 37d18660bb
			
		
	
	
		37d18660bb
		
	
	
	
	
		
			
			Add support to softfloat for flushing input denormal float32 and float64 to zero. softfloat's existing 'flush_to_zero' flag only flushes denormals to zero on output. Some CPUs need input denormals to be flushed before processing as well. Implement this, using a new status flag to enable it and a new exception status bit to indicate when it has happened. Existing CPUs should be unaffected as there is no behaviour change unless the mode is enabled. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Acked-by: Aurelien Jarno <aurelien@aurel32.net> Signed-off-by: Aurelien Jarno <aurelien@aurel32.net>
		
			
				
	
	
		
			6120 lines
		
	
	
		
			213 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			6120 lines
		
	
	
		
			213 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*============================================================================
 | |
| 
 | |
| This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
 | |
| Package, Release 2b.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
 | |
| been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
 | |
| RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
 | |
| AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
 | |
| COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
 | |
| EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
 | |
| INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
 | |
| OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) the source code for the derivative work includes prominent notice that
 | |
| the work is derivative, and (2) the source code includes prominent notice with
 | |
| these four paragraphs for those parts of this code that are retained.
 | |
| 
 | |
| =============================================================================*/
 | |
| 
 | |
| #include "softfloat.h"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Primitive arithmetic functions, including multi-word arithmetic, and
 | |
| | division and square root approximations.  (Can be specialized to target if
 | |
| | desired.)
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-macros.h"
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Functions and definitions to determine:  (1) whether tininess for underflow
 | |
| | is detected before or after rounding by default, (2) what (if anything)
 | |
| | happens when exceptions are raised, (3) how signaling NaNs are distinguished
 | |
| | from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
 | |
| | are propagated from function inputs to output.  These details are target-
 | |
| | specific.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #include "softfloat-specialize.h"
 | |
| 
 | |
| void set_float_rounding_mode(int val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(float_rounding_mode) = val;
 | |
| }
 | |
| 
 | |
| void set_float_exception_flags(int val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(float_exception_flags) = val;
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| void set_floatx80_rounding_precision(int val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(floatx80_rounding_precision) = val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
 | |
| | and 7, and returns the properly rounded 32-bit integer corresponding to the
 | |
| | input.  If `zSign' is 1, the input is negated before being converted to an
 | |
| | integer.  Bit 63 of `absZ' must be zero.  Ordinarily, the fixed-point input
 | |
| | is simply rounded to an integer, with the inexact exception raised if the
 | |
| | input cannot be represented exactly as an integer.  However, if the fixed-
 | |
| | point input is too large, the invalid exception is raised and the largest
 | |
| | positive or negative integer is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int32 roundAndPackInt32( flag zSign, bits64 absZ STATUS_PARAM)
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8 roundIncrement, roundBits;
 | |
|     int32 z;
 | |
| 
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     roundIncrement = 0x40;
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             roundIncrement = 0;
 | |
|         }
 | |
|         else {
 | |
|             roundIncrement = 0x7F;
 | |
|             if ( zSign ) {
 | |
|                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
|             }
 | |
|             else {
 | |
|                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     roundBits = absZ & 0x7F;
 | |
|     absZ = ( absZ + roundIncrement )>>7;
 | |
|     absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     z = absZ;
 | |
|     if ( zSign ) z = - z;
 | |
|     if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return zSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
 | |
| | `absZ1', with binary point between bits 63 and 64 (between the input words),
 | |
| | and returns the properly rounded 64-bit integer corresponding to the input.
 | |
| | If `zSign' is 1, the input is negated before being converted to an integer.
 | |
| | Ordinarily, the fixed-point input is simply rounded to an integer, with
 | |
| | the inexact exception raised if the input cannot be represented exactly as
 | |
| | an integer.  However, if the fixed-point input is too large, the invalid
 | |
| | exception is raised and the largest positive or negative integer is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int64 roundAndPackInt64( flag zSign, bits64 absZ0, bits64 absZ1 STATUS_PARAM)
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven, increment;
 | |
|     int64 z;
 | |
| 
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     increment = ( (sbits64) absZ1 < 0 );
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             increment = 0;
 | |
|         }
 | |
|         else {
 | |
|             if ( zSign ) {
 | |
|                 increment = ( roundingMode == float_round_down ) && absZ1;
 | |
|             }
 | |
|             else {
 | |
|                 increment = ( roundingMode == float_round_up ) && absZ1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ( increment ) {
 | |
|         ++absZ0;
 | |
|         if ( absZ0 == 0 ) goto overflow;
 | |
|         absZ0 &= ~ ( ( (bits64) ( absZ1<<1 ) == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     z = absZ0;
 | |
|     if ( zSign ) z = - z;
 | |
|     if ( z && ( ( z < 0 ) ^ zSign ) ) {
 | |
|  overflow:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return
 | |
|               zSign ? (sbits64) LIT64( 0x8000000000000000 )
 | |
|             : LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|     }
 | |
|     if ( absZ1 ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE bits32 extractFloat32Frac( float32 a )
 | |
| {
 | |
| 
 | |
|     return float32_val(a) & 0x007FFFFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE int16 extractFloat32Exp( float32 a )
 | |
| {
 | |
| 
 | |
|     return ( float32_val(a)>>23 ) & 0xFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the single-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE flag extractFloat32Sign( float32 a )
 | |
| {
 | |
| 
 | |
|     return float32_val(a)>>31;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| static float32 float32_squash_input_denormal(float32 a STATUS_PARAM)
 | |
| {
 | |
|     if (STATUS(flush_inputs_to_zero)) {
 | |
|         if (extractFloat32Exp(a) == 0 && extractFloat32Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal STATUS_VAR);
 | |
|             return make_float32(float32_val(a) & 0x80000000);
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal single-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros32( aSig ) - 8;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | single-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig )
 | |
| {
 | |
| 
 | |
|     return make_float32(
 | |
|           ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the single-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal single-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 30
 | |
| | and 29, which is 7 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int8 roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     roundIncrement = 0x40;
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             roundIncrement = 0;
 | |
|         }
 | |
|         else {
 | |
|             roundIncrement = 0x7F;
 | |
|             if ( zSign ) {
 | |
|                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
|             }
 | |
|             else {
 | |
|                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     roundBits = zSig & 0x7F;
 | |
|     if ( 0xFD <= (bits16) zExp ) {
 | |
|         if (    ( 0xFD < zExp )
 | |
|              || (    ( zExp == 0xFD )
 | |
|                   && ( (sbits32) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
 | |
|             return packFloat32( zSign, 0xFF, - ( roundIncrement == 0 ));
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloat32( zSign, 0, 0 );
 | |
|             isTiny =
 | |
|                    ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < 0x80000000 );
 | |
|             shift32RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x7F;
 | |
|             if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
 | |
|         }
 | |
|     }
 | |
|     if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     zSig = ( zSig + roundIncrement )>>7;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat32( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper single-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat32' except that `zSig' does not have to be normalized.
 | |
| | Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32
 | |
|  normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig STATUS_PARAM)
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros32( zSig ) - 1;
 | |
|     return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE bits64 extractFloat64Frac( float64 a )
 | |
| {
 | |
| 
 | |
|     return float64_val(a) & LIT64( 0x000FFFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE int16 extractFloat64Exp( float64 a )
 | |
| {
 | |
| 
 | |
|     return ( float64_val(a)>>52 ) & 0x7FF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the double-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE flag extractFloat64Sign( float64 a )
 | |
| {
 | |
| 
 | |
|     return float64_val(a)>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | If `a' is denormal and we are in flush-to-zero mode then set the
 | |
| | input-denormal exception and return zero. Otherwise just return the value.
 | |
| *----------------------------------------------------------------------------*/
 | |
| static float64 float64_squash_input_denormal(float64 a STATUS_PARAM)
 | |
| {
 | |
|     if (STATUS(flush_inputs_to_zero)) {
 | |
|         if (extractFloat64Exp(a) == 0 && extractFloat64Frac(a) != 0) {
 | |
|             float_raise(float_flag_input_denormal STATUS_VAR);
 | |
|             return make_float64(float64_val(a) & (1ULL << 63));
 | |
|         }
 | |
|     }
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal double-precision floating-point value represented
 | |
| | by the denormalized significand `aSig'.  The normalized exponent and
 | |
| | significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros64( aSig ) - 11;
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | double-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig )
 | |
| {
 | |
| 
 | |
|     return make_float64(
 | |
|         ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  Ordinarily, the abstract
 | |
| | value is simply rounded and packed into the double-precision format, with
 | |
| | the inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded
 | |
| | to a subnormal number, and the underflow and inexact exceptions are raised
 | |
| | if the abstract input cannot be represented exactly as a subnormal double-
 | |
| | precision floating-point number.
 | |
| |     The input significand `zSig' has its binary point between bits 62
 | |
| | and 61, which is 10 bits to the left of the usual location.  This shifted
 | |
| | significand must be normalized or smaller.  If `zSig' is not normalized,
 | |
| | `zExp' must be 0; in that case, the result returned is a subnormal number,
 | |
| | and it must not require rounding.  In the usual case that `zSig' is
 | |
| | normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
 | |
| | The handling of underflow and overflow follows the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven;
 | |
|     int16 roundIncrement, roundBits;
 | |
|     flag isTiny;
 | |
| 
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     roundIncrement = 0x200;
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             roundIncrement = 0;
 | |
|         }
 | |
|         else {
 | |
|             roundIncrement = 0x3FF;
 | |
|             if ( zSign ) {
 | |
|                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
|             }
 | |
|             else {
 | |
|                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     roundBits = zSig & 0x3FF;
 | |
|     if ( 0x7FD <= (bits16) zExp ) {
 | |
|         if (    ( 0x7FD < zExp )
 | |
|              || (    ( zExp == 0x7FD )
 | |
|                   && ( (sbits64) ( zSig + roundIncrement ) < 0 ) )
 | |
|            ) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
 | |
|             return packFloat64( zSign, 0x7FF, - ( roundIncrement == 0 ));
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloat64( zSign, 0, 0 );
 | |
|             isTiny =
 | |
|                    ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
 | |
|                 || ( zExp < -1 )
 | |
|                 || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) );
 | |
|             shift64RightJamming( zSig, - zExp, &zSig );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig & 0x3FF;
 | |
|             if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
 | |
|         }
 | |
|     }
 | |
|     if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     zSig = ( zSig + roundIncrement )>>10;
 | |
|     zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven );
 | |
|     if ( zSig == 0 ) zExp = 0;
 | |
|     return packFloat64( zSign, zExp, zSig );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand `zSig', and returns the proper double-precision floating-
 | |
| | point value corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloat64' except that `zSig' does not have to be normalized.
 | |
| | Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
 | |
| | floating-point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64
 | |
|  normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig STATUS_PARAM)
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros64( zSig ) - 1;
 | |
|     return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount STATUS_VAR);
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the fraction bits of the extended double-precision floating-point
 | |
| | value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE bits64 extractFloatx80Frac( floatx80 a )
 | |
| {
 | |
| 
 | |
|     return a.low;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the extended double-precision floating-point
 | |
| | value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE int32 extractFloatx80Exp( floatx80 a )
 | |
| {
 | |
| 
 | |
|     return a.high & 0x7FFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the extended double-precision floating-point value
 | |
| | `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE flag extractFloatx80Sign( floatx80 a )
 | |
| {
 | |
| 
 | |
|     return a.high>>15;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal extended double-precision floating-point value
 | |
| | represented by the denormalized significand `aSig'.  The normalized exponent
 | |
| | and significand are stored at the locations pointed to by `zExpPtr' and
 | |
| | `zSigPtr', respectively.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     shiftCount = countLeadingZeros64( aSig );
 | |
|     *zSigPtr = aSig<<shiftCount;
 | |
|     *zExpPtr = 1 - shiftCount;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
 | |
| | extended double-precision floating-point value, returning the result.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
 | |
| {
 | |
|     floatx80 z;
 | |
| 
 | |
|     z.low = zSig;
 | |
|     z.high = ( ( (bits16) zSign )<<15 ) + zExp;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | rounded and packed into the extended double-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal extended
 | |
| | double-precision floating-point number.
