 b30e93e9ec
			
		
	
	
		b30e93e9ec
		
	
	
	
	
		
			
			Improve the readability of the exit dispatcher by moving the static return value of kvm_handle_io to its caller. Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
		
			
				
	
	
		
			1381 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1381 lines
		
	
	
		
			35 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU KVM support
 | |
|  *
 | |
|  * Copyright IBM, Corp. 2008
 | |
|  *           Red Hat, Inc. 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Anthony Liguori   <aliguori@us.ibm.com>
 | |
|  *  Glauber Costa     <gcosta@redhat.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| #include <stdarg.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu-barrier.h"
 | |
| #include "sysemu.h"
 | |
| #include "hw/hw.h"
 | |
| #include "gdbstub.h"
 | |
| #include "kvm.h"
 | |
| #include "bswap.h"
 | |
| 
 | |
| /* This check must be after config-host.h is included */
 | |
| #ifdef CONFIG_EVENTFD
 | |
| #include <sys/eventfd.h>
 | |
| #endif
 | |
| 
 | |
| /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
 | |
| #define PAGE_SIZE TARGET_PAGE_SIZE
 | |
| 
 | |
| //#define DEBUG_KVM
 | |
| 
 | |
| #ifdef DEBUG_KVM
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) \
 | |
|     do { } while (0)
 | |
| #endif
 | |
| 
 | |
| typedef struct KVMSlot
 | |
| {
 | |
|     target_phys_addr_t start_addr;
 | |
|     ram_addr_t memory_size;
 | |
|     ram_addr_t phys_offset;
 | |
|     int slot;
 | |
|     int flags;
 | |
| } KVMSlot;
 | |
| 
 | |
| typedef struct kvm_dirty_log KVMDirtyLog;
 | |
| 
 | |
| struct KVMState
 | |
| {
 | |
|     KVMSlot slots[32];
 | |
|     int fd;
 | |
|     int vmfd;
 | |
|     int coalesced_mmio;
 | |
|     struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
 | |
|     int broken_set_mem_region;
 | |
|     int migration_log;
 | |
|     int vcpu_events;
 | |
|     int robust_singlestep;
 | |
|     int debugregs;
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|     struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
 | |
| #endif
 | |
|     int irqchip_in_kernel;
 | |
|     int pit_in_kernel;
 | |
|     int xsave, xcrs;
 | |
|     int many_ioeventfds;
 | |
| };
 | |
| 
 | |
| static KVMState *kvm_state;
 | |
| 
 | |
| static const KVMCapabilityInfo kvm_required_capabilites[] = {
 | |
|     KVM_CAP_INFO(USER_MEMORY),
 | |
|     KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS),
 | |
|     KVM_CAP_LAST_INFO
 | |
| };
 | |
| 
 | |
| static KVMSlot *kvm_alloc_slot(KVMState *s)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | |
|         /* KVM private memory slots */
 | |
|         if (i >= 8 && i < 12) {
 | |
|             continue;
 | |
|         }
 | |
|         if (s->slots[i].memory_size == 0) {
 | |
|             return &s->slots[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     fprintf(stderr, "%s: no free slot available\n", __func__);
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
 | |
|                                          target_phys_addr_t start_addr,
 | |
|                                          target_phys_addr_t end_addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | |
|         KVMSlot *mem = &s->slots[i];
 | |
| 
 | |
|         if (start_addr == mem->start_addr &&
 | |
|             end_addr == mem->start_addr + mem->memory_size) {
 | |
|             return mem;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find overlapping slot with lowest start address
 | |
|  */
 | |
| static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
 | |
|                                             target_phys_addr_t start_addr,
 | |
|                                             target_phys_addr_t end_addr)
 | |
| {
 | |
|     KVMSlot *found = NULL;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | |
|         KVMSlot *mem = &s->slots[i];
 | |
| 
 | |
|         if (mem->memory_size == 0 ||
 | |
|             (found && found->start_addr < mem->start_addr)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (end_addr > mem->start_addr &&
 | |
|             start_addr < mem->start_addr + mem->memory_size) {
 | |
|             found = mem;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return found;
 | |
| }
 | |
| 
 | |
| int kvm_physical_memory_addr_from_ram(KVMState *s, ram_addr_t ram_addr,
 | |
|                                       target_phys_addr_t *phys_addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | |
|         KVMSlot *mem = &s->slots[i];
 | |
| 
 | |
|         if (ram_addr >= mem->phys_offset &&
 | |
|             ram_addr < mem->phys_offset + mem->memory_size) {
 | |
|             *phys_addr = mem->start_addr + (ram_addr - mem->phys_offset);
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
 | |
| {
 | |
|     struct kvm_userspace_memory_region mem;
 | |
| 
 | |
|     mem.slot = slot->slot;
 | |
|     mem.guest_phys_addr = slot->start_addr;
 | |
|     mem.memory_size = slot->memory_size;
 | |
|     mem.userspace_addr = (unsigned long)qemu_safe_ram_ptr(slot->phys_offset);
 | |
|     mem.flags = slot->flags;
 | |
|     if (s->migration_log) {
 | |
|         mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | |
|     }
 | |
|     return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
 | |
| }
 | |
| 
 | |
