 ae1857eca2
			
		
	
	
		ae1857eca2
		
	
	
	
	
		
			
			Make the VFP binop helper functions take a pointer to the fp status, not the entire CPUState. This will allow us to use them for Neon operations too. Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			2920 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2920 lines
		
	
	
		
			84 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include <stdio.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "cpu.h"
 | |
| #include "exec-all.h"
 | |
| #include "gdbstub.h"
 | |
| #include "helper.h"
 | |
| #include "qemu-common.h"
 | |
| #include "host-utils.h"
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #include "hw/loader.h"
 | |
| #endif
 | |
| 
 | |
| static uint32_t cortexa9_cp15_c0_c1[8] =
 | |
| { 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
 | |
| 
 | |
| static uint32_t cortexa9_cp15_c0_c2[8] =
 | |
| { 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
 | |
| 
 | |
| static uint32_t cortexa8_cp15_c0_c1[8] =
 | |
| { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
 | |
| 
 | |
| static uint32_t cortexa8_cp15_c0_c2[8] =
 | |
| { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
 | |
| 
 | |
| static uint32_t mpcore_cp15_c0_c1[8] =
 | |
| { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
 | |
| 
 | |
| static uint32_t mpcore_cp15_c0_c2[8] =
 | |
| { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
 | |
| 
 | |
| static uint32_t arm1136_cp15_c0_c1[8] =
 | |
| { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
 | |
| 
 | |
| static uint32_t arm1136_cp15_c0_c2[8] =
 | |
| { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
 | |
| 
 | |
| static uint32_t cpu_arm_find_by_name(const char *name);
 | |
| 
 | |
| static inline void set_feature(CPUARMState *env, int feature)
 | |
| {
 | |
|     env->features |= 1u << feature;
 | |
| }
 | |
| 
 | |
| static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
 | |
| {
 | |
|     env->cp15.c0_cpuid = id;
 | |
|     switch (id) {
 | |
|     case ARM_CPUID_ARM926:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
 | |
|         env->cp15.c0_cachetype = 0x1dd20d2;
 | |
|         env->cp15.c1_sys = 0x00090078;
 | |
|         break;
 | |
|     case ARM_CPUID_ARM946:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_MPU);
 | |
|         env->cp15.c0_cachetype = 0x0f004006;
 | |
|         env->cp15.c1_sys = 0x00000078;
 | |
|         break;
 | |
|     case ARM_CPUID_ARM1026:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         set_feature(env, ARM_FEATURE_AUXCR);
 | |
|         env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
 | |
|         env->cp15.c0_cachetype = 0x1dd20d2;
 | |
|         env->cp15.c1_sys = 0x00090078;
 | |
|         break;
 | |
|     case ARM_CPUID_ARM1136_R2:
 | |
|     case ARM_CPUID_ARM1136:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         set_feature(env, ARM_FEATURE_AUXCR);
 | |
|         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
 | |
|         memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
 | |
|         memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
 | |
|         env->cp15.c0_cachetype = 0x1dd20d2;
 | |
|         env->cp15.c1_sys = 0x00050078;
 | |
|         break;
 | |
|     case ARM_CPUID_ARM11MPCORE:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_V6K);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         set_feature(env, ARM_FEATURE_AUXCR);
 | |
|         env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
 | |
|         memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
 | |
|         memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
 | |
|         env->cp15.c0_cachetype = 0x1dd20d2;
 | |
|         break;
 | |
|     case ARM_CPUID_CORTEXA8:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_V6K);
 | |
|         set_feature(env, ARM_FEATURE_V7);
 | |
|         set_feature(env, ARM_FEATURE_AUXCR);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         set_feature(env, ARM_FEATURE_VFP3);
 | |
|         set_feature(env, ARM_FEATURE_NEON);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2EE);
 | |
|         env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
 | |
|         memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
 | |
|         memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
 | |
|         env->cp15.c0_cachetype = 0x82048004;
 | |
|         env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
 | |
|         env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
 | |
|         env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
 | |
|         env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
 | |
|         env->cp15.c1_sys = 0x00c50078;
 | |
|         break;
 | |
|     case ARM_CPUID_CORTEXA9:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_V6K);
 | |
|         set_feature(env, ARM_FEATURE_V7);
 | |
|         set_feature(env, ARM_FEATURE_AUXCR);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         set_feature(env, ARM_FEATURE_VFP3);
 | |
|         set_feature(env, ARM_FEATURE_VFP_FP16);
 | |
|         set_feature(env, ARM_FEATURE_NEON);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2EE);
 | |
|         /* Note that A9 supports the MP extensions even for
 | |
|          * A9UP and single-core A9MP (which are both different
 | |
|          * and valid configurations; we don't model A9UP).
 | |
|          */
 | |
|         set_feature(env, ARM_FEATURE_V7MP);
 | |
|         env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
 | |
|         env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
 | |
|         env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
 | |
|         memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
 | |
|         memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
 | |
|         env->cp15.c0_cachetype = 0x80038003;
 | |
|         env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
 | |
|         env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
 | |
|         env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
 | |
|         env->cp15.c1_sys = 0x00c50078;
 | |
|         break;
 | |
|     case ARM_CPUID_CORTEXM3:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2);
 | |
|         set_feature(env, ARM_FEATURE_V7);
 | |
|         set_feature(env, ARM_FEATURE_M);
 | |
|         set_feature(env, ARM_FEATURE_DIV);
 | |
|         break;
 | |
|     case ARM_CPUID_ANY: /* For userspace emulation.  */
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_V6);
 | |
|         set_feature(env, ARM_FEATURE_V6K);
 | |
|         set_feature(env, ARM_FEATURE_V7);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2);
 | |
|         set_feature(env, ARM_FEATURE_VFP);
 | |
|         set_feature(env, ARM_FEATURE_VFP3);
 | |
|         set_feature(env, ARM_FEATURE_VFP_FP16);
 | |
|         set_feature(env, ARM_FEATURE_NEON);
 | |
|         set_feature(env, ARM_FEATURE_THUMB2EE);
 | |
|         set_feature(env, ARM_FEATURE_DIV);
 | |
|         set_feature(env, ARM_FEATURE_V7MP);
 | |
|         break;
 | |
|     case ARM_CPUID_TI915T:
 | |
|     case ARM_CPUID_TI925T:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_OMAPCP);
 | |
|         env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
 | |
|         env->cp15.c0_cachetype = 0x5109149;
 | |
|         env->cp15.c1_sys = 0x00000070;
 | |
|         env->cp15.c15_i_max = 0x000;
 | |
|         env->cp15.c15_i_min = 0xff0;
 | |
|         break;
 | |
|     case ARM_CPUID_PXA250:
 | |
|     case ARM_CPUID_PXA255:
 | |
|     case ARM_CPUID_PXA260:
 | |
|     case ARM_CPUID_PXA261:
 | |
|     case ARM_CPUID_PXA262:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_XSCALE);
 | |
|         /* JTAG_ID is ((id << 28) | 0x09265013) */
 | |
|         env->cp15.c0_cachetype = 0xd172172;
 | |
|         env->cp15.c1_sys = 0x00000078;
 | |
|         break;
 | |
|     case ARM_CPUID_PXA270_A0:
 | |
|     case ARM_CPUID_PXA270_A1:
 | |
|     case ARM_CPUID_PXA270_B0:
 | |
|     case ARM_CPUID_PXA270_B1:
 | |
|     case ARM_CPUID_PXA270_C0:
 | |
|     case ARM_CPUID_PXA270_C5:
 | |
|         set_feature(env, ARM_FEATURE_V4T);
 | |
|         set_feature(env, ARM_FEATURE_V5);
 | |
|         set_feature(env, ARM_FEATURE_XSCALE);
 | |
|         /* JTAG_ID is ((id << 28) | 0x09265013) */
 | |
|         set_feature(env, ARM_FEATURE_IWMMXT);
 | |
|         env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
 | |
|         env->cp15.c0_cachetype = 0xd172172;
 | |
|         env->cp15.c1_sys = 0x00000078;
 | |
|         break;
 | |
|     case ARM_CPUID_SA1100:
 | |
|     case ARM_CPUID_SA1110:
 | |
|         set_feature(env, ARM_FEATURE_STRONGARM);
 | |
|         env->cp15.c1_sys = 0x00000070;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(env, "Bad CPU ID: %x\n", id);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_reset(CPUARMState *env)
 | |
| {
 | |
|     uint32_t id;
 | |
| 
 | |
|     if (qemu_loglevel_mask(CPU_LOG_RESET)) {
 | |
|         qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
 | |
|         log_cpu_state(env, 0);
 | |
|     }
 | |
| 
 | |
|     id = env->cp15.c0_cpuid;
 | |
|     memset(env, 0, offsetof(CPUARMState, breakpoints));
 | |
|     if (id)
 | |
|         cpu_reset_model_id(env, id);
 | |
| #if defined (CONFIG_USER_ONLY)
 | |
|     env->uncached_cpsr = ARM_CPU_MODE_USR;
 | |
|     /* For user mode we must enable access to coprocessors */
 | |
|     env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
 | |
|     if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
 | |
|         env->cp15.c15_cpar = 3;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|         env->cp15.c15_cpar = 1;
 | |
|     }
 | |
| #else
 | |
|     /* SVC mode with interrupts disabled.  */
 | |
|     env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
 | |
|     /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
 | |
|        clear at reset.  Initial SP and PC are loaded from ROM.  */
 | |
|     if (IS_M(env)) {
 | |
|         uint32_t pc;
 | |
|         uint8_t *rom;
 | |
|         env->uncached_cpsr &= ~CPSR_I;
 | |
|         rom = rom_ptr(0);
 | |
|         if (rom) {
 | |
|             /* We should really use ldl_phys here, in case the guest
 | |
|                modified flash and reset itself.  However images
 | |
|                loaded via -kenrel have not been copied yet, so load the
 | |
|                values directly from there.  */
 | |
|             env->regs[13] = ldl_p(rom);
 | |
|             pc = ldl_p(rom + 4);
 | |
|             env->thumb = pc & 1;
 | |
|             env->regs[15] = pc & ~1;
 | |
|         }
 | |
|     }
 | |
|     env->vfp.xregs[ARM_VFP_FPEXC] = 0;
 | |
|     env->cp15.c2_base_mask = 0xffffc000u;
 | |
| #endif
 | |
|     set_flush_to_zero(1, &env->vfp.standard_fp_status);
 | |
|     set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
 | |
|     set_default_nan_mode(1, &env->vfp.standard_fp_status);
 | |
|     set_float_detect_tininess(float_tininess_before_rounding,
