 b848ce2b9c
			
		
	
	
		b848ce2b9c
		
	
	
	
	
		
			
			When EL3 is running in AArch32 (or ARMv7 with Security Extensions) IFAR and DFAR have a secure and a non-secure instance. Signed-off-by: Fabian Aggeler <aggelerf@ethz.ch> Signed-off-by: Greg Bellows <greg.bellows@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1416242878-876-22-git-send-email-greg.bellows@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			1764 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1764 lines
		
	
	
		
			64 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM virtual CPU header
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #ifndef CPU_ARM_H
 | |
| #define CPU_ARM_H
 | |
| 
 | |
| #include "config.h"
 | |
| 
 | |
| #include "kvm-consts.h"
 | |
| 
 | |
| #if defined(TARGET_AARCH64)
 | |
|   /* AArch64 definitions */
 | |
| #  define TARGET_LONG_BITS 64
 | |
| #  define ELF_MACHINE EM_AARCH64
 | |
| #else
 | |
| #  define TARGET_LONG_BITS 32
 | |
| #  define ELF_MACHINE EM_ARM
 | |
| #endif
 | |
| 
 | |
| #define CPUArchState struct CPUARMState
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "exec/cpu-defs.h"
 | |
| 
 | |
| #include "fpu/softfloat.h"
 | |
| 
 | |
| #define TARGET_HAS_ICE 1
 | |
| 
 | |
| #define EXCP_UDEF            1   /* undefined instruction */
 | |
| #define EXCP_SWI             2   /* software interrupt */
 | |
| #define EXCP_PREFETCH_ABORT  3
 | |
| #define EXCP_DATA_ABORT      4
 | |
| #define EXCP_IRQ             5
 | |
| #define EXCP_FIQ             6
 | |
| #define EXCP_BKPT            7
 | |
| #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
 | |
| #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
 | |
| #define EXCP_STREX          10
 | |
| #define EXCP_HVC            11   /* HyperVisor Call */
 | |
| #define EXCP_HYP_TRAP       12
 | |
| #define EXCP_SMC            13   /* Secure Monitor Call */
 | |
| #define EXCP_VIRQ           14
 | |
| #define EXCP_VFIQ           15
 | |
| 
 | |
| #define ARMV7M_EXCP_RESET   1
 | |
| #define ARMV7M_EXCP_NMI     2
 | |
| #define ARMV7M_EXCP_HARD    3
 | |
| #define ARMV7M_EXCP_MEM     4
 | |
| #define ARMV7M_EXCP_BUS     5
 | |
| #define ARMV7M_EXCP_USAGE   6
 | |
| #define ARMV7M_EXCP_SVC     11
 | |
| #define ARMV7M_EXCP_DEBUG   12
 | |
| #define ARMV7M_EXCP_PENDSV  14
 | |
| #define ARMV7M_EXCP_SYSTICK 15
 | |
| 
 | |
| /* ARM-specific interrupt pending bits.  */
 | |
| #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
 | |
| #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
 | |
| #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
 | |
| 
 | |
| /* The usual mapping for an AArch64 system register to its AArch32
 | |
|  * counterpart is for the 32 bit world to have access to the lower
 | |
|  * half only (with writes leaving the upper half untouched). It's
 | |
|  * therefore useful to be able to pass TCG the offset of the least
 | |
|  * significant half of a uint64_t struct member.
 | |
|  */
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
| #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 | |
| #define offsetofhigh32(S, M) offsetof(S, M)
 | |
| #else
 | |
| #define offsetoflow32(S, M) offsetof(S, M)
 | |
| #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 | |
| #endif
 | |
| 
 | |
| /* Meanings of the ARMCPU object's four inbound GPIO lines */
 | |
| #define ARM_CPU_IRQ 0
 | |
| #define ARM_CPU_FIQ 1
 | |
| #define ARM_CPU_VIRQ 2
 | |
| #define ARM_CPU_VFIQ 3
 | |
| 
 | |
| typedef void ARMWriteCPFunc(void *opaque, int cp_info,
 | |
|                             int srcreg, int operand, uint32_t value);
 | |
| typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
 | |
|                                int dstreg, int operand);
 | |
| 
 | |
| struct arm_boot_info;
 | |
| 
 | |
| #define NB_MMU_MODES 4
 | |
| 
 | |
| /* We currently assume float and double are IEEE single and double
 | |
|    precision respectively.
 | |
|    Doing runtime conversions is tricky because VFP registers may contain
 | |
|    integer values (eg. as the result of a FTOSI instruction).
 | |
|    s<2n> maps to the least significant half of d<n>
 | |
|    s<2n+1> maps to the most significant half of d<n>
 | |
|  */
 | |
| 
 | |
| /* CPU state for each instance of a generic timer (in cp15 c14) */
 | |
| typedef struct ARMGenericTimer {
 | |
|     uint64_t cval; /* Timer CompareValue register */
 | |
|     uint64_t ctl; /* Timer Control register */
 | |
| } ARMGenericTimer;
 | |
| 
 | |
| #define GTIMER_PHYS 0
 | |
| #define GTIMER_VIRT 1
 | |
| #define NUM_GTIMERS 2
 | |
| 
 | |
| typedef struct {
 | |
|     uint64_t raw_tcr;
 | |
|     uint32_t mask;
 | |
|     uint32_t base_mask;
 | |
| } TCR;
 | |
| 
 | |
| typedef struct CPUARMState {
 | |
|     /* Regs for current mode.  */
 | |
|     uint32_t regs[16];
 | |
| 
 | |
|     /* 32/64 switch only happens when taking and returning from
 | |
|      * exceptions so the overlap semantics are taken care of then
 | |
|      * instead of having a complicated union.
 | |
|      */
 | |
|     /* Regs for A64 mode.  */
 | |
|     uint64_t xregs[32];
 | |
|     uint64_t pc;
 | |
|     /* PSTATE isn't an architectural register for ARMv8. However, it is
 | |
|      * convenient for us to assemble the underlying state into a 32 bit format
 | |
|      * identical to the architectural format used for the SPSR. (This is also
 | |
|      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 | |
|      * 'pstate' register are.) Of the PSTATE bits:
 | |
|      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 | |
|      *    semantics as for AArch32, as described in the comments on each field)
 | |
|      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 | |
|      *  DAIF (exception masks) are kept in env->daif
 | |
|      *  all other bits are stored in their correct places in env->pstate
 | |
|      */
 | |
|     uint32_t pstate;
 | |
|     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 | |
| 
 | |
|     /* Frequently accessed CPSR bits are stored separately for efficiency.
 | |
|        This contains all the other bits.  Use cpsr_{read,write} to access
 | |
|        the whole CPSR.  */
 | |
|     uint32_t uncached_cpsr;
 | |
|     uint32_t spsr;
 | |
| 
 | |
|     /* Banked registers.  */
 | |
|     uint64_t banked_spsr[8];
 | |
|     uint32_t banked_r13[8];
 | |
|     uint32_t banked_r14[8];
 | |
| 
 | |
|     /* These hold r8-r12.  */
 | |
|     uint32_t usr_regs[5];
 | |
|     uint32_t fiq_regs[5];
 | |
| 
 | |
|     /* cpsr flag cache for faster execution */
 | |
|     uint32_t CF; /* 0 or 1 */
 | |
|     uint32_t VF; /* V is the bit 31. All other bits are undefined */
 | |
|     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 | |
|     uint32_t ZF; /* Z set if zero.  */
 | |
|     uint32_t QF; /* 0 or 1 */
 | |
|     uint32_t GE; /* cpsr[19:16] */
 | |
|     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 | |
|     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 | |
|     uint64_t daif; /* exception masks, in the bits they are in in PSTATE */
 | |
| 
 | |
|     uint64_t elr_el[4]; /* AArch64 exception link regs  */
 | |
|     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 | |
| 
 | |
|     /* System control coprocessor (cp15) */
 | |
|     struct {
 | |
|         uint32_t c0_cpuid;
 | |
|         union { /* Cache size selection */
 | |
|             struct {
 | |
|                 uint64_t _unused_csselr0;
 | |
|                 uint64_t csselr_ns;
 | |
|                 uint64_t _unused_csselr1;
 | |
|                 uint64_t csselr_s;
 | |
|             };
 | |
|             uint64_t csselr_el[4];
 | |
|         };
 | |
|         union { /* System control register. */
 | |
|             struct {
 | |
|                 uint64_t _unused_sctlr;
 | |
|                 uint64_t sctlr_ns;
 | |
|                 uint64_t hsctlr;
 | |
|                 uint64_t sctlr_s;
 | |
|             };
 | |
|             uint64_t sctlr_el[4];
 | |
|         };
 | |
|         uint64_t c1_coproc; /* Coprocessor access register.  */
 | |
|         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 | |
|         uint64_t sder; /* Secure debug enable register. */
 | |
|         uint32_t nsacr; /* Non-secure access control register. */
 | |
|         union { /* MMU translation table base 0. */
 | |
|             struct {
 | |
|                 uint64_t _unused_ttbr0_0;
 | |
|                 uint64_t ttbr0_ns;
 | |
|                 uint64_t _unused_ttbr0_1;
 | |
|                 uint64_t ttbr0_s;
 | |
|             };
 | |
|             uint64_t ttbr0_el[4];
 | |
|         };
 | |
|         union { /* MMU translation table base 1. */
 | |
|             struct {
 | |
|                 uint64_t _unused_ttbr1_0;
 | |
|                 uint64_t ttbr1_ns;
 | |
|                 uint64_t _unused_ttbr1_1;
 | |
|                 uint64_t ttbr1_s;
 | |
|             };
 | |
|             uint64_t ttbr1_el[4];
 | |
|         };
 | |
|         /* MMU translation table base control. */
 | |
|         TCR tcr_el[4];
 | |
|         uint32_t c2_data; /* MPU data cachable bits.  */
 | |
|         uint32_t c2_insn; /* MPU instruction cachable bits.  */
 | |
|         union { /* MMU domain access control register
 | |
|                  * MPU write buffer control.
