | |
|             ((x & 0xff00) >> 8));
 | |
| }
 | |
| 
 | |
| static inline uint32_t bswap32(uint32_t x)
 | |
| {
 | |
|     return (((x & 0x000000ffU) << 24) |
 | |
|             ((x & 0x0000ff00U) <<  8) |
 | |
|             ((x & 0x00ff0000U) >>  8) |
 | |
|             ((x & 0xff000000U) >> 24));
 | |
| }
 | |
| 
 | |
| static inline uint64_t bswap64(uint64_t x)
 | |
| {
 | |
|     return (((x & 0x00000000000000ffULL) << 56) |
 | |
|             ((x & 0x000000000000ff00ULL) << 40) |
 | |
|             ((x & 0x0000000000ff0000ULL) << 24) |
 | |
|             ((x & 0x00000000ff000000ULL) <<  8) |
 | |
|             ((x & 0x000000ff00000000ULL) >>  8) |
 | |
|             ((x & 0x0000ff0000000000ULL) >> 24) |
 | |
|             ((x & 0x00ff000000000000ULL) >> 40) |
 | |
|             ((x & 0xff00000000000000ULL) >> 56));
 | |
| }
 | |
| #endif /* ! CONFIG_MACHINE_BSWAP_H */
 | |
| 
 | |
| static inline void bswap16s(uint16_t *s)
 | |
| {
 | |
|     *s = bswap16(*s);
 | |
| }
 | |
| 
 | |
| static inline void bswap32s(uint32_t *s)
 | |
| {
 | |
|     *s = bswap32(*s);
 | |
| }
 | |
| 
 | |
| static inline void bswap64s(uint64_t *s)
 | |
| {
 | |
|     *s = bswap64(*s);
 | |
| }
 | |
| 
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| #define be_bswap(v, size) (v)
 | |
| #define le_bswap(v, size) glue(bswap, size)(v)
 | |
| #define be_bswaps(v, size)
 | |
| #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
 | |
| #else
 | |
| #define le_bswap(v, size) (v)
 | |
| #define be_bswap(v, size) glue(bswap, size)(v)
 | |
| #define le_bswaps(v, size)
 | |
| #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Endianness conversion functions between host cpu and specified endianness.
 | |
|  * (We list the complete set of prototypes produced by the macros below
 | |
|  * to assist people who search the headers to find their definitions.)
 | |
|  *
 | |
|  * uint16_t le16_to_cpu(uint16_t v);
 | |
|  * uint32_t le32_to_cpu(uint32_t v);
 | |
|  * uint64_t le64_to_cpu(uint64_t v);
 | |
|  * uint16_t be16_to_cpu(uint16_t v);
 | |
|  * uint32_t be32_to_cpu(uint32_t v);
 | |
|  * uint64_t be64_to_cpu(uint64_t v);
 | |
|  *
 | |
|  * Convert the value @v from the specified format to the native
 | |
|  * endianness of the host CPU by byteswapping if necessary, and
 | |
|  * return the converted value.
 | |
|  *
 | |
|  * uint16_t cpu_to_le16(uint16_t v);
 | |
|  * uint32_t cpu_to_le32(uint32_t v);
 | |
|  * uint64_t cpu_to_le64(uint64_t v);
 | |
|  * uint16_t cpu_to_be16(uint16_t v);
 | |
|  * uint32_t cpu_to_be32(uint32_t v);
 | |
|  * uint64_t cpu_to_be64(uint64_t v);
 | |
|  *
 | |
|  * Convert the value @v from the native endianness of the host CPU to
 | |
|  * the specified format by byteswapping if necessary, and return
 | |
|  * the converted value.
 | |
|  *
 | |
|  * void le16_to_cpus(uint16_t *v);
 | |
|  * void le32_to_cpus(uint32_t *v);
 | |
|  * void le64_to_cpus(uint64_t *v);
 | |
|  * void be16_to_cpus(uint16_t *v);
 | |
|  * void be32_to_cpus(uint32_t *v);
 | |
|  * void be64_to_cpus(uint64_t *v);
 | |
|  *
 | |
|  * Do an in-place conversion of the value pointed to by @v from the
 | |
|  * specified format to the native endianness of the host CPU.
