 98a99ce084
			
		
	
	
		98a99ce084
		
	
	
	
	
		
			
			Use the new functions memory_region_init_{ram,rom,rom_device}()
instead of manually calling the _nomigrate() version and then
vmstate_register_ram_global().
Patch automatically created using coccinelle script:
 spatch --in-place -sp_file scripts/coccinelle/memory-region-init-ram.cocci -dir hw
(As it turns out, there are no instances of the rom and
rom_device functions that are caught by this script.)
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-id: 1499438577-7674-8-git-send-email-peter.maydell@linaro.org
		
	
			
		
			
				
	
	
		
			1768 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1768 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM mach-virt emulation
 | |
|  *
 | |
|  * Copyright (c) 2013 Linaro Limited
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms and conditions of the GNU General Public License,
 | |
|  * version 2 or later, as published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program.  If not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  * Emulate a virtual board which works by passing Linux all the information
 | |
|  * it needs about what devices are present via the device tree.
 | |
|  * There are some restrictions about what we can do here:
 | |
|  *  + we can only present devices whose Linux drivers will work based
 | |
|  *    purely on the device tree with no platform data at all
 | |
|  *  + we want to present a very stripped-down minimalist platform,
 | |
|  *    both because this reduces the security attack surface from the guest
 | |
|  *    and also because it reduces our exposure to being broken when
 | |
|  *    the kernel updates its device tree bindings and requires further
 | |
|  *    information in a device binding that we aren't providing.
 | |
|  * This is essentially the same approach kvmtool uses.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "hw/sysbus.h"
 | |
| #include "hw/arm/arm.h"
 | |
| #include "hw/arm/primecell.h"
 | |
| #include "hw/arm/virt.h"
 | |
| #include "hw/devices.h"
 | |
| #include "net/net.h"
 | |
| #include "sysemu/block-backend.h"
 | |
| #include "sysemu/device_tree.h"
 | |
| #include "sysemu/numa.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "hw/compat.h"
 | |
| #include "hw/loader.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "hw/pci-host/gpex.h"
 | |
| #include "hw/arm/sysbus-fdt.h"
 | |
| #include "hw/platform-bus.h"
 | |
| #include "hw/arm/fdt.h"
 | |
| #include "hw/intc/arm_gic.h"
 | |
| #include "hw/intc/arm_gicv3_common.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "hw/smbios/smbios.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "standard-headers/linux/input.h"
 | |
| 
 | |
| #define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
 | |
|     static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
 | |
|                                                     void *data) \
 | |
|     { \
 | |
|         MachineClass *mc = MACHINE_CLASS(oc); \
 | |
|         virt_machine_##major##_##minor##_options(mc); \
 | |
|         mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
 | |
|         if (latest) { \
 | |
|             mc->alias = "virt"; \
 | |
|         } \
 | |
|     } \
 | |
|     static const TypeInfo machvirt_##major##_##minor##_info = { \
 | |
|         .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
 | |
|         .parent = TYPE_VIRT_MACHINE, \
 | |
|         .instance_init = virt_##major##_##minor##_instance_init, \
 | |
|         .class_init = virt_##major##_##minor##_class_init, \
 | |
|     }; \
 | |
|     static void machvirt_machine_##major##_##minor##_init(void) \
 | |
|     { \
 | |
|         type_register_static(&machvirt_##major##_##minor##_info); \
 | |
|     } \
 | |
|     type_init(machvirt_machine_##major##_##minor##_init);
 | |
| 
 | |
| #define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
 | |
|     DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
 | |
| #define DEFINE_VIRT_MACHINE(major, minor) \
 | |
|     DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
 | |
| 
 | |
| 
 | |
| /* Number of external interrupt lines to configure the GIC with */
 | |
| #define NUM_IRQS 256
 | |
| 
 | |
| #define PLATFORM_BUS_NUM_IRQS 64
 | |
| 
 | |
| static ARMPlatformBusSystemParams platform_bus_params;
 | |
| 
 | |
| /* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
 | |
|  * RAM can go up to the 256GB mark, leaving 256GB of the physical
 | |
|  * address space unallocated and free for future use between 256G and 512G.
 | |
|  * If we need to provide more RAM to VMs in the future then we need to:
 | |
|  *  * allocate a second bank of RAM starting at 2TB and working up
 | |
|  *  * fix the DT and ACPI table generation code in QEMU to correctly
 | |
|  *    report two split lumps of RAM to the guest
 | |
|  *  * fix KVM in the host kernel to allow guests with >40 bit address spaces
 | |
|  * (We don't want to fill all the way up to 512GB with RAM because
 | |
|  * we might want it for non-RAM purposes later. Conversely it seems
 | |
|  * reasonable to assume that anybody configuring a VM with a quarter
 | |
|  * of a terabyte of RAM will be doing it on a host with more than a
 | |
|  * terabyte of physical address space.)
 | |
|  */
 | |
| #define RAMLIMIT_GB 255
 | |
| #define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
 | |
| 
 | |
| /* Addresses and sizes of our components.
 | |
|  * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
 | |
|  * 128MB..256MB is used for miscellaneous device I/O.
 | |
|  * 256MB..1GB is reserved for possible future PCI support (ie where the
 | |
|  * PCI memory window will go if we add a PCI host controller).
 | |
|  * 1GB and up is RAM (which may happily spill over into the
 | |
|  * high memory region beyond 4GB).
 | |
|  * This represents a compromise between how much RAM can be given to
 | |
|  * a 32 bit VM and leaving space for expansion and in particular for PCI.
 | |
|  * Note that devices should generally be placed at multiples of 0x10000,
 | |
|  * to accommodate guests using 64K pages.
 | |
|  */
 | |
| static const MemMapEntry a15memmap[] = {
 | |
|     /* Space up to 0x8000000 is reserved for a boot ROM */
 | |
|     [VIRT_FLASH] =              {          0, 0x08000000 },
 | |
|     [VIRT_CPUPERIPHS] =         { 0x08000000, 0x00020000 },
 | |
|     /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
 | |
|     [VIRT_GIC_DIST] =           { 0x08000000, 0x00010000 },
 | |
|     [VIRT_GIC_CPU] =            { 0x08010000, 0x00010000 },
 | |
|     [VIRT_GIC_V2M] =            { 0x08020000, 0x00001000 },
 | |
|     /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
 | |
|     [VIRT_GIC_ITS] =            { 0x08080000, 0x00020000 },
 | |
|     /* This redistributor space allows up to 2*64kB*123 CPUs */
 | |
|     [VIRT_GIC_REDIST] =         { 0x080A0000, 0x00F60000 },
 | |
|     [VIRT_UART] =               { 0x09000000, 0x00001000 },
 | |
|     [VIRT_RTC] =                { 0x09010000, 0x00001000 },
 | |
|     [VIRT_FW_CFG] =             { 0x09020000, 0x00000018 },
 | |
|     [VIRT_GPIO] =               { 0x09030000, 0x00001000 },
 | |
|     [VIRT_SECURE_UART] =        { 0x09040000, 0x00001000 },
 | |
|     [VIRT_MMIO] =               { 0x0a000000, 0x00000200 },
 | |
|     /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
 | |
|     [VIRT_PLATFORM_BUS] =       { 0x0c000000, 0x02000000 },
 | |
|     [VIRT_SECURE_MEM] =         { 0x0e000000, 0x01000000 },
 | |
|     [VIRT_PCIE_MMIO] =          { 0x10000000, 0x2eff0000 },
 | |
|     [VIRT_PCIE_PIO] =           { 0x3eff0000, 0x00010000 },
 | |
|     [VIRT_PCIE_ECAM] =          { 0x3f000000, 0x01000000 },
 | |
|     [VIRT_MEM] =                { 0x40000000, RAMLIMIT_BYTES },
 | |
|     /* Second PCIe window, 512GB wide at the 512GB boundary */
 | |
|     [VIRT_PCIE_MMIO_HIGH] =   { 0x8000000000ULL, 0x8000000000ULL },
 | |
| };
 | |
| 
 | |
| static const int a15irqmap[] = {
 | |
|     [VIRT_UART] = 1,
 | |
|     [VIRT_RTC] = 2,
 | |
|     [VIRT_PCIE] = 3, /* ... to 6 */
 | |
|     [VIRT_GPIO] = 7,
 | |
|     [VIRT_SECURE_UART] = 8,
 | |
|     [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
 | |
|     [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
 | |
|     [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
 | |
| };
 | |
| 
 | |
| static const char *valid_cpus[] = {
 | |
|     "cortex-a15",
 | |
|     "cortex-a53",
 | |
|     "cortex-a57",
 | |
|     "host",
 | |
| };
 | |
| 
 | |
| static bool cpuname_valid(const char *cpu)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
 | |
|         if (strcmp(cpu, valid_cpus[i]) == 0) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static void create_fdt(VirtMachineState *vms)
 | |
| {
 | |
|     void *fdt = create_device_tree(&vms->fdt_size);
 | |
| 
 | |
|     if (!fdt) {
 | |
|         error_report("create_device_tree() failed");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     vms->fdt = fdt;
 | |
| 
 | |
|     /* Header */
 | |
|     qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
 | |
|     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
 | |
|     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
 | |
| 
 | |
|     /*
 | |
|      * /chosen and /memory nodes must exist for load_dtb
 | |
|      * to fill in necessary properties later
 | |
|      */
 | |
|     qemu_fdt_add_subnode(fdt, "/chosen");
 | |
|     qemu_fdt_add_subnode(fdt, "/memory");
 | |
|     qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
 | |
| 
 | |
|     /* Clock node, for the benefit of the UART. The kernel device tree
 | |
|      * binding documentation claims the PL011 node clock properties are
 | |
|      * optional but in practice if you omit them the kernel refuses to
 | |
|      * probe for the device.