 | |
| |     If `roundingPrecision' is 32 or 64, the result is rounded to the same
 | |
| | number of bits as single or double precision, respectively.  Otherwise, the
 | |
| | result is rounded to the full precision of the extended double-precision
 | |
| | format.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  The
 | |
| | handling of underflow and overflow follows the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80
 | |
|  roundAndPackFloatx80(
 | |
|      int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 | |
|  STATUS_PARAM)
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
|     int64 roundIncrement, roundMask, roundBits;
 | |
| 
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     if ( roundingPrecision == 80 ) goto precision80;
 | |
|     if ( roundingPrecision == 64 ) {
 | |
|         roundIncrement = LIT64( 0x0000000000000400 );
 | |
|         roundMask = LIT64( 0x00000000000007FF );
 | |
|     }
 | |
|     else if ( roundingPrecision == 32 ) {
 | |
|         roundIncrement = LIT64( 0x0000008000000000 );
 | |
|         roundMask = LIT64( 0x000000FFFFFFFFFF );
 | |
|     }
 | |
|     else {
 | |
|         goto precision80;
 | |
|     }
 | |
|     zSig0 |= ( zSig1 != 0 );
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             roundIncrement = 0;
 | |
|         }
 | |
|         else {
 | |
|             roundIncrement = roundMask;
 | |
|             if ( zSign ) {
 | |
|                 if ( roundingMode == float_round_up ) roundIncrement = 0;
 | |
|             }
 | |
|             else {
 | |
|                 if ( roundingMode == float_round_down ) roundIncrement = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     roundBits = zSig0 & roundMask;
 | |
|     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 | |
|         if (    ( 0x7FFE < zExp )
 | |
|              || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
 | |
|            ) {
 | |
|             goto overflow;
 | |
|         }
 | |
|         if ( zExp <= 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloatx80( zSign, 0, 0 );
 | |
|             isTiny =
 | |
|                    ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
 | |
|                 || ( zExp < 0 )
 | |
|                 || ( zSig0 <= zSig0 + roundIncrement );
 | |
|             shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
 | |
|             zExp = 0;
 | |
|             roundBits = zSig0 & roundMask;
 | |
|             if ( isTiny && roundBits ) float_raise( float_flag_underflow STATUS_VAR);
 | |
|             if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|             zSig0 += roundIncrement;
 | |
|             if ( (sbits64) zSig0 < 0 ) zExp = 1;
 | |
|             roundIncrement = roundMask + 1;
 | |
|             if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
|                 roundMask |= roundIncrement;
 | |
|             }
 | |
|             zSig0 &= ~ roundMask;
 | |
|             return packFloatx80( zSign, zExp, zSig0 );
 | |
|         }
 | |
|     }
 | |
|     if ( roundBits ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     zSig0 += roundIncrement;
 | |
|     if ( zSig0 < roundIncrement ) {
 | |
|         ++zExp;
 | |
|         zSig0 = LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     roundIncrement = roundMask + 1;
 | |
|     if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
 | |
|         roundMask |= roundIncrement;
 | |
|     }
 | |
|     zSig0 &= ~ roundMask;
 | |
|     if ( zSig0 == 0 ) zExp = 0;
 | |
|     return packFloatx80( zSign, zExp, zSig0 );
 | |
|  precision80:
 | |
|     increment = ( (sbits64) zSig1 < 0 );
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             increment = 0;
 | |
|         }
 | |
|         else {
 | |
|             if ( zSign ) {
 | |
|                 increment = ( roundingMode == float_round_down ) && zSig1;
 | |
|             }
 | |
|             else {
 | |
|                 increment = ( roundingMode == float_round_up ) && zSig1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
 | |
|         if (    ( 0x7FFE < zExp )
 | |
|              || (    ( zExp == 0x7FFE )
 | |
|                   && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             roundMask = 0;
 | |
|  overflow:
 | |
|             float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                ) {
 | |
|                 return packFloatx80( zSign, 0x7FFE, ~ roundMask );
 | |
|             }
 | |
|             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         if ( zExp <= 0 ) {
 | |
|             isTiny =
 | |
|                    ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
 | |
|                 || ( zExp < 0 )
 | |
|                 || ! increment
 | |
|                 || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
 | |
|             shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
 | |
|             zExp = 0;
 | |
|             if ( isTiny && zSig1 ) float_raise( float_flag_underflow STATUS_VAR);
 | |
|             if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|             if ( roundNearestEven ) {
 | |
|                 increment = ( (sbits64) zSig1 < 0 );
 | |
|             }
 | |
|             else {
 | |
|                 if ( zSign ) {
 | |
|                     increment = ( roundingMode == float_round_down ) && zSig1;
 | |
|                 }
 | |
|                 else {
 | |
|                     increment = ( roundingMode == float_round_up ) && zSig1;
 | |
|                 }
 | |
|             }
 | |
|             if ( increment ) {
 | |
|                 ++zSig0;
 | |
|                 zSig0 &=
 | |
|                     ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
|                 if ( (sbits64) zSig0 < 0 ) zExp = 1;
 | |
|             }
 | |
|             return packFloatx80( zSign, zExp, zSig0 );
 | |
|         }
 | |
|     }
 | |
|     if ( zSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     if ( increment ) {
 | |
|         ++zSig0;
 | |
|         if ( zSig0 == 0 ) {
 | |
|             ++zExp;
 | |
|             zSig0 = LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         else {
 | |
|             zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( zSig0 == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloatx80( zSign, zExp, zSig0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent
 | |
| | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
 | |
| | and returns the proper extended double-precision floating-point value
 | |
| | corresponding to the abstract input.  This routine is just like
 | |
| | `roundAndPackFloatx80' except that the input significand does not have to be
 | |
| | normalized.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80
 | |
|  normalizeRoundAndPackFloatx80(
 | |
|      int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
 | |
|  STATUS_PARAM)
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 64;
 | |
|     }
 | |
|     shiftCount = countLeadingZeros64( zSig0 );
 | |
|     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     zExp -= shiftCount;
 | |
|     return
 | |
|         roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 STATUS_VAR);
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the least-significant 64 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE bits64 extractFloat128Frac1( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.low;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the most-significant 48 fraction bits of the quadruple-precision
 | |
| | floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE bits64 extractFloat128Frac0( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.high & LIT64( 0x0000FFFFFFFFFFFF );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the exponent bits of the quadruple-precision floating-point value
 | |
| | `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE int32 extractFloat128Exp( float128 a )
 | |
| {
 | |
| 
 | |
|     return ( a.high>>48 ) & 0x7FFF;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the sign bit of the quadruple-precision floating-point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE flag extractFloat128Sign( float128 a )
 | |
| {
 | |
| 
 | |
|     return a.high>>63;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Normalizes the subnormal quadruple-precision floating-point value
 | |
| | represented by the denormalized significand formed by the concatenation of
 | |
| | `aSig0' and `aSig1'.  The normalized exponent is stored at the location
 | |
| | pointed to by `zExpPtr'.  The most significant 49 bits of the normalized
 | |
| | significand are stored at the location pointed to by `zSig0Ptr', and the
 | |
| | least significant 64 bits of the normalized significand are stored at the
 | |
| | location pointed to by `zSig1Ptr'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static void
 | |
|  normalizeFloat128Subnormal(
 | |
|      bits64 aSig0,
 | |
|      bits64 aSig1,
 | |
|      int32 *zExpPtr,
 | |
|      bits64 *zSig0Ptr,
 | |
|      bits64 *zSig1Ptr
 | |
|  )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     if ( aSig0 == 0 ) {
 | |
|         shiftCount = countLeadingZeros64( aSig1 ) - 15;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             *zSig0Ptr = aSig1>>( - shiftCount );
 | |
|             *zSig1Ptr = aSig1<<( shiftCount & 63 );
 | |
|         }
 | |
|         else {
 | |
|             *zSig0Ptr = aSig1<<shiftCount;
 | |
|             *zSig1Ptr = 0;
 | |
|         }
 | |
|         *zExpPtr = - shiftCount - 63;
 | |
|     }
 | |
|     else {
 | |
|         shiftCount = countLeadingZeros64( aSig0 ) - 15;
 | |
|         shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
 | |
|         *zExpPtr = 1 - shiftCount;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', the exponent `zExp', and the significand formed
 | |
| | by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
 | |
| | floating-point value, returning the result.  After being shifted into the
 | |
| | proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
 | |
| | added together to form the most significant 32 bits of the result.  This
 | |
| | means that any integer portion of `zSig0' will be added into the exponent.
 | |
| | Since a properly normalized significand will have an integer portion equal
 | |
| | to 1, the `zExp' input should be 1 less than the desired result exponent
 | |
| | whenever `zSig0' and `zSig1' concatenated form a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| INLINE float128
 | |
|  packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
 | |
| {
 | |
|     float128 z;
 | |
| 
 | |
|     z.low = zSig1;
 | |
|     z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and extended significand formed by the concatenation of `zSig0', `zSig1',
 | |
| | and `zSig2', and returns the proper quadruple-precision floating-point value
 | |
| | corresponding to the abstract input.  Ordinarily, the abstract value is
 | |
| | simply rounded and packed into the quadruple-precision format, with the
 | |
| | inexact exception raised if the abstract input cannot be represented
 | |
| | exactly.  However, if the abstract value is too large, the overflow and
 | |
| | inexact exceptions are raised and an infinity or maximal finite value is
 | |
| | returned.  If the abstract value is too small, the input value is rounded to
 | |
| | a subnormal number, and the underflow and inexact exceptions are raised if
 | |
| | the abstract input cannot be represented exactly as a subnormal quadruple-
 | |
| | precision floating-point number.
 | |
| |     The input significand must be normalized or smaller.  If the input
 | |
| | significand is not normalized, `zExp' must be 0; in that case, the result
 | |
| | returned is a subnormal number, and it must not require rounding.  In the
 | |
| | usual case that the input significand is normalized, `zExp' must be 1 less
 | |
| | than the ``true'' floating-point exponent.  The handling of underflow and
 | |
| | overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128
 | |
|  roundAndPackFloat128(
 | |
|      flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 STATUS_PARAM)
 | |
| {
 | |
|     int8 roundingMode;
 | |
|     flag roundNearestEven, increment, isTiny;
 | |
| 
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     roundNearestEven = ( roundingMode == float_round_nearest_even );
 | |
|     increment = ( (sbits64) zSig2 < 0 );
 | |
|     if ( ! roundNearestEven ) {
 | |
|         if ( roundingMode == float_round_to_zero ) {
 | |
|             increment = 0;
 | |
|         }
 | |
|         else {
 | |
|             if ( zSign ) {
 | |
|                 increment = ( roundingMode == float_round_down ) && zSig2;
 | |
|             }
 | |
|             else {
 | |
|                 increment = ( roundingMode == float_round_up ) && zSig2;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ( 0x7FFD <= (bits32) zExp ) {
 | |
|         if (    ( 0x7FFD < zExp )
 | |
|              || (    ( zExp == 0x7FFD )
 | |
|                   && eq128(
 | |
|                          LIT64( 0x0001FFFFFFFFFFFF ),
 | |
|                          LIT64( 0xFFFFFFFFFFFFFFFF ),
 | |
|                          zSig0,
 | |
|                          zSig1
 | |
|                      )
 | |
|                   && increment
 | |
|                 )
 | |
|            ) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
 | |
|             if (    ( roundingMode == float_round_to_zero )
 | |
|                  || ( zSign && ( roundingMode == float_round_up ) )
 | |
|                  || ( ! zSign && ( roundingMode == float_round_down ) )
 | |
|                ) {
 | |
|                 return
 | |
|                     packFloat128(
 | |
|                         zSign,
 | |
|                         0x7FFE,
 | |
|                         LIT64( 0x0000FFFFFFFFFFFF ),
 | |
|                         LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
|                     );
 | |
|             }
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         if ( zExp < 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloat128( zSign, 0, 0, 0 );
 | |
|             isTiny =
 | |
|                    ( STATUS(float_detect_tininess) == float_tininess_before_rounding )
 | |
|                 || ( zExp < -1 )
 | |
|                 || ! increment
 | |
|                 || lt128(
 | |
|                        zSig0,
 | |
|                        zSig1,
 | |
|                        LIT64( 0x0001FFFFFFFFFFFF ),
 | |
|                        LIT64( 0xFFFFFFFFFFFFFFFF )
 | |
|                    );
 | |
|             shift128ExtraRightJamming(
 | |
|                 zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
 | |
|             zExp = 0;
 | |
|             if ( isTiny && zSig2 ) float_raise( float_flag_underflow STATUS_VAR);
 | |
|             if ( roundNearestEven ) {
 | |
|                 increment = ( (sbits64) zSig2 < 0 );
 | |
|             }
 | |
|             else {
 | |
|                 if ( zSign ) {
 | |
|                     increment = ( roundingMode == float_round_down ) && zSig2;
 | |
|                 }
 | |
|                 else {
 | |
|                     increment = ( roundingMode == float_round_up ) && zSig2;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if ( zSig2 ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     if ( increment ) {
 | |
|         add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
 | |
|         zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
 | |
|     }
 | |
|     else {
 | |
|         if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
 | |
|     }
 | |
|     return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp',
 | |
| | and significand formed by the concatenation of `zSig0' and `zSig1', and
 | |
| | returns the proper quadruple-precision floating-point value corresponding
 | |
| | to the abstract input.  This routine is just like `roundAndPackFloat128'
 | |
| | except that the input significand has fewer bits and does not have to be
 | |
| | normalized.  In all cases, `zExp' must be 1 less than the ``true'' floating-
 | |
| | point exponent.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128
 | |
|  normalizeRoundAndPackFloat128(
 | |
|      flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 STATUS_PARAM)
 | |
| {
 | |
|     int8 shiftCount;
 | |
|     bits64 zSig2;
 | |
| 
 | |
|     if ( zSig0 == 0 ) {
 | |
|         zSig0 = zSig1;
 | |
|         zSig1 = 0;
 | |
|         zExp -= 64;
 | |
|     }
 | |
|     shiftCount = countLeadingZeros64( zSig0 ) - 15;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         zSig2 = 0;
 | |
|         shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift128ExtraRightJamming(
 | |
|             zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
 | |
|     }
 | |
|     zExp -= shiftCount;
 | |
|     return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR);
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 int32_to_float32( int32 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
| 
 | |
|     if ( a == 0 ) return float32_zero;
 | |
|     if ( a == (sbits32) 0x80000000 ) return packFloat32( 1, 0x9E, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 int32_to_float64( int32 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32 absA;
 | |
|     int8 shiftCount;
 | |
|     bits64 zSig;
 | |
| 
 | |
|     if ( a == 0 ) return float64_zero;
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) + 21;
 | |
|     zSig = absA;
 | |
|     return packFloat64( zSign, 0x432 - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int32_to_floatx80( int32 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32 absA;
 | |
|     int8 shiftCount;
 | |
|     bits64 zSig;
 | |
| 
 | |
|     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) + 32;
 | |
|     zSig = absA;
 | |
|     return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 32-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int32_to_float128( int32 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
|     uint32 absA;
 | |
|     int8 shiftCount;
 | |
|     bits64 zSig0;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros32( absA ) + 17;
 | |
|     zSig0 = absA;
 | |