 | |
|                  */
 | |
|             struct {
 | |
|                 uint64_t dacr_ns;
 | |
|                 uint64_t dacr_s;
 | |
|             };
 | |
|             struct {
 | |
|                 uint64_t dacr32_el2;
 | |
|             };
 | |
|         };
 | |
|         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 | |
|         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 | |
|         uint64_t hcr_el2; /* Hypervisor configuration register */
 | |
|         uint64_t scr_el3; /* Secure configuration register.  */
 | |
|         union { /* Fault status registers.  */
 | |
|             struct {
 | |
|                 uint64_t ifsr_ns;
 | |
|                 uint64_t ifsr_s;
 | |
|             };
 | |
|             struct {
 | |
|                 uint64_t ifsr32_el2;
 | |
|             };
 | |
|         };
 | |
|         union {
 | |
|             struct {
 | |
|                 uint64_t _unused_dfsr;
 | |
|                 uint64_t dfsr_ns;
 | |
|                 uint64_t hsr;
 | |
|                 uint64_t dfsr_s;
 | |
|             };
 | |
|             uint64_t esr_el[4];
 | |
|         };
 | |
|         uint32_t c6_region[8]; /* MPU base/size registers.  */
 | |
|         union { /* Fault address registers. */
 | |
|             struct {
 | |
|                 uint64_t _unused_far0;
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|                 uint32_t ifar_ns;
 | |
|                 uint32_t dfar_ns;
 | |
|                 uint32_t ifar_s;
 | |
|                 uint32_t dfar_s;
 | |
| #else
 | |
|                 uint32_t dfar_ns;
 | |
|                 uint32_t ifar_ns;
 | |
|                 uint32_t dfar_s;
 | |
|                 uint32_t ifar_s;
 | |
| #endif
 | |
|                 uint64_t _unused_far3;
 | |
|             };
 | |
|             uint64_t far_el[4];
 | |
|         };
 | |
|         uint64_t par_el1;  /* Translation result. */
 | |
|         uint32_t c9_insn; /* Cache lockdown registers.  */
 | |
|         uint32_t c9_data;
 | |
|         uint64_t c9_pmcr; /* performance monitor control register */
 | |
|         uint64_t c9_pmcnten; /* perf monitor counter enables */
 | |
|         uint32_t c9_pmovsr; /* perf monitor overflow status */
 | |
|         uint32_t c9_pmxevtyper; /* perf monitor event type */
 | |
|         uint32_t c9_pmuserenr; /* perf monitor user enable */
 | |
|         uint32_t c9_pminten; /* perf monitor interrupt enables */
 | |
|         uint64_t mair_el1;
 | |
|         uint64_t vbar_el[4]; /* vector base address register */
 | |
|         uint32_t mvbar; /* (monitor) vector base address register */
 | |
|         uint32_t c13_fcse; /* FCSE PID.  */
 | |
|         uint64_t contextidr_el1; /* Context ID.  */
 | |
|         uint64_t tpidr_el0; /* User RW Thread register.  */
 | |
|         uint64_t tpidrro_el0; /* User RO Thread register.  */
 | |
|         uint64_t tpidr_el1; /* Privileged Thread register.  */
 | |
|         uint64_t c14_cntfrq; /* Counter Frequency register */
 | |
|         uint64_t c14_cntkctl; /* Timer Control register */
 | |
|         ARMGenericTimer c14_timer[NUM_GTIMERS];
 | |
|         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 | |
|         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 | |
|         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 | |
|         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 | |
|         uint32_t c15_threadid; /* TI debugger thread-ID.  */
 | |
|         uint32_t c15_config_base_address; /* SCU base address.  */
 | |
|         uint32_t c15_diagnostic; /* diagnostic register */
 | |
|         uint32_t c15_power_diagnostic;
 | |
|         uint32_t c15_power_control; /* power control */
 | |
|         uint64_t dbgbvr[16]; /* breakpoint value registers */
 | |
|         uint64_t dbgbcr[16]; /* breakpoint control registers */
 | |
|         uint64_t dbgwvr[16]; /* watchpoint value registers */
 | |
|         uint64_t dbgwcr[16]; /* watchpoint control registers */
 | |
|         uint64_t mdscr_el1;
 | |
|         /* If the counter is enabled, this stores the last time the counter
 | |
|          * was reset. Otherwise it stores the counter value
 | |
|          */
 | |
|         uint64_t c15_ccnt;
 | |
|         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 | |
|     } cp15;
 | |
| 
 | |
|     struct {
 | |
|         uint32_t other_sp;
 | |
|         uint32_t vecbase;
 | |
|         uint32_t basepri;
 | |
|         uint32_t control;
 | |
|         int current_sp;
 | |
|         int exception;
 | |
|         int pending_exception;
 | |
|     } v7m;
 | |
| 
 | |
|     /* Information associated with an exception about to be taken:
 | |
|      * code which raises an exception must set cs->exception_index and
 | |
|      * the relevant parts of this structure; the cpu_do_interrupt function
 | |
|      * will then set the guest-visible registers as part of the exception
 | |
|      * entry process.
 | |
|      */
 | |
|     struct {
 | |
|         uint32_t syndrome; /* AArch64 format syndrome register */
 | |
|         uint32_t fsr; /* AArch32 format fault status register info */
 | |
|         uint64_t vaddress; /* virtual addr associated with exception, if any */
 | |
|         /* If we implement EL2 we will also need to store information
 | |
|          * about the intermediate physical address for stage 2 faults.
 | |
|          */
 | |
|     } exception;
 | |
| 
 | |
|     /* Thumb-2 EE state.  */
 | |
|     uint32_t teecr;
 | |
|     uint32_t teehbr;
 | |
| 
 | |
|     /* VFP coprocessor state.  */
 | |
|     struct {
 | |
|         /* VFP/Neon register state. Note that the mapping between S, D and Q
 | |
|          * views of the register bank differs between AArch64 and AArch32:
 | |
|          * In AArch32:
 | |
|          *  Qn = regs[2n+1]:regs[2n]
 | |
|          *  Dn = regs[n]
 | |
|          *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
 | |
|          * (and regs[32] to regs[63] are inaccessible)
 | |
|          * In AArch64:
 | |
|          *  Qn = regs[2n+1]:regs[2n]
 | |
|          *  Dn = regs[2n]
 | |
|          *  Sn = regs[2n] bits 31..0
 | |
|          * This corresponds to the architecturally defined mapping between
 | |
|          * the two execution states, and means we do not need to explicitly
 | |
|          * map these registers when changing states.
 | |
|          */
 | |
|         float64 regs[64];
 | |
| 
 | |
|         uint32_t xregs[16];
 | |
|         /* We store these fpcsr fields separately for convenience.  */
 | |
|         int vec_len;
 | |
|         int vec_stride;
 | |
| 
 | |
|         /* scratch space when Tn are not sufficient.  */
 | |
|         uint32_t scratch[8];
 | |
| 
 | |
|         /* fp_status is the "normal" fp status. standard_fp_status retains
 | |
|          * values corresponding to the ARM "Standard FPSCR Value", ie
 | |
|          * default-NaN, flush-to-zero, round-to-nearest and is used by
 | |
|          * any operations (generally Neon) which the architecture defines
 | |
|          * as controlled by the standard FPSCR value rather than the FPSCR.
 | |
|          *
 | |
|          * To avoid having to transfer exception bits around, we simply
 | |
|          * say that the FPSCR cumulative exception flags are the logical
 | |
|          * OR of the flags in the two fp statuses. This relies on the
 | |
|          * only thing which needs to read the exception flags being
 | |
|          * an explicit FPSCR read.