 | |
|      */
 | |
|     vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
 | |
|     qemu_fdt_add_subnode(fdt, "/apb-pclk");
 | |
|     qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
 | |
|     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
 | |
|     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
 | |
|     qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
 | |
|                                 "clk24mhz");
 | |
|     qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
 | |
| 
 | |
|     if (have_numa_distance) {
 | |
|         int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
 | |
|         uint32_t *matrix = g_malloc0(size);
 | |
|         int idx, i, j;
 | |
| 
 | |
|         for (i = 0; i < nb_numa_nodes; i++) {
 | |
|             for (j = 0; j < nb_numa_nodes; j++) {
 | |
|                 idx = (i * nb_numa_nodes + j) * 3;
 | |
|                 matrix[idx + 0] = cpu_to_be32(i);
 | |
|                 matrix[idx + 1] = cpu_to_be32(j);
 | |
|                 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         qemu_fdt_add_subnode(fdt, "/distance-map");
 | |
|         qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
 | |
|                                 "numa-distance-map-v1");
 | |
|         qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
 | |
|                          matrix, size);
 | |
|         g_free(matrix);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdt_add_psci_node(const VirtMachineState *vms)
 | |
| {
 | |
|     uint32_t cpu_suspend_fn;
 | |
|     uint32_t cpu_off_fn;
 | |
|     uint32_t cpu_on_fn;
 | |
|     uint32_t migrate_fn;
 | |
|     void *fdt = vms->fdt;
 | |
|     ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
 | |
|     const char *psci_method;
 | |
| 
 | |
|     switch (vms->psci_conduit) {
 | |
|     case QEMU_PSCI_CONDUIT_DISABLED:
 | |
|         return;
 | |
|     case QEMU_PSCI_CONDUIT_HVC:
 | |
|         psci_method = "hvc";
 | |
|         break;
 | |
|     case QEMU_PSCI_CONDUIT_SMC:
 | |
|         psci_method = "smc";
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(fdt, "/psci");
 | |
|     if (armcpu->psci_version == 2) {
 | |
|         const char comp[] = "arm,psci-0.2\0arm,psci";
 | |
|         qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
 | |
| 
 | |
|         cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
 | |
|         if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
 | |
|             cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
 | |
|             cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
 | |
|             migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
 | |
|         } else {
 | |
|             cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
 | |
|             cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
 | |
|             migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
 | |
|         }
 | |
|     } else {
 | |
|         qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
 | |
| 
 | |
|         cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
 | |
|         cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
 | |
|         cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
 | |
|         migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
 | |
|     }
 | |
| 
 | |
|     /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
 | |
|      * to the instruction that should be used to invoke PSCI functions.
 | |
|      * However, the device tree binding uses 'method' instead, so that is
 | |
|      * what we should use here.
 | |
|      */
 | |
|     qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
 | |
| 
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
 | |
|     qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
 | |
| }
 | |
| 
 | |
| static void fdt_add_timer_nodes(const VirtMachineState *vms)
 | |
| {
 | |
|     /* On real hardware these interrupts are level-triggered.
 | |
|      * On KVM they were edge-triggered before host kernel version 4.4,
 | |
|      * and level-triggered afterwards.
 | |
|      * On emulated QEMU they are level-triggered.
 | |
|      *
 | |
|      * Getting the DTB info about them wrong is awkward for some
 | |
|      * guest kernels:
 | |
|      *  pre-4.8 ignore the DT and leave the interrupt configured
 | |
|      *   with whatever the GIC reset value (or the bootloader) left it at
 | |
|      *  4.8 before rc6 honour the incorrect data by programming it back
 | |
|      *   into the GIC, causing problems
 | |
|      *  4.8rc6 and later ignore the DT and always write "level triggered"
 | |
|      *   into the GIC
 | |
|      *
 | |
|      * For backwards-compatibility, virt-2.8 and earlier will continue
 | |
|      * to say these are edge-triggered, but later machines will report
 | |
|      * the correct information.
 | |
|      */
 | |
|     ARMCPU *armcpu;
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
|     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 | |
| 
 | |
|     if (vmc->claim_edge_triggered_timers) {
 | |
|         irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
 | |
|     }
 | |
| 
 | |
|     if (vms->gic_version == 2) {
 | |
|         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 | |
|                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
 | |
|                              (1 << vms->smp_cpus) - 1);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/timer");
 | |
| 
 | |
|     armcpu = ARM_CPU(qemu_get_cpu(0));
 | |
|     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 | |
|         const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
 | |
|         qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
 | |
|                          compat, sizeof(compat));
 | |
|     } else {
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
 | |
|                                 "arm,armv7-timer");
 | |
|     }
 | |
|     qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
 | |
|                        GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
 | |
| }
 | |
| 
 | |
| static void fdt_add_cpu_nodes(const VirtMachineState *vms)
 | |
| {
 | |
|     int cpu;
 | |
|     int addr_cells = 1;
 | |
|     const MachineState *ms = MACHINE(vms);
 | |
| 
 | |
|     /*
 | |
|      * From Documentation/devicetree/bindings/arm/cpus.txt
 | |
|      *  On ARM v8 64-bit systems value should be set to 2,
 | |
|      *  that corresponds to the MPIDR_EL1 register size.
 | |
|      *  If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
 | |
|      *  in the system, #address-cells can be set to 1, since
 | |
|      *  MPIDR_EL1[63:32] bits are not used for CPUs
 | |
|      *  identification.
 | |
|      *
 | |
|      *  Here we actually don't know whether our system is 32- or 64-bit one.
 | |
|      *  The simplest way to go is to examine affinity IDs of all our CPUs. If
 | |
|      *  at least one of them has Aff3 populated, we set #address-cells to 2.