 | |
|                               &env->vfp.fp_status);
 | |
|     set_float_detect_tininess(float_tininess_before_rounding,
 | |
|                               &env->vfp.standard_fp_status);
 | |
|     tlb_flush(env, 1);
 | |
| }
 | |
| 
 | |
| static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     int nregs;
 | |
| 
 | |
|     /* VFP data registers are always little-endian.  */
 | |
|     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | |
|     if (reg < nregs) {
 | |
|         stfq_le_p(buf, env->vfp.regs[reg]);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         /* Aliases for Q regs.  */
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
 | |
|             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
 | |
|     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
 | |
|     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     int nregs;
 | |
| 
 | |
|     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | |
|     if (reg < nregs) {
 | |
|         env->vfp.regs[reg] = ldfq_le_p(buf);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
 | |
|             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 | |
|     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
 | |
|     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| CPUARMState *cpu_arm_init(const char *cpu_model)
 | |
| {
 | |
|     CPUARMState *env;
 | |
|     uint32_t id;
 | |
|     static int inited = 0;
 | |
| 
 | |
|     id = cpu_arm_find_by_name(cpu_model);
 | |
|     if (id == 0)
 | |
|         return NULL;
 | |
|     env = qemu_mallocz(sizeof(CPUARMState));
 | |
|     cpu_exec_init(env);
 | |
|     if (!inited) {
 | |
|         inited = 1;
 | |
|         arm_translate_init();
 | |
|     }
 | |
| 
 | |
|     env->cpu_model_str = cpu_model;
 | |
|     env->cp15.c0_cpuid = id;
 | |
|     cpu_reset(env);
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  51, "arm-neon.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
 | |
|         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  35, "arm-vfp3.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
 | |
|         gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  19, "arm-vfp.xml", 0);
 | |
|     }
 | |
|     qemu_init_vcpu(env);
 | |
|     return env;
 | |
| }
 | |
| 
 | |
| struct arm_cpu_t {
 | |
|     uint32_t id;
 | |
|     const char *name;
 | |
| };
 | |
| 
 | |
| static const struct arm_cpu_t arm_cpu_names[] = {
 | |
|     { ARM_CPUID_ARM926, "arm926"},
 | |
|     { ARM_CPUID_ARM946, "arm946"},
 | |
|     { ARM_CPUID_ARM1026, "arm1026"},
 | |
|     { ARM_CPUID_ARM1136, "arm1136"},
 | |
|     { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
 | |
|     { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
 | |
|     { ARM_CPUID_CORTEXM3, "cortex-m3"},
 | |
|     { ARM_CPUID_CORTEXA8, "cortex-a8"},
 | |
|     { ARM_CPUID_CORTEXA9, "cortex-a9"},
 | |
|     { ARM_CPUID_TI925T, "ti925t" },
 | |
|     { ARM_CPUID_PXA250, "pxa250" },
 | |
|     { ARM_CPUID_SA1100,    "sa1100" },
 | |
|     { ARM_CPUID_SA1110,    "sa1110" },
 | |
|     { ARM_CPUID_PXA255, "pxa255" },
 | |
|     { ARM_CPUID_PXA260, "pxa260" },
 | |
|     { ARM_CPUID_PXA261, "pxa261" },
 | |
|     { ARM_CPUID_PXA262, "pxa262" },
 | |
|     { ARM_CPUID_PXA270, "pxa270" },
 | |
|     { ARM_CPUID_PXA270_A0, "pxa270-a0" },
 | |
|     { ARM_CPUID_PXA270_A1, "pxa270-a1" },
 | |
|     { ARM_CPUID_PXA270_B0, "pxa270-b0" },
 | |
|     { ARM_CPUID_PXA270_B1, "pxa270-b1" },
 | |
|     { ARM_CPUID_PXA270_C0, "pxa270-c0" },
 | |
|     { ARM_CPUID_PXA270_C5, "pxa270-c5" },
 | |
|     { ARM_CPUID_ANY, "any"},
 | |
|     { 0, NULL}
 | |
| };
 | |
| 
 | |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     (*cpu_fprintf)(f, "Available CPUs:\n");
 | |
|     for (i = 0; arm_cpu_names[i].name; i++) {
 | |
|         (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* return 0 if not found */
 | |
| static uint32_t cpu_arm_find_by_name(const char *name)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t id;
 | |
| 
 | |
|     id = 0;
 | |
|     for (i = 0; arm_cpu_names[i].name; i++) {
 | |
|         if (strcmp(name, arm_cpu_names[i].name) == 0) {
 | |
|             id = arm_cpu_names[i].id;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return id;
 | |
| }
 | |
| 
 | |
| void cpu_arm_close(CPUARMState *env)
 | |
| {
 | |
|     free(env);
 | |
| }
 | |
| 
 | |
| uint32_t cpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
 | |
|         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | (env->GE << 16);
 | |
| }
 | |
| 
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     if (mask & CPSR_NZCV) {
 | |
|         env->ZF = (~val) & CPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & CPSR_Q)
 | |
|         env->QF = ((val & CPSR_Q) != 0);
 | |
|     if (mask & CPSR_T)
 | |
|         env->thumb = ((val & CPSR_T) != 0);
 | |
|     if (mask & CPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & CPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & CPSR_GE) {
 | |
|         env->GE = (val >> 16) & 0xf;
 | |
|     }
 | |
| 
 | |
|     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
 | |
|         switch_mode(env, val & CPSR_M);
 | |
|     }
 | |
|     mask &= ~CACHED_CPSR_BITS;
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
 | |
| }
 | |
| 
 | |
| /* Sign/zero extend */
 | |
| uint32_t HELPER(sxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(int8_t)x;
 | |
|     res |= (uint32_t)(int8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(uxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(uint8_t)x;
 | |
|     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(clz)(uint32_t x)
 | |
| {
 | |
|     return clz32(x);
 | |
| }
 | |
| 
 | |
| int32_t HELPER(sdiv)(int32_t num, int32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     if (num == INT_MIN && den == -1)
 | |
|       return INT_MIN;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rbit)(uint32_t x)
 | |
| {
 | |
|     x =  ((x & 0xff000000) >> 24)
 | |
|        | ((x & 0x00ff0000) >> 8)
 | |
|        | ((x & 0x0000ff00) << 8)
 | |
|        | ((x & 0x000000ff) << 24);
 | |
|     x =  ((x & 0xf0f0f0f0) >> 4)
 | |
|        | ((x & 0x0f0f0f0f) << 4);
 | |
|     x =  ((x & 0x88888888) >> 3)
 | |
|        | ((x & 0x44444444) >> 1)
 | |
|        | ((x & 0x22222222) << 1)
 | |
|        | ((x & 0x11111111) << 3);
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(abs)(uint32_t x)
 | |
| {
 | |
|     return ((int32_t)x < 0) ? -x : x;
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| void do_interrupt (CPUState *env)
 | |
| {
 | |
|     env->exception_index = -1;
 | |
| }
 | |
| 
 | |
| int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
 | |
|                               int mmu_idx, int is_softmmu)
 | |
| {
 | |
|     if (rw == 2) {
 | |
|         env->exception_index = EXCP_PREFETCH_ABORT;
 | |
|         env->cp15.c6_insn = address;
 | |
|     } else {
 | |
|         env->exception_index = EXCP_DATA_ABORT;
 | |
|         env->cp15.c6_data = address;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* These should probably raise undefined insn exceptions.  */
 | |
| void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
 | |
| {
 | |
|     int op1 = (insn >> 8) & 0xf;
 | |
|     cpu_abort(env, "cp%i insn %08x\n", op1, insn);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
 | |
| {
 | |
|     int op1 = (insn >> 8) & 0xf;
 | |
|     cpu_abort(env, "cp%i insn %08x\n", op1, insn);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
 | |
| {
 | |
|     cpu_abort(env, "cp15 insn %08x\n", insn);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
 | |
| {
 | |
|     cpu_abort(env, "cp15 insn %08x\n", insn);
 | |
| }
 | |
| 
 | |
| /* These should probably raise undefined insn exceptions.  */
 | |
| void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
 | |
| {
 | |
|     cpu_abort(env, "v7m_mrs %d\n", reg);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
 | |
| {
 | |
|     cpu_abort(env, "v7m_mrs %d\n", reg);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void switch_mode(CPUState *env, int mode)
 | |
| {
 | |
|     if (mode != ARM_CPU_MODE_USR)
 | |
|         cpu_abort(env, "Tried to switch out of user mode\n");
 | |
| }
 | |
| 
 | |
| void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
 | |
| {
 | |
|     cpu_abort(env, "banked r13 write\n");
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
 | |
| {
 | |
|     cpu_abort(env, "banked r13 read\n");
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| extern int semihosting_enabled;
 | |
| 
 | |
| /* Map CPU modes onto saved register banks.  */
 | |
| static inline int bank_number (int mode)
 | |
| {
 | |
|     switch (mode) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|     case ARM_CPU_MODE_SYS:
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_SVC:
 | |
|         return 1;
 | |
|     case ARM_CPU_MODE_ABT:
 | |
|         return 2;
 | |
|     case ARM_CPU_MODE_UND:
 | |
|         return 3;
 | |
|     case ARM_CPU_MODE_IRQ:
 | |
|         return 4;
 | |
|     case ARM_CPU_MODE_FIQ:
 | |
|         return 5;
 | |
|     }
 | |
|     cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| void switch_mode(CPUState *env, int mode)
 | |
| {
 | |
|     int old_mode;
 | |
|     int i;
 | |
| 
 | |
|     old_mode = env->uncached_cpsr & CPSR_M;
 | |
|     if (mode == old_mode)
 | |
|         return;
 | |
| 
 | |
|     if (old_mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | |
|     } else if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | |
|     }
 | |
| 
 | |
|     i = bank_number(old_mode);
 | |
|     env->banked_r13[i] = env->regs[13];
 | |
|     env->banked_r14[i] = env->regs[14];
 | |
|     env->banked_spsr[i] = env->spsr;
 | |
| 
 | |
|     i = bank_number(mode);
 | |
|     env->regs[13] = env->banked_r13[i];
 | |
|     env->regs[14] = env->banked_r14[i];
 | |
|     env->spsr = env->banked_spsr[i];
 | |
| }
 | |
| 
 | |
| static void v7m_push(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     env->regs[13] -= 4;
 | |
|     stl_phys(env->regs[13], val);
 | |
| }
 | |
| 
 | |
| static uint32_t v7m_pop(CPUARMState *env)
 | |
| {
 | |
|     uint32_t val;
 | |
|     val = ldl_phys(env->regs[13]);
 | |
|     env->regs[13] += 4;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Switch to V7M main or process stack pointer.  */
 | |
| static void switch_v7m_sp(CPUARMState *env, int process)
 | |
| {
 | |
|     uint32_t tmp;
 | |
|     if (env->v7m.current_sp != process) {
 | |
|         tmp = env->v7m.other_sp;
 | |
|         env->v7m.other_sp = env->regs[13];
 | |
|         env->regs[13] = tmp;
 | |
|         env->v7m.current_sp = process;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_v7m_exception_exit(CPUARMState *env)
 | |
| {
 | |
|     uint32_t type;
 | |
|     uint32_t xpsr;
 | |
| 
 | |
|     type = env->regs[15];
 | |
|     if (env->v7m.exception != 0)
 | |
|         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
 | |
| 
 | |
|     /* Switch to the target stack.  */