|     return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the single-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 int64_to_float32( int64 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64 absA;
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     if ( a == 0 ) return float32_zero;
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros64( absA ) - 40;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         return packFloat32( zSign, 0x95 - shiftCount, absA<<shiftCount );
 | |
|     }
 | |
|     else {
 | |
|         shiftCount += 7;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             shift64RightJamming( absA, - shiftCount, &absA );
 | |
|         }
 | |
|         else {
 | |
|             absA <<= shiftCount;
 | |
|         }
 | |
|         return roundAndPackFloat32( zSign, 0x9C - shiftCount, absA STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| float32 uint64_to_float32( uint64 a STATUS_PARAM )
 | |
| {
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     if ( a == 0 ) return float32_zero;
 | |
|     shiftCount = countLeadingZeros64( a ) - 40;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         return packFloat32( 1 > 0, 0x95 - shiftCount, a<<shiftCount );
 | |
|     }
 | |
|     else {
 | |
|         shiftCount += 7;
 | |
|         if ( shiftCount < 0 ) {
 | |
|             shift64RightJamming( a, - shiftCount, &a );
 | |
|         }
 | |
|         else {
 | |
|             a <<= shiftCount;
 | |
|         }
 | |
|         return roundAndPackFloat32( 1 > 0, 0x9C - shiftCount, a STATUS_VAR );
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the double-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 int64_to_float64( int64 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
| 
 | |
|     if ( a == 0 ) return float64_zero;
 | |
|     if ( a == (sbits64) LIT64( 0x8000000000000000 ) ) {
 | |
|         return packFloat64( 1, 0x43E, 0 );
 | |
|     }
 | |
|     zSign = ( a < 0 );
 | |
|     return normalizeRoundAndPackFloat64( zSign, 0x43C, zSign ? - a : a STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| float64 uint64_to_float64( uint64 a STATUS_PARAM )
 | |
| {
 | |
|     if ( a == 0 ) return float64_zero;
 | |
|     return normalizeRoundAndPackFloat64( 0, 0x43C, a STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a'
 | |
| | to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 int64_to_floatx80( int64 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64 absA;
 | |
|     int8 shiftCount;
 | |
| 
 | |
|     if ( a == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros64( absA );
 | |
|     return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the 64-bit two's complement integer `a' to
 | |
| | the quadruple-precision floating-point format.  The conversion is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 int64_to_float128( int64 a STATUS_PARAM )
 | |
| {
 | |
|     flag zSign;
 | |
|     uint64 absA;
 | |
|     int8 shiftCount;
 | |
|     int32 zExp;
 | |
|     bits64 zSig0, zSig1;
 | |
| 
 | |
|     if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|     zSign = ( a < 0 );
 | |
|     absA = zSign ? - a : a;
 | |
|     shiftCount = countLeadingZeros64( absA ) + 49;
 | |
|     zExp = 0x406E - shiftCount;
 | |
|     if ( 64 <= shiftCount ) {
 | |
|         zSig1 = 0;
 | |
|         zSig0 = absA;
 | |
|         shiftCount -= 64;
 | |
|     }
 | |
|     else {
 | |
|         zSig1 = absA;
 | |
|         zSig0 = 0;
 | |
|     }
 | |
|     shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
 | |
|     return packFloat128( zSign, zExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float32_to_int32( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig;
 | |
|     bits64 aSig64;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( ( aExp == 0xFF ) && aSig ) aSign = 0;
 | |
|     if ( aExp ) aSig |= 0x00800000;
 | |
|     shiftCount = 0xAF - aExp;
 | |
|     aSig64 = aSig;
 | |
|     aSig64 <<= 32;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig64, shiftCount, &aSig64 );
 | |
|     return roundAndPackInt32( aSign, aSig64 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float32_to_int32_round_to_zero( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig;
 | |
|     int32 z;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0x9E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( float32_val(a) != 0xCF000000 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF;
 | |
|         }
 | |
|         return (sbits32) 0x80000000;
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 16-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int16 float32_to_int16_round_to_zero( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig;
 | |
|     int32 z;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0x8E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( float32_val(a) != 0xC7000000 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|                 return 0x7FFF;
 | |
|             }
 | |
|         }
 | |
|         return (sbits32) 0xffff8000;
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if ( aExp | aSig ) {
 | |
|             STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     shiftCount -= 0x10;
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         z = - z;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float32_to_int64( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig;
 | |
|     bits64 aSig64, aSigExtra;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = 0xBE - aExp;
 | |
|     if ( shiftCount < 0 ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|             return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|         }
 | |
|         return (sbits64) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     if ( aExp ) aSig |= 0x00800000;
 | |
|     aSig64 = aSig;
 | |
|     aSig64 <<= 40;
 | |
|     shift64ExtraRightJamming( aSig64, 0, shiftCount, &aSig64, &aSigExtra );
 | |
|     return roundAndPackInt64( aSign, aSig64, aSigExtra STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float32_to_int64_round_to_zero( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits32 aSig;
 | |
|     bits64 aSig64;
 | |
|     int64 z;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     shiftCount = aExp - 0xBE;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( float32_val(a) != 0xDF000000 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|         }
 | |
|         return (sbits64) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     else if ( aExp <= 0x7E ) {
 | |
|         if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     aSig64 = aSig | 0x00800000;
 | |
|     aSig64 <<= 40;
 | |
|     z = aSig64>>( - shiftCount );
 | |
|     if ( (bits64) ( aSig64<<( shiftCount & 63 ) ) ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float32_to_float64( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a STATUS_VAR ));
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( aSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float32_to_floatx80( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a STATUS_VAR ) );
 | |
|         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     aSig |= 0x00800000;
 | |
|     return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point value
 | |
| | `a' to the double-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float32_to_float128( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a STATUS_VAR ) );
 | |
|         return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the single-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a single-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_round_to_int( float32 a STATUS_PARAM)
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 lastBitMask, roundBitsMask;
 | |
|     int8 roundingMode;
 | |
|     bits32 z;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     if ( 0x96 <= aExp ) {
 | |
|         if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) {
 | |
|             return propagateFloat32NaN( a, a STATUS_VAR );
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp <= 0x7E ) {
 | |
|         if ( (bits32) ( float32_val(a)<<1 ) == 0 ) return a;
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         aSign = extractFloat32Sign( a );
 | |
|         switch ( STATUS(float_rounding_mode) ) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) {
 | |
|                 return packFloat32( aSign, 0x7F, 0 );
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return make_float32(aSign ? 0xBF800000 : 0);
 | |
|          case float_round_up:
 | |
|             return make_float32(aSign ? 0x80000000 : 0x3F800000);
 | |
|         }
 | |
|         return packFloat32( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x96 - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = float32_val(a);
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     if ( roundingMode == float_round_nearest_even ) {
 | |
|         z += lastBitMask>>1;
 | |
|         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | |
|     }
 | |
|     else if ( roundingMode != float_round_to_zero ) {
 | |
|         if ( extractFloat32Sign( make_float32(z) ) ^ ( roundingMode == float_round_up ) ) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|     }
 | |
|     z &= ~ roundBitsMask;
 | |
|     if ( z != float32_val(a) ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     return make_float32(z);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the single-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 addFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 6;
 | |
|     bSig <<= 6;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0xFF ) {
 | |
|             if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig |= 0x20000000;
 | |
|         }
 | |
|         shift32RightJamming( bSig, expDiff, &bSig );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0xFF ) {
 | |
|             if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|             return packFloat32( zSign, 0xFF, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig |= 0x20000000;
 | |
|         }
 | |
|         shift32RightJamming( aSig, - expDiff, &aSig );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0xFF ) {
 | |
|             if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|             return a;
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloat32( zSign, 0, 0 );
 | |
|             return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
 | |
|         }
 | |
|         zSig = 0x40000000 + aSig + bSig;
 | |
|         zExp = aExp;
 | |
|         goto roundAndPack;
 | |
|     }
 | |
|     aSig |= 0x20000000;
 | |
|     zSig = ( aSig + bSig )<<1;
 | |
|     --zExp;
 | |
|     if ( (sbits32) zSig < 0 ) {
 | |
|         zSig = aSig + bSig;
 | |
|         ++zExp;
 | |
|     }
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the single-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 subFloat32Sigs( float32 a, float32 b, flag zSign STATUS_PARAM)
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 7;
 | |
|     bSig <<= 7;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig | bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloat32( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         return packFloat32( zSign ^ 1, 0xFF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig |= 0x40000000;
 | |
|     }
 | |
|     shift32RightJamming( aSig, - expDiff, &aSig );
 | |
|     bSig |= 0x40000000;
 | |
|  bBigger:
 | |
|     zSig = bSig - aSig;
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig |= 0x40000000;
 | |
|     }
 | |
|     shift32RightJamming( bSig, expDiff, &bSig );
 | |
|     aSig |= 0x40000000;
 | |
|  aBigger:
 | |
|     zSig = aSig - bSig;
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the single-precision floating-point values `a'
 | |
| | and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_add( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat32Sigs( a, b, aSign STATUS_VAR);
 | |
|     }
 | |
|     else {
 | |
|         return subFloat32Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the single-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_sub( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat32Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return addFloat32Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the single-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_mul( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig;
 | |
|     bits64 zSig64;
 | |
|     bits32 zSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x7F;
 | |
|     aSig = ( aSig | 0x00800000 )<<7;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 );
 | |
|     zSig = zSig64;
 | |
|     if ( 0 <= (sbits32) ( zSig<<1 ) ) {
 | |
|         zSig <<= 1;
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the single-precision floating-point value `a'
 | |
| | by the corresponding value `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_div( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits32 aSig, bSig, zSig;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         if ( bExp == 0xFF ) {
 | |
|             if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         return packFloat32( zSign, 0xFF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         return packFloat32( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|                 float_raise( float_flag_invalid STATUS_VAR);
 | |
|                 return float32_default_nan;
 | |
|             }
 | |
|             float_raise( float_flag_divbyzero STATUS_VAR);
 | |
|             return packFloat32( zSign, 0xFF, 0 );
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x7D;
 | |
|     aSig = ( aSig | 0x00800000 )<<7;
 | |
|     bSig = ( bSig | 0x00800000 )<<8;
 | |
|     if ( bSig <= ( aSig + aSig ) ) {
 | |
|         aSig >>= 1;
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig = ( ( (bits64) aSig )<<32 ) / bSig;
 | |
|     if ( ( zSig & 0x3F ) == 0 ) {
 | |
|         zSig |= ( (bits64) bSig * zSig != ( (bits64) aSig )<<32 );
 | |
|     }
 | |
|     return roundAndPackFloat32( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the single-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_rem( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int16 aExp, bExp, expDiff;
 | |
|     bits32 aSig, bSig;
 | |
|     bits32 q;
 | |
|     bits64 aSig64, bSig64, q64;
 | |
|     bits32 alternateASig;
 | |
|     sbits32 sigMean;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSig = extractFloat32Frac( b );
 | |
|     bExp = extractFloat32Exp( b );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) {
 | |
|             return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( bExp == 0xFF ) {
 | |
|         if ( bSig ) return propagateFloat32NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float32_default_nan;
 | |
|         }
 | |
|         normalizeFloat32Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig |= 0x00800000;
 | |
|     bSig |= 0x00800000;
 | |
|     if ( expDiff < 32 ) {
 | |
|         aSig <<= 8;
 | |
|         bSig <<= 8;
 | |
|         if ( expDiff < 0 ) {
 | |
|             if ( expDiff < -1 ) return a;
 | |
|             aSig >>= 1;
 | |
|         }
 | |
|         q = ( bSig <= aSig );
 | |
|         if ( q ) aSig -= bSig;
 | |
|         if ( 0 < expDiff ) {
 | |
|             q = ( ( (bits64) aSig )<<32 ) / bSig;
 | |
|             q >>= 32 - expDiff;
 | |
|             bSig >>= 2;
 | |
|             aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|         }
 | |
|         else {
 | |
|             aSig >>= 2;
 | |
|             bSig >>= 2;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( bSig <= aSig ) aSig -= bSig;
 | |
|         aSig64 = ( (bits64) aSig )<<40;
 | |
|         bSig64 = ( (bits64) bSig )<<40;
 | |
|         expDiff -= 64;
 | |
|         while ( 0 < expDiff ) {
 | |
|             q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
|             q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
|             aSig64 = - ( ( bSig * q64 )<<38 );
 | |
|             expDiff -= 62;
 | |
|         }
 | |
|         expDiff += 64;
 | |
|         q64 = estimateDiv128To64( aSig64, 0, bSig64 );
 | |
|         q64 = ( 2 < q64 ) ? q64 - 2 : 0;
 | |
|         q = q64>>( 64 - expDiff );
 | |
|         bSig <<= 6;
 | |
|         aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (sbits32) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (sbits32) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the single-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float32_sqrt( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, zExp;
 | |
|     bits32 aSig, zSig;
 | |
|     bits64 rem, term;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
 | |
|         if ( ! aSign ) return a;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig ) == 0 ) return a;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return float32_zero;
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E;
 | |
|     aSig = ( aSig | 0x00800000 )<<8;
 | |
|     zSig = estimateSqrt32( aExp, aSig ) + 2;
 | |
|     if ( ( zSig & 0x7F ) <= 5 ) {
 | |
|         if ( zSig < 2 ) {
 | |
|             zSig = 0x7FFFFFFF;
 | |
|             goto roundAndPack;
 | |
|         }
 | |
|         aSig >>= aExp & 1;
 | |
|         term = ( (bits64) zSig ) * zSig;
 | |
|         rem = ( ( (bits64) aSig )<<32 ) - term;
 | |
|         while ( (sbits64) rem < 0 ) {
 | |
|             --zSig;
 | |
|             rem += ( ( (bits64) zSig )<<1 ) | 1;
 | |
|         }
 | |
|         zSig |= ( rem != 0 );
 | |
|     }
 | |
|     shift32RightJamming( zSig, 1, &zSig );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat32( 0, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary exponential of the single-precision floating-point value
 | |
| | `a'. The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| |
 | |
| | Uses the following identities:
 | |
| |
 | |
| | 1. -------------------------------------------------------------------------
 | |
| |      x    x*ln(2)
 | |
| |     2  = e
 | |
| |
 | |
| | 2. -------------------------------------------------------------------------
 | |
| |                      2     3     4     5           n
 | |
| |      x        x     x     x     x     x           x
 | |
| |     e  = 1 + --- + --- + --- + --- + --- + ... + --- + ...
 | |
| |               1!    2!    3!    4!    5!          n!
