 a9ab06d118
			
		
	
	
		a9ab06d118
		
	
	
	
	
		
			
			Sparse report: target-ppc/mmu-hash64.c:353:9: warning: returning void-valued expression target-ppc/mmu-hash64.c:620:9: warning: returning void-valued expression Signed-off-by: Stefan Weil <sw@weilnetz.de> Signed-off-by: Alexander Graf <agraf@suse.de>
		
			
				
	
	
		
			648 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			648 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
 | |
|  *
 | |
|  *  Copyright (c) 2003-2007 Jocelyn Mayer
 | |
|  *  Copyright (c) 2013 David Gibson, IBM Corporation
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "cpu.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_ppc.h"
 | |
| #include "mmu-hash64.h"
 | |
| 
 | |
| //#define DEBUG_MMU
 | |
| //#define DEBUG_SLB
 | |
| 
 | |
| #ifdef DEBUG_MMU
 | |
| #  define LOG_MMU_STATE(cpu) log_cpu_state((cpu), 0)
 | |
| #else
 | |
| #  define LOG_MMU_STATE(cpu) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_SLB
 | |
| #  define LOG_SLB(...) qemu_log(__VA_ARGS__)
 | |
| #else
 | |
| #  define LOG_SLB(...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Used to indicate whether we have allocated htab in the
 | |
|  * host kernel
 | |
|  */
 | |
| bool kvmppc_kern_htab;
 | |
| /*
 | |
|  * SLB handling
 | |
|  */
 | |
| 
 | |
| static ppc_slb_t *slb_lookup(CPUPPCState *env, target_ulong eaddr)
 | |
| {
 | |
|     uint64_t esid_256M, esid_1T;
 | |
|     int n;
 | |
| 
 | |
|     LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
 | |
| 
 | |
|     esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
 | |
|     esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
 | |
| 
 | |
|     for (n = 0; n < env->slb_nr; n++) {
 | |
|         ppc_slb_t *slb = &env->slb[n];
 | |
| 
 | |
|         LOG_SLB("%s: slot %d %016" PRIx64 " %016"
 | |
|                     PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
 | |
|         /* We check for 1T matches on all MMUs here - if the MMU
 | |
|          * doesn't have 1T segment support, we will have prevented 1T
 | |
|          * entries from being inserted in the slbmte code. */
 | |
|         if (((slb->esid == esid_256M) &&
 | |
|              ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
 | |
|             || ((slb->esid == esid_1T) &&
 | |
|                 ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
 | |
|             return slb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void dump_slb(FILE *f, fprintf_function cpu_fprintf, CPUPPCState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t slbe, slbv;
 | |
| 
 | |
|     cpu_synchronize_state(CPU(ppc_env_get_cpu(env)));
 | |
| 
 | |
|     cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
 | |
|     for (i = 0; i < env->slb_nr; i++) {
 | |
|         slbe = env->slb[i].esid;
 | |
|         slbv = env->slb[i].vsid;
 | |
|         if (slbe == 0 && slbv == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
 | |
|                     i, slbe, slbv);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_slbia(CPUPPCState *env)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|     int n, do_invalidate;
 | |
| 
 | |
|     do_invalidate = 0;
 | |
|     /* XXX: Warning: slbia never invalidates the first segment */
 | |
|     for (n = 1; n < env->slb_nr; n++) {
 | |
|         ppc_slb_t *slb = &env->slb[n];
 | |
| 
 | |
|         if (slb->esid & SLB_ESID_V) {
 | |
|             slb->esid &= ~SLB_ESID_V;
 | |
|             /* XXX: given the fact that segment size is 256 MB or 1TB,
 | |
|              *      and we still don't have a tlb_flush_mask(env, n, mask)
 | |
|              *      in QEMU, we just invalidate all TLBs
 | |
|              */
 | |
|             do_invalidate = 1;
 | |
|         }
 | |
|     }
 | |
|     if (do_invalidate) {
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void helper_slbie(CPUPPCState *env, target_ulong addr)
 | |
| {
 | |
|     PowerPCCPU *cpu = ppc_env_get_cpu(env);
 | |
|     ppc_slb_t *slb;
 | |
| 
 | |
|     slb = slb_lookup(env, addr);
 | |
|     if (!slb) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (slb->esid & SLB_ESID_V) {
 | |
|         slb->esid &= ~SLB_ESID_V;
 | |
| 
 | |
|         /* XXX: given the fact that segment size is 256 MB or 1TB,
 | |
|          *      and we still don't have a tlb_flush_mask(env, n, mask)
