 a2da737729
			
		
	
	
		a2da737729
		
	
	
	
	
		
			
			While it is safe to process the queues when they are empty, skip it if the event notifier callback was invoked spuriously. Reviewed-by: Keith Busch <kbusch@kernel.org> Reviewed-by: Jinhao Fan <fanjinhao21s@ict.ac.cn> Signed-off-by: Klaus Jensen <k.jensen@samsung.com>
		
			
				
	
	
		
			7831 lines
		
	
	
		
			222 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			7831 lines
		
	
	
		
			222 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU NVM Express Controller
 | |
|  *
 | |
|  * Copyright (c) 2012, Intel Corporation
 | |
|  *
 | |
|  * Written by Keith Busch <keith.busch@intel.com>
 | |
|  *
 | |
|  * This code is licensed under the GNU GPL v2 or later.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
 | |
|  *
 | |
|  *  https://nvmexpress.org/developers/nvme-specification/
 | |
|  *
 | |
|  *
 | |
|  * Notes on coding style
 | |
|  * ---------------------
 | |
|  * While QEMU coding style prefers lowercase hexadecimals in constants, the
 | |
|  * NVMe subsystem use thes format from the NVMe specifications in the comments
 | |
|  * (i.e. 'h' suffix instead of '0x' prefix).
 | |
|  *
 | |
|  * Usage
 | |
|  * -----
 | |
|  * See docs/system/nvme.rst for extensive documentation.
 | |
|  *
 | |
|  * Add options:
 | |
|  *      -drive file=<file>,if=none,id=<drive_id>
 | |
|  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
 | |
|  *      -device nvme,serial=<serial>,id=<bus_name>, \
 | |
|  *              cmb_size_mb=<cmb_size_mb[optional]>, \
 | |
|  *              [pmrdev=<mem_backend_file_id>,] \
 | |
|  *              max_ioqpairs=<N[optional]>, \
 | |
|  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
 | |
|  *              mdts=<N[optional]>,vsl=<N[optional]>, \
 | |
|  *              zoned.zasl=<N[optional]>, \
 | |
|  *              zoned.auto_transition=<on|off[optional]>, \
 | |
|  *              sriov_max_vfs=<N[optional]> \
 | |
|  *              sriov_vq_flexible=<N[optional]> \
 | |
|  *              sriov_vi_flexible=<N[optional]> \
 | |
|  *              sriov_max_vi_per_vf=<N[optional]> \
 | |
|  *              sriov_max_vq_per_vf=<N[optional]> \
 | |
|  *              subsys=<subsys_id>
 | |
|  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
 | |
|  *              zoned=<true|false[optional]>, \
 | |
|  *              subsys=<subsys_id>,detached=<true|false[optional]>
 | |
|  *
 | |
|  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
 | |
|  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
 | |
|  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
 | |
|  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
 | |
|  *
 | |
|  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
 | |
|  * For example:
 | |
|  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
 | |
|  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
 | |
|  *
 | |
|  * The PMR will use BAR 4/5 exclusively.
 | |
|  *
 | |
|  * To place controller(s) and namespace(s) to a subsystem, then provide
 | |
|  * nvme-subsys device as above.
 | |
|  *
 | |
|  * nvme subsystem device parameters
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
|  * - `nqn`
 | |
|  *   This parameter provides the `<nqn_id>` part of the string
 | |
|  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
 | |
|  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
 | |
|  *   subsystem, but this is not enforced by QEMU. If not specified, it will
 | |
|  *   default to the value of the `id` parameter (`<subsys_id>`).
 | |
|  *
 | |
|  * nvme device parameters
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~
 | |
|  * - `subsys`
 | |
|  *   Specifying this parameter attaches the controller to the subsystem and
 | |
|  *   the SUBNQN field in the controller will report the NQN of the subsystem
 | |
|  *   device. This also enables multi controller capability represented in
 | |
|  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
 | |
|  *   Namespace Sharing Capabilities).