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static const float64 float32_exp2_coefficients[15] =
 | |
| {
 | |
|     make_float64( 0x3ff0000000000000ll ), /*  1 */
 | |
|     make_float64( 0x3fe0000000000000ll ), /*  2 */
 | |
|     make_float64( 0x3fc5555555555555ll ), /*  3 */
 | |
|     make_float64( 0x3fa5555555555555ll ), /*  4 */
 | |
|     make_float64( 0x3f81111111111111ll ), /*  5 */
 | |
|     make_float64( 0x3f56c16c16c16c17ll ), /*  6 */
 | |
|     make_float64( 0x3f2a01a01a01a01all ), /*  7 */
 | |
|     make_float64( 0x3efa01a01a01a01all ), /*  8 */
 | |
|     make_float64( 0x3ec71de3a556c734ll ), /*  9 */
 | |
|     make_float64( 0x3e927e4fb7789f5cll ), /* 10 */
 | |
|     make_float64( 0x3e5ae64567f544e4ll ), /* 11 */
 | |
|     make_float64( 0x3e21eed8eff8d898ll ), /* 12 */
 | |
|     make_float64( 0x3de6124613a86d09ll ), /* 13 */
 | |
|     make_float64( 0x3da93974a8c07c9dll ), /* 14 */
 | |
|     make_float64( 0x3d6ae7f3e733b81fll ), /* 15 */
 | |
| };
 | |
| 
 | |
| float32 float32_exp2( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
|     float64 r, x, xn;
 | |
|     int i;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0xFF) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
 | |
|         return (aSign) ? float32_zero : a;
 | |
|     }
 | |
|     if (aExp == 0) {
 | |
|         if (aSig == 0) return float32_one;
 | |
|     }
 | |
| 
 | |
|     float_raise( float_flag_inexact STATUS_VAR);
 | |
| 
 | |
|     /* ******************************* */
 | |
|     /* using float64 for approximation */
 | |
|     /* ******************************* */
 | |
|     x = float32_to_float64(a STATUS_VAR);
 | |
|     x = float64_mul(x, float64_ln2 STATUS_VAR);
 | |
| 
 | |
|     xn = x;
 | |
|     r = float64_one;
 | |
|     for (i = 0 ; i < 15 ; i++) {
 | |
|         float64 f;
 | |
| 
 | |
|         f = float64_mul(xn, float32_exp2_coefficients[i] STATUS_VAR);
 | |
|         r = float64_add(r, f STATUS_VAR);
 | |
| 
 | |
|         xn = float64_mul(xn, x STATUS_VAR);
 | |
|     }
 | |
| 
 | |
|     return float64_to_float32(r, status);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary log of the single-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_log2( float32 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig, zSig, i;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat32( 1, 0xFF, 0 );
 | |
|         normalizeFloat32Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float32_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if ( aSig ) return propagateFloat32NaN( a, float32_zero STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     aExp -= 0x7F;
 | |
|     aSig |= 0x00800000;
 | |
|     zSign = aExp < 0;
 | |
|     zSig = aExp << 23;
 | |
| 
 | |
|     for (i = 1 << 22; i > 0; i >>= 1) {
 | |
|         aSig = ( (bits64)aSig * aSig ) >> 23;
 | |
|         if ( aSig & 0x01000000 ) {
 | |
|             aSig >>= 1;
 | |
|             zSig |= i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ( zSign )
 | |
|         zSig = -zSig;
 | |
| 
 | |
|     return normalizeRoundAndPackFloat32( zSign, 0x85, zSig STATUS_VAR );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_eq( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return ( float32_val(a) == float32_val(b) ) ||
 | |
|             ( (bits32) ( ( float32_val(a) | float32_val(b) )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The comparison
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_le( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits32 av, bv;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_lt( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits32 av, bv;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_eq_signaling( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     bits32 av, bv;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     return ( av == bv ) || ( (bits32) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_le_quiet( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits32 av, bv;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (bits32) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float32_lt_quiet( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits32 av, bv;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float32_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) )
 | |
|          || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) )
 | |
|        ) {
 | |
|         if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     bSign = extractFloat32Sign( b );
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (bits32) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float64_to_int32( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits64 aSig;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | |
|     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x42C - aExp;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig );
 | |
|     return roundAndPackInt32( aSign, aSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 32-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float64_to_int32_round_to_zero( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits64 aSig, savedASig;
 | |
|     int32 z;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( 0x41E < aExp ) {
 | |
|         if ( ( aExp == 0x7FF ) && aSig ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FF ) {
 | |
|         if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 16-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int16 float64_to_int16_round_to_zero( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits64 aSig, savedASig;
 | |
|     int32 z;
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( 0x40E < aExp ) {
 | |
|         if ( ( aExp == 0x7FF ) && aSig ) {
 | |
|             aSign = 0;
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FF ) {
 | |
|         if ( aExp || aSig ) {
 | |
|             STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) {
 | |
|         z = - z;
 | |
|     }
 | |
|     if ( ( (int16_t)z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return aSign ? (sbits32) 0xffff8000 : 0x7FFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float64_to_int64( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits64 aSig, aSigExtra;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = 0x433 - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( 0x43E < aExp ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FF )
 | |
|                       && ( aSig != LIT64( 0x0010000000000000 ) ) )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (sbits64) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         aSigExtra = 0;
 | |
|         aSig <<= - shiftCount;
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
|     }
 | |
|     return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the 64-bit two's complement integer format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float64_to_int64_round_to_zero( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, shiftCount;
 | |
|     bits64 aSig;
 | |
|     int64 z;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp ) aSig |= LIT64( 0x0010000000000000 );
 | |
|     shiftCount = aExp - 0x433;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         if ( 0x43E <= aExp ) {
 | |
|             if ( float64_val(a) != LIT64( 0xC3E0000000000000 ) ) {
 | |
|                 float_raise( float_flag_invalid STATUS_VAR);
 | |
|                 if (    ! aSign
 | |
|                      || (    ( aExp == 0x7FF )
 | |
|                           && ( aSig != LIT64( 0x0010000000000000 ) ) )
 | |
|                    ) {
 | |
|                     return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|                 }
 | |
|             }
 | |
|             return (sbits64) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         z = aSig<<shiftCount;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FE ) {
 | |
|             if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|             return 0;
 | |
|         }
 | |
|         z = aSig>>( - shiftCount );
 | |
|         if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
|             STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the single-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float64_to_float32( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig;
 | |
|     bits32 zSig;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a STATUS_VAR ) );
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 22, &aSig );
 | |
|     zSig = aSig;
 | |
|     if ( aExp || zSig ) {
 | |
|         zSig |= 0x40000000;
 | |
|         aExp -= 0x381;
 | |
|     }
 | |
|     return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a
 | |
| | half-precision floating-point value, returning the result.  After being
 | |
| | shifted into the proper positions, the three fields are simply added
 | |
| | together to form the result.  This means that any integer portion of `zSig'
 | |
| | will be added into the exponent.  Since a properly normalized significand
 | |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less
 | |
| | than the desired result exponent whenever `zSig' is a complete, normalized
 | |
| | significand.
 | |
| *----------------------------------------------------------------------------*/
 | |
| static bits16 packFloat16(flag zSign, int16 zExp, bits16 zSig)
 | |
| {
 | |
|     return (((bits32)zSign) << 15) + (((bits32)zExp) << 10) + zSig;
 | |
| }
 | |
| 
 | |
| /* Half precision floats come in two formats: standard IEEE and "ARM" format.
 | |
|    The latter gains extra exponent range by omitting the NaN/Inf encodings.  */
 | |
|   
 | |
| float32 float16_to_float32( bits16 a, flag ieee STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
| 
 | |
|     aSign = a >> 15;
 | |
|     aExp = (a >> 10) & 0x1f;
 | |
|     aSig = a & 0x3ff;
 | |
| 
 | |
|     if (aExp == 0x1f && ieee) {
 | |
|         if (aSig) {
 | |
|             /* Make sure correct exceptions are raised.  */
 | |
|             float32ToCommonNaN(a STATUS_VAR);
 | |
|             aSig |= 0x200;
 | |
|         }
 | |
|         return packFloat32(aSign, 0xff, aSig << 13);
 | |
|     }
 | |
|     if (aExp == 0) {
 | |
|         int8 shiftCount;
 | |
| 
 | |
|         if (aSig == 0) {
 | |
|             return packFloat32(aSign, 0, 0);
 | |
|         }
 | |
| 
 | |
|         shiftCount = countLeadingZeros32( aSig ) - 21;
 | |
|         aSig = aSig << shiftCount;
 | |
|         aExp = -shiftCount;
 | |
|     }
 | |
|     return packFloat32( aSign, aExp + 0x70, aSig << 13);
 | |
| }
 | |
| 
 | |
| bits16 float32_to_float16( float32 a, flag ieee STATUS_PARAM)
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
|     bits32 mask;
 | |
|     bits32 increment;
 | |
|     int8 roundingMode;
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
|     if ( aExp == 0xFF ) {
 | |
|         if (aSig) {
 | |
|             /* Make sure correct exceptions are raised.  */
 | |
|             float32ToCommonNaN(a STATUS_VAR);
 | |
|             aSig |= 0x00400000;
 | |
|         }
 | |
|         return packFloat16(aSign, 0x1f, aSig >> 13);
 | |
|     }
 | |
|     if (aExp == 0 && aSign == 0) {
 | |
|         return packFloat16(aSign, 0, 0);
 | |
|     }
 | |
|     /* Decimal point between bits 22 and 23.  */
 | |
|     aSig |= 0x00800000;
 | |
|     aExp -= 0x7f;
 | |
|     if (aExp < -14) {
 | |
|         mask = 0x007fffff;
 | |
|         if (aExp < -24) {
 | |
|             aExp = -25;
 | |
|         } else {
 | |
|             mask >>= 24 + aExp;
 | |
|         }
 | |
|     } else {
 | |
|         mask = 0x00001fff;
 | |
|     }
 | |
|     if (aSig & mask) {
 | |
|         float_raise( float_flag_underflow STATUS_VAR );
 | |
|         roundingMode = STATUS(float_rounding_mode);
 | |
|         switch (roundingMode) {
 | |
|         case float_round_nearest_even:
 | |
|             increment = (mask + 1) >> 1;
 | |
|             if ((aSig & mask) == increment) {
 | |
|                 increment = aSig & (increment << 1);
 | |
|             }
 | |
|             break;
 | |
|         case float_round_up:
 | |
|             increment = aSign ? 0 : mask;
 | |
|             break;
 | |
|         case float_round_down:
 | |
|             increment = aSign ? mask : 0;
 | |
|             break;
 | |
|         default: /* round_to_zero */
 | |
|             increment = 0;
 | |
|             break;
 | |
|         }
 | |
|         aSig += increment;
 | |
|         if (aSig >= 0x01000000) {
 | |
|             aSig >>= 1;
 | |
|             aExp++;
 | |
|         }
 | |
|     } else if (aExp < -14
 | |
|           && STATUS(float_detect_tininess) == float_tininess_before_rounding) {
 | |
|         float_raise( float_flag_underflow STATUS_VAR);
 | |
|     }
 | |
| 
 | |
|     if (ieee) {
 | |
|         if (aExp > 15) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
 | |
|             return packFloat16(aSign, 0x1f, 0);
 | |
|         }
 | |
|     } else {
 | |
|         if (aExp > 16) {
 | |
|             float_raise( float_flag_overflow | float_flag_inexact STATUS_VAR);
 | |
|             return packFloat16(aSign, 0x1f, 0x3ff);
 | |
|         }
 | |
|     }
 | |
|     if (aExp < -24) {
 | |
|         return packFloat16(aSign, 0, 0);
 | |
|     }
 | |
|     if (aExp < -14) {
 | |
|         aSig >>= -14 - aExp;
 | |
|         aExp = -14;
 | |
|     }
 | |
|     return packFloat16(aSign, aExp + 14, aSig >> 13);
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the extended double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float64_to_floatx80( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a STATUS_VAR ) );
 | |
|         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     return
 | |
|         packFloatx80(
 | |
|             aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point value
 | |
| | `a' to the quadruple-precision floating-point format.  The conversion is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float64_to_float128( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig, zSig0, zSig1;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a STATUS_VAR ) );
 | |
|         return packFloat128( aSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|         --aExp;
 | |
|     }
 | |
|     shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
 | |
|     return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the double-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a double-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_round_to_int( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 lastBitMask, roundBitsMask;
 | |
|     int8 roundingMode;
 | |
|     bits64 z;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     if ( 0x433 <= aExp ) {
 | |
|         if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) {
 | |
|             return propagateFloat64NaN( a, a STATUS_VAR );
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp < 0x3FF ) {
 | |
|         if ( (bits64) ( float64_val(a)<<1 ) == 0 ) return a;
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         aSign = extractFloat64Sign( a );
 | |
|         switch ( STATUS(float_rounding_mode) ) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) {
 | |
|                 return packFloat64( aSign, 0x3FF, 0 );
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return make_float64(aSign ? LIT64( 0xBFF0000000000000 ) : 0);
 | |
|          case float_round_up:
 | |
|             return make_float64(
 | |
|             aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ));
 | |
|         }
 | |
|         return packFloat64( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x433 - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = float64_val(a);
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     if ( roundingMode == float_round_nearest_even ) {
 | |
|         z += lastBitMask>>1;
 | |
|         if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask;
 | |
|     }
 | |
|     else if ( roundingMode != float_round_to_zero ) {
 | |
|         if ( extractFloat64Sign( make_float64(z) ) ^ ( roundingMode == float_round_up ) ) {
 | |
|             z += roundBitsMask;
 | |
|         }
 | |
|     }
 | |
|     z &= ~ roundBitsMask;
 | |
|     if ( z != float64_val(a) )
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     return make_float64(z);
 | |
| 
 | |
| }
 | |
| 
 | |
| float64 float64_trunc_to_int( float64 a STATUS_PARAM)
 | |
| {
 | |
|     int oldmode;
 | |
|     float64 res;
 | |
|     oldmode = STATUS(float_rounding_mode);
 | |
|     STATUS(float_rounding_mode) = float_round_to_zero;
 | |
|     res = float64_round_to_int(a STATUS_VAR);
 | |
|     STATUS(float_rounding_mode) = oldmode;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the double-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 addFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 9;
 | |
|     bSig <<= 9;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FF ) {
 | |
|             if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig |= LIT64( 0x2000000000000000 );