 | |
|          *      in QEMU, we just invalidate all TLBs
 | |
|          */
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ppc_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 | |
| {
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (rb & (0x1000 - env->slb_nr)) {
 | |
|         return -1; /* Reserved bits set or slot too high */
 | |
|     }
 | |
|     if (rs & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
 | |
|         return -1; /* Bad segment size */
 | |
|     }
 | |
|     if ((rs & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
 | |
|         return -1; /* 1T segment on MMU that doesn't support it */
 | |
|     }
 | |
| 
 | |
|     /* Mask out the slot number as we store the entry */
 | |
|     slb->esid = rb & (SLB_ESID_ESID | SLB_ESID_V);
 | |
|     slb->vsid = rs;
 | |
| 
 | |
|     LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
 | |
|             " %016" PRIx64 "\n", __func__, slot, rb, rs,
 | |
|             slb->esid, slb->vsid);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_load_slb_esid(CPUPPCState *env, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (slot >= env->slb_nr) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *rt = slb->esid;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ppc_load_slb_vsid(CPUPPCState *env, target_ulong rb,
 | |
|                              target_ulong *rt)
 | |
| {
 | |
|     int slot = rb & 0xfff;
 | |
|     ppc_slb_t *slb = &env->slb[slot];
 | |
| 
 | |
|     if (slot >= env->slb_nr) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     *rt = slb->vsid;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
 | |
| {
 | |
|     if (ppc_store_slb(env, rb, rs) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_load_slb_esid(env, rb, &rt) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
 | |
| {
 | |
|     target_ulong rt = 0;
 | |
| 
 | |
|     if (ppc_load_slb_vsid(env, rb, &rt) < 0) {
 | |
|         helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
 | |
|                                    POWERPC_EXCP_INVAL);
 | |
|     }
 | |
|     return rt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 64-bit hash table MMU handling
 | |
|  */
 | |
| 
 | |
| static int ppc_hash64_pte_prot(CPUPPCState *env,
 | |
|                                ppc_slb_t *slb, ppc_hash_pte64_t pte)
 | |
| {
 | |
|     unsigned pp, key;
 | |
|     /* Some pp bit combinations have undefined behaviour, so default
 | |
|      * to no access in those cases */
 | |
|     int prot = 0;
 | |
| 
 | |
|     key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
 | |
|              : (slb->vsid & SLB_VSID_KS));
 | |
|     pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
 | |
| 
 | |
|     if (key == 0) {
 | |
|         switch (pp) {
 | |
|         case 0x0:
 | |
|         case 0x1:
 | |
|         case 0x2:
 | |
|             prot = PAGE_READ | PAGE_WRITE;
 | |
|             break;
 | |
| 
 | |
|         case 0x3:
 | |
|         case 0x6:
 | |
|             prot = PAGE_READ;
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         switch (pp) {
 | |
|         case 0x0:
 | |
|         case 0x6:
 | |
|             prot = 0;
 | |
|             break;
 | |
| 
 | |
|         case 0x1:
 | |
|         case 0x3:
 | |
|             prot = PAGE_READ;
 | |
|             break;
 | |
| 
 | |
|         case 0x2:
 | |
|             prot = PAGE_READ | PAGE_WRITE;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No execute if either noexec or guarded bits set */
 | |
|     if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
 | |
|         || (slb->vsid & SLB_VSID_N)) {
 | |
|         prot |= PAGE_EXEC;
 | |
|     }
 | |
| 
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| static int ppc_hash64_amr_prot(CPUPPCState *env, ppc_hash_pte64_t pte)
 | |
| {
 | |
|     int key, amrbits;
 | |
|     int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
| 
 | |
| 
 | |
|     /* Only recent MMUs implement Virtual Page Class Key Protection */
 | |
|     if (!(env->mmu_model & POWERPC_MMU_AMR)) {
 | |
|         return prot;
 | |
|     }
 | |
| 
 | |
|     key = HPTE64_R_KEY(pte.pte1);
 | |
|     amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
 | |
| 
 | |
|     /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