 | |
|      */
 | |
|     for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
 | |
|         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 | |
| 
 | |
|         if (armcpu->mp_affinity & ARM_AFF3_MASK) {
 | |
|             addr_cells = 2;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/cpus");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
 | |
| 
 | |
|     for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
 | |
|         char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
 | |
|         ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
 | |
|         CPUState *cs = CPU(armcpu);
 | |
| 
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
 | |
|                                     armcpu->dtb_compatible);
 | |
| 
 | |
|         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
 | |
|             && vms->smp_cpus > 1) {
 | |
|             qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                                         "enable-method", "psci");
 | |
|         }
 | |
| 
 | |
|         if (addr_cells == 2) {
 | |
|             qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
 | |
|                                  armcpu->mp_affinity);
 | |
|         } else {
 | |
|             qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
 | |
|                                   armcpu->mp_affinity);
 | |
|         }
 | |
| 
 | |
|         if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
 | |
|             qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
 | |
|                 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
 | |
|         }
 | |
| 
 | |
|         g_free(nodename);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void fdt_add_its_gic_node(VirtMachineState *vms)
 | |
| {
 | |
|     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/intc/its");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
 | |
|                             "arm,gic-v3-its");
 | |
|     qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
 | |
|                                  2, vms->memmap[VIRT_GIC_ITS].base,
 | |
|                                  2, vms->memmap[VIRT_GIC_ITS].size);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
 | |
| }
 | |
| 
 | |
| static void fdt_add_v2m_gic_node(VirtMachineState *vms)
 | |
| {
 | |
|     vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
 | |
|                             "arm,gic-v2m-frame");
 | |
|     qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
 | |
|                                  2, vms->memmap[VIRT_GIC_V2M].base,
 | |
|                                  2, vms->memmap[VIRT_GIC_V2M].size);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
 | |
| }
 | |
| 
 | |
| static void fdt_add_gic_node(VirtMachineState *vms)
 | |
| {
 | |
|     vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/intc");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
 | |
|     qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
 | |
|     qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
 | |
|     if (vms->gic_version == 3) {
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
 | |
|                                 "arm,gic-v3");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
 | |
|                                      2, vms->memmap[VIRT_GIC_DIST].base,
 | |
|                                      2, vms->memmap[VIRT_GIC_DIST].size,
 | |
|                                      2, vms->memmap[VIRT_GIC_REDIST].base,
 | |
|                                      2, vms->memmap[VIRT_GIC_REDIST].size);
 | |
|         if (vms->virt) {
 | |
|             qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
 | |
|                                    GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
 | |
|                                    GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|         }
 | |
|     } else {
 | |
|         /* 'cortex-a15-gic' means 'GIC v2' */
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
 | |
|                                 "arm,cortex-a15-gic");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
 | |
|                                       2, vms->memmap[VIRT_GIC_DIST].base,
 | |
|                                       2, vms->memmap[VIRT_GIC_DIST].size,
 | |
|                                       2, vms->memmap[VIRT_GIC_CPU].base,
 | |
|                                       2, vms->memmap[VIRT_GIC_CPU].size);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
 | |
| }
 | |
| 
 | |
| static void fdt_add_pmu_nodes(const VirtMachineState *vms)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     ARMCPU *armcpu;
 | |
|     uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         armcpu = ARM_CPU(cpu);
 | |
|         if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
 | |
|             (kvm_enabled() && !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ)))) {
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (vms->gic_version == 2) {
 | |
|         irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
 | |
|                              GIC_FDT_IRQ_PPI_CPU_WIDTH,
 | |
|                              (1 << vms->smp_cpus) - 1);
 | |
|     }
 | |
| 
 | |
|     armcpu = ARM_CPU(qemu_get_cpu(0));
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/pmu");
 | |
|     if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
 | |
|         const char compat[] = "arm,armv8-pmuv3";
 | |
|         qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
 | |
|                          compat, sizeof(compat));
 | |
|         qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
 | |
|                                GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_its(VirtMachineState *vms, DeviceState *gicdev)
 | |
| {
 | |
|     const char *itsclass = its_class_name();
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     if (!itsclass) {
 | |
|         /* Do nothing if not supported */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     dev = qdev_create(NULL, itsclass);
 | |
| 
 | |
|     object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
 | |
|                              &error_abort);
 | |
|     qdev_init_nofail(dev);
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
 | |
| 
 | |
|     fdt_add_its_gic_node(vms);
 | |
| }
 | |
| 
 | |
| static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     int i;
 | |
|     int irq = vms->irqmap[VIRT_GIC_V2M];
 | |
|     DeviceState *dev;
 | |
| 
 | |
|     dev = qdev_create(NULL, "arm-gicv2m");
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
 | |
|     qdev_prop_set_uint32(dev, "base-spi", irq);
 | |
|     qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
 | |
|     qdev_init_nofail(dev);
 | |
| 
 | |
|     for (i = 0; i < NUM_GICV2M_SPIS; i++) {
 | |
|         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 | |
|     }
 | |
| 
 | |
|     fdt_add_v2m_gic_node(vms);
 | |
| }
 | |
| 
 | |
| static void create_gic(VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     /* We create a standalone GIC */
 | |
|     DeviceState *gicdev;
 | |
|     SysBusDevice *gicbusdev;
 | |
|     const char *gictype;
 | |
|     int type = vms->gic_version, i;
 | |
| 
 | |
|     gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
 | |
| 
 | |
|     gicdev = qdev_create(NULL, gictype);
 | |
|     qdev_prop_set_uint32(gicdev, "revision", type);
 | |
|     qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
 | |
|     /* Note that the num-irq property counts both internal and external
 | |
|      * interrupts; there are always 32 of the former (mandated by GIC spec).
 | |
|      */
 | |
|     qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
 | |
|     if (!kvm_irqchip_in_kernel()) {
 | |
|         qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
 | |
|     }
 | |
|     qdev_init_nofail(gicdev);
 | |
|     gicbusdev = SYS_BUS_DEVICE(gicdev);
 | |
|     sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
 | |
|     if (type == 3) {
 | |
|         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
 | |
|     } else {
 | |
|         sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
 | |
|     }
 | |
| 
 | |
|     /* Wire the outputs from each CPU's generic timer and the GICv3
 | |
|      * maintenance interrupt signal to the appropriate GIC PPI inputs,
 | |
|      * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
 | |
|      */
 | |
|     for (i = 0; i < smp_cpus; i++) {
 | |
|         DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
 | |
|         int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
 | |
|         int irq;
 | |
|         /* Mapping from the output timer irq lines from the CPU to the
 | |
|          * GIC PPI inputs we use for the virt board.
