 b689bc57d6
			
		
	
	
		b689bc57d6
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@123 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			506 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			506 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  qemu main
 | |
|  * 
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, write to the Free Software
 | |
|  *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 | |
|  */
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <stdarg.h>
 | |
| #include <string.h>
 | |
| #include <errno.h>
 | |
| #include <unistd.h>
 | |
| 
 | |
| #include "qemu.h"
 | |
| 
 | |
| #include "cpu-i386.h"
 | |
| 
 | |
| #define DEBUG_LOGFILE "/tmp/qemu.log"
 | |
| 
 | |
| FILE *logfile = NULL;
 | |
| int loglevel;
 | |
| static const char *interp_prefix = CONFIG_QEMU_PREFIX;
 | |
| 
 | |
| #ifdef __i386__
 | |
| /* Force usage of an ELF interpreter even if it is an ELF shared
 | |
|    object ! */
 | |
| const char interp[] __attribute__((section(".interp"))) = "/lib/ld-linux.so.2";
 | |
| 
 | |
| /* for recent libc, we add these dummies symbol which are not declared
 | |
|    when generating a linked object (bug in ld ?) */
 | |
| #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)
 | |
| long __init_array_start[0];
 | |
| long __init_array_end[0];
 | |
| long __fini_array_start[0];
 | |
| long __fini_array_end[0];
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
 | |
|    we allocate a bigger stack. Need a better solution, for example
 | |
|    by remapping the process stack directly at the right place */
 | |
| unsigned long x86_stack_size = 512 * 1024;
 | |
| 
 | |
| void gemu_log(const char *fmt, ...)
 | |
| {
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, fmt);
 | |
|     vfprintf(stderr, fmt, ap);
 | |
|     va_end(ap);
 | |
| }
 | |
| 
 | |
| /***********************************************************/
 | |
| /* CPUX86 core interface */
 | |
| 
 | |
| void cpu_x86_outb(CPUX86State *env, int addr, int val)
 | |
| {
 | |
|     fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val);
 | |
| }
 | |
| 
 | |
| void cpu_x86_outw(CPUX86State *env, int addr, int val)
 | |
| {
 | |
|     fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val);
 | |
| }
 | |
| 
 | |
| void cpu_x86_outl(CPUX86State *env, int addr, int val)
 | |
| {
 | |
|     fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
 | |
| }
 | |
| 
 | |
| int cpu_x86_inb(CPUX86State *env, int addr)
 | |
| {
 | |
|     fprintf(stderr, "inb: port=0x%04x\n", addr);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int cpu_x86_inw(CPUX86State *env, int addr)
 | |
| {
 | |
|     fprintf(stderr, "inw: port=0x%04x\n", addr);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int cpu_x86_inl(CPUX86State *env, int addr)
 | |
| {
 | |
|     fprintf(stderr, "inl: port=0x%04x\n", addr);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void write_dt(void *ptr, unsigned long addr, unsigned long limit, 
 | |
|               int seg32_bit)
 | |
| {
 | |
|     unsigned int e1, e2, limit_in_pages;
 | |
|     limit_in_pages = 0;
 | |
|     if (limit > 0xffff) {
 | |
|         limit = limit >> 12;
 | |
|         limit_in_pages = 1;
 | |
|     }
 | |
|     e1 = (addr << 16) | (limit & 0xffff);
 | |
|     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
 | |
|     e2 |= limit_in_pages << 23; /* byte granularity */
 | |
|     e2 |= seg32_bit << 22; /* 32 bit segment */
 | |
|     stl((uint8_t *)ptr, e1);
 | |
|     stl((uint8_t *)ptr + 4, e2);
 | |
| }
 | |
| 
 | |
| uint64_t gdt_table[6];
 | |
| 
 | |
| //#define DEBUG_VM86
 | |
| 
 | |
| static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
 | |
| {
 | |
|     return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1;
 | |
| }
 | |
| 
 | |