 | |
|  *
 | |
|  * - `aerl`
 | |
|  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
 | |
|  *   of concurrently outstanding Asynchronous Event Request commands support
 | |
|  *   by the controller. This is a 0's based value.
 | |
|  *
 | |
|  * - `aer_max_queued`
 | |
|  *   This is the maximum number of events that the device will enqueue for
 | |
|  *   completion when there are no outstanding AERs. When the maximum number of
 | |
|  *   enqueued events are reached, subsequent events will be dropped.
 | |
|  *
 | |
|  * - `mdts`
 | |
|  *   Indicates the maximum data transfer size for a command that transfers data
 | |
|  *   between host-accessible memory and the controller. The value is specified
 | |
|  *   as a power of two (2^n) and is in units of the minimum memory page size
 | |
|  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
 | |
|  *
 | |
|  * - `vsl`
 | |
|  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
 | |
|  *   this value is specified as a power of two (2^n) and is in units of the
 | |
|  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
 | |
|  *   KiB).
 | |
|  *
 | |
|  * - `zoned.zasl`
 | |
|  *   Indicates the maximum data transfer size for the Zone Append command. Like
 | |
|  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
 | |
|  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
 | |
|  *   defaulting to the value of `mdts`).
 | |
|  *
 | |
|  * - `zoned.auto_transition`
 | |
|  *   Indicates if zones in zone state implicitly opened can be automatically
 | |
|  *   transitioned to zone state closed for resource management purposes.
 | |
|  *   Defaults to 'on'.
 | |
|  *
 | |
|  * - `sriov_max_vfs`
 | |
|  *   Indicates the maximum number of PCIe virtual functions supported
 | |
|  *   by the controller. The default value is 0. Specifying a non-zero value
 | |
|  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
 | |
|  *   Virtual function controllers will not report SR-IOV capability.
 | |
|  *
 | |
|  *   NOTE: Single Root I/O Virtualization support is experimental.
 | |
|  *   All the related parameters may be subject to change.
 | |
|  *
 | |
|  * - `sriov_vq_flexible`
 | |
|  *   Indicates the total number of flexible queue resources assignable to all
 | |
|  *   the secondary controllers. Implicitly sets the number of primary
 | |
|  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
 | |
|  *
 | |
|  * - `sriov_vi_flexible`
 | |
|  *   Indicates the total number of flexible interrupt resources assignable to
 | |
|  *   all the secondary controllers. Implicitly sets the number of primary
 | |
|  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
 | |
|  *
 | |
|  * - `sriov_max_vi_per_vf`
 | |
|  *   Indicates the maximum number of virtual interrupt resources assignable
 | |
|  *   to a secondary controller. The default 0 resolves to
 | |
|  *   `(sriov_vi_flexible / sriov_max_vfs)`.
 | |
|  *
 | |
|  * - `sriov_max_vq_per_vf`
 | |
|  *   Indicates the maximum number of virtual queue resources assignable to
 | |
|  *   a secondary controller. The default 0 resolves to
 | |
|  *   `(sriov_vq_flexible / sriov_max_vfs)`.
 | |
|  *
 | |
|  * nvme namespace device parameters
 | |
|  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 | |
|  * - `shared`
 | |
|  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
 | |
|  *   or implicitly by the most recently defined NvmeBus) is linked to an
 | |
|  *   nvme-subsys device, the namespace will be attached to all controllers in
 | |
|  *   the subsystem. If set to 'off' (the default), the namespace will remain a
 | |
|  *   private namespace and may only be attached to a single controller at a
 | |
|  *   time.
 | |
|  *
 | |
|  * - `detached`
 | |
|  *   This parameter is only valid together with the `subsys` parameter. If left
 | |
|  *   at the default value (`false/off`), the namespace will be attached to all
 | |
|  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
 | |
|  *   namespace will be available in the subsystem but not attached to any
 | |
|  *   controllers.