 | |
|          */
 | |
|         const int timer_irq[] = {
 | |
|             [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
 | |
|             [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
 | |
|             [GTIMER_HYP]  = ARCH_TIMER_NS_EL2_IRQ,
 | |
|             [GTIMER_SEC]  = ARCH_TIMER_S_EL1_IRQ,
 | |
|         };
 | |
| 
 | |
|         for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
 | |
|             qdev_connect_gpio_out(cpudev, irq,
 | |
|                                   qdev_get_gpio_in(gicdev,
 | |
|                                                    ppibase + timer_irq[irq]));
 | |
|         }
 | |
| 
 | |
|         qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
 | |
|                                     qdev_get_gpio_in(gicdev, ppibase
 | |
|                                                      + ARCH_GICV3_MAINT_IRQ));
 | |
| 
 | |
|         sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
 | |
|         sysbus_connect_irq(gicbusdev, i + smp_cpus,
 | |
|                            qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
 | |
|         sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
 | |
|                            qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
 | |
|         sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
 | |
|                            qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < NUM_IRQS; i++) {
 | |
|         pic[i] = qdev_get_gpio_in(gicdev, i);
 | |
|     }
 | |
| 
 | |
|     fdt_add_gic_node(vms);
 | |
| 
 | |
|     if (type == 3 && vms->its) {
 | |
|         create_its(vms, gicdev);
 | |
|     } else if (type == 2) {
 | |
|         create_v2m(vms, pic);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
 | |
|                         MemoryRegion *mem, Chardev *chr)
 | |
| {
 | |
|     char *nodename;
 | |
|     hwaddr base = vms->memmap[uart].base;
 | |
|     hwaddr size = vms->memmap[uart].size;
 | |
|     int irq = vms->irqmap[uart];
 | |
|     const char compat[] = "arm,pl011\0arm,primecell";
 | |
|     const char clocknames[] = "uartclk\0apb_pclk";
 | |
|     DeviceState *dev = qdev_create(NULL, "pl011");
 | |
|     SysBusDevice *s = SYS_BUS_DEVICE(dev);
 | |
| 
 | |
|     qdev_prop_set_chr(dev, "chardev", chr);
 | |
|     qdev_init_nofail(dev);
 | |
|     memory_region_add_subregion(mem, base,
 | |
|                                 sysbus_mmio_get_region(s, 0));
 | |
|     sysbus_connect_irq(s, 0, pic[irq]);
 | |
| 
 | |
|     nodename = g_strdup_printf("/pl011@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     /* Note that we can't use setprop_string because of the embedded NUL */
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "compatible",
 | |
|                          compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, base, 2, size);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                                GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                                GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
 | |
|                                vms->clock_phandle, vms->clock_phandle);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
 | |
|                          clocknames, sizeof(clocknames));
 | |
| 
 | |
|     if (uart == VIRT_UART) {
 | |
|         qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
 | |
|     } else {
 | |
|         /* Mark as not usable by the normal world */
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
|     }
 | |
| 
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     char *nodename;
 | |
|     hwaddr base = vms->memmap[VIRT_RTC].base;
 | |
|     hwaddr size = vms->memmap[VIRT_RTC].size;
 | |
|     int irq = vms->irqmap[VIRT_RTC];
 | |
|     const char compat[] = "arm,pl031\0arm,primecell";
 | |
| 
 | |
|     sysbus_create_simple("pl031", base, pic[irq]);
 | |
| 
 | |
|     nodename = g_strdup_printf("/pl031@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base, 2, size);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                            GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static DeviceState *gpio_key_dev;
 | |
| static void virt_powerdown_req(Notifier *n, void *opaque)
 | |
| {
 | |
|     /* use gpio Pin 3 for power button event */
 | |
|     qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
 | |
| }
 | |
| 
 | |
| static Notifier virt_system_powerdown_notifier = {
 | |
|     .notify = virt_powerdown_req
 | |
| };
 | |
| 
 | |
| static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     char *nodename;
 | |
|     DeviceState *pl061_dev;
 | |
|     hwaddr base = vms->memmap[VIRT_GPIO].base;
 | |
|     hwaddr size = vms->memmap[VIRT_GPIO].size;
 | |
|     int irq = vms->irqmap[VIRT_GPIO];
 | |
|     const char compat[] = "arm,pl061\0arm,primecell";
 | |
| 
 | |
|     pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
 | |
| 
 | |
|     uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
 | |
|     nodename = g_strdup_printf("/pl061@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base, 2, size);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                            GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                            GIC_FDT_IRQ_FLAGS_LEVEL_HI);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
 | |
| 
 | |
|     gpio_key_dev = sysbus_create_simple("gpio-key", -1,
 | |
|                                         qdev_get_gpio_in(pl061_dev, 3));
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
 | |
| 
 | |
|     qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
 | |
|     qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
 | |
|                             "label", "GPIO Key Poweroff");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
 | |
|                           KEY_POWER);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
 | |
|                            "gpios", phandle, 3, 0);
 | |
| 
 | |
|     /* connect powerdown request */
 | |
|     qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
 | |
| 
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     int i;
 | |
|     hwaddr size = vms->memmap[VIRT_MMIO].size;
 | |
| 
 | |
|     /* We create the transports in forwards order. Since qbus_realize()
 | |
|      * prepends (not appends) new child buses, the incrementing loop below will
 | |
|      * create a list of virtio-mmio buses with decreasing base addresses.
 | |
|      *
 | |
|      * When a -device option is processed from the command line,
 | |
|      * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
 | |
|      * order. The upshot is that -device options in increasing command line
 | |
|      * order are mapped to virtio-mmio buses with decreasing base addresses.
 | |
|      *
 | |
|      * When this code was originally written, that arrangement ensured that the
 | |
|      * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
 | |
|      * the first -device on the command line. (The end-to-end order is a
 | |
|      * function of this loop, qbus_realize(), qbus_find_recursive(), and the
 | |
|      * guest kernel's name-to-address assignment strategy.)
 | |
|      *
 | |
|      * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
 | |
|      * the message, if not necessarily the code, of commit 70161ff336.
 | |
|      * Therefore the loop now establishes the inverse of the original intent.
 | |
|      *
 | |
|      * Unfortunately, we can't counteract the kernel change by reversing the
 | |
|      * loop; it would break existing command lines.
 | |
|      *
 | |
|      * In any case, the kernel makes no guarantee about the stability of
 | |
|      * enumeration order of virtio devices (as demonstrated by it changing
 | |
|      * between kernel versions). For reliable and stable identification
 | |
|      * of disks users must use UUIDs or similar mechanisms.
 | |
|      */
 | |
|     for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
 | |
|         int irq = vms->irqmap[VIRT_MMIO] + i;
 | |
|         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 | |
| 
 | |
|         sysbus_create_simple("virtio-mmio", base, pic[irq]);
 | |
|     }
 | |
| 
 | |
|     /* We add dtb nodes in reverse order so that they appear in the finished
 | |
|      * device tree lowest address first.
 | |
|      *
 | |
|      * Note that this mapping is independent of the loop above. The previous
 | |
|      * loop influences virtio device to virtio transport assignment, whereas
 | |
|      * this loop controls how virtio transports are laid out in the dtb.
 | |
|      */
 | |
|     for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
 | |
|         char *nodename;
 | |
|         int irq = vms->irqmap[VIRT_MMIO] + i;
 | |
|         hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
 | |
| 
 | |
|         nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                                 "compatible", "virtio,mmio");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, base, 2, size);
 | |
|         qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
 | |
|                                GIC_FDT_IRQ_TYPE_SPI, irq,
 | |
|                                GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
 | |
|         qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 | |
|         g_free(nodename);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_one_flash(const char *name, hwaddr flashbase,
 | |
|                              hwaddr flashsize, const char *file,
 | |
|                              MemoryRegion *sysmem)
 | |
| {
 | |
|     /* Create and map a single flash device. We use the same
 | |
|      * parameters as the flash devices on the Versatile Express board.
 | |
|      */
 | |
|     DriveInfo *dinfo = drive_get_next(IF_PFLASH);
 | |
|     DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 | |
|     const uint64_t sectorlength = 256 * 1024;
 | |
| 
 | |
|     if (dinfo) {
 | |
|         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
 | |
|                             &error_abort);
 | |
|     }
 | |
| 
 | |
|     qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
 | |
|     qdev_prop_set_uint64(dev, "sector-length", sectorlength);
 | |
|     qdev_prop_set_uint8(dev, "width", 4);
 | |
|     qdev_prop_set_uint8(dev, "device-width", 2);
 | |
|     qdev_prop_set_bit(dev, "big-endian", false);
 | |
|     qdev_prop_set_uint16(dev, "id0", 0x89);
 | |
|     qdev_prop_set_uint16(dev, "id1", 0x18);
 | |
|     qdev_prop_set_uint16(dev, "id2", 0x00);
 | |
|     qdev_prop_set_uint16(dev, "id3", 0x00);
 | |
|     qdev_prop_set_string(dev, "name", name);
 | |
|     qdev_init_nofail(dev);
 | |
| 
 | |
|     memory_region_add_subregion(sysmem, flashbase,
 | |
|                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
 | |
| 
 | |
|     if (file) {
 | |
|         char *fn;
 | |
|         int image_size;
 | |
| 
 | |
|         if (drive_get(IF_PFLASH, 0, 0)) {
 | |
|             error_report("The contents of the first flash device may be "
 | |
|                          "specified with -bios or with -drive if=pflash... "
 | |
|                          "but you cannot use both options at once");
 | |
|             exit(1);
 | |
|         }
 | |
|         fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
 | |
|         if (!fn) {
 | |
|             error_report("Could not find ROM image '%s'", file);
 | |
|             exit(1);
 | |
|         }
 | |
|         image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
 | |
|         g_free(fn);
 | |
|         if (image_size < 0) {
 | |
|             error_report("Could not load ROM image '%s'", file);
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void create_flash(const VirtMachineState *vms,
 | |
|                          MemoryRegion *sysmem,
 | |
|                          MemoryRegion *secure_sysmem)
 | |
| {
 | |
|     /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
 | |
|      * Any file passed via -bios goes in the first of these.