 | |
|     /*         env->spr[SPR_AMR]); */
 | |
| 
 | |
|     /*
 | |
|      * A store is permitted if the AMR bit is 0. Remove write
 | |
|      * protection if it is set.
 | |
|      */
 | |
|     if (amrbits & 0x2) {
 | |
|         prot &= ~PAGE_WRITE;
 | |
|     }
 | |
|     /*
 | |
|      * A load is permitted if the AMR bit is 0. Remove read
 | |
|      * protection if it is set.
 | |
|      */
 | |
|     if (amrbits & 0x1) {
 | |
|         prot &= ~PAGE_READ;
 | |
|     }
 | |
| 
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
 | |
| {
 | |
|     uint64_t token = 0;
 | |
|     hwaddr pte_offset;
 | |
| 
 | |
|     pte_offset = pte_index * HASH_PTE_SIZE_64;
 | |
|     if (kvmppc_kern_htab) {
 | |
|         /*
 | |
|          * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
 | |
|          */
 | |
|         token = kvmppc_hash64_read_pteg(cpu, pte_index);
 | |
|         if (token) {
 | |
|             return token;
 | |
|         }
 | |
|         /*
 | |
|          * pteg read failed, even though we have allocated htab via
 | |
|          * kvmppc_reset_htab.
 | |
|          */
 | |
|         return 0;
 | |
|     }
 | |
|     /*
 | |
|      * HTAB is controlled by QEMU. Just point to the internally
 | |
|      * accessible PTEG.
 | |
|      */
 | |
|     if (cpu->env.external_htab) {
 | |
|         token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
 | |
|     } else if (cpu->env.htab_base) {
 | |
|         token = cpu->env.htab_base + pte_offset;
 | |
|     }
 | |
|     return token;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_stop_access(uint64_t token)
 | |
| {
 | |
|     if (kvmppc_kern_htab) {
 | |
|         kvmppc_hash64_free_pteg(token);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static hwaddr ppc_hash64_pteg_search(CPUPPCState *env, hwaddr hash,
 | |
|                                      bool secondary, target_ulong ptem,
 | |
|                                      ppc_hash_pte64_t *pte)
 | |
| {
 | |
|     int i;
 | |
|     uint64_t token;
 | |
|     target_ulong pte0, pte1;
 | |
|     target_ulong pte_index;
 | |
| 
 | |
|     pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
 | |
|     token = ppc_hash64_start_access(ppc_env_get_cpu(env), pte_index);
 | |
|     if (!token) {
 | |
|         return -1;
 | |
|     }
 | |
|     for (i = 0; i < HPTES_PER_GROUP; i++) {
 | |
|         pte0 = ppc_hash64_load_hpte0(env, token, i);
 | |
|         pte1 = ppc_hash64_load_hpte1(env, token, i);
 | |
| 
 | |
|         if ((pte0 & HPTE64_V_VALID)
 | |
|             && (secondary == !!(pte0 & HPTE64_V_SECONDARY))
 | |
|             && HPTE64_V_COMPARE(pte0, ptem)) {
 | |
|             pte->pte0 = pte0;
 | |
|             pte->pte1 = pte1;
 | |
|             ppc_hash64_stop_access(token);
 | |
|             return (pte_index + i) * HASH_PTE_SIZE_64;
 | |
|         }
 | |
|     }
 | |
|     ppc_hash64_stop_access(token);
 | |
|     /*
 | |
|      * We didn't find a valid entry.
 | |
|      */
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static uint64_t ppc_hash64_page_shift(ppc_slb_t *slb)
 | |
| {
 | |
|     uint64_t epnshift;
 | |
| 
 | |
|     /* Page size according to the SLB, which we use to generate the
 | |
|      * EPN for hash table lookup..  When we implement more recent MMU
 | |
|      * extensions this might be different from the actual page size
 | |
|      * encoded in the PTE */
 | |
|     if ((slb->vsid & SLB_VSID_LLP_MASK) == SLB_VSID_4K) {
 | |
|         epnshift = TARGET_PAGE_BITS;
 | |
|     } else if ((slb->vsid & SLB_VSID_LLP_MASK) == SLB_VSID_64K) {
 | |
|         epnshift = TARGET_PAGE_BITS_64K;
 | |
|     } else {
 | |
|         epnshift = TARGET_PAGE_BITS_16M;
 | |
|     }
 | |
|     return epnshift;
 | |
| }
 | |
| 
 | |
| static hwaddr ppc_hash64_htab_lookup(CPUPPCState *env,
 | |
|                                      ppc_slb_t *slb, target_ulong eaddr,
 | |
|                                      ppc_hash_pte64_t *pte)
 | |
| {
 | |
|     hwaddr pte_offset;
 | |
|     hwaddr hash;
 | |
|     uint64_t vsid, epnshift, epnmask, epn, ptem;
 | |
| 
 | |
|     epnshift = ppc_hash64_page_shift(slb);
 | |
|     epnmask = ~((1ULL << epnshift) - 1);
 | |
| 
 | |
|     if (slb->vsid & SLB_VSID_B) {
 | |
|         /* 1TB segment */
