This patch adds an optional function pointer, 'elf_note_fn', to load_elf() which causes load_elf() to additionally parse any ELF program headers of type PT_NOTE and check to see if the ELF Note is of the type specified by the 'translate_opaque' arg. If a matching ELF Note is found then the specfied function pointer is called to process the ELF note. Passing a NULL function pointer results in ELF Notes being skipped. The first consumer of this functionality is the PVHboot support which needs to read the XEN_ELFNOTE_PHYS32_ENTRY ELF Note while loading the uncompressed kernel binary in order to discover the boot entry address for the x86/HVM direct boot ABI. Signed-off-by: Liam Merwick <liam.merwick@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			285 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			285 lines
		
	
	
		
			9.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU HPPA hardware system emulator.
 | 
						|
 * Copyright 2018 Helge Deller <deller@gmx.de>
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu-common.h"
 | 
						|
#include "cpu.h"
 | 
						|
#include "hw/hw.h"
 | 
						|
#include "elf.h"
 | 
						|
#include "hw/loader.h"
 | 
						|
#include "hw/boards.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "sysemu/sysemu.h"
 | 
						|
#include "hw/timer/mc146818rtc.h"
 | 
						|
#include "hw/ide.h"
 | 
						|
#include "hw/timer/i8254.h"
 | 
						|
#include "hw/char/serial.h"
 | 
						|
#include "hppa_sys.h"
 | 
						|
#include "qemu/units.h"
 | 
						|
#include "qapi/error.h"
 | 
						|
#include "qemu/log.h"
 | 
						|
 | 
						|
#define MAX_IDE_BUS 2
 | 
						|
 | 
						|
static ISABus *hppa_isa_bus(void)
 | 
						|
{
 | 
						|
    ISABus *isa_bus;
 | 
						|
    qemu_irq *isa_irqs;
 | 
						|
    MemoryRegion *isa_region;
 | 
						|
 | 
						|
    isa_region = g_new(MemoryRegion, 1);
 | 
						|
    memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
 | 
						|
                          NULL, "isa-io", 0x800);
 | 
						|
    memory_region_add_subregion(get_system_memory(), IDE_HPA,
 | 
						|
                                isa_region);
 | 
						|
 | 
						|
    isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
 | 
						|
                          &error_abort);
 | 
						|
    isa_irqs = i8259_init(isa_bus,
 | 
						|
                          /* qemu_allocate_irq(dino_set_isa_irq, s, 0)); */
 | 
						|
                          NULL);
 | 
						|
    isa_bus_irqs(isa_bus, isa_irqs);
 | 
						|
 | 
						|
    return isa_bus;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t cpu_hppa_to_phys(void *opaque, uint64_t addr)
 | 
						|
{
 | 
						|
    addr &= (0x10000000 - 1);
 | 
						|
    return addr;
 | 
						|
}
 | 
						|
 | 
						|
static HPPACPU *cpu[HPPA_MAX_CPUS];
 | 
						|
static uint64_t firmware_entry;
 | 
						|
 | 
						|
static void machine_hppa_init(MachineState *machine)
 | 
						|
{
 | 
						|
    const char *kernel_filename = machine->kernel_filename;
 | 
						|
    const char *kernel_cmdline = machine->kernel_cmdline;
 | 
						|
    const char *initrd_filename = machine->initrd_filename;
 | 
						|
    DeviceState *dev;
 | 
						|
    PCIBus *pci_bus;
 | 
						|
    ISABus *isa_bus;
 | 
						|
    qemu_irq rtc_irq, serial_irq;
 | 
						|
    char *firmware_filename;
 | 
						|
    uint64_t firmware_low, firmware_high;
 | 
						|
    long size;
 | 
						|
    uint64_t kernel_entry = 0, kernel_low, kernel_high;
 | 
						|
    MemoryRegion *addr_space = get_system_memory();
 | 
						|
    MemoryRegion *rom_region;
 | 
						|
    MemoryRegion *ram_region;
 | 
						|
    MemoryRegion *cpu_region;
 | 
						|
    long i;
 | 
						|
 | 
						|
    ram_size = machine->ram_size;
 | 
						|
 | 
						|
    /* Create CPUs.  */
 | 
						|
    for (i = 0; i < smp_cpus; i++) {
 | 
						|
        cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
 | 
						|
 | 
						|
        cpu_region = g_new(MemoryRegion, 1);
 | 
						|
        memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
 | 
						|
                              cpu[i], g_strdup_printf("cpu%ld-io-eir", i), 4);
 | 
						|
        memory_region_add_subregion(addr_space, CPU_HPA + i * 0x1000,
 | 
						|
                                    cpu_region);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Limit main memory. */
 | 
						|
    if (ram_size > FIRMWARE_START) {
 | 
						|
        machine->ram_size = ram_size = FIRMWARE_START;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Main memory region. */
 | 
						|
    ram_region = g_new(MemoryRegion, 1);
 | 
						|
    memory_region_allocate_system_memory(ram_region, OBJECT(machine),
 | 
						|
                                         "ram", ram_size);
 | 
						|
    memory_region_add_subregion(addr_space, 0, ram_region);
 | 
						|
 | 
						|
    /* Init Dino (PCI host bus chip).  */
 | 
						|
    pci_bus = dino_init(addr_space, &rtc_irq, &serial_irq);
 | 
						|