 | |
|      * sysmem is the system memory space. secure_sysmem is the secure view
 | |
|      * of the system, and the first flash device should be made visible only
 | |
|      * there. The second flash device is visible to both secure and nonsecure.
 | |
|      * If sysmem == secure_sysmem this means there is no separate Secure
 | |
|      * address space and both flash devices are generally visible.
 | |
|      */
 | |
|     hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
 | |
|     hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
 | |
|     char *nodename;
 | |
| 
 | |
|     create_one_flash("virt.flash0", flashbase, flashsize,
 | |
|                      bios_name, secure_sysmem);
 | |
|     create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
 | |
|                      NULL, sysmem);
 | |
| 
 | |
|     if (sysmem == secure_sysmem) {
 | |
|         /* Report both flash devices as a single node in the DT */
 | |
|         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, flashbase, 2, flashsize,
 | |
|                                      2, flashbase + flashsize, 2, flashsize);
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 | |
|         g_free(nodename);
 | |
|     } else {
 | |
|         /* Report the devices as separate nodes so we can mark one as
 | |
|          * only visible to the secure world.
 | |
|          */
 | |
|         nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, flashbase, 2, flashsize);
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
|         g_free(nodename);
 | |
| 
 | |
|         nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
 | |
|         qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|         qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                      2, flashbase + flashsize, 2, flashsize);
 | |
|         qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
 | |
|         g_free(nodename);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
 | |
| {
 | |
|     hwaddr base = vms->memmap[VIRT_FW_CFG].base;
 | |
|     hwaddr size = vms->memmap[VIRT_FW_CFG].size;
 | |
|     FWCfgState *fw_cfg;
 | |
|     char *nodename;
 | |
| 
 | |
|     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
 | |
|     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
 | |
| 
 | |
|     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                             "compatible", "qemu,fw-cfg-mmio");
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base, 2, size);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 | |
|     g_free(nodename);
 | |
|     return fw_cfg;
 | |
| }
 | |
| 
 | |
| static void create_pcie_irq_map(const VirtMachineState *vms,
 | |
|                                 uint32_t gic_phandle,
 | |
|                                 int first_irq, const char *nodename)
 | |
| {
 | |
|     int devfn, pin;
 | |
|     uint32_t full_irq_map[4 * 4 * 10] = { 0 };
 | |
|     uint32_t *irq_map = full_irq_map;
 | |
| 
 | |
|     for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
 | |
|         for (pin = 0; pin < 4; pin++) {
 | |
|             int irq_type = GIC_FDT_IRQ_TYPE_SPI;
 | |
|             int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
 | |
|             int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
 | |
|             int i;
 | |
| 
 | |
|             uint32_t map[] = {
 | |
|                 devfn << 8, 0, 0,                           /* devfn */
 | |
|                 pin + 1,                                    /* PCI pin */
 | |
|                 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
 | |
| 
 | |
|             /* Convert map to big endian */
 | |
|             for (i = 0; i < 10; i++) {
 | |
|                 irq_map[i] = cpu_to_be32(map[i]);
 | |
|             }
 | |
|             irq_map += 10;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
 | |
|                      full_irq_map, sizeof(full_irq_map));
 | |
| 
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
 | |
|                            0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
 | |
|                            0x7           /* PCI irq */);
 | |
| }
 | |
| 
 | |
| static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
 | |
|     hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
 | |
|     hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
 | |
|     hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
 | |
|     hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
 | |
|     hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
 | |
|     hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
 | |
|     hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
 | |
|     hwaddr base = base_mmio;
 | |
|     int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
 | |
|     int irq = vms->irqmap[VIRT_PCIE];
 | |
|     MemoryRegion *mmio_alias;
 | |
|     MemoryRegion *mmio_reg;
 | |
|     MemoryRegion *ecam_alias;
 | |
|     MemoryRegion *ecam_reg;
 | |
|     DeviceState *dev;
 | |
|     char *nodename;
 | |
|     int i;
 | |
|     PCIHostState *pci;
 | |
| 
 | |
|     dev = qdev_create(NULL, TYPE_GPEX_HOST);
 | |
|     qdev_init_nofail(dev);
 | |
| 
 | |
|     /* Map only the first size_ecam bytes of ECAM space */
 | |
|     ecam_alias = g_new0(MemoryRegion, 1);
 | |
|     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
 | |
|     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
 | |
|                              ecam_reg, 0, size_ecam);
 | |
|     memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
 | |
| 
 | |
|     /* Map the MMIO window into system address space so as to expose
 | |
|      * the section of PCI MMIO space which starts at the same base address
 | |
|      * (ie 1:1 mapping for that part of PCI MMIO space visible through
 | |
|      * the window).
 | |
|      */
 | |
|     mmio_alias = g_new0(MemoryRegion, 1);
 | |
|     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
 | |
|     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
 | |
|                              mmio_reg, base_mmio, size_mmio);
 | |
|     memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
 | |
| 
 | |
|     if (vms->highmem) {
 | |
|         /* Map high MMIO space */
 | |
|         MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
 | |
| 
 | |
|         memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
 | |
|                                  mmio_reg, base_mmio_high, size_mmio_high);
 | |
|         memory_region_add_subregion(get_system_memory(), base_mmio_high,
 | |
|                                     high_mmio_alias);
 | |
|     }
 | |
| 
 | |
|     /* Map IO port space */
 | |
|     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
 | |
| 
 | |
|     for (i = 0; i < GPEX_NUM_IRQS; i++) {
 | |
|         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
 | |
|     }
 | |
| 
 | |
|     pci = PCI_HOST_BRIDGE(dev);
 | |
|     if (pci->bus) {
 | |
|         for (i = 0; i < nb_nics; i++) {
 | |
|             NICInfo *nd = &nd_table[i];
 | |
| 
 | |
|             if (!nd->model) {
 | |
|                 nd->model = g_strdup("virtio");
 | |
|             }
 | |
| 
 | |
|             pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nodename = g_strdup_printf("/pcie@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename,
 | |
|                             "compatible", "pci-host-ecam-generic");
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
 | |
|     qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
 | |
|                            nr_pcie_buses - 1);
 | |
|     qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
 | |
| 
 | |
|     if (vms->msi_phandle) {
 | |
|         qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
 | |
|                                vms->msi_phandle);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
 | |
|                                  2, base_ecam, 2, size_ecam);
 | |
| 
 | |
|     if (vms->highmem) {
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
 | |
|                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
 | |
|                                      2, base_pio, 2, size_pio,
 | |
|                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
 | |
|                                      2, base_mmio, 2, size_mmio,
 | |
|                                      1, FDT_PCI_RANGE_MMIO_64BIT,
 | |
|                                      2, base_mmio_high,
 | |
|                                      2, base_mmio_high, 2, size_mmio_high);
 | |
|     } else {
 | |