 | |
|  *
 | |
|  * void cpu_to_le16s(uint16_t *v);
 | |
|  * void cpu_to_le32s(uint32_t *v);
 | |
|  * void cpu_to_le64s(uint64_t *v);
 | |
|  * void cpu_to_be16s(uint16_t *v);
 | |
|  * void cpu_to_be32s(uint32_t *v);
 | |
|  * void cpu_to_be64s(uint64_t *v);
 | |
|  *
 | |
|  * Do an in-place conversion of the value pointed to by @v from the
 | |
|  * native endianness of the host CPU to the specified format.
 | |
|  *
 | |
|  * Both X_to_cpu() and cpu_to_X() perform the same operation; you
 | |
|  * should use whichever one is better documenting of the function your
 | |
|  * code is performing.
 | |
|  *
 | |
|  * Do not use these functions for conversion of values which are in guest
 | |
|  * memory, since the data may not be sufficiently aligned for the host CPU's
 | |
|  * load and store instructions. Instead you should use the ld*_p() and
 | |
|  * st*_p() functions, which perform loads and stores of data of any
 | |
|  * required size and endianness and handle possible misalignment.
 | |
|  */
 | |
| 
 | |
| #define CPU_CONVERT(endian, size, type)\
 | |
| static inline type endian ## size ## _to_cpu(type v)\
 | |
| {\
 | |
|     return glue(endian, _bswap)(v, size);\
 | |
| }\
 | |
| \
 | |
| static inline type cpu_to_ ## endian ## size(type v)\
 | |
| {\
 | |
|     return glue(endian, _bswap)(v, size);\
 | |
| }\
 | |
| \
 | |
| static inline void endian ## size ## _to_cpus(type *p)\
 | |
| {\
 | |
|     glue(endian, _bswaps)(p, size);\
 | |
| }\
 | |
| \
 | |
| static inline void cpu_to_ ## endian ## size ## s(type *p)\
 | |
| {\
 | |
|     glue(endian, _bswaps)(p, size);\
 | |
| }
 | |
| 
 | |
| CPU_CONVERT(be, 16, uint16_t)
 | |
| CPU_CONVERT(be, 32, uint32_t)
 | |
| CPU_CONVERT(be, 64, uint64_t)
 | |
| 
 | |
| CPU_CONVERT(le, 16, uint16_t)
 | |
| CPU_CONVERT(le, 32, uint32_t)
 | |
| CPU_CONVERT(le, 64, uint64_t)
 | |
| 
 | |
| /* len must be one of 1, 2, 4 */
 | |
| static inline uint32_t qemu_bswap_len(uint32_t value, int len)
 | |
| {
 | |
|     return bswap32(value) >> (32 - 8 * len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Same as cpu_to_le{16,32}, except that gcc will figure the result is
 | |
|  * a compile-time constant if you pass in a constant.  So this can be
 | |
|  * used to initialize static variables.