 | |
|     switch_v7m_sp(env, (type & 4) != 0);
 | |
|     /* Pop registers.  */
 | |
|     env->regs[0] = v7m_pop(env);
 | |
|     env->regs[1] = v7m_pop(env);
 | |
|     env->regs[2] = v7m_pop(env);
 | |
|     env->regs[3] = v7m_pop(env);
 | |
|     env->regs[12] = v7m_pop(env);
 | |
|     env->regs[14] = v7m_pop(env);
 | |
|     env->regs[15] = v7m_pop(env);
 | |
|     xpsr = v7m_pop(env);
 | |
|     xpsr_write(env, xpsr, 0xfffffdff);
 | |
|     /* Undo stack alignment.  */
 | |
|     if (xpsr & 0x200)
 | |
|         env->regs[13] |= 4;
 | |
|     /* ??? The exception return type specifies Thread/Handler mode.  However
 | |
|        this is also implied by the xPSR value. Not sure what to do
 | |
|        if there is a mismatch.  */
 | |
|     /* ??? Likewise for mismatches between the CONTROL register and the stack
 | |
|        pointer.  */
 | |
| }
 | |
| 
 | |
| static void do_interrupt_v7m(CPUARMState *env)
 | |
| {
 | |
|     uint32_t xpsr = xpsr_read(env);
 | |
|     uint32_t lr;
 | |
|     uint32_t addr;
 | |
| 
 | |
|     lr = 0xfffffff1;
 | |
|     if (env->v7m.current_sp)
 | |
|         lr |= 4;
 | |
|     if (env->v7m.exception == 0)
 | |
|         lr |= 8;
 | |
| 
 | |
|     /* For exceptions we just mark as pending on the NVIC, and let that
 | |
|        handle it.  */
 | |
|     /* TODO: Need to escalate if the current priority is higher than the
 | |
|        one we're raising.  */
 | |
|     switch (env->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
 | |
|         return;
 | |
|     case EXCP_SWI:
 | |
|         env->regs[15] += 2;
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
 | |
|         return;
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|     case EXCP_DATA_ABORT:
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
 | |
|         return;
 | |
|     case EXCP_BKPT:
 | |
|         if (semihosting_enabled) {
 | |
|             int nr;
 | |
|             nr = lduw_code(env->regs[15]) & 0xff;
 | |
|             if (nr == 0xab) {
 | |
|                 env->regs[15] += 2;
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
 | |
|         return;
 | |
|     case EXCP_IRQ:
 | |
|         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
 | |
|         break;
 | |
|     case EXCP_EXCEPTION_EXIT:
 | |
|         do_v7m_exception_exit(env);
 | |
|         return;
 | |
|     default:
 | |
|         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
| 
 | |
|     /* Align stack pointer.  */
 | |
|     /* ??? Should only do this if Configuration Control Register
 | |
|        STACKALIGN bit is set.  */
 | |
|     if (env->regs[13] & 4) {
 | |
|         env->regs[13] -= 4;
 | |
|         xpsr |= 0x200;
 | |
|     }
 | |
|     /* Switch to the handler mode.  */
 | |
|     v7m_push(env, xpsr);
 | |
|     v7m_push(env, env->regs[15]);
 | |
|     v7m_push(env, env->regs[14]);
 | |
|     v7m_push(env, env->regs[12]);
 | |
|     v7m_push(env, env->regs[3]);
 | |
|     v7m_push(env, env->regs[2]);
 | |
|     v7m_push(env, env->regs[1]);
 | |
|     v7m_push(env, env->regs[0]);
 | |
|     switch_v7m_sp(env, 0);
 | |
|     env->uncached_cpsr &= ~CPSR_IT;
 | |
|     env->regs[14] = lr;
 | |
|     addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
 | |
|     env->regs[15] = addr & 0xfffffffe;
 | |
|     env->thumb = addr & 1;
 | |
| }
 | |
| 
 | |
| /* Handle a CPU exception.  */
 | |
| void do_interrupt(CPUARMState *env)
 | |
| {
 | |
|     uint32_t addr;
 | |
|     uint32_t mask;
 | |
|     int new_mode;
 | |
|     uint32_t offset;
 | |
| 
 | |
|     if (IS_M(env)) {
 | |
|         do_interrupt_v7m(env);
 | |
|         return;
 | |
|     }
 | |
|     /* TODO: Vectored interrupt controller.  */
 | |
|     switch (env->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         new_mode = ARM_CPU_MODE_UND;
 | |
|         addr = 0x04;
 | |
|         mask = CPSR_I;
 | |
|         if (env->thumb)
 | |
|             offset = 2;
 | |
|         else
 | |
|             offset = 4;
 | |
|         break;
 | |
|     case EXCP_SWI:
 | |
|         if (semihosting_enabled) {
 | |
|             /* Check for semihosting interrupt.  */
 | |
|             if (env->thumb) {
 | |
|                 mask = lduw_code(env->regs[15] - 2) & 0xff;
 | |
|             } else {
 | |
|                 mask = ldl_code(env->regs[15] - 4) & 0xffffff;
 | |
|             }
 | |
|             /* Only intercept calls from privileged modes, to provide some
 | |
|                semblance of security.  */
 | |
|             if (((mask == 0x123456 && !env->thumb)
 | |
|                     || (mask == 0xab && env->thumb))
 | |
|                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         new_mode = ARM_CPU_MODE_SVC;
 | |
|         addr = 0x08;
 | |
|         mask = CPSR_I;
 | |
|         /* The PC already points to the next instruction.  */
 | |
|         offset = 0;
 | |
|         break;
 | |
|     case EXCP_BKPT:
 | |
|         /* See if this is a semihosting syscall.  */
 | |
|         if (env->thumb && semihosting_enabled) {
 | |
|             mask = lduw_code(env->regs[15]) & 0xff;
 | |
|             if (mask == 0xab
 | |
|                   && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
 | |
|                 env->regs[15] += 2;
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         env->cp15.c5_insn = 2;
 | |
|         /* Fall through to prefetch abort.  */
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x0c;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_DATA_ABORT:
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x10;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 8;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|         new_mode = ARM_CPU_MODE_IRQ;
 | |
|         addr = 0x18;
 | |
|         /* Disable IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         new_mode = ARM_CPU_MODE_FIQ;
 | |
|         addr = 0x1c;
 | |
|         /* Disable FIQ, IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
|     /* High vectors.  */
 | |
|     if (env->cp15.c1_sys & (1 << 13)) {
 | |
|         addr += 0xffff0000;
 | |
|     }
 | |
|     switch_mode (env, new_mode);
 | |
|     env->spsr = cpsr_read(env);
 | |
|     /* Clear IT bits.  */
 | |
|     env->condexec_bits = 0;
 | |
|     /* Switch to the new mode, and to the correct instruction set.  */
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
 | |
|     env->uncached_cpsr |= mask;
 | |
|     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
 | |
|      * and we should just guard the thumb mode on V4 */
 | |
|     if (arm_feature(env, ARM_FEATURE_V4T)) {
 | |
|         env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
 | |
|     }
 | |
|     env->regs[14] = env->regs[15] + offset;
 | |
|     env->regs[15] = addr;
 | |
|     env->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
| }
 | |
| 
 | |
| /* Check section/page access permissions.
 | |
|    Returns the page protection flags, or zero if the access is not
 | |
|    permitted.  */
 | |
| static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
 | |
|                            int is_user)
 | |
| {
 | |
|   int prot_ro;
 | |
| 
 | |
|   if (domain == 3)
 | |
|     return PAGE_READ | PAGE_WRITE;
 | |
| 
 | |
|   if (access_type == 1)
 | |
|       prot_ro = 0;
 | |
|   else
 | |
|       prot_ro = PAGE_READ;
 | |
| 
 | |
|   switch (ap) {
 | |
|   case 0:
 | |
|       if (access_type == 1)
 | |
|           return 0;
 | |
|       switch ((env->cp15.c1_sys >> 8) & 3) {
 | |
|       case 1:
 | |
|           return is_user ? 0 : PAGE_READ;
 | |
|       case 2:
 | |
|           return PAGE_READ;
 | |
|       default:
 | |
|           return 0;
 | |
|       }
 | |
|   case 1:
 | |
|       return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | |
|   case 2:
 | |
|       if (is_user)
 | |
|           return prot_ro;
 | |
|       else
 | |
|           return PAGE_READ | PAGE_WRITE;
 | |
|   case 3:
 | |
|       return PAGE_READ | PAGE_WRITE;
 | |
|   case 4: /* Reserved.  */
 | |
|       return 0;
 | |
|   case 5:
 | |
|       return is_user ? 0 : prot_ro;
 | |
|   case 6:
 | |
|       return prot_ro;
 | |
|   case 7:
 | |
|       if (!arm_feature (env, ARM_FEATURE_V7))
 | |
|           return 0;
 | |
|       return prot_ro;
 | |
|   default:
 | |
|       abort();
 | |
|   }
 | |
| }
 | |
| 
 | |
| static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
 | |
| {
 | |
|     uint32_t table;
 | |
| 
 | |
|     if (address & env->cp15.c2_mask)
 | |
|         table = env->cp15.c2_base1 & 0xffffc000;
 | |
|     else
 | |
|         table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
 | |
| 
 | |
|     table |= (address >> 18) & 0x3ffc;
 | |
|     return table;
 | |
| }
 | |
| 
 | |
| static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
 | |
| 			    int is_user, uint32_t *phys_ptr, int *prot,
 | |
|                             target_ulong *page_size)
 | |
| {
 | |
|     int code;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain;
 | |
|     uint32_t phys_addr;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     table = get_level1_table_address(env, address);
 | |
|     desc = ldl_phys(table);
 | |
|     type = (desc & 3);
 | |
|     domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
 | |
|     if (type == 0) {
 | |
|         /* Section translation fault.  */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (domain == 0 || domain == 2) {
 | |
|         if (type == 2)
 | |
|             code = 9; /* Section domain fault.  */
 | |
|         else
 | |
|             code = 11; /* Page domain fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type == 2) {
 | |
|         /* 1Mb section.  */
 | |
|         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|         ap = (desc >> 10) & 3;
 | |
|         code = 13;
 | |
|         *page_size = 1024 * 1024;
 | |
|     } else {
 | |
|         /* Lookup l2 entry.  */
 | |
| 	if (type == 1) {
 | |
| 	    /* Coarse pagetable.  */
 | |
| 	    table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
| 	} else {
 | |
| 	    /* Fine pagetable.  */
 | |
| 	    table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
 | |
| 	}
 | |
|         desc = ldl_phys(table);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             code = 7;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         case 3: /* 1k page.  */
 | |
| 	    if (type == 1) {
 | |
| 		if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
| 		    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
| 		} else {
 | |
| 		    /* Page translation fault.  */
 | |
| 		    code = 7;
 | |
| 		    goto do_fault;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
 | |
| 	    }
 | |
|             ap = (desc >> 4) & 3;
 | |
|             *page_size = 0x400;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|         code = 15;
 | |
|     }
 | |
|     *prot = check_ap(env, ap, domain, access_type, is_user);
 | |
|     if (!*prot) {
 | |
|         /* Access permission fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     *prot |= PAGE_EXEC;