|         qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
 | |
|                                      1, FDT_PCI_RANGE_IOPORT, 2, 0,
 | |
|                                      2, base_pio, 2, size_pio,
 | |
|                                      1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
 | |
|                                      2, base_mmio, 2, size_mmio);
 | |
|     }
 | |
| 
 | |
|     qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
 | |
|     create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
 | |
| 
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
 | |
| {
 | |
|     DeviceState *dev;
 | |
|     SysBusDevice *s;
 | |
|     int i;
 | |
|     ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
| 
 | |
|     platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
 | |
|     platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
 | |
|     platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
 | |
|     platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
 | |
| 
 | |
|     fdt_params->system_params = &platform_bus_params;
 | |
|     fdt_params->binfo = &vms->bootinfo;
 | |
|     fdt_params->intc = "/intc";
 | |
|     /*
 | |
|      * register a machine init done notifier that creates the device tree
 | |
|      * nodes of the platform bus and its children dynamic sysbus devices
 | |
|      */
 | |
|     arm_register_platform_bus_fdt_creator(fdt_params);
 | |
| 
 | |
|     dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
 | |
|     dev->id = TYPE_PLATFORM_BUS_DEVICE;
 | |
|     qdev_prop_set_uint32(dev, "num_irqs",
 | |
|         platform_bus_params.platform_bus_num_irqs);
 | |
|     qdev_prop_set_uint32(dev, "mmio_size",
 | |
|         platform_bus_params.platform_bus_size);
 | |
|     qdev_init_nofail(dev);
 | |
|     s = SYS_BUS_DEVICE(dev);
 | |
| 
 | |
|     for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
 | |
|         int irqn = platform_bus_params.platform_bus_first_irq + i;
 | |
|         sysbus_connect_irq(s, i, pic[irqn]);
 | |
|     }
 | |
| 
 | |
|     memory_region_add_subregion(sysmem,
 | |
|                                 platform_bus_params.platform_bus_base,
 | |
|                                 sysbus_mmio_get_region(s, 0));
 | |
| }
 | |
| 
 | |
| static void create_secure_ram(VirtMachineState *vms,
 | |
|                               MemoryRegion *secure_sysmem)
 | |
| {
 | |
|     MemoryRegion *secram = g_new(MemoryRegion, 1);
 | |
|     char *nodename;
 | |
|     hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
 | |
|     hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
 | |
| 
 | |
|     memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
 | |
|                            &error_fatal);
 | |
|     memory_region_add_subregion(secure_sysmem, base, secram);
 | |
| 
 | |
|     nodename = g_strdup_printf("/secram@%" PRIx64, base);
 | |
|     qemu_fdt_add_subnode(vms->fdt, nodename);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
 | |
|     qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
 | |
|     qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
 | |
| 
 | |
|     g_free(nodename);
 | |
| }
 | |
| 
 | |
| static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
 | |
| {
 | |
|     const VirtMachineState *board = container_of(binfo, VirtMachineState,
 | |
|                                                  bootinfo);
 | |
| 
 | |
|     *fdt_size = board->fdt_size;
 | |
|     return board->fdt;
 | |
| }
 | |
| 
 | |
| static void virt_build_smbios(VirtMachineState *vms)
 | |
| {
 | |
|     uint8_t *smbios_tables, *smbios_anchor;
 | |
|     size_t smbios_tables_len, smbios_anchor_len;
 | |
|     const char *product = "QEMU Virtual Machine";
 | |
| 
 | |
|     if (!vms->fw_cfg) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (kvm_enabled()) {
 | |
|         product = "KVM Virtual Machine";
 | |
|     }
 | |
| 
 | |
|     smbios_set_defaults("QEMU", product,
 | |
|                         "1.0", false, true, SMBIOS_ENTRY_POINT_30);
 | |
| 
 | |
|     smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
 | |
|                       &smbios_anchor, &smbios_anchor_len);
 | |
| 
 | |
|     if (smbios_anchor) {
 | |
|         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
 | |
|                         smbios_tables, smbios_tables_len);
 | |
|         fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
 | |
|                         smbios_anchor, smbios_anchor_len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static
 | |
| void virt_machine_done(Notifier *notifier, void *data)
 | |
| {
 | |
|     VirtMachineState *vms = container_of(notifier, VirtMachineState,
 | |
|                                          machine_done);
 | |
| 
 | |
|     virt_acpi_setup(vms);
 | |
|     virt_build_smbios(vms);
 | |
| }
 | |
| 
 | |
| static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
 | |
| {
 | |
|     uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
| 
 | |
|     if (!vmc->disallow_affinity_adjustment) {
 | |
|         /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
 | |
|          * GIC's target-list limitations. 32-bit KVM hosts currently
 | |
|          * always create clusters of 4 CPUs, but that is expected to
 | |
|          * change when they gain support for gicv3. When KVM is enabled
 | |
|          * it will override the changes we make here, therefore our
 | |
|          * purposes are to make TCG consistent (with 64-bit KVM hosts)
 | |
|          * and to improve SGI efficiency.
 | |
|          */
 | |
|         if (vms->gic_version == 3) {
 | |
|             clustersz = GICV3_TARGETLIST_BITS;
 | |
|         } else {
 | |
|             clustersz = GIC_TARGETLIST_BITS;
 | |
|         }
 | |
|     }
 | |
|     return arm_cpu_mp_affinity(idx, clustersz);
 | |
| }
 | |
| 
 | |
| static void machvirt_init(MachineState *machine)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(machine);
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(machine);
 | |
|     const CPUArchIdList *possible_cpus;
 | |
|     qemu_irq pic[NUM_IRQS];
 | |
|     MemoryRegion *sysmem = get_system_memory();
 | |
|     MemoryRegion *secure_sysmem = NULL;
 | |
|     int n, virt_max_cpus;
 | |
|     MemoryRegion *ram = g_new(MemoryRegion, 1);
 | |
|     const char *cpu_model = machine->cpu_model;
 | |
|     char **cpustr;
 | |
|     ObjectClass *oc;
 | |
|     const char *typename;
 | |
|     CPUClass *cc;
 | |
|     Error *err = NULL;
 | |
|     bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
 | |
| 
 | |
|     if (!cpu_model) {
 | |
|         cpu_model = "cortex-a15";
 | |
|     }
 | |
| 
 | |
|     /* We can probe only here because during property set
 | |
|      * KVM is not available yet
 | |
|      */
 | |
|     if (!vms->gic_version) {
 | |
|         if (!kvm_enabled()) {
 | |
|             error_report("gic-version=host requires KVM");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         vms->gic_version = kvm_arm_vgic_probe();
 | |
|         if (!vms->gic_version) {
 | |
|             error_report("Unable to determine GIC version supported by host");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Separate the actual CPU model name from any appended features */
 | |
|     cpustr = g_strsplit(cpu_model, ",", 2);
 | |
| 
 | |
|     if (!cpuname_valid(cpustr[0])) {
 | |
|         error_report("mach-virt: CPU %s not supported", cpustr[0]);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     /* If we have an EL3 boot ROM then the assumption is that it will
 | |
|      * implement PSCI itself, so disable QEMU's internal implementation
 | |
|      * so it doesn't get in the way. Instead of starting secondary
 | |
|      * CPUs in PSCI powerdown state we will start them all running and
 | |
|      * let the boot ROM sort them out.
 | |
|      * The usual case is that we do use QEMU's PSCI implementation;
 | |
|      * if the guest has EL2 then we will use SMC as the conduit,
 | |
|      * and otherwise we will use HVC (for backwards compatibility and
 | |
|      * because if we're using KVM then we must use HVC).
 | |
|      */
 | |
|     if (vms->secure && firmware_loaded) {
 | |
|         vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
 | |
|     } else if (vms->virt) {
 | |
|         vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
 | |
|     } else {
 | |
|         vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
 | |
|     }
 | |
| 
 | |
|     /* The maximum number of CPUs depends on the GIC version, or on how
 | |
|      * many redistributors we can fit into the memory map.