 | |
|         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
 | |
|         epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
 | |
|         hash = vsid ^ (vsid << 25) ^ (epn >> epnshift);
 | |
|     } else {
 | |
|         /* 256M segment */
 | |
|         vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
 | |
|         epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
 | |
|         hash = vsid ^ (epn >> epnshift);
 | |
|     }
 | |
|     ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
 | |
| 
 | |
|     /* Page address translation */
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|             "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
 | |
|             " hash " TARGET_FMT_plx "\n",
 | |
|             env->htab_base, env->htab_mask, hash);
 | |
| 
 | |
|     /* Primary PTEG lookup */
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|             "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | |
|             " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
 | |
|             " hash=" TARGET_FMT_plx "\n",
 | |
|             env->htab_base, env->htab_mask, vsid, ptem,  hash);
 | |
|     pte_offset = ppc_hash64_pteg_search(env, hash, 0, ptem, pte);
 | |
| 
 | |
|     if (pte_offset == -1) {
 | |
|         /* Secondary PTEG lookup */
 | |
|         qemu_log_mask(CPU_LOG_MMU,
 | |
|                 "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
 | |
|                 " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
 | |
|                 " hash=" TARGET_FMT_plx "\n", env->htab_base,
 | |
|                 env->htab_mask, vsid, ptem, ~hash);
 | |
| 
 | |
|         pte_offset = ppc_hash64_pteg_search(env, ~hash, 1, ptem, pte);
 | |
|     }
 | |
| 
 | |
|     return pte_offset;
 | |
| }
 | |
| 
 | |
| static hwaddr ppc_hash64_pte_raddr(ppc_slb_t *slb, ppc_hash_pte64_t pte,
 | |
|                                    target_ulong eaddr)
 | |
| {
 | |
|     hwaddr mask;
 | |
|     int target_page_bits;
 | |
|     hwaddr rpn = pte.pte1 & HPTE64_R_RPN;
 | |
|     /*
 | |
|      * We support 4K, 64K and 16M now
 | |
|      */
 | |
|     target_page_bits = ppc_hash64_page_shift(slb);
 | |
|     mask = (1ULL << target_page_bits) - 1;
 | |
|     return (rpn & ~mask) | (eaddr & mask);
 | |
| }
 | |
| 
 | |
| int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, target_ulong eaddr,
 | |
|                                 int rwx, int mmu_idx)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUPPCState *env = &cpu->env;
 | |
|     ppc_slb_t *slb;
 | |
|     hwaddr pte_offset;
 | |
|     ppc_hash_pte64_t pte;
 | |
|     int pp_prot, amr_prot, prot;
 | |
|     uint64_t new_pte1;
 | |
|     const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
 | |
|     hwaddr raddr;
 | |
| 
 | |
|     assert((rwx == 0) || (rwx == 1) || (rwx == 2));
 | |
| 
 | |
|     /* 1. Handle real mode accesses */
 | |
|     if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
 | |
|         /* Translation is off */
 | |
|         /* In real mode the top 4 effective address bits are ignored */
 | |
|         raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
 | |
|         tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | |
|                      PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
 | |
|                      TARGET_PAGE_SIZE);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* 2. Translation is on, so look up the SLB */
 | |
|     slb = slb_lookup(env, eaddr);
 | |
| 
 | |
|     if (!slb) {
 | |
|         if (rwx == 2) {
 | |
|             cs->exception_index = POWERPC_EXCP_ISEG;
 | |
|             env->error_code = 0;
 | |
|         } else {
 | |
|             cs->exception_index = POWERPC_EXCP_DSEG;
 | |
|             env->error_code = 0;
 | |
|             env->spr[SPR_DAR] = eaddr;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* 3. Check for segment level no-execute violation */
 | |
|     if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
 | |
|         cs->exception_index = POWERPC_EXCP_ISI;
 | |
|         env->error_code = 0x10000000;
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* 4. Locate the PTE in the hash table */
 | |
|     pte_offset = ppc_hash64_htab_lookup(env, slb, eaddr, &pte);
 | |
|     if (pte_offset == -1) {