 | |
|     *phys_ptr = phys_addr;
 | |
|     return 0;
 | |
| do_fault:
 | |
|     return code | (domain << 4);
 | |
| }
 | |
| 
 | |
| static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
 | |
| 			    int is_user, uint32_t *phys_ptr, int *prot,
 | |
|                             target_ulong *page_size)
 | |
| {
 | |
|     int code;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     uint32_t xn;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain;
 | |
|     uint32_t phys_addr;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     table = get_level1_table_address(env, address);
 | |
|     desc = ldl_phys(table);
 | |
|     type = (desc & 3);
 | |
|     if (type == 0) {
 | |
|         /* Section translation fault.  */
 | |
|         code = 5;
 | |
|         domain = 0;
 | |
|         goto do_fault;
 | |
|     } else if (type == 2 && (desc & (1 << 18))) {
 | |
|         /* Supersection.  */
 | |
|         domain = 0;
 | |
|     } else {
 | |
|         /* Section or page.  */
 | |
|         domain = (desc >> 4) & 0x1e;
 | |
|     }
 | |
|     domain = (env->cp15.c3 >> domain) & 3;
 | |
|     if (domain == 0 || domain == 2) {
 | |
|         if (type == 2)
 | |
|             code = 9; /* Section domain fault.  */
 | |
|         else
 | |
|             code = 11; /* Page domain fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type == 2) {
 | |
|         if (desc & (1 << 18)) {
 | |
|             /* Supersection.  */
 | |
|             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
 | |
|             *page_size = 0x1000000;
 | |
|         } else {
 | |
|             /* Section.  */
 | |
|             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|             *page_size = 0x100000;
 | |
|         }
 | |
|         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
 | |
|         xn = desc & (1 << 4);
 | |
|         code = 13;
 | |
|     } else {
 | |
|         /* Lookup l2 entry.  */
 | |
|         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
|         desc = ldl_phys(table);
 | |
|         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             code = 7;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             xn = desc & (1 << 15);
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: case 3: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             xn = desc & 1;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|         code = 15;
 | |
|     }
 | |
|     if (domain == 3) {
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|     } else {
 | |
|         if (xn && access_type == 2)
 | |
|             goto do_fault;
 | |
| 
 | |
|         /* The simplified model uses AP[0] as an access control bit.  */
 | |
|         if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
 | |
|             /* Access flag fault.  */
 | |
|             code = (code == 15) ? 6 : 3;
 | |
|             goto do_fault;
 | |
|         }
 | |
|         *prot = check_ap(env, ap, domain, access_type, is_user);
 | |
|         if (!*prot) {
 | |
|             /* Access permission fault.  */
 | |
|             goto do_fault;
 | |
|         }
 | |
|         if (!xn) {
 | |
|             *prot |= PAGE_EXEC;
 | |
|         }
 | |
|     }
 | |
|     *phys_ptr = phys_addr;
 | |
|     return 0;
 | |
| do_fault:
 | |
|     return code | (domain << 4);
 | |
| }
 | |
| 
 | |
| static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
 | |
| 			     int is_user, uint32_t *phys_ptr, int *prot)
 | |
| {
 | |
|     int n;
 | |
|     uint32_t mask;
 | |
|     uint32_t base;
 | |
| 
 | |
|     *phys_ptr = address;
 | |
|     for (n = 7; n >= 0; n--) {
 | |
| 	base = env->cp15.c6_region[n];
 | |
| 	if ((base & 1) == 0)
 | |
| 	    continue;
 | |
| 	mask = 1 << ((base >> 1) & 0x1f);
 | |
| 	/* Keep this shift separate from the above to avoid an
 | |
| 	   (undefined) << 32.  */
 | |
| 	mask = (mask << 1) - 1;
 | |
| 	if (((base ^ address) & ~mask) == 0)
 | |
| 	    break;
 | |
|     }
 | |
|     if (n < 0)
 | |
| 	return 2;
 | |
| 
 | |
|     if (access_type == 2) {
 | |
| 	mask = env->cp15.c5_insn;
 | |
|     } else {
 | |
| 	mask = env->cp15.c5_data;
 | |
|     }
 | |
|     mask = (mask >> (n * 4)) & 0xf;
 | |
|     switch (mask) {
 | |
|     case 0:
 | |
| 	return 1;
 | |
|     case 1:
 | |
| 	if (is_user)
 | |
| 	  return 1;
 | |
| 	*prot = PAGE_READ | PAGE_WRITE;
 | |
| 	break;
 | |
|     case 2:
 | |
| 	*prot = PAGE_READ;
 | |
| 	if (!is_user)
 | |
| 	    *prot |= PAGE_WRITE;
 | |
| 	break;
 | |
|     case 3:
 | |
| 	*prot = PAGE_READ | PAGE_WRITE;
 | |
| 	break;
 | |
|     case 5:
 | |
| 	if (is_user)
 | |
| 	    return 1;
 | |
| 	*prot = PAGE_READ;
 | |
| 	break;
 | |
|     case 6:
 | |
| 	*prot = PAGE_READ;
 | |
| 	break;
 | |
|     default:
 | |
| 	/* Bad permission.  */
 | |
| 	return 1;
 | |
|     }
 | |
|     *prot |= PAGE_EXEC;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int get_phys_addr(CPUState *env, uint32_t address,
 | |
|                                 int access_type, int is_user,
 | |
|                                 uint32_t *phys_ptr, int *prot,
 | |
|                                 target_ulong *page_size)
 | |
| {
 | |
|     /* Fast Context Switch Extension.  */
 | |
|     if (address < 0x02000000)
 | |
|         address += env->cp15.c13_fcse;
 | |
| 
 | |
|     if ((env->cp15.c1_sys & 1) == 0) {
 | |
|         /* MMU/MPU disabled.  */
 | |
|         *phys_ptr = address;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
|         return 0;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
| 	return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
 | |
| 				 prot);
 | |
|     } else if (env->cp15.c1_sys & (1 << 23)) {
 | |
|         return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
 | |
|                                 prot, page_size);
 | |
|     } else {
 | |
|         return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
 | |
|                                 prot, page_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
 | |
|                               int access_type, int mmu_idx, int is_softmmu)
 | |
| {
 | |
|     uint32_t phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     int ret, is_user;
 | |
| 
 | |
|     is_user = mmu_idx == MMU_USER_IDX;
 | |
|     ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
 | |
|                         &page_size);
 | |
|     if (ret == 0) {
 | |
|         /* Map a single [sub]page.  */
 | |
|         phys_addr &= ~(uint32_t)0x3ff;
 | |
|         address &= ~(uint32_t)0x3ff;
 | |
|         tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (access_type == 2) {
 | |
|         env->cp15.c5_insn = ret;
 | |
|         env->cp15.c6_insn = address;
 | |
|         env->exception_index = EXCP_PREFETCH_ABORT;
 | |
|     } else {
 | |
|         env->cp15.c5_data = ret;
 | |
|         if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
 | |
|             env->cp15.c5_data |= (1 << 11);
 | |
|         env->cp15.c6_data = address;
 | |
|         env->exception_index = EXCP_DATA_ABORT;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
 | |
| {
 | |
|     uint32_t phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     int ret;
 | |
| 
 | |
|     ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
 | |
| 
 | |
|     if (ret != 0)
 | |
|         return -1;
 | |
| 
 | |
|     return phys_addr;
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
 | |
| {
 | |
|     int cp_num = (insn >> 8) & 0xf;
 | |
|     int cp_info = (insn >> 5) & 7;
 | |
|     int src = (insn >> 16) & 0xf;
 | |
|     int operand = insn & 0xf;
 | |
| 
 | |
|     if (env->cp[cp_num].cp_write)
 | |
|         env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
 | |
|                                  cp_info, src, operand, val);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
 | |
| {
 | |
|     int cp_num = (insn >> 8) & 0xf;
 | |
|     int cp_info = (insn >> 5) & 7;
 | |
|     int dest = (insn >> 16) & 0xf;
 | |
|     int operand = insn & 0xf;
 | |
| 
 | |
|     if (env->cp[cp_num].cp_read)
 | |
|         return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
 | |
|                                        cp_info, dest, operand);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Return basic MPU access permission bits.  */
 | |
| static uint32_t simple_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val >> i) & mask;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Pad basic MPU access permission bits to extended format.  */
 | |
| static uint32_t extended_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val & mask) << i;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
 | |
| {
 | |
|     int op1;
 | |
|     int op2;
 | |
|     int crm;
 | |
| 
 | |
|     op1 = (insn >> 21) & 7;
 | |
|     op2 = (insn >> 5) & 7;
 | |
|     crm = insn & 0xf;
 | |
|     switch ((insn >> 16) & 0xf) {
 | |
|     case 0:
 | |
|         /* ID codes.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_XSCALE))
 | |
|             break;
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|             break;
 | |
|         if (arm_feature(env, ARM_FEATURE_V7)
 | |
|                 && op1 == 2 && crm == 0 && op2 == 0) {
 | |
|             env->cp15.c0_cssel = val & 0xf;
 | |
|             break;
 | |
|         }
 | |
|         goto bad_reg;
 | |
|     case 1: /* System configuration.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|             op2 = 0;
 | |
|         switch (op2) {
 | |
|         case 0:
 | |
|             if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
 | |
|                 env->cp15.c1_sys = val;
 | |
|             /* ??? Lots of these bits are not implemented.  */
 | |
|             /* This may enable/disable the MMU, so do a TLB flush.  */
 | |
|             tlb_flush(env, 1);
 | |
|             break;
 | |
|         case 1: /* Auxiliary control register.  */
 | |
|             if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|                 env->cp15.c1_xscaleauxcr = val;
 | |
|                 break;
 | |
|             }
 | |
|             /* Not implemented.  */
 | |
|             break;
 | |
|         case 2:
 | |
|             if (arm_feature(env, ARM_FEATURE_XSCALE))
 | |
|                 goto bad_reg;
 | |
|             if (env->cp15.c1_coproc != val) {
 | |
|                 env->cp15.c1_coproc = val;
 | |
|                 /* ??? Is this safe when called from within a TB?  */
 | |
|                 tb_flush(env);
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         break;
 | |
|     case 2: /* MMU Page table control / MPU cache control.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|             switch (op2) {
 | |
|             case 0:
 | |
|                 env->cp15.c2_data = val;
 | |
|                 break;
 | |
|             case 1:
 | |
|                 env->cp15.c2_insn = val;
 | |
|                 break;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         } else {
 | |
| 	    switch (op2) {
 | |
| 	    case 0:
 | |