 | |
|          */
 | |
|         float_status fp_status;
 | |
|         float_status standard_fp_status;
 | |
|     } vfp;
 | |
|     uint64_t exclusive_addr;
 | |
|     uint64_t exclusive_val;
 | |
|     uint64_t exclusive_high;
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     uint64_t exclusive_test;
 | |
|     uint32_t exclusive_info;
 | |
| #endif
 | |
| 
 | |
|     /* iwMMXt coprocessor state.  */
 | |
|     struct {
 | |
|         uint64_t regs[16];
 | |
|         uint64_t val;
 | |
| 
 | |
|         uint32_t cregs[16];
 | |
|     } iwmmxt;
 | |
| 
 | |
|     /* For mixed endian mode.  */
 | |
|     bool bswap_code;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     /* For usermode syscall translation.  */
 | |
|     int eabi;
 | |
| #endif
 | |
| 
 | |
|     struct CPUBreakpoint *cpu_breakpoint[16];
 | |
|     struct CPUWatchpoint *cpu_watchpoint[16];
 | |
| 
 | |
|     CPU_COMMON
 | |
| 
 | |
|     /* These fields after the common ones so they are preserved on reset.  */
 | |
| 
 | |
|     /* Internal CPU feature flags.  */
 | |
|     uint64_t features;
 | |
| 
 | |
|     void *nvic;
 | |
|     const struct arm_boot_info *boot_info;
 | |
| } CPUARMState;
 | |
| 
 | |
| #include "cpu-qom.h"
 | |
| 
 | |
| ARMCPU *cpu_arm_init(const char *cpu_model);
 | |
| int cpu_arm_exec(CPUARMState *s);
 | |
| uint32_t do_arm_semihosting(CPUARMState *env);
 | |
| 
 | |
| static inline bool is_a64(CPUARMState *env)
 | |
| {
 | |
|     return env->aarch64;
 | |
| }
 | |
| 
 | |
| /* you can call this signal handler from your SIGBUS and SIGSEGV
 | |
|    signal handlers to inform the virtual CPU of exceptions. non zero
 | |
|    is returned if the signal was handled by the virtual CPU.  */
 | |
| int cpu_arm_signal_handler(int host_signum, void *pinfo,
 | |
|                            void *puc);
 | |
| int arm_cpu_handle_mmu_fault(CPUState *cpu, vaddr address, int rw,
 | |
|                              int mmu_idx);
 | |
| 
 | |
| /**
 | |
|  * pmccntr_sync
 | |
|  * @env: CPUARMState
 | |
|  *
 | |
|  * Synchronises the counter in the PMCCNTR. This must always be called twice,
 | |
|  * once before any action that might affect the timer and again afterwards.
 | |
|  * The function is used to swap the state of the register if required.
 | |
|  * This only happens when not in user mode (!CONFIG_USER_ONLY)
 | |
|  */
 | |
| void pmccntr_sync(CPUARMState *env);
 | |
| 
 | |
| /* SCTLR bit meanings. Several bits have been reused in newer
 | |
|  * versions of the architecture; in that case we define constants
 | |
|  * for both old and new bit meanings. Code which tests against those
 | |
|  * bits should probably check or otherwise arrange that the CPU
 | |
|  * is the architectural version it expects.
 | |
|  */
 | |
| #define SCTLR_M       (1U << 0)
 | |
| #define SCTLR_A       (1U << 1)
 | |
| #define SCTLR_C       (1U << 2)
 | |
| #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 | |
| #define SCTLR_SA      (1U << 3)
 | |
| #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 | |
| #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 | |
| #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 | |
| #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 | |
| #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_ITD     (1U << 7) /* v8 onward */
 | |
| #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_SED     (1U << 8) /* v8 onward */
 | |
| #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_F       (1U << 10) /* up to v6 */
 | |
| #define SCTLR_SW      (1U << 10) /* v7 onward */
 | |
| #define SCTLR_Z       (1U << 11)
 | |
| #define SCTLR_I       (1U << 12)
 | |
| #define SCTLR_V       (1U << 13)
 | |
| #define SCTLR_RR      (1U << 14) /* up to v7 */
 | |
| #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 | |
| #define SCTLR_nTWI    (1U << 16) /* v8 onward */
 | |
| #define SCTLR_HA      (1U << 17)
 | |
| #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 | |
| #define SCTLR_nTWE    (1U << 18) /* v8 onward */
 | |
| #define SCTLR_WXN     (1U << 19)
 | |
| #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 | |
| #define SCTLR_UWXN    (1U << 20) /* v7 onward */
 | |
| #define SCTLR_FI      (1U << 21)
 | |
| #define SCTLR_U       (1U << 22)
 | |
| #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 | |
| #define SCTLR_VE      (1U << 24) /* up to v7 */
 | |
| #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_EE      (1U << 25)
 | |
| #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 | |
| #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_NMFI    (1U << 27)
 | |
| #define SCTLR_TRE     (1U << 28)
 | |
| #define SCTLR_AFE     (1U << 29)
 | |
| #define SCTLR_TE      (1U << 30)
 | |
| 
 | |
| #define CPSR_M (0x1fU)
 | |
| #define CPSR_T (1U << 5)
 | |
| #define CPSR_F (1U << 6)
 | |
| #define CPSR_I (1U << 7)
 | |
| #define CPSR_A (1U << 8)
 | |
| #define CPSR_E (1U << 9)
 | |
| #define CPSR_IT_2_7 (0xfc00U)
 | |
| #define CPSR_GE (0xfU << 16)
 | |
| #define CPSR_IL (1U << 20)
 | |
| /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 | |
|  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 | |
|  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 | |
|  * where it is live state but not accessible to the AArch32 code.
 | |
|  */
 | |
| #define CPSR_RESERVED (0x7U << 21)
 | |
| #define CPSR_J (1U << 24)
 | |
| #define CPSR_IT_0_1 (3U << 25)
 | |
| #define CPSR_Q (1U << 27)
 | |
| #define CPSR_V (1U << 28)
 | |
| #define CPSR_C (1U << 29)
 | |
| #define CPSR_Z (1U << 30)
 | |
| #define CPSR_N (1U << 31)
 | |
| #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
 | |
| #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
 | |
| 
 | |
| #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
 | |
| #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
 | |
|     | CPSR_NZCV)
 | |
| /* Bits writable in user mode.  */
 | |
| #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
 | |
| /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
 | |
| #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
 | |
| /* Mask of bits which may be set by exception return copying them from SPSR */
 | |
| #define CPSR_ERET_MASK (~CPSR_RESERVED)
 | |
| 
 | |
| #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
 | |
| #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
 | |
| #define TTBCR_PD0    (1U << 4)
 | |
| #define TTBCR_PD1    (1U << 5)
 | |
| #define TTBCR_EPD0   (1U << 7)
 | |
| #define TTBCR_IRGN0  (3U << 8)
 | |
| #define TTBCR_ORGN0  (3U << 10)
 | |
| #define TTBCR_SH0    (3U << 12)
 | |
| #define TTBCR_T1SZ   (3U << 16)
 | |
| #define TTBCR_A1     (1U << 22)
 | |
| #define TTBCR_EPD1   (1U << 23)
 | |
| #define TTBCR_IRGN1  (3U << 24)
 | |
| #define TTBCR_ORGN1  (3U << 26)
 | |
| #define TTBCR_SH1    (1U << 28)
 | |
| #define TTBCR_EAE    (1U << 31)
 | |
| 
 | |
| /* Bit definitions for ARMv8 SPSR (PSTATE) format.
 | |
|  * Only these are valid when in AArch64 mode; in
 | |
|  * AArch32 mode SPSRs are basically CPSR-format.
 | |
|  */
 | |
| #define PSTATE_SP (1U)
 | |
| #define PSTATE_M (0xFU)
 | |
| #define PSTATE_nRW (1U << 4)
 | |
| #define PSTATE_F (1U << 6)
 | |
| #define PSTATE_I (1U << 7)
 | |
| #define PSTATE_A (1U << 8)
 | |
| #define PSTATE_D (1U << 9)
 | |
| #define PSTATE_IL (1U << 20)
 | |
| #define PSTATE_SS (1U << 21)
 | |
| #define PSTATE_V (1U << 28)
 | |
| #define PSTATE_C (1U << 29)
 | |
| #define PSTATE_Z (1U << 30)
 | |
| #define PSTATE_N (1U << 31)
 | |
| #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
 | |
| #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
 | |
| #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
 | |
| /* Mode values for AArch64 */
 | |
| #define PSTATE_MODE_EL3h 13
 | |
| #define PSTATE_MODE_EL3t 12
 | |
| #define PSTATE_MODE_EL2h 9
 | |
| #define PSTATE_MODE_EL2t 8
 | |
| #define PSTATE_MODE_EL1h 5
 | |
| #define PSTATE_MODE_EL1t 4
 | |
| #define PSTATE_MODE_EL0t 0
 | |
| 
 | |
| /* Map EL and handler into a PSTATE_MODE.  */
 | |
| static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
 | |
| {
 | |
|     return (el << 2) | handler;
 | |
| }
 | |
| 
 | |
| /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 | |
|  * interprocessing, so we don't attempt to sync with the cpsr state used by
 | |
|  * the 32 bit decoder.