 | |
|         }
 | |
|         shift64RightJamming( bSig, expDiff, &bSig );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FF ) {
 | |
|             if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|             return packFloat64( zSign, 0x7FF, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig |= LIT64( 0x2000000000000000 );
 | |
|         }
 | |
|         shift64RightJamming( aSig, - expDiff, &aSig );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FF ) {
 | |
|             if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|             return a;
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloat64( zSign, 0, 0 );
 | |
|             return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
 | |
|         }
 | |
|         zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
 | |
|         zExp = aExp;
 | |
|         goto roundAndPack;
 | |
|     }
 | |
|     aSig |= LIT64( 0x2000000000000000 );
 | |
|     zSig = ( aSig + bSig )<<1;
 | |
|     --zExp;
 | |
|     if ( (sbits64) zSig < 0 ) {
 | |
|         zSig = aSig + bSig;
 | |
|         ++zExp;
 | |
|     }
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 subFloat64Sigs( float64 a, float64 b, flag zSign STATUS_PARAM )
 | |
| {
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig;
 | |
|     int16 expDiff;
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig <<= 10;
 | |
|     bSig <<= 10;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig | bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloat64( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         return packFloat64( zSign ^ 1, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, - expDiff, &aSig );
 | |
|     bSig |= LIT64( 0x4000000000000000 );
 | |
|  bBigger:
 | |
|     zSig = bSig - aSig;
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift64RightJamming( bSig, expDiff, &bSig );
 | |
|     aSig |= LIT64( 0x4000000000000000 );
 | |
|  aBigger:
 | |
|     zSig = aSig - bSig;
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the double-precision floating-point values `a'
 | |
| | and `b'.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_add( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat64Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return subFloat64Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the double-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_sub( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat64Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return addFloat64Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the double-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_mul( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig0, zSig1;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
|             return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float64_default_nan;
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float64_default_nan;
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x3FF;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
|     zSig0 |= ( zSig1 != 0 );
 | |
|     if ( 0 <= (sbits64) ( zSig0<<1 ) ) {
 | |
|         zSig0 <<= 1;
 | |
|         --zExp;
 | |
|     }
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig0 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the double-precision floating-point value `a'
 | |
| | by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_div( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int16 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig;
 | |
|     bits64 rem0, rem1;
 | |
|     bits64 term0, term1;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         if ( bExp == 0x7FF ) {
 | |
|             if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float64_default_nan;
 | |
|         }
 | |
|         return packFloat64( zSign, 0x7FF, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         return packFloat64( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|                 float_raise( float_flag_invalid STATUS_VAR);
 | |
|                 return float64_default_nan;
 | |
|             }
 | |
|             float_raise( float_flag_divbyzero STATUS_VAR);
 | |
|             return packFloat64( zSign, 0x7FF, 0 );
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FD;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     if ( bSig <= ( aSig + aSig ) ) {
 | |
|         aSig >>= 1;
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig = estimateDiv128To64( aSig, 0, bSig );
 | |
|     if ( ( zSig & 0x1FF ) <= 2 ) {
 | |
|         mul64To128( bSig, zSig, &term0, &term1 );
 | |
|         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
|         while ( (sbits64) rem0 < 0 ) {
 | |
|             --zSig;
 | |
|             add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
|         }
 | |
|         zSig |= ( rem1 != 0 );
 | |
|     }
 | |
|     return roundAndPackFloat64( zSign, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the double-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_rem( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int16 aExp, bExp, expDiff;
 | |
|     bits64 aSig, bSig;
 | |
|     bits64 q, alternateASig;
 | |
|     sbits64 sigMean;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSig = extractFloat64Frac( b );
 | |
|     bExp = extractFloat64Exp( b );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) {
 | |
|             return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( bExp == 0x7FF ) {
 | |
|         if ( bSig ) return propagateFloat64NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             return float64_default_nan;
 | |
|         }
 | |
|         normalizeFloat64Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return a;
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         aSig >>= 1;
 | |
|     }
 | |
|     q = ( bSig <= aSig );
 | |
|     if ( q ) aSig -= bSig;
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         aSig = - ( ( bSig>>2 ) * q );
 | |
|         expDiff -= 62;
 | |
|     }
 | |
|     expDiff += 64;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig, 0, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 64 - expDiff;
 | |
|         bSig >>= 2;
 | |
|         aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q;
 | |
|     }
 | |
|     else {
 | |
|         aSig >>= 2;
 | |
|         bSig >>= 2;
 | |
|     }
 | |
|     do {
 | |
|         alternateASig = aSig;
 | |
|         ++q;
 | |
|         aSig -= bSig;
 | |
|     } while ( 0 <= (sbits64) aSig );
 | |
|     sigMean = aSig + alternateASig;
 | |
|     if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig = alternateASig;
 | |
|     }
 | |
|     zSign = ( (sbits64) aSig < 0 );
 | |
|     if ( zSign ) aSig = - aSig;
 | |
|     return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the double-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float64_sqrt( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp, zExp;
 | |
|     bits64 aSig, zSig, doubleZSig;
 | |
|     bits64 rem0, rem1, term0, term1;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return propagateFloat64NaN( a, a STATUS_VAR );
 | |
|         if ( ! aSign ) return a;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig ) == 0 ) return a;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return float64_zero;
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE;
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     zSig = estimateSqrt32( aExp, aSig>>21 );
 | |
|     aSig <<= 9 - ( aExp & 1 );
 | |
|     zSig = estimateDiv128To64( aSig, 0, zSig<<32 ) + ( zSig<<30 );
 | |
|     if ( ( zSig & 0x1FF ) <= 5 ) {
 | |
|         doubleZSig = zSig<<1;
 | |
|         mul64To128( zSig, zSig, &term0, &term1 );
 | |
|         sub128( aSig, 0, term0, term1, &rem0, &rem1 );
 | |
|         while ( (sbits64) rem0 < 0 ) {
 | |
|             --zSig;
 | |
|             doubleZSig -= 2;
 | |
|             add128( rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1 );
 | |
|         }
 | |
|         zSig |= ( ( rem0 | rem1 ) != 0 );
 | |
|     }
 | |
|     return roundAndPackFloat64( 0, zExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the binary log of the double-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_log2( float64 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig, aSig0, aSig1, zSig, i;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
| 
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
| 
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloat64( 1, 0x7FF, 0 );
 | |
|         normalizeFloat64Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return float64_default_nan;
 | |
|     }
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         if ( aSig ) return propagateFloat64NaN( a, float64_zero STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
| 
 | |
|     aExp -= 0x3FF;
 | |
|     aSig |= LIT64( 0x0010000000000000 );
 | |
|     zSign = aExp < 0;
 | |
|     zSig = (bits64)aExp << 52;
 | |
|     for (i = 1LL << 51; i > 0; i >>= 1) {
 | |
|         mul64To128( aSig, aSig, &aSig0, &aSig1 );
 | |
|         aSig = ( aSig0 << 12 ) | ( aSig1 >> 52 );
 | |
|         if ( aSig & LIT64( 0x0020000000000000 ) ) {
 | |
|             aSig >>= 1;
 | |
|             zSig |= i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ( zSign )
 | |
|         zSig = -zSig;
 | |
|     return normalizeRoundAndPackFloat64( zSign, 0x408, zSig STATUS_VAR );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_eq( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     bits64 av, bv;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_le( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits64 av, bv;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_lt( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits64 av, bv;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is equal to the
 | |
| | corresponding value `b', and 0 otherwise.  The invalid exception is raised
 | |
| | if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_eq_signaling( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     bits64 av, bv;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     return ( av == bv ) || ( (bits64) ( ( av | bv )<<1 ) == 0 );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than or
 | |
| | equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_le_quiet( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits64 av, bv;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign || ( (bits64) ( ( av | bv )<<1 ) == 0 );
 | |
|     return ( av == bv ) || ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float64_lt_quiet( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
|     bits64 av, bv;
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     b = float64_squash_input_denormal(b STATUS_VAR);
 | |
| 
 | |
|     if (    ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) )
 | |
|          || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) )
 | |
|        ) {
 | |
|         if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat64Sign( a );
 | |
|     bSign = extractFloat64Sign( b );
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
|     if ( aSign != bSign ) return aSign && ( (bits64) ( ( av | bv )<<1 ) != 0 );
 | |
|     return ( av != bv ) && ( aSign ^ ( av < bv ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN, the
 | |
| | largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 floatx80_to_int32( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 | |
|     shiftCount = 0x4037 - aExp;
 | |
|     if ( shiftCount <= 0 ) shiftCount = 1;
 | |
|     shift64RightJamming( aSig, shiftCount, &aSig );
 | |
|     return roundAndPackInt32( aSign, aSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 32-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig, savedASig;
 | |
|     int32 z;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( 0x401E < aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if ( aExp || aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     shiftCount = 0x403E - aExp;
 | |
|     savedASig = aSig;
 | |
|     aSig >>= shiftCount;
 | |
|     z = aSig;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig<<shiftCount ) != savedASig ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic---which means in particular that the conversion
 | |
| | is rounded according to the current rounding mode.  If `a' is a NaN,
 | |
| | the largest positive integer is returned.  Otherwise, if the conversion
 | |
| | overflows, the largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 floatx80_to_int64( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig, aSigExtra;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     shiftCount = 0x403E - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( shiftCount ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FFF )
 | |
|                       && ( aSig != LIT64( 0x8000000000000000 ) ) )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (sbits64) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         aSigExtra = 0;
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
 | |
|     }
 | |
|     return roundAndPackInt64( aSign, aSig, aSigExtra STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the 64-bit two's complement integer format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic, except that the conversion is always rounded
 | |
| | toward zero.  If `a' is a NaN, the largest positive integer is returned.
 | |
| | Otherwise, if the conversion overflows, the largest integer with the same
 | |
| | sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig;
 | |
|     int64 z;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     shiftCount = aExp - 0x403E;
 | |
|     if ( 0 <= shiftCount ) {
 | |
|         aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|         if ( ( a.high != 0xC03E ) || aSig ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|         }
 | |
|         return (sbits64) LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if ( aExp | aSig ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     z = aSig>>( - shiftCount );
 | |
|     if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the single-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 floatx80_to_float32( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 aSig;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( aSig<<1 ) ) {
 | |
|             return commonNaNToFloat32( floatx80ToCommonNaN( a STATUS_VAR ) );
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 33, &aSig );
 | |
|     if ( aExp || aSig ) aExp -= 0x3F81;
 | |
|     return roundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 floatx80_to_float64( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 aSig, zSig;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( aSig<<1 ) ) {
 | |
|             return commonNaNToFloat64( floatx80ToCommonNaN( a STATUS_VAR ) );
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     shift64RightJamming( aSig, 1, &zSig );
 | |
|     if ( aExp || aSig ) aExp -= 0x3C01;
 | |
|     return roundAndPackFloat64( aSign, aExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point value `a' to the quadruple-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 floatx80_to_float128( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig, zSig0, zSig1;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
 | |
|         return commonNaNToFloat128( floatx80ToCommonNaN( a STATUS_VAR ) );
 | |
|     }
 | |
|     shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
 | |
|     return packFloat128( aSign, aExp, zSig0, zSig1 );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the extended double-precision floating-point value `a' to an integer,
 | |
| | and returns the result as an extended quadruple-precision floating-point
 | |
| | value.  The operation is performed according to the IEC/IEEE Standard for
 | |
| | Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 lastBitMask, roundBitsMask;
 | |
|     int8 roundingMode;
 | |
|     floatx80 z;
 | |
| 
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     if ( 0x403E <= aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
 | |
|             return propagateFloatx80NaN( a, a STATUS_VAR );
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp < 0x3FFF ) {
 | |
|         if (    ( aExp == 0 )
 | |
|              && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
 | |
|             return a;
 | |
|         }
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         aSign = extractFloatx80Sign( a );
 | |
|         switch ( STATUS(float_rounding_mode) ) {
 | |
|          case float_round_nearest_even:
 | |
|             if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
 | |
|                ) {
 | |
|                 return
 | |
|                     packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
|             }
 | |
|             break;
 | |
|          case float_round_down:
 | |
|             return
 | |
|                   aSign ?