| 		env->cp15.c2_base0 = val;
 | |
| 		break;
 | |
| 	    case 1:
 | |
| 		env->cp15.c2_base1 = val;
 | |
| 		break;
 | |
| 	    case 2:
 | |
|                 val &= 7;
 | |
|                 env->cp15.c2_control = val;
 | |
| 		env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
 | |
|                 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
 | |
| 		break;
 | |
| 	    default:
 | |
| 		goto bad_reg;
 | |
| 	    }
 | |
|         }
 | |
|         break;
 | |
|     case 3: /* MMU Domain access control / MPU write buffer control.  */
 | |
|         env->cp15.c3 = val;
 | |
|         tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
 | |
|         break;
 | |
|     case 4: /* Reserved.  */
 | |
|         goto bad_reg;
 | |
|     case 5: /* MMU Fault status / MPU access permission.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|             op2 = 0;
 | |
|         switch (op2) {
 | |
|         case 0:
 | |
|             if (arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 val = extended_mpu_ap_bits(val);
 | |
|             env->cp15.c5_data = val;
 | |
|             break;
 | |
|         case 1:
 | |
|             if (arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 val = extended_mpu_ap_bits(val);
 | |
|             env->cp15.c5_insn = val;
 | |
|             break;
 | |
|         case 2:
 | |
|             if (!arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 goto bad_reg;
 | |
|             env->cp15.c5_data = val;
 | |
|             break;
 | |
|         case 3:
 | |
|             if (!arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 goto bad_reg;
 | |
|             env->cp15.c5_insn = val;
 | |
|             break;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         break;
 | |
|     case 6: /* MMU Fault address / MPU base/size.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|             if (crm >= 8)
 | |
|                 goto bad_reg;
 | |
|             env->cp15.c6_region[crm] = val;
 | |
|         } else {
 | |
|             if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|                 op2 = 0;
 | |
|             switch (op2) {
 | |
|             case 0:
 | |
|                 env->cp15.c6_data = val;
 | |
|                 break;
 | |
|             case 1: /* ??? This is WFAR on armv6 */
 | |
|             case 2:
 | |
|                 env->cp15.c6_insn = val;
 | |
|                 break;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 7: /* Cache control.  */
 | |
|         env->cp15.c15_i_max = 0x000;
 | |
|         env->cp15.c15_i_min = 0xff0;
 | |
|         if (op1 != 0) {
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         /* No cache, so nothing to do except VA->PA translations. */
 | |
|         if (arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|             switch (crm) {
 | |
|             case 4:
 | |
|                 if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|                     env->cp15.c7_par = val & 0xfffff6ff;
 | |
|                 } else {
 | |
|                     env->cp15.c7_par = val & 0xfffff1ff;
 | |
|                 }
 | |
|                 break;
 | |
|             case 8: {
 | |
|                 uint32_t phys_addr;
 | |
|                 target_ulong page_size;
 | |
|                 int prot;
 | |
|                 int ret, is_user = op2 & 2;
 | |
|                 int access_type = op2 & 1;
 | |
| 
 | |
|                 if (op2 & 4) {
 | |
|                     /* Other states are only available with TrustZone */
 | |
|                     goto bad_reg;
 | |
|                 }
 | |
|                 ret = get_phys_addr(env, val, access_type, is_user,
 | |
|                                     &phys_addr, &prot, &page_size);
 | |
|                 if (ret == 0) {
 | |
|                     /* We do not set any attribute bits in the PAR */
 | |
|                     if (page_size == (1 << 24)
 | |
|                         && arm_feature(env, ARM_FEATURE_V7)) {
 | |
|                         env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
 | |
|                     } else {
 | |
|                         env->cp15.c7_par = phys_addr & 0xfffff000;
 | |
|                     }
 | |
|                 } else {
 | |
|                     env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
 | |
|                                        ((ret & (12 << 1)) >> 6) |
 | |
|                                        ((ret & 0xf) << 1) | 1;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     case 8: /* MMU TLB control.  */
 | |
|         switch (op2) {
 | |
|         case 0: /* Invalidate all.  */
 | |
|             tlb_flush(env, 0);
 | |
|             break;
 | |
|         case 1: /* Invalidate single TLB entry.  */
 | |
|             tlb_flush_page(env, val & TARGET_PAGE_MASK);
 | |
|             break;
 | |
|         case 2: /* Invalidate on ASID.  */
 | |
|             tlb_flush(env, val == 0);
 | |
|             break;
 | |
|         case 3: /* Invalidate single entry on MVA.  */
 | |
|             /* ??? This is like case 1, but ignores ASID.  */
 | |
|             tlb_flush(env, 1);
 | |
|             break;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         break;
 | |
|     case 9:
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|             break;
 | |
|         if (arm_feature(env, ARM_FEATURE_STRONGARM))
 | |
|             break; /* Ignore ReadBuffer access */
 | |
|         switch (crm) {
 | |
|         case 0: /* Cache lockdown.  */
 | |
| 	    switch (op1) {
 | |
| 	    case 0: /* L1 cache.  */
 | |
| 		switch (op2) {
 | |
| 		case 0:
 | |
| 		    env->cp15.c9_data = val;
 | |
| 		    break;
 | |
| 		case 1:
 | |
| 		    env->cp15.c9_insn = val;
 | |
| 		    break;
 | |
| 		default:
 | |
| 		    goto bad_reg;
 | |
| 		}
 | |
| 		break;
 | |
| 	    case 1: /* L2 cache.  */
 | |
| 		/* Ignore writes to L2 lockdown/auxiliary registers.  */
 | |
| 		break;
 | |
| 	    default:
 | |
| 		goto bad_reg;
 | |
| 	    }
 | |
| 	    break;
 | |
|         case 1: /* TCM memory region registers.  */
 | |
|             /* Not implemented.  */
 | |
|             goto bad_reg;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         break;
 | |
|     case 10: /* MMU TLB lockdown.  */
 | |
|         /* ??? TLB lockdown not implemented.  */
 | |
|         break;
 | |
|     case 12: /* Reserved.  */
 | |
|         goto bad_reg;
 | |
|     case 13: /* Process ID.  */
 | |
|         switch (op2) {
 | |
|         case 0:
 | |
|             /* Unlike real hardware the qemu TLB uses virtual addresses,
 | |
|                not modified virtual addresses, so this causes a TLB flush.
 | |
|              */
 | |
|             if (env->cp15.c13_fcse != val)
 | |
|               tlb_flush(env, 1);
 | |
|             env->cp15.c13_fcse = val;
 | |
|             break;
 | |
|         case 1:
 | |
|             /* This changes the ASID, so do a TLB flush.  */
 | |
|             if (env->cp15.c13_context != val
 | |
|                 && !arm_feature(env, ARM_FEATURE_MPU))
 | |
|               tlb_flush(env, 0);
 | |
|             env->cp15.c13_context = val;
 | |
|             break;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         break;
 | |
|     case 14: /* Reserved.  */
 | |
|         goto bad_reg;
 | |
|     case 15: /* Implementation specific.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|             if (op2 == 0 && crm == 1) {
 | |
|                 if (env->cp15.c15_cpar != (val & 0x3fff)) {
 | |
|                     /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
 | |
|                     tb_flush(env);
 | |
|                     env->cp15.c15_cpar = val & 0x3fff;
 | |
|                 }
 | |
|                 break;
 | |
|             }
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
 | |
|             switch (crm) {
 | |
|             case 0:
 | |
|                 break;
 | |
|             case 1: /* Set TI925T configuration.  */
 | |
|                 env->cp15.c15_ticonfig = val & 0xe7;
 | |
|                 env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
 | |
|                         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
 | |
|                 break;
 | |
|             case 2: /* Set I_max.  */
 | |
|                 env->cp15.c15_i_max = val;
 | |
|                 break;
 | |
|             case 3: /* Set I_min.  */
 | |
|                 env->cp15.c15_i_min = val;
 | |
|                 break;
 | |
|             case 4: /* Set thread-ID.  */
 | |
|                 env->cp15.c15_threadid = val & 0xffff;
 | |
|                 break;
 | |
|             case 8: /* Wait-for-interrupt (deprecated).  */
 | |
|                 cpu_interrupt(env, CPU_INTERRUPT_HALT);
 | |
|                 break;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     return;
 | |
| bad_reg:
 | |
|     /* ??? For debugging only.  Should raise illegal instruction exception.  */
 | |
|     cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
 | |
|               (insn >> 16) & 0xf, crm, op1, op2);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
 | |
| {
 | |
|     int op1;
 | |
|     int op2;
 | |
|     int crm;
 | |
| 
 | |
|     op1 = (insn >> 21) & 7;
 | |
|     op2 = (insn >> 5) & 7;
 | |
|     crm = insn & 0xf;
 | |
|     switch ((insn >> 16) & 0xf) {
 | |
|     case 0: /* ID codes.  */
 | |
|         switch (op1) {
 | |
|         case 0:
 | |
|             switch (crm) {
 | |
|             case 0:
 | |
|                 switch (op2) {
 | |
|                 case 0: /* Device ID.  */
 | |
|                     return env->cp15.c0_cpuid;
 | |
|                 case 1: /* Cache Type.  */
 | |
| 		    return env->cp15.c0_cachetype;
 | |
|                 case 2: /* TCM status.  */
 | |
|                     return 0;
 | |
|                 case 3: /* TLB type register.  */
 | |
|                     return 0; /* No lockable TLB entries.  */
 | |
|                 case 5: /* MPIDR */
 | |
|                     /* The MPIDR was standardised in v7; prior to
 | |
|                      * this it was implemented only in the 11MPCore.
 | |
|                      * For all other pre-v7 cores it does not exist.
 | |
|                      */
 | |
|                     if (arm_feature(env, ARM_FEATURE_V7) ||
 | |
|                         ARM_CPUID(env) == ARM_CPUID_ARM11MPCORE) {
 | |
|                         int mpidr = env->cpu_index;
 | |
|                         /* We don't support setting cluster ID ([8..11])
 | |
|                          * so these bits always RAZ.
 | |
|                          */
 | |
|                         if (arm_feature(env, ARM_FEATURE_V7MP)) {
 | |
|                             mpidr |= (1 << 31);
 | |
|                             /* Cores which are uniprocessor (non-coherent)
 | |
|                              * but still implement the MP extensions set
 | |
|                              * bit 30. (For instance, A9UP.) However we do
 | |
|                              * not currently model any of those cores.