| static void kvm_reset_vcpu(void *opaque)
 | |
| {
 | |
|     CPUState *env = opaque;
 | |
| 
 | |
|     kvm_arch_reset_vcpu(env);
 | |
| }
 | |
| 
 | |
| int kvm_irqchip_in_kernel(void)
 | |
| {
 | |
|     return kvm_state->irqchip_in_kernel;
 | |
| }
 | |
| 
 | |
| int kvm_pit_in_kernel(void)
 | |
| {
 | |
|     return kvm_state->pit_in_kernel;
 | |
| }
 | |
| 
 | |
| int kvm_init_vcpu(CPUState *env)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     long mmap_size;
 | |
|     int ret;
 | |
| 
 | |
|     DPRINTF("kvm_init_vcpu\n");
 | |
| 
 | |
|     ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
 | |
|     if (ret < 0) {
 | |
|         DPRINTF("kvm_create_vcpu failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     env->kvm_fd = ret;
 | |
|     env->kvm_state = s;
 | |
| 
 | |
|     mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
 | |
|     if (mmap_size < 0) {
 | |
|         ret = mmap_size;
 | |
|         DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
 | |
|                         env->kvm_fd, 0);
 | |
|     if (env->kvm_run == MAP_FAILED) {
 | |
|         ret = -errno;
 | |
|         DPRINTF("mmap'ing vcpu state failed\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
 | |
|         s->coalesced_mmio_ring =
 | |
|             (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_arch_init_vcpu(env);
 | |
|     if (ret == 0) {
 | |
|         qemu_register_reset(kvm_reset_vcpu, env);
 | |
|         kvm_arch_reset_vcpu(env);
 | |
|     }
 | |
| err:
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * dirty pages logging control
 | |
|  */
 | |
| static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
 | |
|                                       ram_addr_t size, int flags, int mask)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
 | |
|     int old_flags;
 | |
| 
 | |
|     if (mem == NULL)  {
 | |
|             fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
 | |
|                     TARGET_FMT_plx "\n", __func__, phys_addr,
 | |
|                     (target_phys_addr_t)(phys_addr + size - 1));
 | |
|             return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     old_flags = mem->flags;
 | |
| 
 | |
|     flags = (mem->flags & ~mask) | flags;
 | |
|     mem->flags = flags;
 | |
| 
 | |
|     /* If nothing changed effectively, no need to issue ioctl */
 | |
|     if (s->migration_log) {
 | |
|         flags |= KVM_MEM_LOG_DIRTY_PAGES;
 | |
|     }
 | |
|     if (flags == old_flags) {
 | |
|             return 0;
 | |
|     }
 | |
| 
 | |
|     return kvm_set_user_memory_region(s, mem);
 | |
| }
 | |
| 
 | |
| int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
 | |
| {
 | |
|     return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES,
 | |
|                                       KVM_MEM_LOG_DIRTY_PAGES);
 | |
| }
 | |
| 
 | |
| int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
 | |
| {
 | |
|     return kvm_dirty_pages_log_change(phys_addr, size, 0,
 | |
|                                       KVM_MEM_LOG_DIRTY_PAGES);
 | |
| }
 | |
| 
 | |
| static int kvm_set_migration_log(int enable)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     KVMSlot *mem;
 | |
|     int i, err;
 | |
| 
 | |
|     s->migration_log = enable;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | |
|         mem = &s->slots[i];
 | |
| 
 | |
|         if (!mem->memory_size) {
 | |
|             continue;
 | |
|         }
 | |
|         if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
 | |
|             continue;
 | |
|         }
 | |
|         err = kvm_set_user_memory_region(s, mem);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* get kvm's dirty pages bitmap and update qemu's */
 | |
| static int kvm_get_dirty_pages_log_range(unsigned long start_addr,
 | |
|                                          unsigned long *bitmap,
 | |
|                                          unsigned long offset,
 | |
|                                          unsigned long mem_size)
 | |
| {
 | |
|     unsigned int i, j;
 | |
|     unsigned long page_number, addr, addr1, c;
 | |
|     ram_addr_t ram_addr;
 | |
|     unsigned int len = ((mem_size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) /
 | |
|         HOST_LONG_BITS;
 | |
| 
 | |
|     /*
 | |
|      * bitmap-traveling is faster than memory-traveling (for addr...)
 | |
|      * especially when most of the memory is not dirty.
 | |
|      */
 | |
|     for (i = 0; i < len; i++) {
 | |
|         if (bitmap[i] != 0) {
 | |
|             c = leul_to_cpu(bitmap[i]);
 | |
|             do {
 | |
|                 j = ffsl(c) - 1;
 | |
|                 c &= ~(1ul << j);
 | |
|                 page_number = i * HOST_LONG_BITS + j;
 | |
|                 addr1 = page_number * TARGET_PAGE_SIZE;
 | |
|                 addr = offset + addr1;
 | |
|                 ram_addr = cpu_get_physical_page_desc(addr);
 | |
|                 cpu_physical_memory_set_dirty(ram_addr);
 | |
|             } while (c != 0);
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #define ALIGN(x, y)  (((x)+(y)-1) & ~((y)-1))
 | |
| 
 | |
| /**
 | |
|  * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
 | |
|  * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
 | |
|  * This means all bits are set to dirty.