    assert(pci_bus);
 | 
						|
 | 
						|
    /* Create ISA bus. */
 | 
						|
    isa_bus = hppa_isa_bus();
 | 
						|
    assert(isa_bus);
 | 
						|
 | 
						|
    /* Realtime clock, used by firmware for PDC_TOD call. */
 | 
						|
    mc146818_rtc_init(isa_bus, 2000, rtc_irq);
 | 
						|
 | 
						|
    /* Serial code setup.  */
 | 
						|
    if (serial_hd(0)) {
 | 
						|
        uint32_t addr = DINO_UART_HPA + 0x800;
 | 
						|
        serial_mm_init(addr_space, addr, 0, serial_irq,
 | 
						|
                       115200, serial_hd(0), DEVICE_BIG_ENDIAN);
 | 
						|
    }
 | 
						|
 | 
						|
    /* SCSI disk setup. */
 | 
						|
    dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a"));
 | 
						|
    lsi53c8xx_handle_legacy_cmdline(dev);
 | 
						|
 | 
						|
    /* Network setup.  e1000 is good enough, failing Tulip support.  */
 | 
						|
    for (i = 0; i < nb_nics; i++) {
 | 
						|
        pci_nic_init_nofail(&nd_table[i], pci_bus, "e1000", NULL);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Load firmware.  Given that this is not "real" firmware,
 | 
						|
       but one explicitly written for the emulation, we might as
 | 
						|
       well load it directly from an ELF image.  */
 | 
						|
    firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
 | 
						|
                                       bios_name ? bios_name :
 | 
						|
                                       "hppa-firmware.img");
 | 
						|
    if (firmware_filename == NULL) {
 | 
						|
        error_report("no firmware provided");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
 | 
						|
    size = load_elf(firmware_filename, NULL, NULL, NULL,
 | 
						|
                    &firmware_entry, &firmware_low, &firmware_high,
 | 
						|
                    true, EM_PARISC, 0, 0);
 | 
						|
 | 
						|
    /* Unfortunately, load_elf sign-extends reading elf32.  */
 | 
						|
    firmware_entry = (target_ureg)firmware_entry;
 | 
						|
    firmware_low = (target_ureg)firmware_low;
 | 
						|
    firmware_high = (target_ureg)firmware_high;
 | 
						|
 | 
						|
    if (size < 0) {
 | 
						|
        error_report("could not load firmware '%s'", firmware_filename);
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
 | 
						|
                  "-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
 | 
						|
                  firmware_low, firmware_high, firmware_entry);
 | 
						|
    if (firmware_low < ram_size || firmware_high >= FIRMWARE_END) {
 | 
						|
        error_report("Firmware overlaps with memory or IO space");
 | 
						|
        exit(1);
 | 
						|
    }
 | 
						|
    g_free(firmware_filename);
 | 
						|
 | 
						|
    rom_region = g_new(MemoryRegion, 1);
 | 
						|
    memory_region_allocate_system_memory(rom_region, OBJECT(machine),
 | 
						|
                                         "firmware",
 | 
						|
                                         (FIRMWARE_END - FIRMWARE_START));
 | 
						|
    memory_region_add_subregion(addr_space, FIRMWARE_START, rom_region);
 | 
						|
 | 
						|
    /* Load kernel */
 | 
						|
    if (kernel_filename) {
 | 
						|
        size = load_elf(kernel_filename, NULL, &cpu_hppa_to_phys,
 | 
						|
                        NULL, &kernel_entry, &kernel_low, &kernel_high,
 | 
						|
                        true, EM_PARISC, 0, 0);
 | 
						|
 | 
						|
        /* Unfortunately, load_elf sign-extends reading elf32.  */
 | 
						|
        kernel_entry = (target_ureg) cpu_hppa_to_phys(NULL, kernel_entry);
 | 
						|
        kernel_low = (target_ureg)kernel_low;
 | 
						|
        kernel_high = (target_ureg)kernel_high;
 | 
						|
 | 
						|
        if (size < 0) {
 | 
						|
            error_report("could not load kernel '%s'", kernel_filename);
 | 
						|
            exit(1);
 | 
						|
        }
 | 
						|
        qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
 | 
						|
                      "-0x%08" PRIx64 ", entry at 0x%08" PRIx64
 | 
						|
                      ", size %" PRIu64 " kB\n",
 | 
						|
                      kernel_low, kernel_high, kernel_entry, size / KiB);
 | 
						|
 | 
						|
        if (kernel_cmdline) {
 | 
						|
            cpu[0]->env.gr[24] = 0x4000;
 | 
						|
            pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
 | 
						|
                             TARGET_PAGE_SIZE, kernel_cmdline);
 | 
						|
        }
 | 
						|
 | 
						|
        if (initrd_filename) {
 | 
						|
            ram_addr_t initrd_base;
 | 
						|
            int64_t initrd_size;
 | 
						|
 | 
						|
            initrd_size = get_image_size(initrd_filename);
 | 
						|
            if (initrd_size < 0) {
 | 
						|
                error_report("could not load initial ram disk '%s'",
 | 
						|
                             initrd_filename);
 | 
						|
                exit(1);
 | 
						|
            }
 | 
						|
 | 
						|
            /* Load the initrd image high in memory.