 | |
|                              */
 | |
|                         }
 | |
|                         return mpidr;
 | |
|                     }
 | |
|                     /* otherwise fall through to the unimplemented-reg case */
 | |
|                 default:
 | |
|                     goto bad_reg;
 | |
|                 }
 | |
|             case 1:
 | |
|                 if (!arm_feature(env, ARM_FEATURE_V6))
 | |
|                     goto bad_reg;
 | |
|                 return env->cp15.c0_c1[op2];
 | |
|             case 2:
 | |
|                 if (!arm_feature(env, ARM_FEATURE_V6))
 | |
|                     goto bad_reg;
 | |
|                 return env->cp15.c0_c2[op2];
 | |
|             case 3: case 4: case 5: case 6: case 7:
 | |
|                 return 0;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         case 1:
 | |
|             /* These registers aren't documented on arm11 cores.  However
 | |
|                Linux looks at them anyway.  */
 | |
|             if (!arm_feature(env, ARM_FEATURE_V6))
 | |
|                 goto bad_reg;
 | |
|             if (crm != 0)
 | |
|                 goto bad_reg;
 | |
|             if (!arm_feature(env, ARM_FEATURE_V7))
 | |
|                 return 0;
 | |
| 
 | |
|             switch (op2) {
 | |
|             case 0:
 | |
|                 return env->cp15.c0_ccsid[env->cp15.c0_cssel];
 | |
|             case 1:
 | |
|                 return env->cp15.c0_clid;
 | |
|             case 7:
 | |
|                 return 0;
 | |
|             }
 | |
|             goto bad_reg;
 | |
|         case 2:
 | |
|             if (op2 != 0 || crm != 0)
 | |
|                 goto bad_reg;
 | |
|             return env->cp15.c0_cssel;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|     case 1: /* System configuration.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|             op2 = 0;
 | |
|         switch (op2) {
 | |
|         case 0: /* Control register.  */
 | |
|             return env->cp15.c1_sys;
 | |
|         case 1: /* Auxiliary control register.  */
 | |
|             if (arm_feature(env, ARM_FEATURE_XSCALE))
 | |
|                 return env->cp15.c1_xscaleauxcr;
 | |
|             if (!arm_feature(env, ARM_FEATURE_AUXCR))
 | |
|                 goto bad_reg;
 | |
|             switch (ARM_CPUID(env)) {
 | |
|             case ARM_CPUID_ARM1026:
 | |
|                 return 1;
 | |
|             case ARM_CPUID_ARM1136:
 | |
|             case ARM_CPUID_ARM1136_R2:
 | |
|                 return 7;
 | |
|             case ARM_CPUID_ARM11MPCORE:
 | |
|                 return 1;
 | |
|             case ARM_CPUID_CORTEXA8:
 | |
|                 return 2;
 | |
|             case ARM_CPUID_CORTEXA9:
 | |
|                 return 0;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         case 2: /* Coprocessor access register.  */
 | |
|             if (arm_feature(env, ARM_FEATURE_XSCALE))
 | |
|                 goto bad_reg;
 | |
|             return env->cp15.c1_coproc;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|     case 2: /* MMU Page table control / MPU cache control.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|             switch (op2) {
 | |
|             case 0:
 | |
|                 return env->cp15.c2_data;
 | |
|                 break;
 | |
|             case 1:
 | |
|                 return env->cp15.c2_insn;
 | |
|                 break;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         } else {
 | |
| 	    switch (op2) {
 | |
| 	    case 0:
 | |
| 		return env->cp15.c2_base0;
 | |
| 	    case 1:
 | |
| 		return env->cp15.c2_base1;
 | |
| 	    case 2:
 | |
|                 return env->cp15.c2_control;
 | |
| 	    default:
 | |
| 		goto bad_reg;
 | |
| 	    }
 | |
| 	}
 | |
|     case 3: /* MMU Domain access control / MPU write buffer control.  */
 | |
|         return env->cp15.c3;
 | |
|     case 4: /* Reserved.  */
 | |
|         goto bad_reg;
 | |
|     case 5: /* MMU Fault status / MPU access permission.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|             op2 = 0;
 | |
|         switch (op2) {
 | |
|         case 0:
 | |
|             if (arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 return simple_mpu_ap_bits(env->cp15.c5_data);
 | |
|             return env->cp15.c5_data;
 | |
|         case 1:
 | |
|             if (arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 return simple_mpu_ap_bits(env->cp15.c5_data);
 | |
|             return env->cp15.c5_insn;
 | |
|         case 2:
 | |
|             if (!arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 goto bad_reg;
 | |
|             return env->cp15.c5_data;
 | |
|         case 3:
 | |
|             if (!arm_feature(env, ARM_FEATURE_MPU))
 | |
|                 goto bad_reg;
 | |
|             return env->cp15.c5_insn;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|     case 6: /* MMU Fault address.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|             if (crm >= 8)
 | |
|                 goto bad_reg;
 | |
|             return env->cp15.c6_region[crm];
 | |
|         } else {
 | |
|             if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
|                 op2 = 0;
 | |
| 	    switch (op2) {
 | |
| 	    case 0:
 | |
| 		return env->cp15.c6_data;
 | |
| 	    case 1:
 | |
| 		if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
| 		    /* Watchpoint Fault Adrress.  */
 | |
| 		    return 0; /* Not implemented.  */
 | |
| 		} else {
 | |
| 		    /* Instruction Fault Adrress.  */
 | |
| 		    /* Arm9 doesn't have an IFAR, but implementing it anyway
 | |
| 		       shouldn't do any harm.  */
 | |
| 		    return env->cp15.c6_insn;
 | |
| 		}
 | |
| 	    case 2:
 | |
| 		if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
| 		    /* Instruction Fault Adrress.  */
 | |
| 		    return env->cp15.c6_insn;
 | |
| 		} else {
 | |
| 		    goto bad_reg;
 | |
| 		}
 | |
| 	    default:
 | |
| 		goto bad_reg;
 | |
| 	    }
 | |
|         }
 | |
|     case 7: /* Cache control.  */
 | |
|         if (crm == 4 && op1 == 0 && op2 == 0) {
 | |
|             return env->cp15.c7_par;
 | |
|         }
 | |
|         /* FIXME: Should only clear Z flag if destination is r15.  */
 | |
|         env->ZF = 0;
 | |
|         return 0;
 | |
|     case 8: /* MMU TLB control.  */
 | |
|         goto bad_reg;
 | |
|     case 9: /* Cache lockdown.  */
 | |
|         switch (op1) {
 | |
|         case 0: /* L1 cache.  */
 | |
| 	    if (arm_feature(env, ARM_FEATURE_OMAPCP))
 | |
| 		return 0;
 | |
|             switch (op2) {
 | |
|             case 0:
 | |
|                 return env->cp15.c9_data;
 | |
|             case 1:
 | |
|                 return env->cp15.c9_insn;
 | |
|             default:
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|         case 1: /* L2 cache */
 | |
|             if (crm != 0)
 | |
|                 goto bad_reg;
 | |
|             /* L2 Lockdown and Auxiliary control.  */
 | |
|             return 0;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|     case 10: /* MMU TLB lockdown.  */
 | |
|         /* ??? TLB lockdown not implemented.  */
 | |
|         return 0;
 | |
|     case 11: /* TCM DMA control.  */
 | |
|     case 12: /* Reserved.  */
 | |
|         goto bad_reg;
 | |
|     case 13: /* Process ID.  */
 | |
|         switch (op2) {
 | |
|         case 0:
 | |
|             return env->cp15.c13_fcse;
 | |
|         case 1:
 | |
|             return env->cp15.c13_context;
 | |
|         default:
 | |
|             goto bad_reg;
 | |
|         }
 | |
|     case 14: /* Reserved.  */
 | |
|         goto bad_reg;
 | |
|     case 15: /* Implementation specific.  */
 | |
|         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|             if (op2 == 0 && crm == 1)
 | |
|                 return env->cp15.c15_cpar;
 | |
| 
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
 | |
|             switch (crm) {
 | |
|             case 0:
 | |
|                 return 0;
 | |
|             case 1: /* Read TI925T configuration.  */
 | |
|                 return env->cp15.c15_ticonfig;
 | |
|             case 2: /* Read I_max.  */
 | |
|                 return env->cp15.c15_i_max;
 | |
|             case 3: /* Read I_min.  */
 | |
|                 return env->cp15.c15_i_min;
 | |
|             case 4: /* Read thread-ID.  */
 | |
|                 return env->cp15.c15_threadid;
 | |
|             case 8: /* TI925T_status */
 | |
|                 return 0;
 | |
|             }
 | |
|             /* TODO: Peripheral port remap register:
 | |
|              * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
 | |
|              * controller base address at $rn & ~0xfff and map size of
 | |
|              * 0x200 << ($rn & 0xfff), when MMU is off.  */
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
| bad_reg:
 | |
|     /* ??? For debugging only.  Should raise illegal instruction exception.  */
 | |
|     cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
 | |
|               (insn >> 16) & 0xf, crm, op1, op2);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
 | |
| {
 | |
|     if ((env->uncached_cpsr & CPSR_M) == mode) {
 | |
|         env->regs[13] = val;
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(mode)] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
 | |
| {
 | |
|     if ((env->uncached_cpsr & CPSR_M) == mode) {
 | |
|         return env->regs[13];
 | |
|     } else {
 | |
|         return env->banked_r13[bank_number(mode)];
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0: /* APSR */
 | |
|         return xpsr_read(env) & 0xf8000000;
 | |
|     case 1: /* IAPSR */
 | |
|         return xpsr_read(env) & 0xf80001ff;
 | |
|     case 2: /* EAPSR */
 | |
|         return xpsr_read(env) & 0xff00fc00;
 | |
|     case 3: /* xPSR */
 | |
|         return xpsr_read(env) & 0xff00fdff;
 | |
|     case 5: /* IPSR */
 | |
|         return xpsr_read(env) & 0x000001ff;
 | |
|     case 6: /* EPSR */
 | |
|         return xpsr_read(env) & 0x0700fc00;
 | |
|     case 7: /* IEPSR */
 | |
|         return xpsr_read(env) & 0x0700edff;
 | |
|     case 8: /* MSP */
 | |
|         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
 | |
|     case 9: /* PSP */
 | |
|         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
 | |
|     case 16: /* PRIMASK */
 | |
|         return (env->uncached_cpsr & CPSR_I) != 0;
 | |
|     case 17: /* FAULTMASK */
 | |
|         return (env->uncached_cpsr & CPSR_F) != 0;
 | |
|     case 18: /* BASEPRI */
 | |
|     case 19: /* BASEPRI_MAX */
 | |
|         return env->v7m.basepri;
 | |
|     case 20: /* CONTROL */
 | |
|         return env->v7m.control;
 | |
|     default:
 | |
|         /* ??? For debugging only.  */
 | |
|         cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0: /* APSR */
 | |
|         xpsr_write(env, val, 0xf8000000);
 | |
|         break;
 | |
|     case 1: /* IAPSR */
 | |
|         xpsr_write(env, val, 0xf8000000);
 | |
|         break;
 | |
|     case 2: /* EAPSR */
 | |
|         xpsr_write(env, val, 0xfe00fc00);
 | |
|         break;
 | |
|     case 3: /* xPSR */
 | |
|         xpsr_write(env, val, 0xfe00fc00);
 | |
|         break;
 | |
|     case 5: /* IPSR */
 | |
|         /* IPSR bits are readonly.  */
 | |
|         break;
 | |
|     case 6: /* EPSR */
 | |
|         xpsr_write(env, val, 0x0600fc00);
 | |
|         break;
 | |
|     case 7: /* IEPSR */
 | |
|         xpsr_write(env, val, 0x0600fc00);
 | |
|         break;
 | |
|     case 8: /* MSP */
 | |
|         if (env->v7m.current_sp)
 | |
|             env->v7m.other_sp = val;
 | |
|         else
 | |
|             env->regs[13] = val;
 | |
|         break;
 | |
|     case 9: /* PSP */
 | |
|         if (env->v7m.current_sp)
 | |
|             env->regs[13] = val;
 | |
|         else
 | |
|             env->v7m.other_sp = val;
 | |
|         break;
 | |
|     case 16: /* PRIMASK */
 | |
|         if (val & 1)
 | |
|             env->uncached_cpsr |= CPSR_I;
 | |
|         else
 | |
|             env->uncached_cpsr &= ~CPSR_I;
 | |
|         break;
 | |
|     case 17: /* FAULTMASK */
 | |
|         if (val & 1)
 | |
|             env->uncached_cpsr |= CPSR_F;
 | |
|         else
 | |
|             env->uncached_cpsr &= ~CPSR_F;
 | |
|         break;
 | |
|     case 18: /* BASEPRI */
 | |
|         env->v7m.basepri = val & 0xff;
 | |
|         break;
 | |
|     case 19: /* BASEPRI_MAX */
 | |
|         val &= 0xff;
 | |
|         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
 | |
|             env->v7m.basepri = val;
 | |
|         break;
 | |
|     case 20: /* CONTROL */
 | |
|         env->v7m.control = val & 3;
 | |
|         switch_v7m_sp(env, (val & 2) != 0);
 | |
|         break;
 | |
|     default:
 | |
|         /* ??? For debugging only.  */
 | |
|         cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
 | |
|                 ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
 | |
|                 void *opaque)
 | |
| {
 | |
|     if (cpnum < 0 || cpnum > 14) {
 | |
|         cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     env->cp[cpnum].cp_read = cp_read;
 | |
|     env->cp[cpnum].cp_write = cp_write;
 | |
|     env->cp[cpnum].opaque = opaque;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Note that signed overflow is undefined in C.  The following routines are
 | |
|    careful to use unsigned types where modulo arithmetic is required.