 | |
|  *
 | |
|  * Setting `zoned` to true selects Zoned Command Set at the namespace.
 | |
|  * In this case, the following namespace properties are available to configure
 | |
|  * zoned operation:
 | |
|  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
 | |
|  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
 | |
|  *
 | |
|  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
 | |
|  *         The value 0 (default) forces zone capacity to be the same as zone
 | |
|  *         size. The value of this property may not exceed zone size.
 | |
|  *
 | |
|  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
 | |
|  *         This value needs to be specified in 64B units. If it is zero,
 | |
|  *         namespace(s) will not support zone descriptor extensions.
 | |
|  *
 | |
|  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
 | |
|  *         The default value means there is no limit to the number of
 | |
|  *         concurrently active zones.
 | |
|  *
 | |
|  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
 | |
|  *         The default value means there is no limit to the number of
 | |
|  *         concurrently open zones.
 | |
|  *
 | |
|  *     zoned.cross_read=<enable RAZB, default: false>
 | |
|  *         Setting this property to true enables Read Across Zone Boundaries.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qemu/range.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/visitor.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/block-backend.h"
 | |
| #include "sysemu/hostmem.h"
 | |
| #include "hw/pci/msix.h"
 | |
| #include "hw/pci/pcie_sriov.h"
 | |
| #include "migration/vmstate.h"
 | |
| 
 | |
| #include "nvme.h"
 | |
| #include "dif.h"
 | |
| #include "trace.h"
 | |
| 
 | |
| #define NVME_MAX_IOQPAIRS 0xffff
 | |
| #define NVME_DB_SIZE  4
 | |
| #define NVME_SPEC_VER 0x00010400
 | |
| #define NVME_CMB_BIR 2
 | |
| #define NVME_PMR_BIR 4
 | |
| #define NVME_TEMPERATURE 0x143
 | |
| #define NVME_TEMPERATURE_WARNING 0x157
 | |
| #define NVME_TEMPERATURE_CRITICAL 0x175
 | |
| #define NVME_NUM_FW_SLOTS 1
 | |
| #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
 | |
| #define NVME_MAX_VFS 127
 | |
| #define NVME_VF_RES_GRANULARITY 1
 | |
| #define NVME_VF_OFFSET 0x1
 | |
| #define NVME_VF_STRIDE 1
 | |
| 
 | |
| #define NVME_GUEST_ERR(trace, fmt, ...) \
 | |
|     do { \
 | |
|         (trace_##trace)(__VA_ARGS__); \
 | |
|         qemu_log_mask(LOG_GUEST_ERROR, #trace \
 | |
|             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
 | |
|     } while (0)
 | |
| 
 | |
| static const bool nvme_feature_support[NVME_FID_MAX] = {
 | |
|     [NVME_ARBITRATION]              = true,
 | |
|     [NVME_POWER_MANAGEMENT]         = true,
 | |
|     [NVME_TEMPERATURE_THRESHOLD]    = true,
 | |
|     [NVME_ERROR_RECOVERY]           = true,
 | |
|     [NVME_VOLATILE_WRITE_CACHE]     = true,
 | |
|     [NVME_NUMBER_OF_QUEUES]         = true,
 | |
|     [NVME_INTERRUPT_COALESCING]     = true,
 | |
|     [NVME_INTERRUPT_VECTOR_CONF]    = true,
 | |
|     [NVME_WRITE_ATOMICITY]          = true,
 | |
|     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
 | |
|     [NVME_TIMESTAMP]                = true,
 | |
|     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
 | |
|     [NVME_COMMAND_SET_PROFILE]      = true,
 | |
| };
 | |
| 
 | |
| static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
 | |
|     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
 | |
|     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
 | |
|     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
 | |
|     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
 | |
|     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
 | |
|     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
 | |
|     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
 | |
|     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
 | |
| };
 | |
| 
 | |
| static const uint32_t nvme_cse_acs[256] = {
 | |
|     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
 | |
|     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
| };
 | |
| 
 | |
| static const uint32_t nvme_cse_iocs_none[256];
 | |
| 
 | |
| static const uint32_t nvme_cse_iocs_nvm[256] = {
 | |
|     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 | |
| };
 | |
| 
 | |