 | |
|  */
 | |
| static inline uint32_t pstate_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
| 
 | |
|     ZF = (env->ZF == 0);
 | |
|     return (env->NF & 0x80000000) | (ZF << 30)
 | |
|         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
 | |
|         | env->pstate | env->daif;
 | |
| }
 | |
| 
 | |
| static inline void pstate_write(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     env->ZF = (~val) & PSTATE_Z;
 | |
|     env->NF = val;
 | |
|     env->CF = (val >> 29) & 1;
 | |
|     env->VF = (val << 3) & 0x80000000;
 | |
|     env->daif = val & PSTATE_DAIF;
 | |
|     env->pstate = val & ~CACHED_PSTATE_BITS;
 | |
| }
 | |
| 
 | |
| /* Return the current CPSR value.  */
 | |
| uint32_t cpsr_read(CPUARMState *env);
 | |
| /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
 | |
| 
 | |
| /* Return the current xPSR value.  */
 | |
| static inline uint32_t xpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return (env->NF & 0x80000000) | (ZF << 30)
 | |
|         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | env->v7m.exception;
 | |
| }
 | |
| 
 | |
| /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
 | |
| static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     if (mask & CPSR_NZCV) {
 | |
|         env->ZF = (~val) & CPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & CPSR_Q)
 | |
|         env->QF = ((val & CPSR_Q) != 0);
 | |
|     if (mask & (1 << 24))
 | |
|         env->thumb = ((val & (1 << 24)) != 0);
 | |
|     if (mask & CPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & CPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & 0x1ff) {
 | |
|         env->v7m.exception = val & 0x1ff;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define HCR_VM        (1ULL << 0)
 | |
| #define HCR_SWIO      (1ULL << 1)
 | |
| #define HCR_PTW       (1ULL << 2)
 | |
| #define HCR_FMO       (1ULL << 3)
 | |
| #define HCR_IMO       (1ULL << 4)
 | |
| #define HCR_AMO       (1ULL << 5)
 | |
| #define HCR_VF        (1ULL << 6)
 | |
| #define HCR_VI        (1ULL << 7)
 | |
| #define HCR_VSE       (1ULL << 8)
 | |
| #define HCR_FB        (1ULL << 9)
 | |
| #define HCR_BSU_MASK  (3ULL << 10)
 | |
| #define HCR_DC        (1ULL << 12)
 | |
| #define HCR_TWI       (1ULL << 13)
 | |
| #define HCR_TWE       (1ULL << 14)
 | |
| #define HCR_TID0      (1ULL << 15)
 | |
| #define HCR_TID1      (1ULL << 16)
 | |
| #define HCR_TID2      (1ULL << 17)
 | |
| #define HCR_TID3      (1ULL << 18)
 | |
| #define HCR_TSC       (1ULL << 19)
 | |
| #define HCR_TIDCP     (1ULL << 20)
 | |
| #define HCR_TACR      (1ULL << 21)
 | |
| #define HCR_TSW       (1ULL << 22)
 | |
| #define HCR_TPC       (1ULL << 23)
 | |
| #define HCR_TPU       (1ULL << 24)
 | |
| #define HCR_TTLB      (1ULL << 25)
 | |
| #define HCR_TVM       (1ULL << 26)
 | |
| #define HCR_TGE       (1ULL << 27)
 | |
| #define HCR_TDZ       (1ULL << 28)
 | |
| #define HCR_HCD       (1ULL << 29)
 | |
| #define HCR_TRVM      (1ULL << 30)
 | |
| #define HCR_RW        (1ULL << 31)
 | |
| #define HCR_CD        (1ULL << 32)
 | |
| #define HCR_ID        (1ULL << 33)
 | |
| #define HCR_MASK      ((1ULL << 34) - 1)
 | |
| 
 | |
| #define SCR_NS                (1U << 0)
 | |
| #define SCR_IRQ               (1U << 1)
 | |
| #define SCR_FIQ               (1U << 2)
 | |
| #define SCR_EA                (1U << 3)
 | |
| #define SCR_FW                (1U << 4)
 | |
| #define SCR_AW                (1U << 5)
 | |
| #define SCR_NET               (1U << 6)
 | |
| #define SCR_SMD               (1U << 7)
 | |
| #define SCR_HCE               (1U << 8)
 | |
| #define SCR_SIF               (1U << 9)
 | |
| #define SCR_RW                (1U << 10)
 | |
| #define SCR_ST                (1U << 11)
 | |
| #define SCR_TWI               (1U << 12)
 | |
| #define SCR_TWE               (1U << 13)
 | |
| #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
 | |
| #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
 | |
| 
 | |
| /* Return the current FPSCR value.  */
 | |
| uint32_t vfp_get_fpscr(CPUARMState *env);
 | |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val);
 | |
| 
 | |
| /* For A64 the FPSCR is split into two logically distinct registers,
 | |
|  * FPCR and FPSR. However since they still use non-overlapping bits
 | |
|  * we store the underlying state in fpscr and just mask on read/write.
 | |
|  */
 | |
| #define FPSR_MASK 0xf800009f
 | |
| #define FPCR_MASK 0x07f79f00
 | |
| static inline uint32_t vfp_get_fpsr(CPUARMState *env)
 | |
| {
 | |
|     return vfp_get_fpscr(env) & FPSR_MASK;
 | |
| }
 | |
| 
 | |
| static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
 | |
|     vfp_set_fpscr(env, new_fpscr);
 | |
| }
 | |
| 
 | |
| static inline uint32_t vfp_get_fpcr(CPUARMState *env)
 | |
| {
 | |
|     return vfp_get_fpscr(env) & FPCR_MASK;
 | |
| }
 | |
| 
 | |
| static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
 | |
|     vfp_set_fpscr(env, new_fpscr);
 | |
| }
 | |
| 
 | |
| enum arm_cpu_mode {
 | |
|   ARM_CPU_MODE_USR = 0x10,
 | |
|   ARM_CPU_MODE_FIQ = 0x11,
 | |
|   ARM_CPU_MODE_IRQ = 0x12,
 | |
|   ARM_CPU_MODE_SVC = 0x13,
 | |
|   ARM_CPU_MODE_MON = 0x16,
 | |
|   ARM_CPU_MODE_ABT = 0x17,
 | |
|   ARM_CPU_MODE_HYP = 0x1a,
 | |
|   ARM_CPU_MODE_UND = 0x1b,
 | |
|   ARM_CPU_MODE_SYS = 0x1f
 | |
| };
 | |
| 
 | |
| /* VFP system registers.  */
 | |
| #define ARM_VFP_FPSID   0
 | |
| #define ARM_VFP_FPSCR   1
 | |
| #define ARM_VFP_MVFR2   5
 | |
| #define ARM_VFP_MVFR1   6
 | |
| #define ARM_VFP_MVFR0   7
 | |
| #define ARM_VFP_FPEXC   8
 | |
| #define ARM_VFP_FPINST  9
 | |
| #define ARM_VFP_FPINST2 10
 | |
| 
 | |
| /* iwMMXt coprocessor control registers.  */
 | |
| #define ARM_IWMMXT_wCID		0
 | |
| #define ARM_IWMMXT_wCon		1
 | |
| #define ARM_IWMMXT_wCSSF	2
 | |
| #define ARM_IWMMXT_wCASF	3
 | |
| #define ARM_IWMMXT_wCGR0	8
 | |
| #define ARM_IWMMXT_wCGR1	9
 | |
| #define ARM_IWMMXT_wCGR2	10
 | |
| #define ARM_IWMMXT_wCGR3	11
 | |
| 
 | |
| /* If adding a feature bit which corresponds to a Linux ELF
 | |
|  * HWCAP bit, remember to update the feature-bit-to-hwcap
 | |
|  * mapping in linux-user/elfload.c:get_elf_hwcap().
 | |
|  */
 | |
| enum arm_features {
 | |
|     ARM_FEATURE_VFP,
 | |
|     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
 | |
|     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
 | |
|     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
 | |
|     ARM_FEATURE_V6,
 | |
|     ARM_FEATURE_V6K,
 | |
|     ARM_FEATURE_V7,
 | |
|     ARM_FEATURE_THUMB2,
 | |
|     ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
 | |
|     ARM_FEATURE_VFP3,
 | |
|     ARM_FEATURE_VFP_FP16,
 | |
|     ARM_FEATURE_NEON,
 | |
|     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
 | |
|     ARM_FEATURE_M, /* Microcontroller profile.  */
 | |
|     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
 | |
|     ARM_FEATURE_THUMB2EE,
 | |
|     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
 | |
|     ARM_FEATURE_V4T,
 | |
|     ARM_FEATURE_V5,
 | |
|     ARM_FEATURE_STRONGARM,
 | |
|     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
 | |
|     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
 | |
|     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
 | |
|     ARM_FEATURE_GENERIC_TIMER,
 | |
|     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
 | |
|     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
 | |
|     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
 | |
|     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
 | |
|     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
 | |
|     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
 | |
|     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
 | |
|     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
 | |
|     ARM_FEATURE_V8,
 | |
|     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
 | |
|     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_CBAR, /* has cp15 CBAR */
 | |
|     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
 | |
|     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
 | |
|     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
 | |
|     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
 | |
|     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
 | |
| };
 | |
| 
 | |
| static inline int arm_feature(CPUARMState *env, int feature)
 | |
| {
 | |
|     return (env->features & (1ULL << feature)) != 0;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* Return true if exception levels below EL3 are in secure state,
 | |
|  * or would be following an exception return to that level.
 | |
|  * Unlike arm_is_secure() (which is always a question about the
 | |
|  * _current_ state of the CPU) this doesn't care about the current
 | |
|  * EL or mode.
 | |
|  */
 | |
| static inline bool arm_is_secure_below_el3(CPUARMState *env)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         return !(env->cp15.scr_el3 & SCR_NS);
 | |
|     } else {
 | |
|         /* If EL2 is not supported then the secure state is implementation
 | |
|          * defined, in which case QEMU defaults to non-secure.
 | |
|          */
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if the processor is in secure state */
 | |
| static inline bool arm_is_secure(CPUARMState *env)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
 | |
|             /* CPU currently in AArch64 state and EL3 */
 | |
|             return true;
 | |
|         } else if (!is_a64(env) &&
 | |
|                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
 | |
|             /* CPU currently in AArch32 state and monitor mode */
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return arm_is_secure_below_el3(env);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline bool arm_is_secure_below_el3(CPUARMState *env)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline bool arm_is_secure(CPUARMState *env)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Return true if the specified exception level is running in AArch64 state. */
 | |
| static inline bool arm_el_is_aa64(CPUARMState *env, int el)
 | |
| {
 | |
|     /* We don't currently support EL2, and this isn't valid for EL0
 | |
|      * (if we're in EL0, is_a64() is what you want, and if we're not in EL0
 | |
|      * then the state of EL0 isn't well defined.)