 | |
|      */
 | |
|     if (vms->gic_version == 3) {
 | |
|         virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
 | |
|     } else {
 | |
|         virt_max_cpus = GIC_NCPU;
 | |
|     }
 | |
| 
 | |
|     if (max_cpus > virt_max_cpus) {
 | |
|         error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
 | |
|                      "supported by machine 'mach-virt' (%d)",
 | |
|                      max_cpus, virt_max_cpus);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     vms->smp_cpus = smp_cpus;
 | |
| 
 | |
|     if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
 | |
|         error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (vms->virt && kvm_enabled()) {
 | |
|         error_report("mach-virt: KVM does not support providing "
 | |
|                      "Virtualization extensions to the guest CPU");
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     if (vms->secure) {
 | |
|         if (kvm_enabled()) {
 | |
|             error_report("mach-virt: KVM does not support Security extensions");
 | |
|             exit(1);
 | |
|         }
 | |
| 
 | |
|         /* The Secure view of the world is the same as the NonSecure,
 | |
|          * but with a few extra devices. Create it as a container region
 | |
|          * containing the system memory at low priority; any secure-only
 | |
|          * devices go in at higher priority and take precedence.
 | |
|          */
 | |
|         secure_sysmem = g_new(MemoryRegion, 1);
 | |
|         memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
 | |
|                            UINT64_MAX);
 | |
|         memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
 | |
|     }
 | |
| 
 | |
|     create_fdt(vms);
 | |
| 
 | |
|     oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
 | |
|     if (!oc) {
 | |
|         error_report("Unable to find CPU definition");
 | |
|         exit(1);
 | |
|     }
 | |
|     typename = object_class_get_name(oc);
 | |
| 
 | |
|     /* convert -smp CPU options specified by the user into global props */
 | |
|     cc = CPU_CLASS(oc);
 | |
|     cc->parse_features(typename, cpustr[1], &err);
 | |
|     g_strfreev(cpustr);
 | |
|     if (err) {
 | |
|         error_report_err(err);
 | |
|         exit(1);
 | |
|     }
 | |
| 
 | |
|     possible_cpus = mc->possible_cpu_arch_ids(machine);
 | |
|     for (n = 0; n < possible_cpus->len; n++) {
 | |
|         Object *cpuobj;
 | |
|         CPUState *cs;
 | |
| 
 | |
|         if (n >= smp_cpus) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         cpuobj = object_new(typename);
 | |
|         object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
 | |
|                                 "mp-affinity", NULL);
 | |
| 
 | |
|         cs = CPU(cpuobj);
 | |
|         cs->cpu_index = n;
 | |
| 
 | |
|         numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
 | |
|                           &error_fatal);
 | |
| 
 | |
|         if (!vms->secure) {
 | |
|             object_property_set_bool(cpuobj, false, "has_el3", NULL);
 | |
|         }
 | |
| 
 | |
|         if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
 | |
|             object_property_set_bool(cpuobj, false, "has_el2", NULL);
 | |
|         }
 | |
| 
 | |
|         if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
 | |
|             object_property_set_int(cpuobj, vms->psci_conduit,
 | |
|                                     "psci-conduit", NULL);
 | |
| 
 | |
|             /* Secondary CPUs start in PSCI powered-down state */
 | |
|             if (n > 0) {
 | |
|                 object_property_set_bool(cpuobj, true,
 | |
|                                          "start-powered-off", NULL);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
 | |
|             object_property_set_bool(cpuobj, false, "pmu", NULL);
 | |
|         }
 | |
| 
 | |
|         if (object_property_find(cpuobj, "reset-cbar", NULL)) {
 | |
|             object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
 | |
|                                     "reset-cbar", &error_abort);
 | |
|         }
 | |
| 
 | |
|         object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
 | |
|                                  &error_abort);
 | |
|         if (vms->secure) {
 | |
|             object_property_set_link(cpuobj, OBJECT(secure_sysmem),
 | |
|                                      "secure-memory", &error_abort);
 | |
|         }
 | |
| 
 | |
|         object_property_set_bool(cpuobj, true, "realized", NULL);
 | |
|         object_unref(cpuobj);
 | |
|     }
 | |
|     fdt_add_timer_nodes(vms);
 | |
|     fdt_add_cpu_nodes(vms);
 | |
|     fdt_add_psci_node(vms);
 | |
| 
 | |
|     memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
 | |
|                                          machine->ram_size);
 | |
|     memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
 | |
| 
 | |
|     create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
 | |
| 
 | |
|     create_gic(vms, pic);
 | |
| 
 | |
|     fdt_add_pmu_nodes(vms);
 | |
| 
 | |
|     create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
 | |
| 
 | |
|     if (vms->secure) {
 | |
|         create_secure_ram(vms, secure_sysmem);
 | |
|         create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
 | |
|     }
 | |
| 
 | |
|     create_rtc(vms, pic);
 | |
| 
 | |
|     create_pcie(vms, pic);
 | |
| 
 | |
|     create_gpio(vms, pic);
 | |
| 
 | |
|     /* Create mmio transports, so the user can create virtio backends
 | |
|      * (which will be automatically plugged in to the transports). If
 | |
|      * no backend is created the transport will just sit harmlessly idle.
 | |
|      */
 | |
|     create_virtio_devices(vms, pic);
 | |
| 
 | |
|     vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
 | |
|     rom_set_fw(vms->fw_cfg);
 | |
| 
 | |
|     vms->machine_done.notify = virt_machine_done;
 | |
|     qemu_add_machine_init_done_notifier(&vms->machine_done);
 | |
| 
 | |
|     vms->bootinfo.ram_size = machine->ram_size;
 | |
|     vms->bootinfo.kernel_filename = machine->kernel_filename;
 | |
|     vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
 | |
|     vms->bootinfo.initrd_filename = machine->initrd_filename;
 | |
|     vms->bootinfo.nb_cpus = smp_cpus;
 | |
|     vms->bootinfo.board_id = -1;
 | |
|     vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
 | |
|     vms->bootinfo.get_dtb = machvirt_dtb;
 | |
|     vms->bootinfo.firmware_loaded = firmware_loaded;
 | |
|     arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
 | |
| 
 | |
|     /*
 | |
|      * arm_load_kernel machine init done notifier registration must
 | |
|      * happen before the platform_bus_create call. In this latter,
 | |
|      * another notifier is registered which adds platform bus nodes.
 | |
|      * Notifiers are executed in registration reverse order.