| static const uint32_t nvme_cse_iocs_zoned[256] = {
 | |
|     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
 | |
|     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
 | |
|     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
 | |
| };
 | |
| 
 | |
| static void nvme_process_sq(void *opaque);
 | |
| static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
 | |
| 
 | |
| static uint16_t nvme_sqid(NvmeRequest *req)
 | |
| {
 | |
|     return le16_to_cpu(req->sq->sqid);
 | |
| }
 | |
| 
 | |
| static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                    NvmeZoneState state)
 | |
| {
 | |
|     if (QTAILQ_IN_USE(zone, entry)) {
 | |
|         switch (nvme_get_zone_state(zone)) {
 | |
|         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
 | |
|             break;
 | |
|         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
 | |
|             break;
 | |
|         case NVME_ZONE_STATE_CLOSED:
 | |
|             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
 | |
|             break;
 | |
|         case NVME_ZONE_STATE_FULL:
 | |
|             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
 | |
|         default:
 | |
|             ;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nvme_set_zone_state(zone, state);
 | |
| 
 | |
|     switch (state) {
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
 | |
|         break;
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
 | |
|         break;
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
 | |
|         break;
 | |
|     case NVME_ZONE_STATE_FULL:
 | |
|         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
 | |
|     case NVME_ZONE_STATE_READ_ONLY:
 | |
|         break;
 | |
|     default:
 | |
|         zone->d.za = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
 | |
|                                          uint32_t opn, uint32_t zrwa)
 | |
| {
 | |
|     if (ns->params.max_active_zones != 0 &&
 | |
|         ns->nr_active_zones + act > ns->params.max_active_zones) {
 | |
|         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
 | |
|         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (ns->params.max_open_zones != 0 &&
 | |
|         ns->nr_open_zones + opn > ns->params.max_open_zones) {
 | |
|         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
 | |
|         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (zrwa > ns->zns.numzrwa) {
 | |
|         return NVME_NOZRWA | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check if we can open a zone without exceeding open/active limits.
 | |
|  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
 | |
|  */
 | |
| static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
 | |
| {
 | |
|     return nvme_zns_check_resources(ns, act, opn, 0);
 | |
| }
 | |
| 
 | |
| static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
 | |
| {
 | |
|     hwaddr hi, lo;
 | |
| 
 | |
|     if (!n->cmb.cmse) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 | |
|     hi = lo + int128_get64(n->cmb.mem.size);
 | |
| 
 | |
|     return addr >= lo && addr < hi;
 | |
| }
 | |
| 
 | |
| static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
 | |
| {
 | |
|     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
 | |
|     return &n->cmb.buf[addr - base];
 | |
| }
 | |
| 
 | |
| static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
 | |
| {
 | |
|     hwaddr hi;
 | |
| 
 | |
|     if (!n->pmr.cmse) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
 | |
| 
 | |
|     return addr >= n->pmr.cba && addr < hi;
 | |
| }
 | |
| 
 | |
| static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
 | |
| {
 | |
|     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
 | |
| }
 | |
| 
 | |
| static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
 | |
| {
 | |
|     hwaddr hi, lo;
 | |
| 
 | |
|     /*
 | |
|      * The purpose of this check is to guard against invalid "local" access to
 | |
|      * the iomem (i.e. controller registers). Thus, we check against the range
 | |
|      * covered by the 'bar0' MemoryRegion since that is currently composed of
 | |
|      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
 | |
|      * that if the device model is ever changed to allow the CMB to be located
 | |
|      * in BAR0 as well, then this must be changed.