 | |
|      */
 | |
|     assert(el == 1 || el == 3);
 | |
| 
 | |
|     /* AArch64-capable CPUs always run with EL1 in AArch64 mode. This
 | |
|      * is a QEMU-imposed simplification which we may wish to change later.
 | |
|      * If we in future support EL2 and/or EL3, then the state of lower
 | |
|      * exception levels is controlled by the HCR.RW and SCR.RW bits.
 | |
|      */
 | |
|     return arm_feature(env, ARM_FEATURE_AARCH64);
 | |
| }
 | |
| 
 | |
| /* Function for determing whether guest cp register reads and writes should
 | |
|  * access the secure or non-secure bank of a cp register.  When EL3 is
 | |
|  * operating in AArch32 state, the NS-bit determines whether the secure
 | |
|  * instance of a cp register should be used. When EL3 is AArch64 (or if
 | |
|  * it doesn't exist at all) then there is no register banking, and all
 | |
|  * accesses are to the non-secure version.
 | |
|  */
 | |
| static inline bool access_secure_reg(CPUARMState *env)
 | |
| {
 | |
|     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|                 !arm_el_is_aa64(env, 3) &&
 | |
|                 !(env->cp15.scr_el3 & SCR_NS));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Macros for accessing a specified CP register bank */
 | |
| #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
 | |
|     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
 | |
| 
 | |
| #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
 | |
|     do {                                                \
 | |
|         if (_secure) {                                   \
 | |
|             (_env)->cp15._regname##_s = (_val);            \
 | |
|         } else {                                        \
 | |
|             (_env)->cp15._regname##_ns = (_val);           \
 | |
|         }                                               \
 | |
|     } while (0)
 | |
| 
 | |
| /* Macros for automatically accessing a specific CP register bank depending on
 | |
|  * the current secure state of the system.  These macros are not intended for
 | |
|  * supporting instruction translation reads/writes as these are dependent
 | |
|  * solely on the SCR.NS bit and not the mode.
 | |
|  */
 | |
| #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
 | |
|     A32_BANKED_REG_GET((_env), _regname,                \
 | |
|                        ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))))
 | |
| 
 | |
| #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
 | |
|     A32_BANKED_REG_SET((_env), _regname,                                    \
 | |
|                        ((!arm_el_is_aa64((_env), 3) && arm_is_secure(_env))),  \
 | |
|                        (_val))
 | |
| 
 | |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
 | |
| unsigned int arm_excp_target_el(CPUState *cs, unsigned int excp_idx);
 | |
| 
 | |
| /* Interface between CPU and Interrupt controller.  */
 | |
| void armv7m_nvic_set_pending(void *opaque, int irq);
 | |
| int armv7m_nvic_acknowledge_irq(void *opaque);
 | |
| void armv7m_nvic_complete_irq(void *opaque, int irq);
 | |
| 
 | |
| /* Interface for defining coprocessor registers.
 | |
|  * Registers are defined in tables of arm_cp_reginfo structs
 | |
|  * which are passed to define_arm_cp_regs().
 | |
|  */
 | |
| 
 | |
| /* When looking up a coprocessor register we look for it
 | |
|  * via an integer which encodes all of:
 | |
|  *  coprocessor number
 | |
|  *  Crn, Crm, opc1, opc2 fields
 | |
|  *  32 or 64 bit register (ie is it accessed via MRC/MCR
 | |
|  *    or via MRRC/MCRR?)
 | |
|  *  non-secure/secure bank (AArch32 only)
 | |
|  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 | |
|  * (In this case crn and opc2 should be zero.)
 | |
|  * For AArch64, there is no 32/64 bit size distinction;
 | |
|  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 | |
|  * and 4 bit CRn and CRm. The encoding patterns are chosen
 | |
|  * to be easy to convert to and from the KVM encodings, and also
 | |
|  * so that the hashtable can contain both AArch32 and AArch64
 | |
|  * registers (to allow for interprocessing where we might run
 | |
|  * 32 bit code on a 64 bit core).
 | |
|  */
 | |
| /* This bit is private to our hashtable cpreg; in KVM register
 | |
|  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 | |
|  * in the upper bits of the 64 bit ID.
 | |
|  */
 | |
| #define CP_REG_AA64_SHIFT 28
 | |
| #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
 | |
| 
 | |
| /* To enable banking of coprocessor registers depending on ns-bit we
 | |
|  * add a bit to distinguish between secure and non-secure cpregs in the
 | |
|  * hashtable.
 | |
|  */
 | |
| #define CP_REG_NS_SHIFT 29
 | |
| #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
 | |
| 
 | |
| #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
 | |
|     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
 | |
|      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
 | |
| 
 | |
| #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
 | |
|     (CP_REG_AA64_MASK |                                 \
 | |
|      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
 | |
|      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
 | |
|      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
 | |
|      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
 | |
|      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
 | |
|      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
 | |
| 
 | |
| /* Convert a full 64 bit KVM register ID to the truncated 32 bit
 | |
|  * version used as a key for the coprocessor register hashtable
 | |
|  */
 | |
| static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
 | |
| {
 | |
|     uint32_t cpregid = kvmid;
 | |
|     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
 | |
|         cpregid |= CP_REG_AA64_MASK;
 | |
|     } else {
 | |
|         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
 | |
|             cpregid |= (1 << 15);
 | |
|         }
 | |
| 
 | |
|         /* KVM is always non-secure so add the NS flag on AArch32 register
 | |
|          * entries.
 | |
|          */
 | |
|          cpregid |= 1 << CP_REG_NS_SHIFT;
 | |
|     }
 | |
|     return cpregid;
 | |
| }
 | |
| 
 | |
| /* Convert a truncated 32 bit hashtable key into the full
 | |
|  * 64 bit KVM register ID.
 | |
|  */
 | |
| static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
 | |
| {
 | |
|     uint64_t kvmid;
 | |
| 
 | |
|     if (cpregid & CP_REG_AA64_MASK) {
 | |
|         kvmid = cpregid & ~CP_REG_AA64_MASK;
 | |
|         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
 | |
|     } else {
 | |
|         kvmid = cpregid & ~(1 << 15);
 | |
|         if (cpregid & (1 << 15)) {
 | |
|             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
 | |
|         } else {
 | |
|             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
 | |
|         }
 | |
|     }
 | |
|     return kvmid;
 | |
| }
 | |
| 
 | |
| /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 | |
|  * special-behaviour cp reg and bits [15..8] indicate what behaviour
 | |
|  * it has. Otherwise it is a simple cp reg, where CONST indicates that
 | |
|  * TCG can assume the value to be constant (ie load at translate time)
 | |
|  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 | |
|  * indicates that the TB should not be ended after a write to this register
 | |
|  * (the default is that the TB ends after cp writes). OVERRIDE permits
 | |
|  * a register definition to override a previous definition for the
 | |
|  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 | |
|  * old must have the OVERRIDE bit set.
 | |
|  * NO_MIGRATE indicates that this register should be ignored for migration;
 | |
|  * (eg because any state is accessed via some other coprocessor register).
 | |
|  * IO indicates that this register does I/O and therefore its accesses
 | |
|  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 | |
|  * registers which implement clocks or timers require this.
 | |
|  */
 | |
| #define ARM_CP_SPECIAL 1
 | |
| #define ARM_CP_CONST 2
 | |
| #define ARM_CP_64BIT 4
 | |
| #define ARM_CP_SUPPRESS_TB_END 8
 | |
| #define ARM_CP_OVERRIDE 16
 | |
| #define ARM_CP_NO_MIGRATE 32
 | |
| #define ARM_CP_IO 64
 | |
| #define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
 | |
| #define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
 | |
| #define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
 | |
| #define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
 | |
| #define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
 | |
| #define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
 | |
| /* Used only as a terminator for ARMCPRegInfo lists */
 | |
| #define ARM_CP_SENTINEL 0xffff
 | |
| /* Mask of only the flag bits in a type field */
 | |
| #define ARM_CP_FLAG_MASK 0x7f
 | |
| 
 | |
| /* Valid values for ARMCPRegInfo state field, indicating which of
 | |
|  * the AArch32 and AArch64 execution states this register is visible in.
 | |
|  * If the reginfo doesn't explicitly specify then it is AArch32 only.
 | |
|  * If the reginfo is declared to be visible in both states then a second
 | |
|  * reginfo is synthesised for the AArch32 view of the AArch64 register,
 | |
|  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 | |
|  * Note that we rely on the values of these enums as we iterate through
 | |
|  * the various states in some places.
 | |
|  */
 | |
| enum {
 | |
|     ARM_CP_STATE_AA32 = 0,
 | |
|     ARM_CP_STATE_AA64 = 1,
 | |
|     ARM_CP_STATE_BOTH = 2,
 | |
| };
 | |
| 
 | |
| /* ARM CP register secure state flags.  These flags identify security state
 | |
|  * attributes for a given CP register entry.
 | |
|  * The existence of both or neither secure and non-secure flags indicates that
 | |
|  * the register has both a secure and non-secure hash entry.  A single one of
 | |
|  * these flags causes the register to only be hashed for the specified
 | |
|  * security state.