 | |
|  *
 | |
|  * @start_add: start of logged region.
 | |
|  * @end_addr: end of logged region.
 | |
|  */
 | |
| static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
 | |
|                                           target_phys_addr_t end_addr)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     unsigned long size, allocated_size = 0;
 | |
|     KVMDirtyLog d;
 | |
|     KVMSlot *mem;
 | |
|     int ret = 0;
 | |
| 
 | |
|     d.dirty_bitmap = NULL;
 | |
|     while (start_addr < end_addr) {
 | |
|         mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
 | |
|         if (mem == NULL) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         size = ALIGN(((mem->memory_size) >> TARGET_PAGE_BITS), HOST_LONG_BITS) / 8;
 | |
|         if (!d.dirty_bitmap) {
 | |
|             d.dirty_bitmap = qemu_malloc(size);
 | |
|         } else if (size > allocated_size) {
 | |
|             d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
 | |
|         }
 | |
|         allocated_size = size;
 | |
|         memset(d.dirty_bitmap, 0, allocated_size);
 | |
| 
 | |
|         d.slot = mem->slot;
 | |
| 
 | |
|         if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
 | |
|             DPRINTF("ioctl failed %d\n", errno);
 | |
|             ret = -1;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         kvm_get_dirty_pages_log_range(mem->start_addr, d.dirty_bitmap,
 | |
|                                       mem->start_addr, mem->memory_size);
 | |
|         start_addr = mem->start_addr + mem->memory_size;
 | |
|     }
 | |
|     qemu_free(d.dirty_bitmap);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
 | |
| {
 | |
|     int ret = -ENOSYS;
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_mmio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
| 
 | |
|         ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
 | |
| {
 | |
|     int ret = -ENOSYS;
 | |
|     KVMState *s = kvm_state;
 | |
| 
 | |
|     if (s->coalesced_mmio) {
 | |
|         struct kvm_coalesced_mmio_zone zone;
 | |
| 
 | |
|         zone.addr = start;
 | |
|         zone.size = size;
 | |
| 
 | |
|         ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_check_extension(KVMState *s, unsigned int extension)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
 | |
|     if (ret < 0) {
 | |
|         ret = 0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_check_many_ioeventfds(void)
 | |
| {
 | |
|     /* Userspace can use ioeventfd for io notification.  This requires a host
 | |
|      * that supports eventfd(2) and an I/O thread; since eventfd does not
 | |
|      * support SIGIO it cannot interrupt the vcpu.
 | |
|      *
 | |
|      * Older kernels have a 6 device limit on the KVM io bus.  Find out so we
 | |
|      * can avoid creating too many ioeventfds.
 | |
|      */
 | |
| #if defined(CONFIG_EVENTFD) && defined(CONFIG_IOTHREAD)
 | |
|     int ioeventfds[7];
 | |
|     int i, ret = 0;
 | |
|     for (i = 0; i < ARRAY_SIZE(ioeventfds); i++) {
 | |
|         ioeventfds[i] = eventfd(0, EFD_CLOEXEC);
 | |
|         if (ioeventfds[i] < 0) {
 | |
|             break;
 | |
|         }
 | |
|         ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
 | |
|         if (ret < 0) {
 | |
|             close(ioeventfds[i]);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Decide whether many devices are supported or not */
 | |
|     ret = i == ARRAY_SIZE(ioeventfds);
 | |
| 
 | |
|     while (i-- > 0) {
 | |
|         kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
 | |
|         close(ioeventfds[i]);
 | |
|     }
 | |
|     return ret;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static const KVMCapabilityInfo *
 | |
| kvm_check_extension_list(KVMState *s, const KVMCapabilityInfo *list)
 | |
| {
 | |
|     while (list->name) {
 | |
|         if (!kvm_check_extension(s, list->value)) {
 | |
|             return list;
 | |
|         }
 | |
|         list++;
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size,
 | |
|                              ram_addr_t phys_offset)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
 | |
|     KVMSlot *mem, old;
 | |
|     int err;
 | |
| 
 | |
|     /* kvm works in page size chunks, but the function may be called
 | |
|        with sub-page size and unaligned start address. */
 | |
|     size = TARGET_PAGE_ALIGN(size);
 | |
|     start_addr = TARGET_PAGE_ALIGN(start_addr);
 | |
| 
 | |
|     /* KVM does not support read-only slots */
 | |
|     phys_offset &= ~IO_MEM_ROM;
 | |
| 
 | |
|     while (1) {
 | |
|         mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
 | |
|         if (!mem) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
 | |
|             (start_addr + size <= mem->start_addr + mem->memory_size) &&
 | |
|             (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
 | |
|             /* The new slot fits into the existing one and comes with
 | |
|              * identical parameters - nothing to be done. */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         old = *mem;
 | |
| 
 | |
|         /* unregister the overlapping slot */
 | |
|         mem->memory_size = 0;
 | |
|         err = kvm_set_user_memory_region(s, mem);
 | |
|         if (err) {
 | |
|             fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
 | |
|                     __func__, strerror(-err));
 | |
|             abort();
 | |
|         }
 | |
| 
 | |
|         /* Workaround for older KVM versions: we can't join slots, even not by
 | |
|          * unregistering the previous ones and then registering the larger
 | |
|          * slot. We have to maintain the existing fragmentation. Sigh.