 | |
|      */
 | |
|     lo = n->bar0.addr;
 | |
|     hi = lo + int128_get64(n->bar0.size);
 | |
| 
 | |
|     return addr >= lo && addr < hi;
 | |
| }
 | |
| 
 | |
| static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
 | |
| {
 | |
|     hwaddr hi = addr + size - 1;
 | |
|     if (hi < addr) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 | |
|         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 | |
|         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return pci_dma_read(&n->parent_obj, addr, buf, size);
 | |
| }
 | |
| 
 | |
| static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
 | |
| {
 | |
|     hwaddr hi = addr + size - 1;
 | |
|     if (hi < addr) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
 | |
|         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
 | |
|         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return pci_dma_write(&n->parent_obj, addr, buf, size);
 | |
| }
 | |
| 
 | |
| static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
 | |
| {
 | |
|     return nsid &&
 | |
|         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
 | |
| }
 | |
| 
 | |
| static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
 | |
| {
 | |
|     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
 | |
| }
 | |
| 
 | |
| static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
 | |
| {
 | |
|     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
 | |
| }
 | |
| 
 | |
| static void nvme_inc_cq_tail(NvmeCQueue *cq)
 | |
| {
 | |
|     cq->tail++;
 | |
|     if (cq->tail >= cq->size) {
 | |
|         cq->tail = 0;
 | |
|         cq->phase = !cq->phase;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_inc_sq_head(NvmeSQueue *sq)
 | |
| {
 | |
|     sq->head = (sq->head + 1) % sq->size;
 | |
| }
 | |
| 
 | |
| static uint8_t nvme_cq_full(NvmeCQueue *cq)
 | |
| {
 | |
|     return (cq->tail + 1) % cq->size == cq->head;
 | |
| }
 | |
| 
 | |
| static uint8_t nvme_sq_empty(NvmeSQueue *sq)
 | |
| {
 | |
|     return sq->head == sq->tail;
 | |
| }
 | |
| 
 | |
| static void nvme_irq_check(NvmeCtrl *n)
 | |
| {
 | |
|     uint32_t intms = ldl_le_p(&n->bar.intms);
 | |
| 
 | |
|     if (msix_enabled(&(n->parent_obj))) {
 | |
|         return;
 | |
|     }
 | |
|     if (~intms & n->irq_status) {
 | |
|         pci_irq_assert(&n->parent_obj);
 | |
|     } else {
 | |
|         pci_irq_deassert(&n->parent_obj);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
 | |
| {
 | |
|     if (cq->irq_enabled) {
 | |
|         if (msix_enabled(&(n->parent_obj))) {
 | |
|             trace_pci_nvme_irq_msix(cq->vector);
 | |
|             msix_notify(&(n->parent_obj), cq->vector);
 | |
|         } else {
 | |
|             trace_pci_nvme_irq_pin();
 | |
|             assert(cq->vector < 32);
 | |
|             n->irq_status |= 1 << cq->vector;
 | |
|             nvme_irq_check(n);
 | |
|         }
 | |
|     } else {
 | |
|         trace_pci_nvme_irq_masked();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
 | |
| {
 | |
|     if (cq->irq_enabled) {
 | |
|         if (msix_enabled(&(n->parent_obj))) {
 | |
|             return;
 | |
|         } else {
 | |
|             assert(cq->vector < 32);
 | |
|             if (!n->cq_pending) {
 | |
|                 n->irq_status &= ~(1 << cq->vector);
 | |
|             }
 | |
|             nvme_irq_check(n);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_req_clear(NvmeRequest *req)
 | |
| {
 | |
|     req->ns = NULL;
 | |
|     req->opaque = NULL;
 | |
|     req->aiocb = NULL;
 | |
|     memset(&req->cqe, 0x0, sizeof(req->cqe));
 | |
|     req->status = NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
 | |
| {
 | |
|     if (dma) {
 | |
|         pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
 | |
|         sg->flags = NVME_SG_DMA;
 | |
|     } else {
 | |
|         qemu_iovec_init(&sg->iov, 0);
 | |
|     }
 | |
| 
 | |
|     sg->flags |= NVME_SG_ALLOC;
 | |
| }
 | |
| 
 | |
| static inline void nvme_sg_unmap(NvmeSg *sg)
 | |
| {
 | |
|     if (!(sg->flags & NVME_SG_ALLOC)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (sg->flags & NVME_SG_DMA) {
 | |
|         qemu_sglist_destroy(&sg->qsg);
 | |
|     } else {
 | |
|         qemu_iovec_destroy(&sg->iov);
 | |
|     }
 | |
| 
 | |
|     memset(sg, 0x0, sizeof(*sg));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
 | |
|  * holds both data and metadata. This function splits the data and metadata
 | |
|  * into two separate QSG/IOVs.