 | |
|  * Although definitions may have any combination of the S/NS bits, each
 | |
|  * registered entry will only have one to identify whether the entry is secure
 | |
|  * or non-secure.
 | |
|  */
 | |
| enum {
 | |
|     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
 | |
|     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
 | |
| };
 | |
| 
 | |
| /* Return true if cptype is a valid type field. This is used to try to
 | |
|  * catch errors where the sentinel has been accidentally left off the end
 | |
|  * of a list of registers.
 | |
|  */
 | |
| static inline bool cptype_valid(int cptype)
 | |
| {
 | |
|     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
 | |
|         || ((cptype & ARM_CP_SPECIAL) &&
 | |
|             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
 | |
| }
 | |
| 
 | |
| /* Access rights:
 | |
|  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 | |
|  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 | |
|  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 | |
|  * (ie any of the privileged modes in Secure state, or Monitor mode).
 | |
|  * If a register is accessible in one privilege level it's always accessible
 | |
|  * in higher privilege levels too. Since "Secure PL1" also follows this rule
 | |
|  * (ie anything visible in PL2 is visible in S-PL1, some things are only
 | |
|  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 | |
|  * terminology a little and call this PL3.
 | |
|  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 | |
|  * with the ELx exception levels.
 | |
|  *
 | |
|  * If access permissions for a register are more complex than can be
 | |
|  * described with these bits, then use a laxer set of restrictions, and
 | |
|  * do the more restrictive/complex check inside a helper function.
 | |
|  */
 | |
| #define PL3_R 0x80
 | |
| #define PL3_W 0x40
 | |
| #define PL2_R (0x20 | PL3_R)
 | |
| #define PL2_W (0x10 | PL3_W)
 | |
| #define PL1_R (0x08 | PL2_R)
 | |
| #define PL1_W (0x04 | PL2_W)
 | |
| #define PL0_R (0x02 | PL1_R)
 | |
| #define PL0_W (0x01 | PL1_W)
 | |
| 
 | |
| #define PL3_RW (PL3_R | PL3_W)
 | |
| #define PL2_RW (PL2_R | PL2_W)
 | |
| #define PL1_RW (PL1_R | PL1_W)
 | |
| #define PL0_RW (PL0_R | PL0_W)
 | |
| 
 | |
| /* Return the current Exception Level (as per ARMv8; note that this differs
 | |
|  * from the ARMv7 Privilege Level).
 | |
|  */
 | |
| static inline int arm_current_el(CPUARMState *env)
 | |
| {
 | |
|     if (is_a64(env)) {
 | |
|         return extract32(env->pstate, 2, 2);
 | |
|     }
 | |
| 
 | |
|     switch (env->uncached_cpsr & 0x1f) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_HYP:
 | |
|         return 2;
 | |
|     case ARM_CPU_MODE_MON:
 | |
|         return 3;
 | |
|     default:
 | |
|         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
 | |
|             /* If EL3 is 32-bit then all secure privileged modes run in
 | |
|              * EL3
 | |
|              */
 | |
|             return 3;
 | |
|         }
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct ARMCPRegInfo ARMCPRegInfo;
 | |
| 
 | |
| typedef enum CPAccessResult {
 | |
|     /* Access is permitted */
 | |
|     CP_ACCESS_OK = 0,
 | |
|     /* Access fails due to a configurable trap or enable which would
 | |
|      * result in a categorized exception syndrome giving information about
 | |
|      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
 | |
|      * 0xc or 0x18).
 | |
|      */
 | |
|     CP_ACCESS_TRAP = 1,
 | |
|     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
 | |
|      * Note that this is not a catch-all case -- the set of cases which may
 | |
|      * result in this failure is specifically defined by the architecture.
 | |
|      */
 | |
|     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
 | |
| } CPAccessResult;
 | |
| 
 | |
| /* Access functions for coprocessor registers. These cannot fail and
 | |
|  * may not raise exceptions.
 | |
|  */
 | |
| typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
 | |
|                        uint64_t value);
 | |
| /* Access permission check functions for coprocessor registers. */
 | |
| typedef CPAccessResult CPAccessFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| /* Hook function for register reset */
 | |
| typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| 
 | |
| #define CP_ANY 0xff
 | |
| 
 | |
| /* Definition of an ARM coprocessor register */
 | |
| struct ARMCPRegInfo {
 | |
|     /* Name of register (useful mainly for debugging, need not be unique) */
 | |
|     const char *name;
 | |
|     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
 | |
|      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
 | |
|      * 'wildcard' field -- any value of that field in the MRC/MCR insn
 | |
|      * will be decoded to this register. The register read and write
 | |
|      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
 | |
|      * used by the program, so it is possible to register a wildcard and
 | |
|      * then behave differently on read/write if necessary.
 | |
|      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
 | |
|      * must both be zero.
 | |
|      * For AArch64-visible registers, opc0 is also used.
 | |
|      * Since there are no "coprocessors" in AArch64, cp is purely used as a
 | |
|      * way to distinguish (for KVM's benefit) guest-visible system registers
 | |
|      * from demuxed ones provided to preserve the "no side effects on
 | |
|      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
 | |
|      * visible (to match KVM's encoding); cp==0 will be converted to
 | |
|      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
 | |
|      */
 | |
|     uint8_t cp;
 | |
|     uint8_t crn;
 | |
|     uint8_t crm;
 | |
|     uint8_t opc0;
 | |
|     uint8_t opc1;
 | |
|     uint8_t opc2;
 | |
|     /* Execution state in which this register is visible: ARM_CP_STATE_* */
 | |
|     int state;
 | |
|     /* Register type: ARM_CP_* bits/values */
 | |
|     int type;
 | |
|     /* Access rights: PL*_[RW] */
 | |
|     int access;
 | |
|     /* Security state: ARM_CP_SECSTATE_* bits/values */
 | |
|     int secure;
 | |
|     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
 | |
|      * this register was defined: can be used to hand data through to the
 | |
|      * register read/write functions, since they are passed the ARMCPRegInfo*.
 | |
|      */
 | |
|     void *opaque;
 | |
|     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
 | |
|      * fieldoffset is non-zero, the reset value of the register.
 | |
|      */
 | |
|     uint64_t resetvalue;
 | |
|     /* Offset of the field in CPUARMState for this register.
 | |
|      *
 | |
|      * This is not needed if either:
 | |
|      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
 | |
|      *  2. both readfn and writefn are specified
 | |
|      */
 | |
|     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
 | |
| 
 | |
|     /* Offsets of the secure and non-secure fields in CPUARMState for the
 | |
|      * register if it is banked.  These fields are only used during the static
 | |
|      * registration of a register.  During hashing the bank associated
 | |
|      * with a given security state is copied to fieldoffset which is used from
 | |
|      * there on out.
 | |
|      *
 | |
|      * It is expected that register definitions use either fieldoffset or
 | |
|      * bank_fieldoffsets in the definition but not both.  It is also expected
 | |
|      * that both bank offsets are set when defining a banked register.  This
 | |
|      * use indicates that a register is banked.
 | |
|      */
 | |
|     ptrdiff_t bank_fieldoffsets[2];
 | |
| 
 | |
|     /* Function for making any access checks for this register in addition to
 | |
|      * those specified by the 'access' permissions bits. If NULL, no extra
 | |
|      * checks required. The access check is performed at runtime, not at
 | |
|      * translate time.
 | |
|      */
 | |
|     CPAccessFn *accessfn;
 | |
|     /* Function for handling reads of this register. If NULL, then reads
 | |
|      * will be done by loading from the offset into CPUARMState specified
 | |
|      * by fieldoffset.
 | |
|      */
 | |
|     CPReadFn *readfn;
 | |
|     /* Function for handling writes of this register. If NULL, then writes
 | |
|      * will be done by writing to the offset into CPUARMState specified
 | |
|      * by fieldoffset.
 | |
|      */
 | |
|     CPWriteFn *writefn;
 | |
|     /* Function for doing a "raw" read; used when we need to copy
 | |
|      * coprocessor state to the kernel for KVM or out for
 | |
|      * migration. This only needs to be provided if there is also a
 | |
|      * readfn and it has side effects (for instance clear-on-read bits).
 | |
|      */
 | |
|     CPReadFn *raw_readfn;
 | |
|     /* Function for doing a "raw" write; used when we need to copy KVM
 | |
|      * kernel coprocessor state into userspace, or for inbound
 | |
|      * migration. This only needs to be provided if there is also a
 | |
|      * writefn and it masks out "unwritable" bits or has write-one-to-clear
 | |
|      * or similar behaviour.
 | |
|      */
 | |
|     CPWriteFn *raw_writefn;
 | |
|     /* Function for resetting the register. If NULL, then reset will be done
 | |
|      * by writing resetvalue to the field specified in fieldoffset. If
 | |
|      * fieldoffset is 0 then no reset will be done.
 | |
|      */
 | |
|     CPResetFn *resetfn;
 | |
| };
 | |
| 
 | |
| /* Macros which are lvalues for the field in CPUARMState for the
 | |
|  * ARMCPRegInfo *ri.