| static inline uint8_t *seg_to_linear(unsigned int seg, unsigned int reg)
 | |
| {
 | |
|     return (uint8_t *)((seg << 4) + (reg & 0xffff));
 | |
| }
 | |
| 
 | |
| static inline void pushw(CPUX86State *env, int val)
 | |
| {
 | |
|     env->regs[R_ESP] = (env->regs[R_ESP] & ~0xffff) | 
 | |
|         ((env->regs[R_ESP] - 2) & 0xffff);
 | |
|     *(uint16_t *)seg_to_linear(env->segs[R_SS], env->regs[R_ESP]) = val;
 | |
| }
 | |
| 
 | |
| static inline unsigned int get_vflags(CPUX86State *env)
 | |
| {
 | |
|     unsigned int eflags;
 | |
|     eflags = env->eflags & ~(VM_MASK | RF_MASK | IF_MASK);
 | |
|     if (eflags & VIF_MASK)
 | |
|         eflags |= IF_MASK;
 | |
|     return eflags;
 | |
| }
 | |
| 
 | |
| void save_v86_state(CPUX86State *env)
 | |
| {
 | |
|     TaskState *ts = env->opaque;
 | |
| #ifdef DEBUG_VM86
 | |
|     printf("save_v86_state\n");
 | |
| #endif
 | |
| 
 | |
|     /* put the VM86 registers in the userspace register structure */
 | |
|     ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
 | |
|     ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
 | |
|     ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
 | |
|     ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
 | |
|     ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
 | |
|     ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
 | |
|     ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
 | |
|     ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
 | |
|     ts->target_v86->regs.eip = tswap32(env->eip);
 | |
|     ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
 | |
|     ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
 | |
|     ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
 | |
|     ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
 | |
|     ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
 | |
|     ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
 | |
|     ts->target_v86->regs.eflags = tswap32(env->eflags);
 | |
| 
 | |
|     /* restore 32 bit registers */
 | |
|     env->regs[R_EAX] = ts->vm86_saved_regs.eax;
 | |
|     env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
 | |
|     env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
 | |
|     env->regs[R_EDX] = ts->vm86_saved_regs.edx;
 | |
|     env->regs[R_ESI] = ts->vm86_saved_regs.esi;
 | |
|     env->regs[R_EDI] = ts->vm86_saved_regs.edi;
 | |
|     env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
 | |
|     env->regs[R_ESP] = ts->vm86_saved_regs.esp;
 | |
|     env->eflags = ts->vm86_saved_regs.eflags;
 | |
|     env->eip = ts->vm86_saved_regs.eip;
 | |
|     
 | |
|     cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
 | |
|     cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
 | |
|     cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
 | |
|     cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
 | |
|     cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
 | |
|     cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
 | |
| }
 | |
| 
 | |
| /* return from vm86 mode to 32 bit. The vm86() syscall will return
 | |
|    'retval' */
 | |
| static inline void return_to_32bit(CPUX86State *env, int retval)
 | |
| {
 | |
| #ifdef DEBUG_VM86
 | |
|     printf("return_to_32bit: ret=0x%x\n", retval);
 | |
| #endif
 | |
|     save_v86_state(env);
 | |
|     env->regs[R_EAX] = retval;
 | |
| }
 | |
| 
 | |
| /* handle VM86 interrupt (NOTE: the CPU core currently does not
 | |
|    support TSS interrupt revectoring, so this code is always executed) */
 | |
| static void do_int(CPUX86State *env, int intno)
 | |
| {
 | |
|     TaskState *ts = env->opaque;
 | |
|     uint32_t *int_ptr, segoffs;
 | |
|     
 | |
|     if (env->segs[R_CS] == TARGET_BIOSSEG)
 | |
|         goto cannot_handle; /* XXX: I am not sure this is really useful */
 | |