 | |
|          *
 | |
|          * This workaround assumes that the new slot starts at the same
 | |
|          * address as the first existing one. If not or if some overlapping
 | |
|          * slot comes around later, we will fail (not seen in practice so far)
 | |
|          * - and actually require a recent KVM version. */
 | |
|         if (s->broken_set_mem_region &&
 | |
|             old.start_addr == start_addr && old.memory_size < size &&
 | |
|             flags < IO_MEM_UNASSIGNED) {
 | |
|             mem = kvm_alloc_slot(s);
 | |
|             mem->memory_size = old.memory_size;
 | |
|             mem->start_addr = old.start_addr;
 | |
|             mem->phys_offset = old.phys_offset;
 | |
|             mem->flags = 0;
 | |
| 
 | |
|             err = kvm_set_user_memory_region(s, mem);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
 | |
|                         strerror(-err));
 | |
|                 abort();
 | |
|             }
 | |
| 
 | |
|             start_addr += old.memory_size;
 | |
|             phys_offset += old.memory_size;
 | |
|             size -= old.memory_size;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* register prefix slot */
 | |
|         if (old.start_addr < start_addr) {
 | |
|             mem = kvm_alloc_slot(s);
 | |
|             mem->memory_size = start_addr - old.start_addr;
 | |
|             mem->start_addr = old.start_addr;
 | |
|             mem->phys_offset = old.phys_offset;
 | |
|             mem->flags = 0;
 | |
| 
 | |
|             err = kvm_set_user_memory_region(s, mem);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error registering prefix slot: %s\n",
 | |
|                         __func__, strerror(-err));
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* register suffix slot */
 | |
|         if (old.start_addr + old.memory_size > start_addr + size) {
 | |
|             ram_addr_t size_delta;
 | |
| 
 | |
|             mem = kvm_alloc_slot(s);
 | |
|             mem->start_addr = start_addr + size;
 | |
|             size_delta = mem->start_addr - old.start_addr;
 | |
|             mem->memory_size = old.memory_size - size_delta;
 | |
|             mem->phys_offset = old.phys_offset + size_delta;
 | |
|             mem->flags = 0;
 | |
| 
 | |
|             err = kvm_set_user_memory_region(s, mem);
 | |
|             if (err) {
 | |
|                 fprintf(stderr, "%s: error registering suffix slot: %s\n",
 | |
|                         __func__, strerror(-err));
 | |
|                 abort();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* in case the KVM bug workaround already "consumed" the new slot */
 | |
|     if (!size) {
 | |
|         return;
 | |
|     }
 | |
|     /* KVM does not need to know about this memory */
 | |
|     if (flags >= IO_MEM_UNASSIGNED) {
 | |
|         return;
 | |
|     }
 | |
|     mem = kvm_alloc_slot(s);
 | |
|     mem->memory_size = size;
 | |
|     mem->start_addr = start_addr;
 | |
|     mem->phys_offset = phys_offset;
 | |
|     mem->flags = 0;
 | |
| 
 | |
|     err = kvm_set_user_memory_region(s, mem);
 | |
|     if (err) {
 | |
|         fprintf(stderr, "%s: error registering slot: %s\n", __func__,
 | |
|                 strerror(-err));
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
 | |
|                                   target_phys_addr_t start_addr,
 | |
|                                   ram_addr_t size, ram_addr_t phys_offset)
 | |
| {
 | |
|     kvm_set_phys_mem(start_addr, size, phys_offset);
 | |
| }
 | |
| 
 | |
| static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
 | |
|                                         target_phys_addr_t start_addr,
 | |
|                                         target_phys_addr_t end_addr)
 | |
| {
 | |
|     return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
 | |
| }
 | |
| 
 | |
| static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
 | |
|                                     int enable)
 | |
| {
 | |
|     return kvm_set_migration_log(enable);
 | |
| }
 | |
| 
 | |
| static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
 | |
|     .set_memory = kvm_client_set_memory,
 | |
|     .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
 | |
|     .migration_log = kvm_client_migration_log,
 | |
| };
 | |
| 
 | |
| int kvm_init(void)
 | |
| {
 | |
|     static const char upgrade_note[] =
 | |
|         "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
 | |
|         "(see http://sourceforge.net/projects/kvm).\n";
 | |
|     KVMState *s;
 | |
|     const KVMCapabilityInfo *missing_cap;
 | |
|     int ret;
 | |
|     int i;
 | |
| 
 | |
|     s = qemu_mallocz(sizeof(KVMState));
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|     QTAILQ_INIT(&s->kvm_sw_breakpoints);
 | |
| #endif
 | |
|     for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