 | |
|                       packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
 | |
|                 : packFloatx80( 0, 0, 0 );
 | |
|          case float_round_up:
 | |
|             return
 | |
|                   aSign ? packFloatx80( 1, 0, 0 )
 | |
|                 : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         return packFloatx80( aSign, 0, 0 );
 | |
|     }
 | |
|     lastBitMask = 1;
 | |
|     lastBitMask <<= 0x403E - aExp;
 | |
|     roundBitsMask = lastBitMask - 1;
 | |
|     z = a;
 | |
|     roundingMode = STATUS(float_rounding_mode);
 | |
|     if ( roundingMode == float_round_nearest_even ) {
 | |
|         z.low += lastBitMask>>1;
 | |
|         if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
|     }
 | |
|     else if ( roundingMode != float_round_to_zero ) {
 | |
|         if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
 | |
|             z.low += roundBitsMask;
 | |
|         }
 | |
|     }
 | |
|     z.low &= ~ roundBitsMask;
 | |
|     if ( z.low == 0 ) {
 | |
|         ++z.high;
 | |
|         z.low = LIT64( 0x8000000000000000 );
 | |
|     }
 | |
|     if ( z.low != a.low ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the extended double-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the sum is
 | |
| | negated before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM)
 | |
| {
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig0, zSig1;
 | |
|     int32 expDiff;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) --expDiff;
 | |
|         shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         if ( aExp == 0 ) ++expDiff;
 | |
|         shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 | |
|                 return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         zSig1 = 0;
 | |
|         zSig0 = aSig + bSig;
 | |
|         if ( aExp == 0 ) {
 | |
|             normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
 | |
|             goto roundAndPack;
 | |
|         }
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     zSig0 = aSig + bSig;
 | |
|     if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
 | |
|  shiftRight1:
 | |
|     shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
|     zSig0 |= LIT64( 0x8000000000000000 );
 | |
|     ++zExp;
 | |
|  roundAndPack:
 | |
|     return
 | |
|         roundAndPackFloatx80(
 | |
|             STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the extended
 | |
| | double-precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign STATUS_PARAM )
 | |
| {
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig0, zSig1;
 | |
|     int32 expDiff;
 | |
|     floatx80 z;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
 | |
|             return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         z.low = floatx80_default_nan_low;
 | |
|         z.high = floatx80_default_nan_high;
 | |
|         return z;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     zSig1 = 0;
 | |
|     if ( bSig < aSig ) goto aBigger;
 | |
|     if ( aSig < bSig ) goto bBigger;
 | |
|     return packFloatx80( STATUS(float_rounding_mode) == float_round_down, 0, 0 );
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) ++expDiff;
 | |
|     shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
 | |
|  bBigger:
 | |
|     sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) --expDiff;
 | |
|     shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
 | |
|  aBigger:
 | |
|     sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     return
 | |
|         normalizeRoundAndPackFloatx80(
 | |
|             STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the extended double-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloatx80Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return subFloatx80Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloatx80Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return addFloatx80Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the extended double-precision floating-
 | |
| | point values `a' and `b'.  The operation is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig0, zSig1;
 | |
|     floatx80 z;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    (bits64) ( aSig<<1 )
 | |
|              || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 | |
|             return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         if ( ( bExp | bSig ) == 0 ) goto invalid;
 | |
|         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         if ( ( aExp | aSig ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             z.low = floatx80_default_nan_low;
 | |
|             z.high = floatx80_default_nan_high;
 | |
|             return z;
 | |
|         }
 | |
|         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x3FFE;
 | |
|     mul64To128( aSig, bSig, &zSig0, &zSig1 );
 | |
|     if ( 0 < (sbits64) zSig0 ) {
 | |
|         shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
 | |
|         --zExp;
 | |
|     }
 | |
|     return
 | |
|         roundAndPackFloatx80(
 | |
|             STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the extended double-precision floating-point
 | |
| | value `a' by the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig, bSig, zSig0, zSig1;
 | |
|     bits64 rem0, rem1, rem2, term0, term1, term2;
 | |
|     floatx80 z;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         return packFloatx80( zSign, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|             if ( ( aExp | aSig ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise( float_flag_invalid STATUS_VAR);
 | |
|                 z.low = floatx80_default_nan_low;
 | |
|                 z.high = floatx80_default_nan_high;
 | |
|                 return z;
 | |
|             }
 | |
|             float_raise( float_flag_divbyzero STATUS_VAR);
 | |
|             return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|         }
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FFE;
 | |
|     rem1 = 0;
 | |
|     if ( bSig <= aSig ) {
 | |
|         shift128Right( aSig, 0, 1, &aSig, &rem1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv128To64( aSig, rem1, bSig );
 | |
|     mul64To128( bSig, zSig0, &term0, &term1 );
 | |
|     sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (sbits64) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, bSig );
 | |
|     if ( (bits64) ( zSig1<<1 ) <= 8 ) {
 | |
|         mul64To128( bSig, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         while ( (sbits64) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 ) != 0 );
 | |
|     }
 | |
|     return
 | |
|         roundAndPackFloatx80(
 | |
|             STATUS(floatx80_rounding_precision), zSign, zExp, zSig0, zSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the extended double-precision floating-point value
 | |
| | `a' with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int32 aExp, bExp, expDiff;
 | |
|     bits64 aSig0, aSig1, bSig;
 | |
|     bits64 q, term0, term1, alternateASig0, alternateASig1;
 | |
|     floatx80 z;
 | |
| 
 | |
|     aSig0 = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSig = extractFloatx80Frac( b );
 | |
|     bExp = extractFloatx80Exp( b );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    (bits64) ( aSig0<<1 )
 | |
|              || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
 | |
|             return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( bSig == 0 ) {
 | |
|  invalid:
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             z.low = floatx80_default_nan_low;
 | |
|             z.high = floatx80_default_nan_high;
 | |
|             return z;
 | |
|         }
 | |
|         normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
 | |
|         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
|     }
 | |
|     bSig |= LIT64( 0x8000000000000000 );
 | |
|     zSign = aSign;
 | |
|     expDiff = aExp - bExp;
 | |
|     aSig1 = 0;
 | |
|     if ( expDiff < 0 ) {
 | |
|         if ( expDiff < -1 ) return a;
 | |
|         shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
 | |
|         expDiff = 0;
 | |
|     }
 | |
|     q = ( bSig <= aSig0 );
 | |
|     if ( q ) aSig0 -= bSig;
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         mul64To128( bSig, q, &term0, &term1 );
 | |
|         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
 | |
|         expDiff -= 62;
 | |
|     }
 | |
|     expDiff += 64;
 | |
|     if ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig );
 | |
|         q = ( 2 < q ) ? q - 2 : 0;
 | |
|         q >>= 64 - expDiff;
 | |
|         mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
 | |
|         sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
 | |
|         while ( le128( term0, term1, aSig0, aSig1 ) ) {
 | |
|             ++q;
 | |
|             sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         term1 = 0;
 | |
|         term0 = bSig;
 | |
|     }
 | |
|     sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
 | |
|     if (    lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
|          || (    eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
 | |
|               && ( q & 1 ) )
 | |
|        ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|         zSign = ! zSign;
 | |
|     }
 | |
|     return
 | |
|         normalizeRoundAndPackFloatx80(
 | |
|             80, zSign, bExp + expDiff, aSig0, aSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the extended double-precision floating-point
 | |
| | value `a'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, zExp;
 | |
|     bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
 | |
|     bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
|     floatx80 z;
 | |
| 
 | |
|     aSig0 = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a STATUS_VAR );
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         z.low = floatx80_default_nan_low;
 | |
|         z.high = floatx80_default_nan_high;
 | |
|         return z;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
 | |
|         normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
 | |
|     zSig0 = estimateSqrt32( aExp, aSig0>>32 );
 | |
|     shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
|     doubleZSig0 = zSig0<<1;
 | |
|     mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
|     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (sbits64) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (sbits64) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
 | |
|     zSig0 |= doubleZSig0;
 | |
|     return
 | |
|         roundAndPackFloatx80(
 | |
|             STATUS(floatx80_rounding_precision), 0, zExp, zSig0, zSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | equal to the corresponding value `b', and 0 otherwise.  The comparison is
 | |
| | performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (    floatx80_is_signaling_nan( a )
 | |
|              || floatx80_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than or equal to the corresponding value `b', and 0 otherwise.  The
 | |
| | comparison is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is
 | |
| | less than the corresponding value `b', and 0 otherwise.  The comparison
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is equal
 | |
| | to the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs
 | |
| | do not cause an exception.  Otherwise, the comparison is performed according
 | |
| | to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (    floatx80_is_signaling_nan( a )
 | |
|              || floatx80_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is less
 | |
| | than the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause
 | |
| | an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloatx80Exp( a ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( a )<<1 ) )
 | |
|          || (    ( extractFloatx80Exp( b ) == 0x7FFF )
 | |
|               && (bits64) ( extractFloatx80Frac( b )<<1 ) )
 | |
|        ) {
 | |
|         if (    floatx80_is_signaling_nan( a )
 | |
|              || floatx80_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloatx80Sign( a );
 | |
|     bSign = extractFloatx80Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float128_to_int32( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     shiftCount = 0x4028 - aExp;
 | |
|     if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
 | |
|     return roundAndPackInt32( aSign, aSig0 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 32-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.  If
 | |
| | `a' is a NaN, the largest positive integer is returned.  Otherwise, if the
 | |
| | conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int32 float128_to_int32_round_to_zero( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig0, aSig1, savedASig;
 | |
|     int32 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     if ( 0x401E < aExp ) {
 | |
|         if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
 | |
|         goto invalid;
 | |
|     }
 | |
|     else if ( aExp < 0x3FFF ) {
 | |
|         if ( aExp || aSig0 ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         return 0;
 | |
|     }
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     savedASig = aSig0;
 | |
|     aSig0 >>= shiftCount;
 | |
|     z = aSig0;
 | |
|     if ( aSign ) z = - z;
 | |
|     if ( ( z < 0 ) ^ aSign ) {
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
 | |
|     }
 | |
|     if ( ( aSig0<<shiftCount ) != savedASig ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic---which means in particular that the conversion is rounded
 | |
| | according to the current rounding mode.  If `a' is a NaN, the largest
 | |
| | positive integer is returned.  Otherwise, if the conversion overflows, the
 | |
| | largest integer with the same sign as `a' is returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float128_to_int64( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = 0x402F - aExp;
 | |
|     if ( shiftCount <= 0 ) {
 | |
|         if ( 0x403E < aExp ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             if (    ! aSign
 | |
|                  || (    ( aExp == 0x7FFF )
 | |
|                       && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
 | |
|                     )
 | |
|                ) {
 | |
|                 return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|             }
 | |
|             return (sbits64) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
 | |
|     }
 | |
|     return roundAndPackInt64( aSign, aSig0, aSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the 64-bit two's complement integer format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic, except that the conversion is always rounded toward zero.