|     if (is_revectored(intno, &ts->target_v86->int_revectored))
 | |
|         goto cannot_handle;
 | |
|     if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
 | |
|                                        &ts->target_v86->int21_revectored))
 | |
|         goto cannot_handle;
 | |
|     int_ptr = (uint32_t *)(intno << 2);
 | |
|     segoffs = tswap32(*int_ptr);
 | |
|     if ((segoffs >> 16) == TARGET_BIOSSEG)
 | |
|         goto cannot_handle;
 | |
| #ifdef DEBUG_VM86
 | |
|     printf("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
 | |
|            intno, segoffs >> 16, segoffs & 0xffff);
 | |
| #endif
 | |
|     /* save old state */
 | |
|     pushw(env, get_vflags(env));
 | |
|     pushw(env, env->segs[R_CS]);
 | |
|     pushw(env, env->eip);
 | |
|     /* goto interrupt handler */
 | |
|     env->eip = segoffs & 0xffff;
 | |
|     cpu_x86_load_seg(env, R_CS, segoffs >> 16);
 | |
|     env->eflags &= ~(VIF_MASK | TF_MASK);
 | |
|     return;
 | |
|  cannot_handle:
 | |
| #ifdef DEBUG_VM86
 | |
|     printf("VM86: return to 32 bits int 0x%x\n", intno);
 | |
| #endif
 | |
|     return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
 | |
| }
 | |
| 
 | |
| void cpu_loop(struct CPUX86State *env)
 | |
| {
 | |
|     int trapnr;
 | |
|     uint8_t *pc;
 | |
|     target_siginfo_t info;
 | |
| 
 | |
|     for(;;) {
 | |
|         trapnr = cpu_x86_exec(env);
 | |
|         pc = env->seg_cache[R_CS].base + env->eip;
 | |
|         switch(trapnr) {
 | |
|         case EXCP0D_GPF:
 | |
|             if (env->eflags & VM_MASK) {
 | |
| #ifdef DEBUG_VM86
 | |
|                 printf("VM86 exception %04x:%08x %02x %02x\n",
 | |
|                        env->segs[R_CS], env->eip, pc[0], pc[1]);
 | |
| #endif
 | |
|                 /* VM86 mode */
 | |
|                 switch(pc[0]) {
 | |
|                 case 0xcd: /* int */
 | |
|                     env->eip += 2;
 | |
|                     do_int(env, pc[1]);
 | |
|                     break;
 | |
|                 case 0x66:
 | |
|                     switch(pc[1]) {
 | |
|                     case 0xfb: /* sti */
 | |
|                     case 0x9d: /* popf */
 | |
|                     case 0xcf: /* iret */
 | |
|                         env->eip += 2;
 | |
|                         return_to_32bit(env, TARGET_VM86_STI);
 | |
|                         break;
 | |
|                     default:
 | |
|                         goto vm86_gpf;
 | |
|                     }
 | |
|                     break;
 | |
|                 case 0xfb: /* sti */
 | |
|                 case 0x9d: /* popf */
 | |
|                 case 0xcf: /* iret */
 | |
|                     env->eip++;
 | |
|                     return_to_32bit(env, TARGET_VM86_STI);
 | |
|                     break;
 | |
|                 default:
 | |
|                 vm86_gpf:
 | |
|                     /* real VM86 GPF exception */
 | |
|                     return_to_32bit(env, TARGET_VM86_UNKNOWN);
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 if (pc[0] == 0xcd && pc[1] == 0x80) {
 | |
|                     /* syscall */
 | |
|                     env->eip += 2;
 | |
|                     env->regs[R_EAX] = do_syscall(env, 
 | |
|                                                   env->regs[R_EAX], 
 | |
|                                                   env->regs[R_EBX],
 | |
|                                                   env->regs[R_ECX],
 | |
|                                                   env->regs[R_EDX],
 | |
|                                                   env->regs[R_ESI],
 | |
|                                                   env->regs[R_EDI],
 | |
|                                                   env->regs[R_EBP]);
 | |
|                 } else {
 | |
|                     /* XXX: more precise info */