 | |
|         s->slots[i].slot = i;
 | |
|     }
 | |
|     s->vmfd = -1;
 | |
|     s->fd = qemu_open("/dev/kvm", O_RDWR);
 | |
|     if (s->fd == -1) {
 | |
|         fprintf(stderr, "Could not access KVM kernel module: %m\n");
 | |
|         ret = -errno;
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
 | |
|     if (ret < KVM_API_VERSION) {
 | |
|         if (ret > 0) {
 | |
|             ret = -EINVAL;
 | |
|         }
 | |
|         fprintf(stderr, "kvm version too old\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     if (ret > KVM_API_VERSION) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "kvm version not supported\n");
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
 | |
|     if (s->vmfd < 0) {
 | |
| #ifdef TARGET_S390X
 | |
|         fprintf(stderr, "Please add the 'switch_amode' kernel parameter to "
 | |
|                         "your host kernel command line\n");
 | |
| #endif
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     missing_cap = kvm_check_extension_list(s, kvm_required_capabilites);
 | |
|     if (!missing_cap) {
 | |
|         missing_cap =
 | |
|             kvm_check_extension_list(s, kvm_arch_required_capabilities);
 | |
|     }
 | |
|     if (missing_cap) {
 | |
|         ret = -EINVAL;
 | |
|         fprintf(stderr, "kvm does not support %s\n%s",
 | |
|                 missing_cap->name, upgrade_note);
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
 | |
| 
 | |
|     s->broken_set_mem_region = 1;
 | |
| #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
 | |
|     ret = kvm_check_extension(s, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
 | |
|     if (ret > 0) {
 | |
|         s->broken_set_mem_region = 0;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     s->vcpu_events = 0;
 | |
| #ifdef KVM_CAP_VCPU_EVENTS
 | |
|     s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
 | |
| #endif
 | |
| 
 | |
|     s->robust_singlestep = 0;
 | |
| #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
 | |
|     s->robust_singlestep =
 | |
|         kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
 | |
| #endif
 | |
| 
 | |
|     s->debugregs = 0;
 | |
| #ifdef KVM_CAP_DEBUGREGS
 | |
|     s->debugregs = kvm_check_extension(s, KVM_CAP_DEBUGREGS);
 | |
| #endif
 | |
| 
 | |
|     s->xsave = 0;
 | |
| #ifdef KVM_CAP_XSAVE
 | |
|     s->xsave = kvm_check_extension(s, KVM_CAP_XSAVE);
 | |
| #endif
 | |
| 
 | |
|     s->xcrs = 0;
 | |
| #ifdef KVM_CAP_XCRS
 | |
|     s->xcrs = kvm_check_extension(s, KVM_CAP_XCRS);
 | |
| #endif
 | |
| 
 | |
|     ret = kvm_arch_init(s);
 | |
|     if (ret < 0) {
 | |
|         goto err;
 | |
|     }
 | |
| 
 | |
|     kvm_state = s;
 | |
|     cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
 | |
| 
 | |
|     s->many_ioeventfds = kvm_check_many_ioeventfds();
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| err:
 | |
|     if (s) {
 | |
|         if (s->vmfd != -1) {
 | |
|             close(s->vmfd);
 | |
|         }
 | |
|         if (s->fd != -1) {
 | |
|             close(s->fd);
 | |
|         }
 | |
|     }
 | |
|     qemu_free(s);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void kvm_handle_io(uint16_t port, void *data, int direction, int size,
 | |
|                           uint32_t count)
 | |
| {
 | |
|     int i;
 | |
|     uint8_t *ptr = data;
 | |
| 
 | |
|     for (i = 0; i < count; i++) {
 | |
|         if (direction == KVM_EXIT_IO_IN) {
 | |
|             switch (size) {
 | |
|             case 1:
 | |
|                 stb_p(ptr, cpu_inb(port));
 | |
|                 break;
 | |
|             case 2:
 | |
|                 stw_p(ptr, cpu_inw(port));
 | |
|                 break;
 | |
|             case 4:
 | |
|                 stl_p(ptr, cpu_inl(port));
 | |
|                 break;
 | |
|             }
 | |
|         } else {
 | |
|             switch (size) {
 | |
|             case 1:
 | |
|                 cpu_outb(port, ldub_p(ptr));
 | |
|                 break;
 | |
|             case 2:
 | |
|                 cpu_outw(port, lduw_p(ptr));
 | |
|                 break;
 | |
|             case 4:
 | |
|                 cpu_outl(port, ldl_p(ptr));
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ptr += size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_INTERNAL_ERROR_DATA
 | |
| static int kvm_handle_internal_error(CPUState *env, struct kvm_run *run)
 | |
| {
 | |
|     fprintf(stderr, "KVM internal error.");
 | |
|     if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
 | |
|         int i;
 | |
| 
 | |
|         fprintf(stderr, " Suberror: %d\n", run->internal.suberror);
 | |
|         for (i = 0; i < run->internal.ndata; ++i) {
 | |
|             fprintf(stderr, "extra data[%d]: %"PRIx64"\n",
 | |
|                     i, (uint64_t)run->internal.data[i]);