 | |
|  */
 | |
| static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
 | |
|                           NvmeSg *mdata)
 | |
| {
 | |
|     NvmeSg *dst = data;
 | |
|     uint32_t trans_len, count = ns->lbasz;
 | |
|     uint64_t offset = 0;
 | |
|     bool dma = sg->flags & NVME_SG_DMA;
 | |
|     size_t sge_len;
 | |
|     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
 | |
|     int sg_idx = 0;
 | |
| 
 | |
|     assert(sg->flags & NVME_SG_ALLOC);
 | |
| 
 | |
|     while (sg_len) {
 | |
|         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
 | |
| 
 | |
|         trans_len = MIN(sg_len, count);
 | |
|         trans_len = MIN(trans_len, sge_len - offset);
 | |
| 
 | |
|         if (dst) {
 | |
|             if (dma) {
 | |
|                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
 | |
|                                 trans_len);
 | |
|             } else {
 | |
|                 qemu_iovec_add(&dst->iov,
 | |
|                                sg->iov.iov[sg_idx].iov_base + offset,
 | |
|                                trans_len);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         sg_len -= trans_len;
 | |
|         count -= trans_len;
 | |
|         offset += trans_len;
 | |
| 
 | |
|         if (count == 0) {
 | |
|             dst = (dst == data) ? mdata : data;
 | |
|             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
 | |
|         }
 | |
| 
 | |
|         if (sge_len == offset) {
 | |
|             offset = 0;
 | |
|             sg_idx++;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 | |
|                                   size_t len)
 | |
| {
 | |
|     if (!len) {
 | |
|         return NVME_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_map_addr_cmb(addr, len);
 | |
| 
 | |
|     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
 | |
|         return NVME_DATA_TRAS_ERROR;
 | |
|     }
 | |
| 
 | |
|     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
 | |
|                                   size_t len)
 | |
| {
 | |
|     if (!len) {
 | |
|         return NVME_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
 | |
|         return NVME_DATA_TRAS_ERROR;
 | |
|     }
 | |
| 
 | |
|     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
 | |
| {
 | |
|     bool cmb = false, pmr = false;
 | |
| 
 | |
|     if (!len) {
 | |
|         return NVME_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_map_addr(addr, len);
 | |
| 
 | |
|     if (nvme_addr_is_iomem(n, addr)) {
 | |
|         return NVME_DATA_TRAS_ERROR;
 | |
|     }
 | |
| 
 | |
|     if (nvme_addr_is_cmb(n, addr)) {
 | |
|         cmb = true;
 | |
|     } else if (nvme_addr_is_pmr(n, addr)) {
 | |
|         pmr = true;
 | |
|     }
 | |
| 
 | |
|     if (cmb || pmr) {
 | |
|         if (sg->flags & NVME_SG_DMA) {
 | |
|             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         if (sg->iov.niov + 1 > IOV_MAX) {
 | |
|             goto max_mappings_exceeded;
 | |
|         }
 | |
| 
 | |
|         if (cmb) {
 | |
|             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
 | |
|         } else {
 | |
|             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!(sg->flags & NVME_SG_DMA)) {
 | |
|         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (sg->qsg.nsg + 1 > IOV_MAX) {
 | |
|         goto max_mappings_exceeded;
 | |
|     }
 | |
| 
 | |
|     qemu_sglist_add(&sg->qsg, addr, len);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| 
 | |
| max_mappings_exceeded:
 | |
|     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
 | |
|                    "number of mappings exceed 1024");
 | |
|     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
 | |
| {
 | |
|     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
 | |
|                              uint64_t prp2, uint32_t len)