 | |
|  */
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
| # define const_le32(_x)                          \
 | |
|     ((((_x) & 0x000000ffU) << 24) |              \
 | |
|      (((_x) & 0x0000ff00U) <<  8) |              \
 | |
|      (((_x) & 0x00ff0000U) >>  8) |              \
 | |
|      (((_x) & 0xff000000U) >> 24))
 | |
| # define const_le16(_x)                          \
 | |
|     ((((_x) & 0x00ff) << 8) |                    \
 | |
|      (((_x) & 0xff00) >> 8))
 | |
| #else
 | |
| # define const_le32(_x) (_x)
 | |
| # define const_le16(_x) (_x)
 | |
| #endif
 | |
| 
 | |
| /* Unions for reinterpreting between floats and integers.  */
 | |
| 
 | |
| typedef union {
 | |
|     float32 f;
 | |
|     uint32_t l;
 | |
| } CPU_FloatU;
 | |
| 
 | |
| typedef union {
 | |
|     float64 d;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     struct {
 | |
|         uint32_t upper;
 | |
|         uint32_t lower;
 | |
|     } l;
 | |
| #else
 | |
|     struct {
 | |
|         uint32_t lower;
 | |
|         uint32_t upper;
 | |
|     } l;
 | |
| #endif
 | |
|     uint64_t ll;
 | |
| } CPU_DoubleU;
 | |
| 
 | |
| typedef union {
 | |
|      floatx80 d;
 | |
|      struct {
 | |
|          uint64_t lower;
 | |
|          uint16_t upper;
 | |
|      } l;
 | |
| } CPU_LDoubleU;
 | |
| 
 | |
| typedef union {
 | |
|     float128 q;
 | |
| #if defined(HOST_WORDS_BIGENDIAN)
 | |
|     struct {
 | |
|         uint32_t upmost;
 | |
|         uint32_t upper;
 | |
|         uint32_t lower;
 | |
|         uint32_t lowest;
 | |
|     } l;
 | |
|     struct {
 | |
|         uint64_t upper;
 | |
|         uint64_t lower;
 | |
|     } ll;
 | |
| #else
 | |
|     struct {
 | |
|         uint32_t lowest;
 | |
|         uint32_t lower;
 | |
|         uint32_t upper;
 | |
|         uint32_t upmost;
 | |
|     } l;
 | |
|     struct {
 | |
|         uint64_t lower;
 | |
|         uint64_t upper;
 | |
|     } ll;
 | |
| #endif
 | |
| } CPU_QuadU;
 | |
| 
 | |
| /* unaligned/endian-independent pointer access */
 | |
| 
 | |
| /*
 | |
|  * the generic syntax is:
 | |
|  *
 | |
|  * load: ld{type}{sign}{size}{endian}_p(ptr)
 | |
|  *
 | |
|  * store: st{type}{size}{endian}_p(ptr, val)
 | |
|  *
 | |
|  * Note there are small differences with the softmmu access API!
 | |
|  *
 | |
|  * type is:
 | |
|  * (empty): integer access
 | |
|  *   f    : float access
 | |
|  *
 | |
|  * sign is:
 | |
|  * (empty): for 32 or 64 bit sizes (including floats and doubles)
 | |
|  *   u    : unsigned
 | |
|  *   s    : signed
 | |
|  *
 | |
|  * size is:
 | |
|  *   b: 8 bits
 | |
|  *   w: 16 bits
 | |
|  *   l: 32 bits
 | |
|  *   q: 64 bits
 | |
|  *
 | |
|  * endian is:
 | |
|  *   he   : host endian
 | |
|  *   be   : big endian
 | |
|  *   le   : little endian
 | |
|  *   te   : target endian
 | |
|  * (except for byte accesses, which have no endian infix).
 | |
|  *
 | |
|  * The target endian accessors are obviously only available to source
 | |
|  * files which are built per-target; they are defined in cpu-all.h.
 | |
|  *
 | |
|  * In all cases these functions take a host pointer.
 | |
|  * For accessors that take a guest address rather than a
 | |
|  * host address, see the cpu_{ld,st}_* accessors defined in
 | |
|  * cpu_ldst.h.
 | |
|  *
 | |
|  * For cases where the size to be used is not fixed at compile time,
 | |
|  * there are
 | |
|  *  stn{endian}_p(ptr, sz, val)
 | |
|  * which stores @val to @ptr as an @endian-order number @sz bytes in size
 | |
|  * and
 | |
|  *  ldn{endian}_p(ptr, sz)
 | |
|  * which loads @sz bytes from @ptr as an unsigned @endian-order number
 | |
|  * and returns it in a uint64_t.