 | |
|         }
 | |
|     } else {
 | |
|         fprintf(stderr, "\n");
 | |
|     }
 | |
|     if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
 | |
|         fprintf(stderr, "emulation failure\n");
 | |
|         if (!kvm_arch_stop_on_emulation_error(env)) {
 | |
|             cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     /* FIXME: Should trigger a qmp message to let management know
 | |
|      * something went wrong.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void kvm_flush_coalesced_mmio_buffer(void)
 | |
| {
 | |
|     KVMState *s = kvm_state;
 | |
|     if (s->coalesced_mmio_ring) {
 | |
|         struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
 | |
|         while (ring->first != ring->last) {
 | |
|             struct kvm_coalesced_mmio *ent;
 | |
| 
 | |
|             ent = &ring->coalesced_mmio[ring->first];
 | |
| 
 | |
|             cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
 | |
|             smp_wmb();
 | |
|             ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_kvm_cpu_synchronize_state(void *_env)
 | |
| {
 | |
|     CPUState *env = _env;
 | |
| 
 | |
|     if (!env->kvm_vcpu_dirty) {
 | |
|         kvm_arch_get_registers(env);
 | |
|         env->kvm_vcpu_dirty = 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_state(CPUState *env)
 | |
| {
 | |
|     if (!env->kvm_vcpu_dirty) {
 | |
|         run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_post_reset(CPUState *env)
 | |
| {
 | |
|     kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
 | |
|     env->kvm_vcpu_dirty = 0;
 | |
| }
 | |
| 
 | |
| void kvm_cpu_synchronize_post_init(CPUState *env)
 | |
| {
 | |
|     kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
 | |
|     env->kvm_vcpu_dirty = 0;
 | |
| }
 | |
| 
 | |
| int kvm_cpu_exec(CPUState *env)
 | |
| {
 | |
|     struct kvm_run *run = env->kvm_run;
 | |
|     int ret;
 | |
| 
 | |
|     DPRINTF("kvm_cpu_exec()\n");
 | |
| 
 | |
|     if (kvm_arch_process_irqchip_events(env)) {
 | |
|         env->exit_request = 0;
 | |
|         env->exception_index = EXCP_HLT;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         if (env->kvm_vcpu_dirty) {
 | |
|             kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
 | |
|             env->kvm_vcpu_dirty = 0;
 | |
|         }
 | |
| 
 | |
|         kvm_arch_pre_run(env, run);
 | |
|         if (env->exit_request) {
 | |
|             DPRINTF("interrupt exit requested\n");
 | |
|             /*
 | |
|              * KVM requires us to reenter the kernel after IO exits to complete
 | |
|              * instruction emulation. This self-signal will ensure that we
 | |
|              * leave ASAP again.
 | |
|              */
 | |
|             qemu_cpu_kick_self();
 | |
|         }
 | |
|         cpu_single_env = NULL;
 | |
|         qemu_mutex_unlock_iothread();
 | |
| 
 | |
|         ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
 | |
| 
 | |
|         qemu_mutex_lock_iothread();
 | |
|         cpu_single_env = env;
 | |
|         kvm_arch_post_run(env, run);
 | |
| 
 | |
|         kvm_flush_coalesced_mmio_buffer();
 | |
| 
 | |
|         if (ret == -EINTR || ret == -EAGAIN) {
 | |
|             cpu_exit(env);
 | |
|             DPRINTF("io window exit\n");
 | |
|             ret = 0;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (ret < 0) {
 | |
|             DPRINTF("kvm run failed %s\n", strerror(-ret));
 | |
|             abort();
 | |
|         }
 | |
| 
 | |
|         ret = 0; /* exit loop */
 | |
|         switch (run->exit_reason) {
 | |
|         case KVM_EXIT_IO:
 | |
|             DPRINTF("handle_io\n");
 | |
|             kvm_handle_io(run->io.port,
 | |
|                           (uint8_t *)run + run->io.data_offset,
 | |
|                           run->io.direction,
 | |
|                           run->io.size,
 | |
|                           run->io.count);
 | |
|             ret = 1;
 | |
|             break;
 | |
|         case KVM_EXIT_MMIO:
 | |
|             DPRINTF("handle_mmio\n");
 | |
|             cpu_physical_memory_rw(run->mmio.phys_addr,
 | |
|                                    run->mmio.data,
 | |
|                                    run->mmio.len,
 | |
|                                    run->mmio.is_write);
 | |
|             ret = 1;
 | |
|             break;
 | |
|         case KVM_EXIT_IRQ_WINDOW_OPEN:
 | |
|             DPRINTF("irq_window_open\n");
 | |
|             break;
 | |
|         case KVM_EXIT_SHUTDOWN:
 | |
|             DPRINTF("shutdown\n");
 | |
|             qemu_system_reset_request();
 | |
|             ret = 1;
 | |
|             break;
 | |
|         case KVM_EXIT_UNKNOWN:
 | |
|             fprintf(stderr, "KVM: unknown exit, hardware reason %" PRIx64 "\n",
 | |
|                     (uint64_t)run->hw.hardware_exit_reason);