 | |
|         if (rwx == 2) {
 | |
|             cs->exception_index = POWERPC_EXCP_ISI;
 | |
|             env->error_code = 0x40000000;
 | |
|         } else {
 | |
|             cs->exception_index = POWERPC_EXCP_DSI;
 | |
|             env->error_code = 0;
 | |
|             env->spr[SPR_DAR] = eaddr;
 | |
|             if (rwx == 1) {
 | |
|                 env->spr[SPR_DSISR] = 0x42000000;
 | |
|             } else {
 | |
|                 env->spr[SPR_DSISR] = 0x40000000;
 | |
|             }
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|                 "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
 | |
| 
 | |
|     /* 5. Check access permissions */
 | |
| 
 | |
|     pp_prot = ppc_hash64_pte_prot(env, slb, pte);
 | |
|     amr_prot = ppc_hash64_amr_prot(env, pte);
 | |
|     prot = pp_prot & amr_prot;
 | |
| 
 | |
|     if ((need_prot[rwx] & ~prot) != 0) {
 | |
|         /* Access right violation */
 | |
|         qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
 | |
|         if (rwx == 2) {
 | |
|             cs->exception_index = POWERPC_EXCP_ISI;
 | |
|             env->error_code = 0x08000000;
 | |
|         } else {
 | |
|             target_ulong dsisr = 0;
 | |
| 
 | |
|             cs->exception_index = POWERPC_EXCP_DSI;
 | |
|             env->error_code = 0;
 | |
|             env->spr[SPR_DAR] = eaddr;
 | |
|             if (need_prot[rwx] & ~pp_prot) {
 | |
|                 dsisr |= 0x08000000;
 | |
|             }
 | |
|             if (rwx == 1) {
 | |
|                 dsisr |= 0x02000000;
 | |
|             }
 | |
|             if (need_prot[rwx] & ~amr_prot) {
 | |
|                 dsisr |= 0x00200000;
 | |
|             }
 | |
|             env->spr[SPR_DSISR] = dsisr;
 | |
|         }
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
 | |
| 
 | |
|     /* 6. Update PTE referenced and changed bits if necessary */
 | |
| 
 | |
|     new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
 | |
|     if (rwx == 1) {
 | |
|         new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
 | |
|     } else {
 | |
|         /* Treat the page as read-only for now, so that a later write
 | |
|          * will pass through this function again to set the C bit */
 | |
|         prot &= ~PAGE_WRITE;
 | |
|     }
 | |
| 
 | |
|     if (new_pte1 != pte.pte1) {
 | |
|         ppc_hash64_store_hpte(env, pte_offset / HASH_PTE_SIZE_64,
 | |
|                               pte.pte0, new_pte1);
 | |
|     }
 | |
| 
 | |
|     /* 7. Determine the real address from the PTE */
 | |
| 
 | |
|     raddr = ppc_hash64_pte_raddr(slb, pte, eaddr);
 | |
| 
 | |
|     tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
 | |
|                  prot, mmu_idx, TARGET_PAGE_SIZE);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| hwaddr ppc_hash64_get_phys_page_debug(CPUPPCState *env, target_ulong addr)
 | |
| {
 | |
|     ppc_slb_t *slb;
 | |
|     hwaddr pte_offset;
 | |
|     ppc_hash_pte64_t pte;
 | |
| 
 | |
|     if (msr_dr == 0) {
 | |
|         /* In real mode the top 4 effective address bits are ignored */
 | |
|         return addr & 0x0FFFFFFFFFFFFFFFULL;
 | |
|     }
 | |
| 
 | |
|     slb = slb_lookup(env, addr);
 | |
|     if (!slb) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     pte_offset = ppc_hash64_htab_lookup(env, slb, addr, &pte);
 | |
|     if (pte_offset == -1) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return ppc_hash64_pte_raddr(slb, pte, addr) & TARGET_PAGE_MASK;
 | |
| }
 | |
| 
 | |
| void ppc_hash64_store_hpte(CPUPPCState *env,
 | |
|                            target_ulong pte_index,
 | |
|                            target_ulong pte0, target_ulong pte1)
 | |
| {
 | |
|     CPUState *cs = CPU(ppc_env_get_cpu(env));
 | |
| 
 | |
|     if (kvmppc_kern_htab) {
 | |
|         kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pte_index *= HASH_PTE_SIZE_64;
 | |
|     if (env->external_htab) {
 | |
|         stq_p(env->external_htab + pte_index, pte0);
 | |
|         stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64/2, pte1);
 | |
|     } else {
 | |
|         stq_phys(cs->as, env->htab_base + pte_index, pte0);
 | |
|         stq_phys(cs->as, env->htab_base + pte_index + HASH_PTE_SIZE_64/2, pte1);
 | |
|     }
 | |
| }
 |