 | |
|  */
 | |
| #define CPREG_FIELD32(env, ri) \
 | |
|     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
 | |
| #define CPREG_FIELD64(env, ri) \
 | |
|     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
 | |
| 
 | |
| #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
 | |
| 
 | |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | |
|                                     const ARMCPRegInfo *regs, void *opaque);
 | |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | |
|                                        const ARMCPRegInfo *regs, void *opaque);
 | |
| static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
 | |
| {
 | |
|     define_arm_cp_regs_with_opaque(cpu, regs, 0);
 | |
| }
 | |
| static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
 | |
| {
 | |
|     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
 | |
| }
 | |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
 | |
| 
 | |
| /* CPWriteFn that can be used to implement writes-ignored behaviour */
 | |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value);
 | |
| /* CPReadFn that can be used for read-as-zero behaviour */
 | |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
 | |
| 
 | |
| /* CPResetFn that does nothing, for use if no reset is required even
 | |
|  * if fieldoffset is non zero.
 | |
|  */
 | |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| 
 | |
| /* Return true if this reginfo struct's field in the cpu state struct
 | |
|  * is 64 bits wide.
 | |
|  */
 | |
| static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
 | |
| }
 | |
| 
 | |
| static inline bool cp_access_ok(int current_el,
 | |
|                                 const ARMCPRegInfo *ri, int isread)
 | |
| {
 | |
|     return (ri->access >> ((current_el * 2) + isread)) & 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * write_list_to_cpustate
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * For each register listed in the ARMCPU cpreg_indexes list, write
 | |
|  * its value from the cpreg_values list into the ARMCPUState structure.
 | |
|  * This updates TCG's working data structures from KVM data or
 | |
|  * from incoming migration state.
 | |
|  *
 | |
|  * Returns: true if all register values were updated correctly,
 | |
|  * false if some register was unknown or could not be written.
 | |
|  * Note that we do not stop early on failure -- we will attempt
 | |
|  * writing all registers in the list.
 | |
|  */
 | |
| bool write_list_to_cpustate(ARMCPU *cpu);
 | |
| 
 | |
| /**
 | |
|  * write_cpustate_to_list:
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * For each register listed in the ARMCPU cpreg_indexes list, write
 | |
|  * its value from the ARMCPUState structure into the cpreg_values list.
 | |
|  * This is used to copy info from TCG's working data structures into
 | |
|  * KVM or for outbound migration.
 | |
|  *
 | |
|  * Returns: true if all register values were read correctly,
 | |
|  * false if some register was unknown or could not be read.
 | |
|  * Note that we do not stop early on failure -- we will attempt
 | |
|  * reading all registers in the list.
 | |
|  */
 | |
| bool write_cpustate_to_list(ARMCPU *cpu);
 | |
| 
 | |
| /* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
 | |
|    Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
 | |
|    conventional cores (ie. Application or Realtime profile).  */
 | |
| 
 | |
| #define IS_M(env) arm_feature(env, ARM_FEATURE_M)
 | |
| 
 | |
| #define ARM_CPUID_TI915T      0x54029152
 | |
| #define ARM_CPUID_TI925T      0x54029252
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #define TARGET_PAGE_BITS 12
 | |
| #else
 | |
| /* The ARM MMU allows 1k pages.  */
 | |
| /* ??? Linux doesn't actually use these, and they're deprecated in recent
 | |
|    architecture revisions.  Maybe a configure option to disable them.  */
 | |
| #define TARGET_PAGE_BITS 10
 | |
| #endif
 | |
| 
 | |
| #if defined(TARGET_AARCH64)
 | |
| #  define TARGET_PHYS_ADDR_SPACE_BITS 48
 | |
| #  define TARGET_VIRT_ADDR_SPACE_BITS 64
 | |
| #else
 | |
| #  define TARGET_PHYS_ADDR_SPACE_BITS 40
 | |
| #  define TARGET_VIRT_ADDR_SPACE_BITS 32
 | |
| #endif
 | |
| 
 | |
| static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx)
 | |
| {
 | |
|     CPUARMState *env = cs->env_ptr;
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     unsigned int target_el = arm_excp_target_el(cs, excp_idx);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     uint32_t scr;
 | |
|     uint32_t hcr;
 | |
|     bool pstate_unmasked;
 | |
|     int8_t unmasked = 0;
 | |
| 
 | |
|     /* Don't take exceptions if they target a lower EL.
 | |
|      * This check should catch any exceptions that would not be taken but left
 | |
|      * pending.
 | |
|      */
 | |
|     if (cur_el > target_el) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     switch (excp_idx) {
 | |
|     case EXCP_FIQ:
 | |
|         /* If FIQs are routed to EL3 or EL2 then there are cases where we
 | |
|          * override the CPSR.F in determining if the exception is masked or
 | |
|          * not.  If neither of these are set then we fall back to the CPSR.F
 | |
|          * setting otherwise we further assess the state below.
 | |
|          */
 | |
|         hcr = (env->cp15.hcr_el2 & HCR_FMO);
 | |
|         scr = (env->cp15.scr_el3 & SCR_FIQ);
 | |
| 
 | |
|         /* When EL3 is 32-bit, the SCR.FW bit controls whether the CPSR.F bit
 | |
|          * masks FIQ interrupts when taken in non-secure state.  If SCR.FW is
 | |
|          * set then FIQs can be masked by CPSR.F when non-secure but only
 | |
|          * when FIQs are only routed to EL3.
 | |
|          */
 | |
|         scr &= !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 | |
|         pstate_unmasked = !(env->daif & PSTATE_F);
 | |
|         break;
 | |
| 
 | |
|     case EXCP_IRQ:
 | |
|         /* When EL3 execution state is 32-bit, if HCR.IMO is set then we may
 | |
|          * override the CPSR.I masking when in non-secure state.  The SCR.IRQ
 | |
|          * setting has already been taken into consideration when setting the
 | |
|          * target EL, so it does not have a further affect here.
 | |
|          */
 | |
|         hcr = (env->cp15.hcr_el2 & HCR_IMO);
 | |
|         scr = false;
 | |
|         pstate_unmasked = !(env->daif & PSTATE_I);
 | |
|         break;
 | |
| 
 | |
|     case EXCP_VFIQ:
 | |
|         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
 | |
|             /* VFIQs are only taken when hypervized and non-secure.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_F);
 | |
|     case EXCP_VIRQ:
 | |
|         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
 | |
|             /* VIRQs are only taken when hypervized and non-secure.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_I);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     /* Use the target EL, current execution state and SCR/HCR settings to
 | |
|      * determine whether the corresponding CPSR bit is used to mask the
 | |
|      * interrupt.
 | |
|      */
 | |
|     if ((target_el > cur_el) && (target_el != 1)) {
 | |
|         if (arm_el_is_aa64(env, 3) || ((scr || hcr) && (!secure))) {
 | |
|             unmasked = 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* The PSTATE bits only mask the interrupt if we have not overriden the
 | |
|      * ability above.
 | |
|      */
 | |
|     return unmasked || pstate_unmasked;
 | |
| }
 | |
| 
 | |
| static inline CPUARMState *cpu_init(const char *cpu_model)
 | |
| {
 | |
|     ARMCPU *cpu = cpu_arm_init(cpu_model);
 | |
|     if (cpu) {
 | |
|         return &cpu->env;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| #define cpu_exec cpu_arm_exec
 | |
| #define cpu_gen_code cpu_arm_gen_code
 | |
| #define cpu_signal_handler cpu_arm_signal_handler
 | |
| #define cpu_list arm_cpu_list
 | |
| 
 | |
| /* MMU modes definitions */
 | |
| #define MMU_MODE0_SUFFIX _user
 | |
| #define MMU_MODE1_SUFFIX _kernel
 | |
| #define MMU_USER_IDX 0
 | |
| static inline int cpu_mmu_index (CPUARMState *env)
 | |
| {
 | |
|     return arm_current_el(env);
 | |
| }
 | |
| 
 | |
| /* Return the Exception Level targeted by debug exceptions;
 | |
|  * currently always EL1 since we don't implement EL2 or EL3.
 | |
|  */
 | |
| static inline int arm_debug_target_el(CPUARMState *env)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     if (arm_current_el(env) == arm_debug_target_el(env)) {
 | |
|         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
 | |
|             || (env->daif & PSTATE_D)) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     if (arm_current_el(env) == 0 && arm_el_is_aa64(env, 1)) {
 | |
|         return aa64_generate_debug_exceptions(env);
 | |
|     }
 | |
|     return arm_current_el(env) != 2;
 | |
| }
 | |
| 
 | |
| /* Return true if debugging exceptions are currently enabled.
 | |
|  * This corresponds to what in ARM ARM pseudocode would be
 | |
|  *    if UsingAArch32() then
 | |
|  *        return AArch32.GenerateDebugExceptions()
 | |
|  *    else
 | |
|  *        return AArch64.GenerateDebugExceptions()
 | |
|  * We choose to push the if() down into this function for clarity,
 | |
|  * since the pseudocode has it at all callsites except for the one in
 | |
|  * CheckSoftwareStep(), where it is elided because both branches would
 | |
|  * always return the same value.
 | |
|  *
 | |
|  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
 | |
|  * don't yet implement those exception levels or their associated trap bits.
 | |
|  */
 | |
| static inline bool arm_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     if (env->aarch64) {
 | |
|         return aa64_generate_debug_exceptions(env);
 | |
|     } else {
 | |
|         return aa32_generate_debug_exceptions(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 | |
|  * implicitly means this always returns false in pre-v8 CPUs.)