 | |
|                     info.si_signo = SIGSEGV;
 | |
|                     info.si_errno = 0;
 | |
|                     info.si_code = TARGET_SI_KERNEL;
 | |
|                     info._sifields._sigfault._addr = 0;
 | |
|                     queue_signal(info.si_signo, &info);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case EXCP0E_PAGE:
 | |
|             info.si_signo = SIGSEGV;
 | |
|             info.si_errno = 0;
 | |
|             if (!(env->error_code & 1))
 | |
|                 info.si_code = TARGET_SEGV_MAPERR;
 | |
|             else
 | |
|                 info.si_code = TARGET_SEGV_ACCERR;
 | |
|             info._sifields._sigfault._addr = env->cr2;
 | |
|             queue_signal(info.si_signo, &info);
 | |
|             break;
 | |
|         case EXCP00_DIVZ:
 | |
|             if (env->eflags & VM_MASK) {
 | |
|                 do_int(env, trapnr);
 | |
|             } else {
 | |
|                 /* division by zero */
 | |
|                 info.si_signo = SIGFPE;
 | |
|                 info.si_errno = 0;
 | |
|                 info.si_code = TARGET_FPE_INTDIV;
 | |
|                 info._sifields._sigfault._addr = env->eip;
 | |
|                 queue_signal(info.si_signo, &info);
 | |
|             }
 | |
|             break;
 | |
|         case EXCP04_INTO:
 | |
|         case EXCP05_BOUND:
 | |
|             if (env->eflags & VM_MASK) {
 | |
|                 do_int(env, trapnr);
 | |
|             } else {
 | |
|                 info.si_signo = SIGSEGV;
 | |
|                 info.si_errno = 0;
 | |
|                 info.si_code = TARGET_SI_KERNEL;
 | |
|                 info._sifields._sigfault._addr = 0;
 | |
|                 queue_signal(info.si_signo, &info);
 | |
|             }
 | |
|             break;
 | |
|         case EXCP06_ILLOP:
 | |
|             info.si_signo = SIGILL;
 | |
|             info.si_errno = 0;
 | |
|             info.si_code = TARGET_ILL_ILLOPN;
 | |
|             info._sifields._sigfault._addr = env->eip;
 | |
|             queue_signal(info.si_signo, &info);
 | |
|             break;
 | |
|         case EXCP_INTERRUPT:
 | |
|             /* just indicate that signals should be handled asap */
 | |
|             break;
 | |
|         default:
 | |
|             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 
 | |
|                     (long)pc, trapnr);
 | |
|             abort();
 | |
|         }
 | |
|         process_pending_signals(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void usage(void)
 | |
| {
 | |
|     printf("qemu version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
 | |
|            "usage: qemu [-h] [-d] [-L path] [-s size] program [arguments...]\n"
 | |
|            "Linux x86 emulator\n"
 | |
|            "\n"
 | |
|            "-h        print this help\n"
 | |
|            "-d        activate log (logfile=%s)\n"
 | |
|            "-L path   set the x86 elf interpreter prefix (default=%s)\n"
 | |
|            "-s size   set the x86 stack size in bytes (default=%ld)\n",
 | |
|            DEBUG_LOGFILE,
 | |
|            interp_prefix, 
 | |
|            x86_stack_size);
 | |
|     _exit(1);
 | |
| }
 | |
| 
 | |
| /* XXX: currently only used for async signals (see signal.c) */
 | |
| CPUX86State *global_env;
 | |
| /* used to free thread contexts */
 | |
| TaskState *first_task_state;
 | |
| 
 | |
| int main(int argc, char **argv)
 | |
| {
 | |
|     const char *filename;
 | |
|     struct target_pt_regs regs1, *regs = ®s1;
 | |
|     struct image_info info1, *info = &info1;
 | |
|     TaskState ts1, *ts = &ts1;
 | |
|     CPUX86State *env;
 | |
|     int optind;
 | |
|     const char *r;
 | |
|     
 | |
|     if (argc <= 1)
 | |
|         usage();
 | |
| 
 | |
|     loglevel = 0;
 | |
|     optind = 1;
 | |
|     for(;;) {
 | |