 | |
| | If `a' is a NaN, the largest positive integer is returned.  Otherwise, if
 | |
| | the conversion overflows, the largest integer with the same sign as `a' is
 | |
| | returned.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int64 float128_to_int64_round_to_zero( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, shiftCount;
 | |
|     bits64 aSig0, aSig1;
 | |
|     int64 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shiftCount = aExp - 0x402F;
 | |
|     if ( 0 < shiftCount ) {
 | |
|         if ( 0x403E <= aExp ) {
 | |
|             aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
 | |
|             if (    ( a.high == LIT64( 0xC03E000000000000 ) )
 | |
|                  && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
 | |
|                 if ( aSig1 ) STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|             }
 | |
|             else {
 | |
|                 float_raise( float_flag_invalid STATUS_VAR);
 | |
|                 if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
 | |
|                     return LIT64( 0x7FFFFFFFFFFFFFFF );
 | |
|                 }
 | |
|             }
 | |
|             return (sbits64) LIT64( 0x8000000000000000 );
 | |
|         }
 | |
|         z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
 | |
|         if ( (bits64) ( aSig1<<shiftCount ) ) {
 | |
|             STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FFF ) {
 | |
|             if ( aExp | aSig0 | aSig1 ) {
 | |
|                 STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|             }
 | |
|             return 0;
 | |
|         }
 | |
|         z = aSig0>>( - shiftCount );
 | |
|         if (    aSig1
 | |
|              || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
 | |
|             STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|         }
 | |
|     }
 | |
|     if ( aSign ) z = - z;
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the single-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float32 float128_to_float32( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 aSig0, aSig1;
 | |
|     bits32 zSig;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat32( float128ToCommonNaN( a STATUS_VAR ) );
 | |
|         }
 | |
|         return packFloat32( aSign, 0xFF, 0 );
 | |
|     }
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     shift64RightJamming( aSig0, 18, &aSig0 );
 | |
|     zSig = aSig0;
 | |
|     if ( aExp || zSig ) {
 | |
|         zSig |= 0x40000000;
 | |
|         aExp -= 0x3F81;
 | |
|     }
 | |
|     return roundAndPackFloat32( aSign, aExp, zSig STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the double-precision floating-point format.  The conversion
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float64 float128_to_float64( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloat64( float128ToCommonNaN( a STATUS_VAR ) );
 | |
|         }
 | |
|         return packFloat64( aSign, 0x7FF, 0 );
 | |
|     }
 | |
|     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
|     aSig0 |= ( aSig1 != 0 );
 | |
|     if ( aExp || aSig0 ) {
 | |
|         aSig0 |= LIT64( 0x4000000000000000 );
 | |
|         aExp -= 0x3C01;
 | |
|     }
 | |
|     return roundAndPackFloat64( aSign, aExp, aSig0 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point
 | |
| | value `a' to the extended double-precision floating-point format.  The
 | |
| | conversion is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 float128_to_floatx80( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) {
 | |
|             return commonNaNToFloatx80( float128ToCommonNaN( a STATUS_VAR ) );
 | |
|         }
 | |
|         return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     }
 | |
|     shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
 | |
|     return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Rounds the quadruple-precision floating-point value `a' to an integer, and
 | |
| | returns the result as a quadruple-precision floating-point value.  The
 | |
| | operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_round_to_int( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 lastBitMask, roundBitsMask;
 | |
|     int8 roundingMode;
 | |
|     float128 z;
 | |
| 
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     if ( 0x402F <= aExp ) {
 | |
|         if ( 0x406F <= aExp ) {
 | |
|             if (    ( aExp == 0x7FFF )
 | |
|                  && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
 | |
|                ) {
 | |
|                 return propagateFloat128NaN( a, a STATUS_VAR );
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z = a;
 | |
|         roundingMode = STATUS(float_rounding_mode);
 | |
|         if ( roundingMode == float_round_nearest_even ) {
 | |
|             if ( lastBitMask ) {
 | |
|                 add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
 | |
|                 if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
 | |
|             }
 | |
|             else {
 | |
|                 if ( (sbits64) z.low < 0 ) {
 | |
|                     ++z.high;
 | |
|                     if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if ( roundingMode != float_round_to_zero ) {
 | |
|             if (   extractFloat128Sign( z )
 | |
|                  ^ ( roundingMode == float_round_up ) ) {
 | |
|                 add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
 | |
|             }
 | |
|         }
 | |
|         z.low &= ~ roundBitsMask;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp < 0x3FFF ) {
 | |
|             if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
 | |
|             STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|             aSign = extractFloat128Sign( a );
 | |
|             switch ( STATUS(float_rounding_mode) ) {
 | |
|              case float_round_nearest_even:
 | |
|                 if (    ( aExp == 0x3FFE )
 | |
|                      && (   extractFloat128Frac0( a )
 | |
|                           | extractFloat128Frac1( a ) )
 | |
|                    ) {
 | |
|                     return packFloat128( aSign, 0x3FFF, 0, 0 );
 | |
|                 }
 | |
|                 break;
 | |
|              case float_round_down:
 | |
|                 return
 | |
|                       aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
 | |
|                     : packFloat128( 0, 0, 0, 0 );
 | |
|              case float_round_up:
 | |
|                 return
 | |
|                       aSign ? packFloat128( 1, 0, 0, 0 )
 | |
|                     : packFloat128( 0, 0x3FFF, 0, 0 );
 | |
|             }
 | |
|             return packFloat128( aSign, 0, 0, 0 );
 | |
|         }
 | |
|         lastBitMask = 1;
 | |
|         lastBitMask <<= 0x402F - aExp;
 | |
|         roundBitsMask = lastBitMask - 1;
 | |
|         z.low = 0;
 | |
|         z.high = a.high;
 | |
|         roundingMode = STATUS(float_rounding_mode);
 | |
|         if ( roundingMode == float_round_nearest_even ) {
 | |
|             z.high += lastBitMask>>1;
 | |
|             if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
 | |
|                 z.high &= ~ lastBitMask;
 | |
|             }
 | |
|         }
 | |
|         else if ( roundingMode != float_round_to_zero ) {
 | |
|             if (   extractFloat128Sign( z )
 | |
|                  ^ ( roundingMode == float_round_up ) ) {
 | |
|                 z.high |= ( a.low != 0 );
 | |
|                 z.high += roundBitsMask;
 | |
|             }
 | |
|         }
 | |
|         z.high &= ~ roundBitsMask;
 | |
|     }
 | |
|     if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
 | |
|         STATUS(float_exception_flags) |= float_flag_inexact;
 | |
|     }
 | |
|     return z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the absolute values of the quadruple-precision
 | |
| | floating-point values `a' and `b'.  If `zSign' is 1, the sum is negated
 | |
| | before being returned.  `zSign' is ignored if the result is a NaN.
 | |
| | The addition is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 addFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
 | |
| {
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     int32 expDiff;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( 0 < expDiff ) {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|             return a;
 | |
|         }
 | |
|         if ( bExp == 0 ) {
 | |
|             --expDiff;
 | |
|         }
 | |
|         else {
 | |
|             bSig0 |= LIT64( 0x0001000000000000 );
 | |
|         }
 | |
|         shift128ExtraRightJamming(
 | |
|             bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
 | |
|         zExp = aExp;
 | |
|     }
 | |
|     else if ( expDiff < 0 ) {
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         if ( aExp == 0 ) {
 | |
|             ++expDiff;
 | |
|         }
 | |
|         else {
 | |
|             aSig0 |= LIT64( 0x0001000000000000 );
 | |
|         }
 | |
|         shift128ExtraRightJamming(
 | |
|             aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
 | |
|         zExp = bExp;
 | |
|     }
 | |
|     else {
 | |
|         if ( aExp == 0x7FFF ) {
 | |
|             if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|                 return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|             }
 | |
|             return a;
 | |
|         }
 | |
|         add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|         if ( aExp == 0 ) {
 | |
|             if ( STATUS(flush_to_zero) ) return packFloat128( zSign, 0, 0, 0 );
 | |
|             return packFloat128( zSign, 0, zSig0, zSig1 );
 | |
|         }
 | |
|         zSig2 = 0;
 | |
|         zSig0 |= LIT64( 0x0002000000000000 );
 | |
|         zExp = aExp;
 | |
|         goto shiftRight1;
 | |
|     }
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     --zExp;
 | |
|     if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
 | |
|     ++zExp;
 | |
|  shiftRight1:
 | |
|     shift128ExtraRightJamming(
 | |
|         zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|  roundAndPack:
 | |
|     return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the absolute values of the quadruple-
 | |
| | precision floating-point values `a' and `b'.  If `zSign' is 1, the
 | |
| | difference is negated before being returned.  `zSign' is ignored if the
 | |
| | result is a NaN.  The subtraction is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 subFloat128Sigs( float128 a, float128 b, flag zSign STATUS_PARAM)
 | |
| {
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
 | |
|     int32 expDiff;
 | |
|     float128 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     expDiff = aExp - bExp;
 | |
|     shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
 | |
|     shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
 | |
|     if ( 0 < expDiff ) goto aExpBigger;
 | |
|     if ( expDiff < 0 ) goto bExpBigger;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
 | |
|             return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         z.low = float128_default_nan_low;
 | |
|         z.high = float128_default_nan_high;
 | |
|         return z;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         aExp = 1;
 | |
|         bExp = 1;
 | |
|     }
 | |
|     if ( bSig0 < aSig0 ) goto aBigger;
 | |
|     if ( aSig0 < bSig0 ) goto bBigger;
 | |
|     if ( bSig1 < aSig1 ) goto aBigger;
 | |
|     if ( aSig1 < bSig1 ) goto bBigger;
 | |
|     return packFloat128( STATUS(float_rounding_mode) == float_round_down, 0, 0, 0 );
 | |
|  bExpBigger:
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         ++expDiff;
 | |
|     }
 | |
|     else {
 | |
|         aSig0 |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|     bSig0 |= LIT64( 0x4000000000000000 );
 | |
|  bBigger:
 | |
|     sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zExp = bExp;
 | |
|     zSign ^= 1;
 | |
|     goto normalizeRoundAndPack;
 | |
|  aExpBigger:
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         --expDiff;
 | |
|     }
 | |
|     else {
 | |
|         bSig0 |= LIT64( 0x4000000000000000 );
 | |
|     }
 | |
|     shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
 | |
|     aSig0 |= LIT64( 0x4000000000000000 );
 | |
|  aBigger:
 | |
|     sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
 | |
|     zExp = aExp;
 | |
|  normalizeRoundAndPack:
 | |
|     --zExp;
 | |
|     return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of adding the quadruple-precision floating-point values
 | |
| | `a' and `b'.  The operation is performed according to the IEC/IEEE Standard
 | |
| | for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_add( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return addFloat128Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return subFloat128Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of subtracting the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sub( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign == bSign ) {
 | |
|         return subFloat128Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
|     else {
 | |
|         return addFloat128Sigs( a, b, aSign STATUS_VAR );
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of multiplying the quadruple-precision floating-point
 | |
| | values `a' and `b'.  The operation is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_mul( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
 | |
|     float128 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             z.low = float128_default_nan_low;
 | |
|             z.high = float128_default_nan_high;
 | |
|             return z;
 | |
|         }
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     zExp = aExp + bExp - 0x4000;
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
 | |
|     mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
 | |
|     add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
 | |
|     zSig2 |= ( zSig3 != 0 );
 | |
|     if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
 | |
|         shift128ExtraRightJamming(
 | |
|             zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of dividing the quadruple-precision floating-point value
 | |
| | `a' by the corresponding value `b'.  The operation is performed according to
 | |
| | the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_div( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign, zSign;
 | |
|     int32 aExp, bExp, zExp;
 | |
|     bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
 | |
|     bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
|     float128 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     zSign = aSign ^ bSign;
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         if ( bExp == 0x7FFF ) {
 | |
|             if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|             goto invalid;
 | |
|         }
 | |
|         return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         return packFloat128( zSign, 0, 0, 0 );
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|             if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|                 float_raise( float_flag_invalid STATUS_VAR);
 | |
|                 z.low = float128_default_nan_low;
 | |
|                 z.high = float128_default_nan_high;
 | |
|                 return z;
 | |
|             }
 | |
|             float_raise( float_flag_divbyzero STATUS_VAR);
 | |
|             return packFloat128( zSign, 0x7FFF, 0, 0 );
 | |
|         }
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = aExp - bExp + 0x3FFD;
 | |
|     shortShift128Left(
 | |
|         aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
 | |
|     shortShift128Left(
 | |
|         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
|     if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
 | |
|         shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
 | |
|         ++zExp;
 | |
|     }
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|     mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
 | |
|     sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
 | |
|     while ( (sbits64) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
 | |
|     if ( ( zSig1 & 0x3FFF ) <= 4 ) {
 | |
|         mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (sbits64) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the remainder of the quadruple-precision floating-point value `a'
 | |
| | with respect to the corresponding value `b'.  The operation is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_rem( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, zSign;
 | |
|     int32 aExp, bExp, expDiff;
 | |
|     bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
 | |
|     bits64 allZero, alternateASig0, alternateASig1, sigMean1;
 | |
|     sbits64 sigMean0;
 | |
|     float128 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSig1 = extractFloat128Frac1( b );
 | |
|     bSig0 = extractFloat128Frac0( b );
 | |
|     bExp = extractFloat128Exp( b );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if (    ( aSig0 | aSig1 )
 | |
|              || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
 | |
|             return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         }
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( bExp == 0x7FFF ) {
 | |
|         if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b STATUS_VAR );
 | |
|         return a;
 | |
|     }
 | |
|     if ( bExp == 0 ) {
 | |
|         if ( ( bSig0 | bSig1 ) == 0 ) {
 | |
|  invalid:
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|             z.low = float128_default_nan_low;
 | |
|             z.high = float128_default_nan_high;
 | |
|             return z;
 | |
|         }
 | |
|         normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return a;
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     expDiff = aExp - bExp;
 | |
|     if ( expDiff < -1 ) return a;
 | |
|     shortShift128Left(
 | |
|         aSig0 | LIT64( 0x0001000000000000 ),
 | |
|         aSig1,
 | |
|         15 - ( expDiff < 0 ),
 | |
|         &aSig0,
 | |
|         &aSig1
 | |
|     );
 | |
|     shortShift128Left(
 | |
|         bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
 | |
|     q = le128( bSig0, bSig1, aSig0, aSig1 );
 | |
|     if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     expDiff -= 64;
 | |
|     while ( 0 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
 | |
|         shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
 | |
|         sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
 | |
|         expDiff -= 61;
 | |
|     }
 | |
|     if ( -64 < expDiff ) {
 | |
|         q = estimateDiv128To64( aSig0, aSig1, bSig0 );
 | |
|         q = ( 4 < q ) ? q - 4 : 0;
 | |
|         q >>= - expDiff;
 | |
|         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|         expDiff += 52;
 | |
|         if ( expDiff < 0 ) {
 | |
|             shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         else {
 | |
|             shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
 | |
|         }
 | |
|         mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
 | |
|         sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
 | |
|     }
 | |
|     else {
 | |
|         shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
 | |
|         shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
 | |
|     }
 | |
|     do {
 | |
|         alternateASig0 = aSig0;
 | |
|         alternateASig1 = aSig1;
 | |
|         ++q;
 | |
|         sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
 | |
|     } while ( 0 <= (sbits64) aSig0 );
 | |
|     add128(
 | |
|         aSig0, aSig1, alternateASig0, alternateASig1, (bits64 *)&sigMean0, &sigMean1 );
 | |
|     if (    ( sigMean0 < 0 )
 | |
|          || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
 | |
|         aSig0 = alternateASig0;
 | |
|         aSig1 = alternateASig1;
 | |
|     }
 | |
|     zSign = ( (sbits64) aSig0 < 0 );
 | |
|     if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
 | |
|     return
 | |
|         normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the square root of the quadruple-precision floating-point value `a'.