 | |
| {
 | |
|     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
 | |
|     trans_len = MIN(len, trans_len);
 | |
|     int num_prps = (len >> n->page_bits) + 1;
 | |
|     uint16_t status;
 | |
|     int ret;
 | |
| 
 | |
|     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
 | |
| 
 | |
|     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
 | |
| 
 | |
|     status = nvme_map_addr(n, sg, prp1, trans_len);
 | |
|     if (status) {
 | |
|         goto unmap;
 | |
|     }
 | |
| 
 | |
|     len -= trans_len;
 | |
|     if (len) {
 | |
|         if (len > n->page_size) {
 | |
|             uint64_t prp_list[n->max_prp_ents];
 | |
|             uint32_t nents, prp_trans;
 | |
|             int i = 0;
 | |
| 
 | |
|             /*
 | |
|              * The first PRP list entry, pointed to by PRP2 may contain offset.
 | |
|              * Hence, we need to calculate the number of entries in based on
 | |
|              * that offset.
 | |
|              */
 | |
|             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
 | |
|             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
 | |
|             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
 | |
|             if (ret) {
 | |
|                 trace_pci_nvme_err_addr_read(prp2);
 | |
|                 status = NVME_DATA_TRAS_ERROR;
 | |
|                 goto unmap;
 | |
|             }
 | |
|             while (len != 0) {
 | |
|                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
 | |
| 
 | |
|                 if (i == nents - 1 && len > n->page_size) {
 | |
|                     if (unlikely(prp_ent & (n->page_size - 1))) {
 | |
|                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 | |
|                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 | |
|                         goto unmap;
 | |
|                     }
 | |
| 
 | |
|                     i = 0;
 | |
|                     nents = (len + n->page_size - 1) >> n->page_bits;
 | |
|                     nents = MIN(nents, n->max_prp_ents);
 | |
|                     prp_trans = nents * sizeof(uint64_t);
 | |
|                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
 | |
|                                          prp_trans);
 | |
|                     if (ret) {
 | |
|                         trace_pci_nvme_err_addr_read(prp_ent);
 | |
|                         status = NVME_DATA_TRAS_ERROR;
 | |
|                         goto unmap;
 | |
|                     }
 | |
|                     prp_ent = le64_to_cpu(prp_list[i]);
 | |
|                 }
 | |
| 
 | |
|                 if (unlikely(prp_ent & (n->page_size - 1))) {
 | |
|                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
 | |
|                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 | |
|                     goto unmap;
 | |
|                 }
 | |
| 
 | |
|                 trans_len = MIN(len, n->page_size);
 | |
|                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
 | |
|                 if (status) {
 | |
|                     goto unmap;
 | |
|                 }
 | |
| 
 | |
|                 len -= trans_len;
 | |
|                 i++;
 | |
|             }
 | |
|         } else {
 | |
|             if (unlikely(prp2 & (n->page_size - 1))) {
 | |
|                 trace_pci_nvme_err_invalid_prp2_align(prp2);
 | |
|                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
 | |
|                 goto unmap;
 | |
|             }
 | |
|             status = nvme_map_addr(n, sg, prp2, len);
 | |
|             if (status) {
 | |
|                 goto unmap;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| 
 | |
| unmap:
 | |
|     nvme_sg_unmap(sg);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
 | |
|  * number of bytes mapped in len.