 | |
|             ret = -1;
 | |
|             break;
 | |
| #ifdef KVM_CAP_INTERNAL_ERROR_DATA
 | |
|         case KVM_EXIT_INTERNAL_ERROR:
 | |
|             ret = kvm_handle_internal_error(env, run);
 | |
|             break;
 | |
| #endif
 | |
|         case KVM_EXIT_DEBUG:
 | |
|             DPRINTF("kvm_exit_debug\n");
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
|             if (kvm_arch_debug(&run->debug.arch)) {
 | |
|                 env->exception_index = EXCP_DEBUG;
 | |
|                 return 0;
 | |
|             }
 | |
|             /* re-enter, this exception was guest-internal */
 | |
|             ret = 1;
 | |
| #endif /* KVM_CAP_SET_GUEST_DEBUG */
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF("kvm_arch_handle_exit\n");
 | |
|             ret = kvm_arch_handle_exit(env, run);
 | |
|             break;
 | |
|         }
 | |
|     } while (ret > 0);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
 | |
|         vm_stop(0);
 | |
|         env->exit_request = 1;
 | |
|     }
 | |
|     if (env->exit_request) {
 | |
|         env->exit_request = 0;
 | |
|         env->exception_index = EXCP_INTERRUPT;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_ioctl(KVMState *s, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     ret = ioctl(s->fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vm_ioctl(KVMState *s, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     ret = ioctl(s->vmfd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_vcpu_ioctl(CPUState *env, int type, ...)
 | |
| {
 | |
|     int ret;
 | |
|     void *arg;
 | |
|     va_list ap;
 | |
| 
 | |
|     va_start(ap, type);
 | |
|     arg = va_arg(ap, void *);
 | |
|     va_end(ap);
 | |
| 
 | |
|     ret = ioctl(env->kvm_fd, type, arg);
 | |
|     if (ret == -1) {
 | |
|         ret = -errno;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_has_sync_mmu(void)
 | |
| {
 | |
|     return kvm_check_extension(kvm_state, KVM_CAP_SYNC_MMU);
 | |
| }
 | |
| 
 | |
| int kvm_has_vcpu_events(void)
 | |
| {
 | |
|     return kvm_state->vcpu_events;
 | |
| }
 | |
| 
 | |
| int kvm_has_robust_singlestep(void)
 | |
| {
 | |
|     return kvm_state->robust_singlestep;
 | |
| }
 | |
| 
 | |
| int kvm_has_debugregs(void)
 | |
| {
 | |
|     return kvm_state->debugregs;
 | |
| }
 | |
| 
 | |
| int kvm_has_xsave(void)
 | |
| {
 | |
|     return kvm_state->xsave;
 | |
| }
 | |
| 
 | |
| int kvm_has_xcrs(void)
 | |
| {
 | |
|     return kvm_state->xcrs;
 | |
| }
 | |
| 
 | |
| int kvm_has_many_ioeventfds(void)
 | |
| {
 | |
|     if (!kvm_enabled()) {
 | |
|         return 0;
 | |
|     }
 | |
|     return kvm_state->many_ioeventfds;
 | |
| }
 | |
| 
 | |
| void kvm_setup_guest_memory(void *start, size_t size)
 | |
| {
 | |
|     if (!kvm_has_sync_mmu()) {
 | |
|         int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
 | |
| 
 | |
|         if (ret) {
 | |
|             perror("qemu_madvise");
 | |
|             fprintf(stderr,
 | |
|                     "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
 | |
|             exit(1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef KVM_CAP_SET_GUEST_DEBUG
 | |
| struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
 | |
|                                                  target_ulong pc)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
| 
 | |
|     QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
 | |
|         if (bp->pc == pc) {
 | |
|             return bp;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| int kvm_sw_breakpoints_active(CPUState *env)
 | |
| {
 | |
|     return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
 | |
| }
 | |
| 
 | |
| struct kvm_set_guest_debug_data {
 | |
|     struct kvm_guest_debug dbg;
 | |
|     CPUState *env;
 | |
|     int err;
 | |
| };
 | |
| 
 | |
| static void kvm_invoke_set_guest_debug(void *data)
 | |
| {
 | |
|     struct kvm_set_guest_debug_data *dbg_data = data;
 | |
|     CPUState *env = dbg_data->env;
 | |
| 
 | |
|     dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
 | |
| }
 | |
| 
 | |
| int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
 | |
| {
 | |
|     struct kvm_set_guest_debug_data data;
 | |
| 
 | |
|     data.dbg.control = reinject_trap;
 | |
| 
 | |
|     if (env->singlestep_enabled) {
 | |
|         data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
 | |
|     }
 | |
|     kvm_arch_update_guest_debug(env, &data.dbg);
 | |
|     data.env = env;
 | |
| 
 | |
|     run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
 | |
|     return data.err;
 | |
| }
 | |
| 
 | |
| int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
|     CPUState *env;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = kvm_find_sw_breakpoint(current_env, addr);
 | |