 | |
|  */
 | |
| 
 | |
| static inline int ldub_p(const void *ptr)
 | |
| {
 | |
|     return *(uint8_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline int ldsb_p(const void *ptr)
 | |
| {
 | |
|     return *(int8_t *)ptr;
 | |
| }
 | |
| 
 | |
| static inline void stb_p(void *ptr, uint8_t v)
 | |
| {
 | |
|     *(uint8_t *)ptr = v;
 | |
| }
 | |
| 
 | |
| /* Any compiler worth its salt will turn these memcpy into native unaligned
 | |
|    operations.  Thus we don't need to play games with packed attributes, or
 | |
|    inline byte-by-byte stores.  */
 | |
| 
 | |
| static inline int lduw_he_p(const void *ptr)
 | |
| {
 | |
|     uint16_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline int ldsw_he_p(const void *ptr)
 | |
| {
 | |
|     int16_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void stw_he_p(void *ptr, uint16_t v)
 | |
| {
 | |
|     memcpy(ptr, &v, sizeof(v));
 | |
| }
 | |
| 
 | |
| static inline int ldl_he_p(const void *ptr)
 | |
| {
 | |
|     int32_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void stl_he_p(void *ptr, uint32_t v)
 | |
| {
 | |
|     memcpy(ptr, &v, sizeof(v));
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_he_p(const void *ptr)
 | |
| {
 | |
|     uint64_t r;
 | |
|     memcpy(&r, ptr, sizeof(r));
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void stq_he_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     memcpy(ptr, &v, sizeof(v));
 | |
| }
 | |
| 
 | |
| static inline int lduw_le_p(const void *ptr)
 | |
| {
 | |
|     return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldsw_le_p(const void *ptr)
 | |
| {
 | |
|     return (int16_t)le_bswap(lduw_he_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldl_le_p(const void *ptr)
 | |
| {
 | |
|     return le_bswap(ldl_he_p(ptr), 32);
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_le_p(const void *ptr)
 | |
| {
 | |
|     return le_bswap(ldq_he_p(ptr), 64);
 | |
| }
 | |
| 
 | |
| static inline void stw_le_p(void *ptr, uint16_t v)
 | |
| {
 | |
|     stw_he_p(ptr, le_bswap(v, 16));
 | |
| }
 | |
| 
 | |
| static inline void stl_le_p(void *ptr, uint32_t v)
 | |
| {
 | |
|     stl_he_p(ptr, le_bswap(v, 32));
 | |
| }
 | |
| 
 | |
| static inline void stq_le_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     stq_he_p(ptr, le_bswap(v, 64));
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_le_p(const void *ptr)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.l = ldl_le_p(ptr);
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| static inline void stfl_le_p(void *ptr, float32 v)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.f = v;
 | |
|     stl_le_p(ptr, u.l);
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_le_p(const void *ptr)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.ll = ldq_le_p(ptr);
 | |
|     return u.d;
 | |
| }
 | |
| 
 | |
| static inline void stfq_le_p(void *ptr, float64 v)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.d = v;
 | |
|     stq_le_p(ptr, u.ll);
 | |
| }
 | |
| 
 | |
| static inline int lduw_be_p(const void *ptr)
 | |
| {
 | |
|     return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldsw_be_p(const void *ptr)
 | |
| {
 | |
|     return (int16_t)be_bswap(lduw_he_p(ptr), 16);
 | |
| }
 | |
| 
 | |
| static inline int ldl_be_p(const void *ptr)
 | |
| {
 | |
|     return be_bswap(ldl_he_p(ptr), 32);
 | |
| }
 | |
| 
 | |
| static inline uint64_t ldq_be_p(const void *ptr)
 | |
| {
 | |
|     return be_bswap(ldq_he_p(ptr), 64);
 | |
| }
 | |
| 
 | |
| static inline void stw_be_p(void *ptr, uint16_t v)
 | |
| {
 | |
|     stw_he_p(ptr, be_bswap(v, 16));
 | |
| }
 | |
| 
 | |
| static inline void stl_be_p(void *ptr, uint32_t v)
 | |
| {
 | |
|     stl_he_p(ptr, be_bswap(v, 32));
 | |
| }
 | |
| 
 | |
| static inline void stq_be_p(void *ptr, uint64_t v)
 | |
| {
 | |
|     stq_he_p(ptr, be_bswap(v, 64));
 | |
| }
 | |
| 
 | |
| /* float access */
 | |
| 
 | |