 | |
|  */
 | |
| static inline bool arm_singlestep_active(CPUARMState *env)
 | |
| {
 | |
|     return extract32(env->cp15.mdscr_el1, 0, 1)
 | |
|         && arm_el_is_aa64(env, arm_debug_target_el(env))
 | |
|         && arm_generate_debug_exceptions(env);
 | |
| }
 | |
| 
 | |
| #include "exec/cpu-all.h"
 | |
| 
 | |
| /* Bit usage in the TB flags field: bit 31 indicates whether we are
 | |
|  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 | |
|  */
 | |
| #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
 | |
| #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
 | |
| 
 | |
| /* Bit usage when in AArch32 state: */
 | |
| #define ARM_TBFLAG_THUMB_SHIFT      0
 | |
| #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
 | |
| #define ARM_TBFLAG_VECLEN_SHIFT     1
 | |
| #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
 | |
| #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
 | |
| #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
| #define ARM_TBFLAG_PRIV_SHIFT       6
 | |
| #define ARM_TBFLAG_PRIV_MASK        (1 << ARM_TBFLAG_PRIV_SHIFT)
 | |
| #define ARM_TBFLAG_VFPEN_SHIFT      7
 | |
| #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
 | |
| #define ARM_TBFLAG_CONDEXEC_SHIFT   8
 | |
| #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
| #define ARM_TBFLAG_BSWAP_CODE_SHIFT 16
 | |
| #define ARM_TBFLAG_BSWAP_CODE_MASK  (1 << ARM_TBFLAG_BSWAP_CODE_SHIFT)
 | |
| #define ARM_TBFLAG_CPACR_FPEN_SHIFT 17
 | |
| #define ARM_TBFLAG_CPACR_FPEN_MASK  (1 << ARM_TBFLAG_CPACR_FPEN_SHIFT)
 | |
| #define ARM_TBFLAG_SS_ACTIVE_SHIFT 18
 | |
| #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
 | |
| #define ARM_TBFLAG_PSTATE_SS_SHIFT 19
 | |
| #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
 | |
| /* We store the bottom two bits of the CPAR as TB flags and handle
 | |
|  * checks on the other bits at runtime
 | |
|  */
 | |
| #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 20
 | |
| #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
 | |
| /* Indicates whether cp register reads and writes by guest code should access
 | |
|  * the secure or nonsecure bank of banked registers; note that this is not
 | |
|  * the same thing as the current security state of the processor!
 | |
|  */
 | |
| #define ARM_TBFLAG_NS_SHIFT         22
 | |
| #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
 | |
| 
 | |
| /* Bit usage when in AArch64 state */
 | |
| #define ARM_TBFLAG_AA64_EL_SHIFT    0
 | |
| #define ARM_TBFLAG_AA64_EL_MASK     (0x3 << ARM_TBFLAG_AA64_EL_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_FPEN_SHIFT  2
 | |
| #define ARM_TBFLAG_AA64_FPEN_MASK   (1 << ARM_TBFLAG_AA64_FPEN_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT 3
 | |
| #define ARM_TBFLAG_AA64_SS_ACTIVE_MASK (1 << ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_PSTATE_SS_SHIFT 4
 | |
| #define ARM_TBFLAG_AA64_PSTATE_SS_MASK (1 << ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
 | |
| 
 | |
| /* some convenience accessor macros */
 | |
| #define ARM_TBFLAG_AARCH64_STATE(F) \
 | |
|     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
 | |
| #define ARM_TBFLAG_THUMB(F) \
 | |
|     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
 | |
| #define ARM_TBFLAG_VECLEN(F) \
 | |
|     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
 | |
| #define ARM_TBFLAG_VECSTRIDE(F) \
 | |
|     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
| #define ARM_TBFLAG_PRIV(F) \
 | |
|     (((F) & ARM_TBFLAG_PRIV_MASK) >> ARM_TBFLAG_PRIV_SHIFT)
 | |
| #define ARM_TBFLAG_VFPEN(F) \
 | |
|     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
 | |
| #define ARM_TBFLAG_CONDEXEC(F) \
 | |
|     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
| #define ARM_TBFLAG_BSWAP_CODE(F) \
 | |
|     (((F) & ARM_TBFLAG_BSWAP_CODE_MASK) >> ARM_TBFLAG_BSWAP_CODE_SHIFT)
 | |
| #define ARM_TBFLAG_CPACR_FPEN(F) \
 | |
|     (((F) & ARM_TBFLAG_CPACR_FPEN_MASK) >> ARM_TBFLAG_CPACR_FPEN_SHIFT)
 | |
| #define ARM_TBFLAG_SS_ACTIVE(F) \
 | |
|     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
 | |
| #define ARM_TBFLAG_PSTATE_SS(F) \
 | |
|     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
 | |
| #define ARM_TBFLAG_XSCALE_CPAR(F) \
 | |
|     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_EL(F) \
 | |
|     (((F) & ARM_TBFLAG_AA64_EL_MASK) >> ARM_TBFLAG_AA64_EL_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_FPEN(F) \
 | |
|     (((F) & ARM_TBFLAG_AA64_FPEN_MASK) >> ARM_TBFLAG_AA64_FPEN_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_SS_ACTIVE(F) \
 | |
|     (((F) & ARM_TBFLAG_AA64_SS_ACTIVE_MASK) >> ARM_TBFLAG_AA64_SS_ACTIVE_SHIFT)
 | |
| #define ARM_TBFLAG_AA64_PSTATE_SS(F) \
 | |
|     (((F) & ARM_TBFLAG_AA64_PSTATE_SS_MASK) >> ARM_TBFLAG_AA64_PSTATE_SS_SHIFT)
 | |
| #define ARM_TBFLAG_NS(F) \
 | |
|     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
 | |
| 
 | |
| static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
 | |
|                                         target_ulong *cs_base, int *flags)
 | |
| {
 | |
|     int fpen;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         fpen = extract32(env->cp15.c1_coproc, 20, 2);
 | |
|     } else {
 | |
|         /* CPACR doesn't exist before v6, so VFP is always accessible */
 | |
|         fpen = 3;
 | |
|     }
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         *pc = env->pc;
 | |
|         *flags = ARM_TBFLAG_AARCH64_STATE_MASK
 | |
|             | (arm_current_el(env) << ARM_TBFLAG_AA64_EL_SHIFT);
 | |
|         if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
 | |
|             *flags |= ARM_TBFLAG_AA64_FPEN_MASK;
 | |
|         }
 | |
|         /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
 | |
|          * states defined in the ARM ARM for software singlestep:
 | |
|          *  SS_ACTIVE   PSTATE.SS   State
 | |
|          *     0            x       Inactive (the TB flag for SS is always 0)
 | |
|          *     1            0       Active-pending
 | |
|          *     1            1       Active-not-pending
 | |
|          */
 | |
|         if (arm_singlestep_active(env)) {
 | |
|             *flags |= ARM_TBFLAG_AA64_SS_ACTIVE_MASK;
 | |
|             if (env->pstate & PSTATE_SS) {
 | |
|                 *flags |= ARM_TBFLAG_AA64_PSTATE_SS_MASK;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         int privmode;
 | |
|         *pc = env->regs[15];
 | |
|         *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
 | |
|             | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
 | |
|             | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
|             | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
|             | (env->bswap_code << ARM_TBFLAG_BSWAP_CODE_SHIFT);
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             privmode = !((env->v7m.exception == 0) && (env->v7m.control & 1));
 | |
|         } else {
 | |
|             privmode = (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR;
 | |
|         }
 | |
|         if (privmode) {
 | |
|             *flags |= ARM_TBFLAG_PRIV_MASK;
 | |
|         }
 | |
|         if (!(access_secure_reg(env))) {
 | |
|             *flags |= ARM_TBFLAG_NS_MASK;
 | |
|         }
 | |
|         if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
 | |
|             || arm_el_is_aa64(env, 1)) {
 | |
|             *flags |= ARM_TBFLAG_VFPEN_MASK;
 | |
|         }
 | |
|         if (fpen == 3 || (fpen == 1 && arm_current_el(env) != 0)) {
 | |
|             *flags |= ARM_TBFLAG_CPACR_FPEN_MASK;
 | |
|         }
 | |
|         /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
 | |
|          * states defined in the ARM ARM for software singlestep:
 | |
|          *  SS_ACTIVE   PSTATE.SS   State
 | |
|          *     0            x       Inactive (the TB flag for SS is always 0)
 | |
|          *     1            0       Active-pending
 | |
|          *     1            1       Active-not-pending
 | |
|          */
 | |
|         if (arm_singlestep_active(env)) {
 | |
|             *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
 | |
|             if (env->uncached_cpsr & PSTATE_SS) {
 | |
|                 *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
 | |
|             }
 | |
|         }
 | |
|         *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
 | |
|                    << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
 | |
|     }
 | |
| 
 | |
|     *cs_base = 0;
 | |
| }
 | |
| 
 | |
| #include "exec/exec-all.h"
 | |
| 
 | |
| static inline void cpu_pc_from_tb(CPUARMState *env, TranslationBlock *tb)
 | |
| {
 | |
|     if (ARM_TBFLAG_AARCH64_STATE(tb->flags)) {
 | |
|         env->pc = tb->pc;
 | |
|     } else {
 | |
|         env->regs[15] = tb->pc;
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum {
 | |
|     QEMU_PSCI_CONDUIT_DISABLED = 0,
 | |
|     QEMU_PSCI_CONDUIT_SMC = 1,
 | |
|     QEMU_PSCI_CONDUIT_HVC = 2,
 | |
| };
 | |
| 
 | |
| #endif
 |