|         if (bp) {
 | |
|             bp->use_count++;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
 | |
|         if (!bp) {
 | |
|             return -ENOMEM;
 | |
|         }
 | |
| 
 | |
|         bp->pc = addr;
 | |
|         bp->use_count = 1;
 | |
|         err = kvm_arch_insert_sw_breakpoint(current_env, bp);
 | |
|         if (err) {
 | |
|             free(bp);
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
 | |
|                           bp, entry);
 | |
|     } else {
 | |
|         err = kvm_arch_insert_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         err = kvm_update_guest_debug(env, 0);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp;
 | |
|     CPUState *env;
 | |
|     int err;
 | |
| 
 | |
|     if (type == GDB_BREAKPOINT_SW) {
 | |
|         bp = kvm_find_sw_breakpoint(current_env, addr);
 | |
|         if (!bp) {
 | |
|             return -ENOENT;
 | |
|         }
 | |
| 
 | |
|         if (bp->use_count > 1) {
 | |
|             bp->use_count--;
 | |
|             return 0;
 | |
|         }
 | |
| 
 | |
|         err = kvm_arch_remove_sw_breakpoint(current_env, bp);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
 | |
|         qemu_free(bp);
 | |
|     } else {
 | |
|         err = kvm_arch_remove_hw_breakpoint(addr, len, type);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         err = kvm_update_guest_debug(env, 0);
 | |
|         if (err) {
 | |
|             return err;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void kvm_remove_all_breakpoints(CPUState *current_env)
 | |
| {
 | |
|     struct kvm_sw_breakpoint *bp, *next;
 | |
|     KVMState *s = current_env->kvm_state;
 | |
|     CPUState *env;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
 | |
|         if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
 | |
|             /* Try harder to find a CPU that currently sees the breakpoint. */
 | |
|             for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|                 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     kvm_arch_remove_all_hw_breakpoints();
 | |
| 
 | |
|     for (env = first_cpu; env != NULL; env = env->next_cpu) {
 | |
|         kvm_update_guest_debug(env, 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #else /* !KVM_CAP_SET_GUEST_DEBUG */
 | |
| 
 | |
| int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
 | |
|                           target_ulong len, int type)
 | |
| {
 | |
|     return -EINVAL;
 | |
| }
 | |
| 
 | |
| void kvm_remove_all_breakpoints(CPUState *current_env)
 | |
| {
 | |
| }
 | |
| #endif /* !KVM_CAP_SET_GUEST_DEBUG */
 | |
| 
 | |
| int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
 | |
| {
 | |
|     struct kvm_signal_mask *sigmask;
 | |
|     int r;
 | |
| 
 | |
|     if (!sigset) {
 | |
|         return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
 | |
|     }
 | |
| 
 | |
|     sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
 | |
| 
 | |
|     sigmask->len = 8;
 | |
|     memcpy(sigmask->sigset, sigset, sizeof(*sigset));
 | |
|     r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
 | |
|     free(sigmask);
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| int kvm_set_ioeventfd_mmio_long(int fd, uint32_t addr, uint32_t val, bool assign)
 | |
| {
 | |
| #ifdef KVM_IOEVENTFD
 | |
|     int ret;
 | |
|     struct kvm_ioeventfd iofd;
 | |
| 
 | |
|     iofd.datamatch = val;
 | |
|     iofd.addr = addr;
 | |
|     iofd.len = 4;
 | |
|     iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
 | |
|     iofd.fd = fd;
 | |
| 
 | |
|     if (!kvm_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| 
 | |
|     if (!assign) {
 | |
|         iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | |
|     }
 | |
| 
 | |
|     ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         return -errno;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
 | |
| {
 | |
| #ifdef KVM_IOEVENTFD
 | |
|     struct kvm_ioeventfd kick = {
 | |
|         .datamatch = val,
 | |
|         .addr = addr,
 | |
|         .len = 2,
 | |
|         .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
 | |
|         .fd = fd,
 | |
|     };
 | |
|     int r;
 | |
|     if (!kvm_enabled()) {
 | |
|         return -ENOSYS;
 | |
|     }
 | |
|     if (!assign) {
 | |
|         kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
 | |
|     }
 | |
|     r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
 | |
|     if (r < 0) {
 | |
|         return r;
 | |
|     }
 | |
|     return 0;
 | |
| #else
 | |
|     return -ENOSYS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
 | |
| {
 | |
|     return kvm_arch_on_sigbus_vcpu(env, code, addr);
 | |
| }
 | |
| 
 | |
| int kvm_on_sigbus(int code, void *addr)
 | |
| {
 | |
|     return kvm_arch_on_sigbus(code, addr);
 | |
| }
 |