|         if (optind >= argc)
 | |
|             break;
 | |
|         r = argv[optind];
 | |
|         if (r[0] != '-')
 | |
|             break;
 | |
|         optind++;
 | |
|         r++;
 | |
|         if (!strcmp(r, "-")) {
 | |
|             break;
 | |
|         } else if (!strcmp(r, "d")) {
 | |
|             loglevel = 1;
 | |
|         } else if (!strcmp(r, "s")) {
 | |
|             r = argv[optind++];
 | |
|             x86_stack_size = strtol(r, (char **)&r, 0);
 | |
|             if (x86_stack_size <= 0)
 | |
|                 usage();
 | |
|             if (*r == 'M')
 | |
|                 x86_stack_size *= 1024 * 1024;
 | |
|             else if (*r == 'k' || *r == 'K')
 | |
|                 x86_stack_size *= 1024;
 | |
|         } else if (!strcmp(r, "L")) {
 | |
|             interp_prefix = argv[optind++];
 | |
|         } else {
 | |
|             usage();
 | |
|         }
 | |
|     }
 | |
|     if (optind >= argc)
 | |
|         usage();
 | |
|     filename = argv[optind];
 | |
| 
 | |
|     /* init debug */
 | |
|     if (loglevel) {
 | |
|         logfile = fopen(DEBUG_LOGFILE, "w");
 | |
|         if (!logfile) {
 | |
|             perror(DEBUG_LOGFILE);
 | |
|             _exit(1);
 | |
|         }
 | |
|         setvbuf(logfile, NULL, _IOLBF, 0);
 | |
|     }
 | |
| 
 | |
|     /* Zero out regs */
 | |
|     memset(regs, 0, sizeof(struct target_pt_regs));
 | |
| 
 | |
|     /* Zero out image_info */
 | |
|     memset(info, 0, sizeof(struct image_info));
 | |
| 
 | |
|     /* Scan interp_prefix dir for replacement files. */
 | |
|     init_paths(interp_prefix);
 | |
| 
 | |
|     if (elf_exec(filename, argv+optind, environ, regs, info) != 0) {
 | |
| 	printf("Error loading %s\n", filename);
 | |
| 	_exit(1);
 | |
|     }
 | |
|     
 | |
|     if (loglevel) {
 | |
|         fprintf(logfile, "start_brk   0x%08lx\n" , info->start_brk);
 | |
|         fprintf(logfile, "end_code    0x%08lx\n" , info->end_code);
 | |
|         fprintf(logfile, "start_code  0x%08lx\n" , info->start_code);
 | |
|         fprintf(logfile, "end_data    0x%08lx\n" , info->end_data);
 | |
|         fprintf(logfile, "start_stack 0x%08lx\n" , info->start_stack);
 | |
|         fprintf(logfile, "brk         0x%08lx\n" , info->brk);
 | |
|         fprintf(logfile, "esp         0x%08lx\n" , regs->esp);
 | |
|         fprintf(logfile, "eip         0x%08lx\n" , regs->eip);
 | |
|     }
 | |
| 
 | |
|     target_set_brk((char *)info->brk);
 | |
|     syscall_init();
 | |
|     signal_init();
 | |
| 
 | |
|     env = cpu_x86_init();
 | |
|     global_env = env;
 | |
| 
 | |
|     /* build Task State */
 | |
|     memset(ts, 0, sizeof(TaskState));
 | |
|     env->opaque = ts;
 | |
|     ts->used = 1;
 | |
|     
 | |
|     /* linux register setup */
 | |
|     env->regs[R_EAX] = regs->eax;
 | |
|     env->regs[R_EBX] = regs->ebx;
 | |
|     env->regs[R_ECX] = regs->ecx;
 | |
|     env->regs[R_EDX] = regs->edx;
 | |
|     env->regs[R_ESI] = regs->esi;
 | |
|     env->regs[R_EDI] = regs->edi;
 | |
|     env->regs[R_EBP] = regs->ebp;
 | |
|     env->regs[R_ESP] = regs->esp;
 | |
|     env->eip = regs->eip;
 | |
| 
 | |
|     /* linux segment setup */
 | |
|     env->gdt.base = (void *)gdt_table;
 | |
|     env->gdt.limit = sizeof(gdt_table) - 1;
 | |
|     write_dt(&gdt_table[__USER_CS >> 3], 0, 0xffffffff, 1);
 | |
|     write_dt(&gdt_table[__USER_DS >> 3], 0, 0xffffffff, 1);
 | |
|     cpu_x86_load_seg(env, R_CS, __USER_CS);
 | |
|     cpu_x86_load_seg(env, R_DS, __USER_DS);
 | |
|     cpu_x86_load_seg(env, R_ES, __USER_DS);
 | |
|     cpu_x86_load_seg(env, R_SS, __USER_DS);
 | |
|     cpu_x86_load_seg(env, R_FS, __USER_DS);
 | |
|     cpu_x86_load_seg(env, R_GS, __USER_DS);
 | |
| 
 | |
|     cpu_loop(env);
 | |
|     /* never exits */
 | |
|     return 0;
 | |
| }
 |