 | 
						|
               Mirror the algorithm used by palo:
 | 
						|
               (1) Due to sign-extension problems and PDC,
 | 
						|
               put the initrd no higher than 1G.
 | 
						|
               (2) Reserve 64k for stack.  */
 | 
						|
            initrd_base = MIN(ram_size, 1 * GiB);
 | 
						|
            initrd_base = initrd_base - 64 * KiB;
 | 
						|
            initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
 | 
						|
 | 
						|
            if (initrd_base < kernel_high) {
 | 
						|
                error_report("kernel and initial ram disk too large!");
 | 
						|
                exit(1);
 | 
						|
            }
 | 
						|
 | 
						|
            load_image_targphys(initrd_filename, initrd_base, initrd_size);
 | 
						|
            cpu[0]->env.gr[23] = initrd_base;
 | 
						|
            cpu[0]->env.gr[22] = initrd_base + initrd_size;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (!kernel_entry) {
 | 
						|
        /* When booting via firmware, tell firmware if we want interactive
 | 
						|
         * mode (kernel_entry=1), and to boot from CD (gr[24]='d')
 | 
						|
         * or hard disc * (gr[24]='c').
 | 
						|
         */
 | 
						|
        kernel_entry = boot_menu ? 1 : 0;
 | 
						|
        cpu[0]->env.gr[24] = machine->boot_order[0];
 | 
						|
    }
 | 
						|
 | 
						|
    /* We jump to the firmware entry routine and pass the
 | 
						|
     * various parameters in registers. After firmware initialization,
 | 
						|
     * firmware will start the Linux kernel with ramdisk and cmdline.
 | 
						|
     */
 | 
						|
    cpu[0]->env.gr[26] = ram_size;
 | 
						|
    cpu[0]->env.gr[25] = kernel_entry;
 | 
						|
 | 
						|
    /* tell firmware how many SMP CPUs to present in inventory table */
 | 
						|
    cpu[0]->env.gr[21] = smp_cpus;
 | 
						|
}
 | 
						|
 | 
						|
static void hppa_machine_reset(void)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    qemu_devices_reset();
 | 
						|
 | 
						|
    /* Start all CPUs at the firmware entry point.
 | 
						|
     *  Monarch CPU will initialize firmware, secondary CPUs
 | 
						|
     *  will enter a small idle look and wait for rendevouz. */
 | 
						|
    for (i = 0; i < smp_cpus; i++) {
 | 
						|
        cpu_set_pc(CPU(cpu[i]), firmware_entry);
 | 
						|
        cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
 | 
						|
    }
 | 
						|
 | 
						|
    /* already initialized by machine_hppa_init()? */
 | 
						|
    if (cpu[0]->env.gr[26] == ram_size) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    cpu[0]->env.gr[26] = ram_size;
 | 
						|
    cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
 | 
						|
    cpu[0]->env.gr[24] = 'c';
 | 
						|
    /* gr22/gr23 unused, no initrd while reboot. */
 | 
						|
    cpu[0]->env.gr[21] = smp_cpus;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void machine_hppa_machine_init(MachineClass *mc)
 | 
						|
{
 | 
						|
    mc->desc = "HPPA generic machine";
 | 
						|
    mc->default_cpu_type = TYPE_HPPA_CPU;
 | 
						|
    mc->init = machine_hppa_init;
 | 
						|
    mc->reset = hppa_machine_reset;
 | 
						|
    mc->block_default_type = IF_SCSI;
 | 
						|
    mc->max_cpus = HPPA_MAX_CPUS;
 | 
						|
    mc->default_cpus = 1;
 | 
						|
    mc->is_default = 1;
 | 
						|
    mc->default_ram_size = 512 * MiB;
 | 
						|
    mc->default_boot_order = "cd";
 | 
						|
}
 | 
						|
 | 
						|
DEFINE_MACHINE("hppa", machine_hppa_machine_init)
 |