 | |
|    Failure to do so _will_ break on newer gcc.  */
 | |
| 
 | |
| /* Signed saturating arithmetic.  */
 | |
| 
 | |
| /* Perform 16-bit signed saturating addition.  */
 | |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating addition.  */
 | |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 16-bit signed saturating subtraction.  */
 | |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating subtraction.  */
 | |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
 | |
| #define PFX q
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned saturating arithmetic.  */
 | |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xffff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
 | |
| #define PFX uq
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Signed modulo arithmetic.  */
 | |
| #define SARITH16(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SARITH8(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| 
 | |
| #define ADD16(a, b, n) SARITH16(a, b, n, +)
 | |
| #define SUB16(a, b, n) SARITH16(a, b, n, -)
 | |
| #define ADD8(a, b, n)  SARITH8(a, b, n, +)
 | |
| #define SUB8(a, b, n)  SARITH8(a, b, n, -)
 | |
| #define PFX s
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned modulo arithmetic.  */
 | |
| #define ADD16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 1) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define ADD8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 1) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define PFX u
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved signed arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define PFX sh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved unsigned arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define PFX uh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| static inline uint8_t do_usad(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return b - a;
 | |
| }
 | |
| 
 | |
| /* Unsigned sum of absolute byte differences.  */
 | |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t sum;
 | |
|     sum = do_usad(a, b);
 | |
|     sum += do_usad(a >> 8, b >> 8);
 | |
|     sum += do_usad(a >> 16, b >>16);
 | |
|     sum += do_usad(a >> 24, b >> 24);
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /* For ARMv6 SEL instruction.  */
 | |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     mask = 0;
 | |
|     if (flags & 1)
 | |
|         mask |= 0xff;
 | |
|     if (flags & 2)
 | |
|         mask |= 0xff00;
 | |
|     if (flags & 4)
 | |
|         mask |= 0xff0000;
 | |
|     if (flags & 8)
 | |
|         mask |= 0xff000000;
 | |
|     return (a & mask) | (b & ~mask);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(logicq_cc)(uint64_t val)
 | |
| {
 | |
|     return (val >> 32) | (val != 0);
 | |
| }
 | |
| 
 | |
| /* VFP support.  We follow the convention used for VFP instrunctions:
 | |
|    Single precition routines have a "s" suffix, double precision a
 | |
|    "d" suffix.  */
 | |
| 
 | |
| /* Convert host exception flags to vfp form.  */
 | |
| static inline int vfp_exceptbits_from_host(int host_bits)
 | |
| {
 | |
|     int target_bits = 0;
 | |
| 
 | |
|     if (host_bits & float_flag_invalid)
 | |
|         target_bits |= 1;
 | |
|     if (host_bits & float_flag_divbyzero)
 | |
|         target_bits |= 2;
 | |
|     if (host_bits & float_flag_overflow)
 | |
|         target_bits |= 4;
 | |
|     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
 | |
|         target_bits |= 8;
 | |
|     if (host_bits & float_flag_inexact)
 | |
|         target_bits |= 0x10;
 | |
|     if (host_bits & float_flag_input_denormal)
 | |
|         target_bits |= 0x80;
 | |
|     return target_bits;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t fpscr;
 | |
| 
 | |
|     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
 | |
|             | (env->vfp.vec_len << 16)
 | |
|             | (env->vfp.vec_stride << 20);
 | |
|     i = get_float_exception_flags(&env->vfp.fp_status);
 | |
|     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
 | |
|     fpscr |= vfp_exceptbits_from_host(i);
 | |
|     return fpscr;
 | |
| }
 | |
| 
 | |
| uint32_t vfp_get_fpscr(CPUState *env)
 | |
| {
 | |
|     return HELPER(vfp_get_fpscr)(env);
 | |
| }
 | |
| 
 | |
| /* Convert vfp exception flags to target form.  */
 | |
| static inline int vfp_exceptbits_to_host(int target_bits)
 | |
| {
 | |
|     int host_bits = 0;
 | |
| 
 | |
|     if (target_bits & 1)
 | |
|         host_bits |= float_flag_invalid;
 | |
|     if (target_bits & 2)
 | |
|         host_bits |= float_flag_divbyzero;
 | |
|     if (target_bits & 4)
 | |
|         host_bits |= float_flag_overflow;
 | |
|     if (target_bits & 8)
 | |
|         host_bits |= float_flag_underflow;
 | |
|     if (target_bits & 0x10)
 | |
|         host_bits |= float_flag_inexact;
 | |
|     if (target_bits & 0x80)
 | |
|         host_bits |= float_flag_input_denormal;
 | |
|     return host_bits;
 | |
| }
 | |
| 
 | |
| void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t changed;
 | |
| 
 | |
|     changed = env->vfp.xregs[ARM_VFP_FPSCR];
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
 | |
|     env->vfp.vec_len = (val >> 16) & 7;
 | |
|     env->vfp.vec_stride = (val >> 20) & 3;
 | |
| 
 | |
|     changed ^= val;
 | |
|     if (changed & (3 << 22)) {
 | |
|         i = (val >> 22) & 3;
 | |
|         switch (i) {
 | |
|         case 0:
 | |
|             i = float_round_nearest_even;
 | |
|             break;
 | |
|         case 1:
 | |
|             i = float_round_up;
 | |
|             break;
 | |
|         case 2:
 | |
|             i = float_round_down;
 | |
|             break;
 | |
|         case 3:
 | |
|             i = float_round_to_zero;
 | |
|             break;
 | |
|         }
 | |
|         set_float_rounding_mode(i, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & (1 << 24)) {
 | |
|         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | |
|         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & (1 << 25))
 | |
|         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
 | |
| 
 | |
|     i = vfp_exceptbits_to_host(val);
 | |
|     set_float_exception_flags(i, &env->vfp.fp_status);
 | |
|     set_float_exception_flags(0, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| void vfp_set_fpscr(CPUState *env, uint32_t val)
 | |
| {
 | |
|     HELPER(vfp_set_fpscr)(env, val);
 | |
| }
 | |
| 
 | |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 | |
| 
 | |
| #define VFP_BINOP(name) \
 | |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float32_ ## name(a, b, fpst); \
 | |
| } \
 | |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float64_ ## name(a, b, fpst); \
 | |
| }
 | |
| VFP_BINOP(add)
 | |
| VFP_BINOP(sub)
 | |
| VFP_BINOP(mul)
 | |
| VFP_BINOP(div)
 | |
| #undef VFP_BINOP
 | |
| 
 | |
| float32 VFP_HELPER(neg, s)(float32 a)
 | |
| {
 | |
|     return float32_chs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(neg, d)(float64 a)
 | |
| {
 | |
|     return float64_chs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(abs, s)(float32 a)
 | |
| {
 | |
|     return float32_abs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(abs, d)(float64 a)
 | |
| {
 | |
|     return float64_abs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
 | |
| {
 | |
|     return float32_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
 | |
| {
 | |
|     return float64_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| /* XXX: check quiet/signaling case */
 | |
| #define DO_VFP_cmp(p, type) \
 | |
| void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
 | |
| { \
 | |
|     uint32_t flags; \
 | |
|     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
 | |
|     case 0: flags = 0x6; break; \
 | |
|     case -1: flags = 0x8; break; \
 | |
|     case 1: flags = 0x2; break; \
 | |
|     default: case 2: flags = 0x3; break; \
 | |
|     } \
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | |
|         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | |
| } \
 | |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
 | |
| { \
 | |
|     uint32_t flags; \
 | |
|     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
 | |
|     case 0: flags = 0x6; break; \
 | |
|     case -1: flags = 0x8; break; \
 | |
|     case 1: flags = 0x2; break; \
 | |
|     default: case 2: flags = 0x3; break; \
 | |
|     } \
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | |
|         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | |
| }
 | |
| DO_VFP_cmp(s, float32)
 | |
| DO_VFP_cmp(d, float64)
 | |
| #undef DO_VFP_cmp
 | |
| 
 | |
| /* Integer to float and float to integer conversions */
 | |
| 
 | |
| #define CONV_ITOF(name, fsz, sign) \
 | |
|     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return sign##int32_to_##float##fsz(x, fpst); \
 | |
| }
 | |
| 
 | |
| #define CONV_FTOI(name, fsz, sign, round) \
 | |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     if (float##fsz##_is_any_nan(x)) { \
 | |
|         float_raise(float_flag_invalid, fpst); \
 | |
|         return 0; \
 | |
|     } \
 | |
|     return float##fsz##_to_##sign##int32##round(x, fpst); \
 | |
| }
 | |
| 
 | |
| #define FLOAT_CONVS(name, p, fsz, sign) \
 | |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \
 | |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
 | |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
 | |
| 
 | |
| FLOAT_CONVS(si, s, 32, )
 | |
| FLOAT_CONVS(si, d, 64, )
 | |
| FLOAT_CONVS(ui, s, 32, u)
 | |
| FLOAT_CONVS(ui, d, 64, u)
 | |
| 
 | |
| #undef CONV_ITOF
 | |
| #undef CONV_FTOI
 | |
| #undef FLOAT_CONVS
 | |
| 
 | |
| /* floating point conversion */
 | |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
 | |
| {
 | |
|     float64 r = float32_to_float64(x, &env->vfp.fp_status);
 | |
|     /* ARM requires that S<->D conversion of any kind of NaN generates
 | |
|      * a quiet NaN by forcing the most significant frac bit to 1.