 | |
| | The operation is performed according to the IEC/IEEE Standard for Binary
 | |
| | Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_sqrt( float128 a STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp, zExp;
 | |
|     bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
 | |
|     bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
 | |
|     float128 z;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a STATUS_VAR );
 | |
|         if ( ! aSign ) return a;
 | |
|         goto invalid;
 | |
|     }
 | |
|     if ( aSign ) {
 | |
|         if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
 | |
|  invalid:
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         z.low = float128_default_nan_low;
 | |
|         z.high = float128_default_nan_high;
 | |
|         return z;
 | |
|     }
 | |
|     if ( aExp == 0 ) {
 | |
|         if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
 | |
|         normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
 | |
|     }
 | |
|     zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
 | |
|     aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     zSig0 = estimateSqrt32( aExp, aSig0>>17 );
 | |
|     shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
 | |
|     zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
 | |
|     doubleZSig0 = zSig0<<1;
 | |
|     mul64To128( zSig0, zSig0, &term0, &term1 );
 | |
|     sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
 | |
|     while ( (sbits64) rem0 < 0 ) {
 | |
|         --zSig0;
 | |
|         doubleZSig0 -= 2;
 | |
|         add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
 | |
|     }
 | |
|     zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
 | |
|     if ( ( zSig1 & 0x1FFF ) <= 5 ) {
 | |
|         if ( zSig1 == 0 ) zSig1 = 1;
 | |
|         mul64To128( doubleZSig0, zSig1, &term1, &term2 );
 | |
|         sub128( rem1, 0, term1, term2, &rem1, &rem2 );
 | |
|         mul64To128( zSig1, zSig1, &term2, &term3 );
 | |
|         sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         while ( (sbits64) rem1 < 0 ) {
 | |
|             --zSig1;
 | |
|             shortShift128Left( 0, zSig1, 1, &term2, &term3 );
 | |
|             term3 |= 1;
 | |
|             term2 |= doubleZSig0;
 | |
|             add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
 | |
|         }
 | |
|         zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
 | |
|     }
 | |
|     shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
 | |
|     return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 STATUS_VAR );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_eq( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (    float128_is_signaling_nan( a )
 | |
|              || float128_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  The comparison
 | |
| | is performed according to the IEC/IEEE Standard for Binary Floating-Point
 | |
| | Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_le( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  The comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_lt( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is equal to
 | |
| | the corresponding value `b', and 0 otherwise.  The invalid exception is
 | |
| | raised if either operand is a NaN.  Otherwise, the comparison is performed
 | |
| | according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_eq_signaling( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|         return 0;
 | |
|     }
 | |
|     return
 | |
|            ( a.low == b.low )
 | |
|         && (    ( a.high == b.high )
 | |
|              || (    ( a.low == 0 )
 | |
|                   && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
 | |
|            );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | or equal to the corresponding value `b', and 0 otherwise.  Quiet NaNs do not
 | |
| | cause an exception.  Otherwise, the comparison is performed according to the
 | |
| | IEC/IEEE Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_le_quiet( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (    float128_is_signaling_nan( a )
 | |
|              || float128_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             || (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  == 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? le128( b.high, b.low, a.high, a.low )
 | |
|         : le128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is less than
 | |
| | the corresponding value `b', and 0 otherwise.  Quiet NaNs do not cause an
 | |
| | exception.  Otherwise, the comparison is performed according to the IEC/IEEE
 | |
| | Standard for Binary Floating-Point Arithmetic.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int float128_lt_quiet( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (    (    ( extractFloat128Exp( a ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
 | |
|          || (    ( extractFloat128Exp( b ) == 0x7FFF )
 | |
|               && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
 | |
|        ) {
 | |
|         if (    float128_is_signaling_nan( a )
 | |
|              || float128_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return 0;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         return
 | |
|                aSign
 | |
|             && (    ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
 | |
|                  != 0 );
 | |
|     }
 | |
|     return
 | |
|           aSign ? lt128( b.high, b.low, a.high, a.low )
 | |
|         : lt128( a.high, a.low, b.high, b.low );
 | |
| 
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* misc functions */
 | |
| float32 uint32_to_float32( unsigned int a STATUS_PARAM )
 | |
| {
 | |
|     return int64_to_float32(a STATUS_VAR);
 | |
| }
 | |
| 
 | |
| float64 uint32_to_float64( unsigned int a STATUS_PARAM )
 | |
| {
 | |
|     return int64_to_float64(a STATUS_VAR);
 | |
| }
 | |
| 
 | |
| unsigned int float32_to_uint32( float32 a STATUS_PARAM )
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = float32_to_int64(a STATUS_VAR);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM )
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = float32_to_int64_round_to_zero(a STATUS_VAR);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| unsigned int float32_to_uint16_round_to_zero( float32 a STATUS_PARAM )
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = float32_to_int64_round_to_zero(a STATUS_VAR);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else if (v > 0xffff) {
 | |
|         res = 0xffff;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| unsigned int float64_to_uint32( float64 a STATUS_PARAM )
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = float64_to_int64(a STATUS_VAR);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM )
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = float64_to_int64_round_to_zero(a STATUS_VAR);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| unsigned int float64_to_uint16_round_to_zero( float64 a STATUS_PARAM )
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = float64_to_int64_round_to_zero(a STATUS_VAR);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else if (v > 0xffff) {
 | |
|         res = 0xffff;
 | |
|         float_raise( float_flag_invalid STATUS_VAR);
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* FIXME: This looks broken.  */
 | |
| uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
| 
 | |
|     v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
 | |
|     v += float64_val(a);
 | |
|     v = float64_to_int64(make_float64(v) STATUS_VAR);
 | |
| 
 | |
|     return v - INT64_MIN;
 | |
| }
 | |
| 
 | |
| uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
| 
 | |
|     v = float64_val(int64_to_float64(INT64_MIN STATUS_VAR));
 | |
|     v += float64_val(a);
 | |
|     v = float64_to_int64_round_to_zero(make_float64(v) STATUS_VAR);
 | |
| 
 | |
|     return v - INT64_MIN;
 | |
| }
 | |
| 
 | |
| #define COMPARE(s, nan_exp)                                                  \
 | |
| INLINE int float ## s ## _compare_internal( float ## s a, float ## s b,      \
 | |
|                                       int is_quiet STATUS_PARAM )            \
 | |
| {                                                                            \
 | |
|     flag aSign, bSign;                                                       \
 | |
|     bits ## s av, bv;                                                        \
 | |
|     a = float ## s ## _squash_input_denormal(a STATUS_VAR);                  \
 | |
|     b = float ## s ## _squash_input_denormal(b STATUS_VAR);                  \
 | |
|                                                                              \
 | |
|     if (( ( extractFloat ## s ## Exp( a ) == nan_exp ) &&                    \
 | |
|          extractFloat ## s ## Frac( a ) ) ||                                 \
 | |
|         ( ( extractFloat ## s ## Exp( b ) == nan_exp ) &&                    \
 | |
|           extractFloat ## s ## Frac( b ) )) {                                \
 | |
|         if (!is_quiet ||                                                     \
 | |
|             float ## s ## _is_signaling_nan( a ) ||                          \
 | |
|             float ## s ## _is_signaling_nan( b ) ) {                         \
 | |
|             float_raise( float_flag_invalid STATUS_VAR);                     \
 | |
|         }                                                                    \
 | |
|         return float_relation_unordered;                                     \
 | |
|     }                                                                        \
 | |
|     aSign = extractFloat ## s ## Sign( a );                                  \
 | |
|     bSign = extractFloat ## s ## Sign( b );                                  \
 | |
|     av = float ## s ## _val(a);                                              \
 | |
|     bv = float ## s ## _val(b);                                              \
 | |
|     if ( aSign != bSign ) {                                                  \
 | |
|         if ( (bits ## s) ( ( av | bv )<<1 ) == 0 ) {                         \
 | |
|             /* zero case */                                                  \
 | |
|             return float_relation_equal;                                     \
 | |
|         } else {                                                             \
 | |
|             return 1 - (2 * aSign);                                          \
 | |
|         }                                                                    \
 | |
|     } else {                                                                 \
 | |
|         if (av == bv) {                                                      \
 | |
|             return float_relation_equal;                                     \
 | |
|         } else {                                                             \
 | |
|             return 1 - 2 * (aSign ^ ( av < bv ));                            \
 | |
|         }                                                                    \
 | |
|     }                                                                        \
 | |
| }                                                                            \
 | |
|                                                                              \
 | |
| int float ## s ## _compare( float ## s a, float ## s b STATUS_PARAM )        \
 | |
| {                                                                            \
 | |
|     return float ## s ## _compare_internal(a, b, 0 STATUS_VAR);              \
 | |
| }                                                                            \
 | |
|                                                                              \
 | |
| int float ## s ## _compare_quiet( float ## s a, float ## s b STATUS_PARAM )  \
 | |
| {                                                                            \
 | |
|     return float ## s ## _compare_internal(a, b, 1 STATUS_VAR);              \
 | |
| }
 | |
| 
 | |
| COMPARE(32, 0xff)
 | |
| COMPARE(64, 0x7ff)
 | |
| 
 | |
| INLINE int float128_compare_internal( float128 a, float128 b,
 | |
|                                       int is_quiet STATUS_PARAM )
 | |
| {
 | |
|     flag aSign, bSign;
 | |
| 
 | |
|     if (( ( extractFloat128Exp( a ) == 0x7fff ) &&
 | |
|           ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) ) ||
 | |
|         ( ( extractFloat128Exp( b ) == 0x7fff ) &&
 | |
|           ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )) {
 | |
|         if (!is_quiet ||
 | |
|             float128_is_signaling_nan( a ) ||
 | |
|             float128_is_signaling_nan( b ) ) {
 | |
|             float_raise( float_flag_invalid STATUS_VAR);
 | |
|         }
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     bSign = extractFloat128Sign( b );
 | |
|     if ( aSign != bSign ) {
 | |
|         if ( ( ( ( a.high | b.high )<<1 ) | a.low | b.low ) == 0 ) {
 | |
|             /* zero case */
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - (2 * aSign);
 | |
|         }
 | |
|     } else {
 | |
|         if (a.low == b.low && a.high == b.high) {
 | |
|             return float_relation_equal;
 | |
|         } else {
 | |
|             return 1 - 2 * (aSign ^ ( lt128( a.high, a.low, b.high, b.low ) ));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int float128_compare( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     return float128_compare_internal(a, b, 0 STATUS_VAR);
 | |
| }
 | |
| 
 | |
| int float128_compare_quiet( float128 a, float128 b STATUS_PARAM )
 | |
| {
 | |
|     return float128_compare_internal(a, b, 1 STATUS_VAR);
 | |
| }
 | |
| 
 | |
| /* Multiply A by 2 raised to the power N.  */
 | |
| float32 float32_scalbn( float32 a, int n STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits32 aSig;
 | |
| 
 | |
|     a = float32_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat32Frac( a );
 | |
|     aExp = extractFloat32Exp( a );
 | |
|     aSign = extractFloat32Sign( a );
 | |
| 
 | |
|     if ( aExp == 0xFF ) {
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp != 0 )
 | |
|         aSig |= 0x00800000;
 | |
|     else if ( aSig == 0 )
 | |
|         return a;
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     aSig <<= 7;
 | |
|     return normalizeRoundAndPackFloat32( aSign, aExp, aSig STATUS_VAR );
 | |
| }
 | |
| 
 | |
| float64 float64_scalbn( float64 a, int n STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig;
 | |
| 
 | |
|     a = float64_squash_input_denormal(a STATUS_VAR);
 | |
|     aSig = extractFloat64Frac( a );
 | |
|     aExp = extractFloat64Exp( a );
 | |
|     aSign = extractFloat64Sign( a );
 | |
| 
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp != 0 )
 | |
|         aSig |= LIT64( 0x0010000000000000 );
 | |
|     else if ( aSig == 0 )
 | |
|         return a;
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     aSig <<= 10;
 | |
|     return normalizeRoundAndPackFloat64( aSign, aExp, aSig STATUS_VAR );
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| floatx80 floatx80_scalbn( floatx80 a, int n STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int16 aExp;
 | |
|     bits64 aSig;
 | |
| 
 | |
|     aSig = extractFloatx80Frac( a );
 | |
|     aExp = extractFloatx80Exp( a );
 | |
|     aSign = extractFloatx80Sign( a );
 | |
| 
 | |
|     if ( aExp == 0x7FF ) {
 | |
|         return a;
 | |
|     }
 | |
|     if (aExp == 0 && aSig == 0)
 | |
|         return a;
 | |
| 
 | |
|     aExp += n;
 | |
|     return normalizeRoundAndPackFloatx80( STATUS(floatx80_rounding_precision),
 | |
|                                           aSign, aExp, aSig, 0 STATUS_VAR );
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef FLOAT128
 | |
| float128 float128_scalbn( float128 a, int n STATUS_PARAM )
 | |
| {
 | |
|     flag aSign;
 | |
|     int32 aExp;
 | |
|     bits64 aSig0, aSig1;
 | |
| 
 | |
|     aSig1 = extractFloat128Frac1( a );
 | |
|     aSig0 = extractFloat128Frac0( a );
 | |
|     aExp = extractFloat128Exp( a );
 | |
|     aSign = extractFloat128Sign( a );
 | |
|     if ( aExp == 0x7FFF ) {
 | |
|         return a;
 | |
|     }
 | |
|     if ( aExp != 0 )
 | |
|         aSig0 |= LIT64( 0x0001000000000000 );
 | |
|     else if ( aSig0 == 0 && aSig1 == 0 )
 | |
|         return a;
 | |
| 
 | |
|     aExp += n - 1;
 | |
|     return normalizeRoundAndPackFloat128( aSign, aExp, aSig0, aSig1
 | |
|                                           STATUS_VAR );
 | |
| 
 | |
| }
 | |
| #endif
 |