 | |
|      */
 | |
|     create_platform_bus(vms, pic);
 | |
| }
 | |
| 
 | |
| static bool virt_get_secure(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->secure;
 | |
| }
 | |
| 
 | |
| static void virt_set_secure(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->secure = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_virt(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->virt;
 | |
| }
 | |
| 
 | |
| static void virt_set_virt(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->virt = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_highmem(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->highmem;
 | |
| }
 | |
| 
 | |
| static void virt_set_highmem(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->highmem = value;
 | |
| }
 | |
| 
 | |
| static bool virt_get_its(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     return vms->its;
 | |
| }
 | |
| 
 | |
| static void virt_set_its(Object *obj, bool value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     vms->its = value;
 | |
| }
 | |
| 
 | |
| static char *virt_get_gic_version(Object *obj, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     const char *val = vms->gic_version == 3 ? "3" : "2";
 | |
| 
 | |
|     return g_strdup(val);
 | |
| }
 | |
| 
 | |
| static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
| 
 | |
|     if (!strcmp(value, "3")) {
 | |
|         vms->gic_version = 3;
 | |
|     } else if (!strcmp(value, "2")) {
 | |
|         vms->gic_version = 2;
 | |
|     } else if (!strcmp(value, "host")) {
 | |
|         vms->gic_version = 0; /* Will probe later */
 | |
|     } else {
 | |
|         error_setg(errp, "Invalid gic-version value");
 | |
|         error_append_hint(errp, "Valid values are 3, 2, host.\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CpuInstanceProperties
 | |
| virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_GET_CLASS(ms);
 | |
|     const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
 | |
| 
 | |
|     assert(cpu_index < possible_cpus->len);
 | |
|     return possible_cpus->cpus[cpu_index].props;
 | |
| }
 | |
| 
 | |
| static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
 | |
| {
 | |
|     int n;
 | |
|     VirtMachineState *vms = VIRT_MACHINE(ms);
 | |
| 
 | |
|     if (ms->possible_cpus) {
 | |
|         assert(ms->possible_cpus->len == max_cpus);
 | |
|         return ms->possible_cpus;
 | |
|     }
 | |
| 
 | |
|     ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
 | |
|                                   sizeof(CPUArchId) * max_cpus);
 | |
|     ms->possible_cpus->len = max_cpus;
 | |
|     for (n = 0; n < ms->possible_cpus->len; n++) {
 | |
|         ms->possible_cpus->cpus[n].arch_id =
 | |
|             virt_cpu_mp_affinity(vms, n);
 | |
|         ms->possible_cpus->cpus[n].props.has_thread_id = true;
 | |
|         ms->possible_cpus->cpus[n].props.thread_id = n;
 | |
| 
 | |
|         /* default distribution of CPUs over NUMA nodes */
 | |
|         if (nb_numa_nodes) {
 | |
|             /* preset values but do not enable them i.e. 'has_node_id = false',
 | |
|              * numa init code will enable them later if manual mapping wasn't
 | |
|              * present on CLI */
 | |
|             ms->possible_cpus->cpus[n].props.node_id = n % nb_numa_nodes;
 | |
|         }
 | |
|     }
 | |
|     return ms->possible_cpus;
 | |
| }
 | |
| 
 | |
| static void virt_machine_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     MachineClass *mc = MACHINE_CLASS(oc);
 | |
| 
 | |
|     mc->init = machvirt_init;
 | |
|     /* Start max_cpus at the maximum QEMU supports. We'll further restrict
 | |
|      * it later in machvirt_init, where we have more information about the
 | |
|      * configuration of the particular instance.
 | |
|      */
 | |
|     mc->max_cpus = 255;
 | |
|     mc->has_dynamic_sysbus = true;
 | |
|     mc->block_default_type = IF_VIRTIO;
 | |
|     mc->no_cdrom = 1;
 | |
|     mc->pci_allow_0_address = true;
 | |
|     /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
 | |
|     mc->minimum_page_bits = 12;
 | |
|     mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
 | |
|     mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
 | |
| }
 | |
| 
 | |
| static const TypeInfo virt_machine_info = {
 | |
|     .name          = TYPE_VIRT_MACHINE,
 | |
|     .parent        = TYPE_MACHINE,
 | |
|     .abstract      = true,
 | |
|     .instance_size = sizeof(VirtMachineState),
 | |
|     .class_size    = sizeof(VirtMachineClass),
 | |
|     .class_init    = virt_machine_class_init,
 | |
| };
 | |
| 
 | |
| static void machvirt_machine_init(void)
 | |
| {
 | |
|     type_register_static(&virt_machine_info);
 | |
| }
 | |
| type_init(machvirt_machine_init);
 | |
| 
 | |
| static void virt_2_9_instance_init(Object *obj)
 | |
| {
 | |
|     VirtMachineState *vms = VIRT_MACHINE(obj);
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
 | |
| 
 | |
|     /* EL3 is disabled by default on virt: this makes us consistent
 | |
|      * between KVM and TCG for this board, and it also allows us to
 | |
|      * boot UEFI blobs which assume no TrustZone support.
 | |
|      */
 | |
|     vms->secure = false;
 | |
|     object_property_add_bool(obj, "secure", virt_get_secure,
 | |
|                              virt_set_secure, NULL);
 | |
|     object_property_set_description(obj, "secure",
 | |
|                                     "Set on/off to enable/disable the ARM "
 | |
|                                     "Security Extensions (TrustZone)",
 | |
|                                     NULL);
 | |
| 
 | |
|     /* EL2 is also disabled by default, for similar reasons */
 | |
|     vms->virt = false;
 | |
|     object_property_add_bool(obj, "virtualization", virt_get_virt,
 | |
|                              virt_set_virt, NULL);
 | |
|     object_property_set_description(obj, "virtualization",
 | |
|                                     "Set on/off to enable/disable emulating a "
 | |
|                                     "guest CPU which implements the ARM "
 | |
|                                     "Virtualization Extensions",
 | |
|                                     NULL);
 | |
| 
 | |
|     /* High memory is enabled by default */
 | |
|     vms->highmem = true;
 | |
|     object_property_add_bool(obj, "highmem", virt_get_highmem,
 | |
|                              virt_set_highmem, NULL);
 | |
|     object_property_set_description(obj, "highmem",
 | |
|                                     "Set on/off to enable/disable using "
 | |
|                                     "physical address space above 32 bits",
 | |
|                                     NULL);
 | |
|     /* Default GIC type is v2 */
 | |
|     vms->gic_version = 2;
 | |
|     object_property_add_str(obj, "gic-version", virt_get_gic_version,
 | |
|                         virt_set_gic_version, NULL);
 | |
|     object_property_set_description(obj, "gic-version",
 | |
|                                     "Set GIC version. "
 | |
|                                     "Valid values are 2, 3 and host", NULL);
 | |
| 
 | |
|     if (vmc->no_its) {
 | |
|         vms->its = false;
 | |
|     } else {
 | |
|         /* Default allows ITS instantiation */
 | |
|         vms->its = true;
 | |
|         object_property_add_bool(obj, "its", virt_get_its,
 | |
|                                  virt_set_its, NULL);
 | |
|         object_property_set_description(obj, "its",
 | |
|                                         "Set on/off to enable/disable "
 | |
|                                         "ITS instantiation",
 | |
|                                         NULL);
 | |
|     }
 | |
| 
 | |
|     vms->memmap = a15memmap;
 | |
|     vms->irqmap = a15irqmap;
 | |
| }
 | |
| 
 | |
| static void virt_machine_2_9_options(MachineClass *mc)
 | |
| {
 | |
| }
 | |
| DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
 | |
| 
 | |
| #define VIRT_COMPAT_2_8 \
 | |
|     HW_COMPAT_2_8
 | |
| 
 | |
| static void virt_2_8_instance_init(Object *obj)
 | |
| {
 | |
|     virt_2_9_instance_init(obj);
 | |
| }
 | |
| 
 | |
| static void virt_machine_2_8_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_9_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
 | |
|     /* For 2.8 and earlier we falsely claimed in the DT that
 | |
|      * our timers were edge-triggered, not level-triggered.
 | |
|      */
 | |
|     vmc->claim_edge_triggered_timers = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 8)
 | |
| 
 | |
| #define VIRT_COMPAT_2_7 \
 | |
|     HW_COMPAT_2_7
 | |
| 
 | |
| static void virt_2_7_instance_init(Object *obj)
 | |
| {
 | |
|     virt_2_8_instance_init(obj);
 | |
| }
 | |
| 
 | |
| static void virt_machine_2_7_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_8_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
 | |
|     /* ITS was introduced with 2.8 */
 | |
|     vmc->no_its = true;
 | |
|     /* Stick with 1K pages for migration compatibility */
 | |
|     mc->minimum_page_bits = 0;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 7)
 | |
| 
 | |
| #define VIRT_COMPAT_2_6 \
 | |
|     HW_COMPAT_2_6
 | |
| 
 | |
| static void virt_2_6_instance_init(Object *obj)
 | |
| {
 | |
|     virt_2_7_instance_init(obj);
 | |
| }
 | |
| 
 | |
| static void virt_machine_2_6_options(MachineClass *mc)
 | |
| {
 | |
|     VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
 | |
| 
 | |
|     virt_machine_2_7_options(mc);
 | |
|     SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
 | |
|     vmc->disallow_affinity_adjustment = true;
 | |
|     /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
 | |
|     vmc->no_pmu = true;
 | |
| }
 | |
| DEFINE_VIRT_MACHINE(2, 6)
 |