 | |
|      */
 | |
|     return float64_maybe_silence_nan(r);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
 | |
| {
 | |
|     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
 | |
|     /* ARM requires that S<->D conversion of any kind of NaN generates
 | |
|      * a quiet NaN by forcing the most significant frac bit to 1.
 | |
|      */
 | |
|     return float32_maybe_silence_nan(r);
 | |
| }
 | |
| 
 | |
| /* VFP3 fixed point conversion.  */
 | |
| #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
 | |
| float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t  x, uint32_t shift, \
 | |
|                                     void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     float##fsz tmp; \
 | |
|     tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
 | |
|     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
 | |
| } \
 | |
| uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
 | |
|                                        void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     float##fsz tmp; \
 | |
|     if (float##fsz##_is_any_nan(x)) { \
 | |
|         float_raise(float_flag_invalid, fpst); \
 | |
|         return 0; \
 | |
|     } \
 | |
|     tmp = float##fsz##_scalbn(x, shift, fpst); \
 | |
|     return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
 | |
| }
 | |
| 
 | |
| VFP_CONV_FIX(sh, d, 64, int16, )
 | |
| VFP_CONV_FIX(sl, d, 64, int32, )
 | |
| VFP_CONV_FIX(uh, d, 64, uint16, u)
 | |
| VFP_CONV_FIX(ul, d, 64, uint32, u)
 | |
| VFP_CONV_FIX(sh, s, 32, int16, )
 | |
| VFP_CONV_FIX(sl, s, 32, int32, )
 | |
| VFP_CONV_FIX(uh, s, 32, uint16, u)
 | |
| VFP_CONV_FIX(ul, s, 32, uint32, u)
 | |
| #undef VFP_CONV_FIX
 | |
| 
 | |
| /* Half precision conversions.  */
 | |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUState *env, float_status *s)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float32 r = float16_to_float32(make_float16(a), ieee, s);
 | |
|     if (ieee) {
 | |
|         return float32_maybe_silence_nan(r);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUState *env, float_status *s)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float16 r = float32_to_float16(a, ieee, s);
 | |
|     if (ieee) {
 | |
|         r = float16_maybe_silence_nan(r);
 | |
|     }
 | |
|     return float16_val(r);
 | |
| }
 | |
| 
 | |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
 | |
| {
 | |
|     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUState *env)
 | |
| {
 | |
|     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
 | |
| {
 | |
|     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
 | |
| {
 | |
|     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| #define float32_two make_float32(0x40000000)
 | |
| #define float32_three make_float32(0x40400000)
 | |
| #define float32_one_point_five make_float32(0x3fc00000)
 | |
| 
 | |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | |
|         if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         return float32_two;
 | |
|     }
 | |
|     return float32_sub(float32_two, float32_mul(a, b, s), s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     float32 product;
 | |
|     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | |
|         if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         return float32_one_point_five;
 | |
|     }
 | |
|     product = float32_mul(a, b, s);
 | |
|     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
 | |
| }
 | |
| 
 | |
| /* NEON helpers.  */
 | |
| 
 | |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on
 | |
|  * int->float conversions at run-time.  */
 | |
| #define float64_256 make_float64(0x4070000000000000LL)
 | |
| #define float64_512 make_float64(0x4080000000000000LL)
 | |
| 
 | |
| /* The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM.
 | |
|  */
 | |
| static float64 recip_estimate(float64 a, CPUState *env)
 | |
| {
 | |
|     /* These calculations mustn't set any fp exception flags,
 | |
|      * so we use a local copy of the fp_status.
 | |
|      */
 | |
|     float_status dummy_status = env->vfp.standard_fp_status;
 | |
|     float_status *s = &dummy_status;
 | |
|     /* q = (int)(a * 512.0) */
 | |
|     float64 q = float64_mul(float64_512, a, s);
 | |
|     int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
 | |
|     q = int64_to_float64(q_int, s);
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q = float64_div(q, float64_512, s);
 | |
|     q = float64_div(float64_one, q, s);
 | |
| 
 | |
|     /* s = (int)(256.0 * r + 0.5) */
 | |
|     q = float64_mul(q, float64_256, s);
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* return (double)s / 256.0 */
 | |
|     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(recpe_f32)(float32 a, CPUState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     float64 f64;
 | |
|     uint32_t val32 = float32_val(a);
 | |
| 
 | |
|     int result_exp;
 | |
|     int a_exp = (val32  & 0x7f800000) >> 23;
 | |
|     int sign = val32 & 0x80000000;
 | |
| 
 | |
|     if (float32_is_any_nan(a)) {
 | |
|         if (float32_is_signaling_nan(a)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|         }
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_infinity(a)) {
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(a));
 | |
|     } else if (float32_is_zero_or_denormal(a)) {
 | |
|         if (!float32_is_zero(a)) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(a));
 | |
|     } else if (a_exp >= 253) {
 | |
|         float_raise(float_flag_underflow, s);
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(a));
 | |
|     }
 | |
| 
 | |
|     f64 = make_float64((0x3feULL << 52)
 | |
|                        | ((int64_t)(val32 & 0x7fffff) << 29));
 | |
| 
 | |
|     result_exp = 253 - a_exp;
 | |
| 
 | |
|     f64 = recip_estimate(f64, env);
 | |
| 
 | |
|     val32 = sign
 | |
|         | ((result_exp & 0xff) << 23)
 | |
|         | ((float64_val(f64) >> 29) & 0x7fffff);
 | |
|     return make_float32(val32);
 | |
| }
 | |
| 
 | |
| /* The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM.
 | |
|  */
 | |
| static float64 recip_sqrt_estimate(float64 a, CPUState *env)
 | |
| {
 | |
|     /* These calculations mustn't set any fp exception flags,
 | |
|      * so we use a local copy of the fp_status.
 | |
|      */
 | |
|     float_status dummy_status = env->vfp.standard_fp_status;
 | |
|     float_status *s = &dummy_status;
 | |
|     float64 q;
 | |
|     int64_t q_int;
 | |
| 
 | |
|     if (float64_lt(a, float64_half, s)) {
 | |
|         /* range 0.25 <= a < 0.5 */
 | |
| 
 | |
|         /* a in units of 1/512 rounded down */
 | |
|         /* q0 = (int)(a * 512.0);  */
 | |
|         q = float64_mul(float64_512, a, s);
 | |
|         q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|         /* reciprocal root r */
 | |
|         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
 | |
|         q = int64_to_float64(q_int, s);
 | |
|         q = float64_add(q, float64_half, s);
 | |
|         q = float64_div(q, float64_512, s);
 | |
|         q = float64_sqrt(q, s);
 | |
|         q = float64_div(float64_one, q, s);
 | |
|     } else {
 | |
|         /* range 0.5 <= a < 1.0 */
 | |
| 
 | |
|         /* a in units of 1/256 rounded down */
 | |
|         /* q1 = (int)(a * 256.0); */
 | |
|         q = float64_mul(float64_256, a, s);
 | |
|         int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|         /* reciprocal root r */
 | |
|         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
 | |
|         q = int64_to_float64(q_int, s);
 | |
|         q = float64_add(q, float64_half, s);
 | |
|         q = float64_div(q, float64_256, s);
 | |
|         q = float64_sqrt(q, s);
 | |
|         q = float64_div(float64_one, q, s);
 | |
|     }
 | |
|     /* r in units of 1/256 rounded to nearest */
 | |
|     /* s = (int)(256.0 * r + 0.5); */
 | |
| 
 | |
|     q = float64_mul(q, float64_256,s );
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* return (double)s / 256.0;*/
 | |
|     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     int result_exp;
 | |
|     float64 f64;
 | |
|     uint32_t val;
 | |
|     uint64_t val64;
 | |
| 
 | |
|     val = float32_val(a);
 | |
| 
 | |
|     if (float32_is_any_nan(a)) {
 | |
|         if (float32_is_signaling_nan(a)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|         }
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_zero_or_denormal(a)) {
 | |
|         if (!float32_is_zero(a)) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(a));
 | |
|     } else if (float32_is_neg(a)) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_infinity(a)) {
 | |
|         return float32_zero;
 | |
|     }
 | |
| 
 | |
|     /* Normalize to a double-precision value between 0.25 and 1.0,
 | |
|      * preserving the parity of the exponent.  */
 | |
|     if ((val & 0x800000) == 0) {
 | |
|         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
 | |
|                            | (0x3feULL << 52)
 | |
|                            | ((uint64_t)(val & 0x7fffff) << 29));
 | |
|     } else {
 | |
|         f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
 | |
|                            | (0x3fdULL << 52)
 | |
|                            | ((uint64_t)(val & 0x7fffff) << 29));
 | |
|     }
 | |
| 
 | |
|     result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, env);
 | |
| 
 | |
|     val64 = float64_val(f64);
 | |
| 
 | |
|     val = ((val64 >> 63)  & 0x80000000)
 | |
|         | ((result_exp & 0xff) << 23)
 | |
|         | ((val64 >> 29)  & 0x7fffff);
 | |
|     return make_float32(val);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
 | |
| {
 | |
|     float64 f64;
 | |
| 
 | |
|     if ((a & 0x80000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     f64 = make_float64((0x3feULL << 52)
 | |
|                        | ((int64_t)(a & 0x7fffffff) << 21));
 | |
| 
 | |
|     f64 = recip_estimate (f64, env);
 | |
| 
 | |
|     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
 | |
| {
 | |
|     float64 f64;
 | |
| 
 | |
|     if ((a & 0xc0000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     if (a & 0x80000000) {
 | |
|         f64 = make_float64((0x3feULL << 52)
 | |
|                            | ((uint64_t)(a & 0x7fffffff) << 21));
 | |
|     } else { /* bits 31-30 == '01' */
 | |
|         f64 = make_float64((0x3fdULL << 52)
 | |
|                            | ((uint64_t)(a & 0x3fffffff) << 22));
 | |
|     }
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, env);
 | |
| 
 | |
|     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| void HELPER(set_teecr)(CPUState *env, uint32_t val)
 | |
| {
 | |
|     val &= 1;
 | |
|     if (env->teecr != val) {
 | |
|         env->teecr = val;
 | |
|         tb_flush(env);
 | |
|     }
 | |
| }
 |