| static inline float32 ldfl_be_p(const void *ptr)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.l = ldl_be_p(ptr);
 | |
|     return u.f;
 | |
| }
 | |
| 
 | |
| static inline void stfl_be_p(void *ptr, float32 v)
 | |
| {
 | |
|     CPU_FloatU u;
 | |
|     u.f = v;
 | |
|     stl_be_p(ptr, u.l);
 | |
| }
 | |
| 
 | |
| static inline float64 ldfq_be_p(const void *ptr)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.ll = ldq_be_p(ptr);
 | |
|     return u.d;
 | |
| }
 | |
| 
 | |
| static inline void stfq_be_p(void *ptr, float64 v)
 | |
| {
 | |
|     CPU_DoubleU u;
 | |
|     u.d = v;
 | |
|     stq_be_p(ptr, u.ll);
 | |
| }
 | |
| 
 | |
| static inline unsigned long leul_to_cpu(unsigned long v)
 | |
| {
 | |
| #if HOST_LONG_BITS == 32
 | |
|     return le_bswap(v, 32);
 | |
| #elif HOST_LONG_BITS == 64
 | |
|     return le_bswap(v, 64);
 | |
| #else
 | |
| # error Unknown sizeof long
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Store v to p as a sz byte value in host order */
 | |
| #define DO_STN_LDN_P(END) \
 | |
|     static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v)  \
 | |
|     {                                                                   \
 | |
|         switch (sz) {                                                   \
 | |
|         case 1:                                                         \
 | |
|             stb_p(ptr, v);                                              \
 | |
|             break;                                                      \
 | |
|         case 2:                                                         \
 | |
|             stw_ ## END ## _p(ptr, v);                                  \
 | |
|             break;                                                      \
 | |
|         case 4:                                                         \
 | |
|             stl_ ## END ## _p(ptr, v);                                  \
 | |
|             break;                                                      \
 | |
|         case 8:                                                         \
 | |
|             stq_ ## END ## _p(ptr, v);                                  \
 | |
|             break;                                                      \
 | |
|         default:                                                        \
 | |
|             g_assert_not_reached();                                     \
 | |
|         }                                                               \
 | |
|     }                                                                   \
 | |
|     static inline uint64_t ldn_## END ## _p(const void *ptr, int sz)    \
 | |
|     {                                                                   \
 | |
|         switch (sz) {                                                   \
 | |
|         case 1:                                                         \
 | |
|             return ldub_p(ptr);                                         \
 | |
|         case 2:                                                         \
 | |
|             return lduw_ ## END ## _p(ptr);                             \
 | |
|         case 4:                                                         \
 | |
|             return (uint32_t)ldl_ ## END ## _p(ptr);                    \
 | |
|         case 8:                                                         \
 | |
|             return ldq_ ## END ## _p(ptr);                              \
 | |
|         default:                                                        \
 | |
|             g_assert_not_reached();                                     \
 | |
|         }                                                               \
 | |
|     }
 | |
| 
 | |
| DO_STN_LDN_P(he)
 | |
| DO_STN_LDN_P(le)
 | |
| DO_STN_LDN_P(be)
 | |
| 
 | |
| #undef DO_STN_LDN_P
 | |
| 
 | |
| #undef le_bswap
 | |
| #undef be_bswap
 | |
| #undef le_bswaps
 | |
| #undef be_bswaps
 | |
| 
 | |
| #endif /* BSWAP_H */
 |