 | |
|  */
 | |
| static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
 | |
|                                   NvmeSglDescriptor *segment, uint64_t nsgld,
 | |
|                                   size_t *len, NvmeCmd *cmd)
 | |
| {
 | |
|     dma_addr_t addr, trans_len;
 | |
|     uint32_t dlen;
 | |
|     uint16_t status;
 | |
| 
 | |
|     for (int i = 0; i < nsgld; i++) {
 | |
|         uint8_t type = NVME_SGL_TYPE(segment[i].type);
 | |
| 
 | |
|         switch (type) {
 | |
|         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
 | |
|             break;
 | |
|         case NVME_SGL_DESCR_TYPE_SEGMENT:
 | |
|         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 | |
|             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
 | |
|         default:
 | |
|             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         dlen = le32_to_cpu(segment[i].len);
 | |
| 
 | |
|         if (!dlen) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (*len == 0) {
 | |
|             /*
 | |
|              * All data has been mapped, but the SGL contains additional
 | |
|              * segments and/or descriptors. The controller might accept
 | |
|              * ignoring the rest of the SGL.
 | |
|              */
 | |
|             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
 | |
|             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
 | |
|             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         trans_len = MIN(*len, dlen);
 | |
| 
 | |
|         addr = le64_to_cpu(segment[i].addr);
 | |
| 
 | |
|         if (UINT64_MAX - addr < dlen) {
 | |
|             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         status = nvme_map_addr(n, sg, addr, trans_len);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         *len -= trans_len;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
 | |
|                              size_t len, NvmeCmd *cmd)
 | |
| {
 | |
|     /*
 | |
|      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
 | |
|      * dynamically allocating a potentially huge SGL. The spec allows the SGL
 | |
|      * to be larger (as in number of bytes required to describe the SGL
 | |
|      * descriptors and segment chain) than the command transfer size, so it is
 | |
|      * not bounded by MDTS.
 | |
|      */
 | |
|     const int SEG_CHUNK_SIZE = 256;
 | |
| 
 | |
|     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
 | |
|     uint64_t nsgld;
 | |
|     uint32_t seg_len;
 | |
|     uint16_t status;
 | |
|     hwaddr addr;
 | |
|     int ret;
 | |
| 
 | |
|     sgld = &sgl;
 | |
|     addr = le64_to_cpu(sgl.addr);
 | |
| 
 | |
|     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
 | |
| 
 | |
|     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
 | |
| 
 | |
|     /*
 | |
|      * If the entire transfer can be described with a single data block it can
 | |
|      * be mapped directly.
 | |
|      */
 | |
|     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 | |
|         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
 | |
|         if (status) {
 | |
|             goto unmap;
 | |
|         }
 | |
| 
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     for (;;) {
 | |
|         switch (NVME_SGL_TYPE(sgld->type)) {
 | |
|         case NVME_SGL_DESCR_TYPE_SEGMENT:
 | |
|         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
 | |
|             break;
 | |
|         default:
 | |
|             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         seg_len = le32_to_cpu(sgld->len);
 | |
| 
 | |
|         /* check the length of the (Last) Segment descriptor */
 | |
|         if (!seg_len || seg_len & 0xf) {
 | |
|             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         if (UINT64_MAX - addr < seg_len) {
 | |
|             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         nsgld = seg_len / sizeof(NvmeSglDescriptor);
 | |
| 
 | |
|         while (nsgld > SEG_CHUNK_SIZE) {
 | |
|             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
 | |
|                 trace_pci_nvme_err_addr_read(addr);
 | |
|                 status = NVME_DATA_TRAS_ERROR;
 | |
|                 goto unmap;
 | |
|             }
 | |
| 
 | |
|             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
 | |
|                                        &len, cmd);
 | |
|             if (status) {
 | |
|                 goto unmap;
 | |
|             }
 | |
| 
 | |
|             nsgld -= SEG_CHUNK_SIZE;
 | |
|             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
 | |
|         }
 | |
| 
 | |
|         ret = nvme_addr_read(n, addr, segment, nsgld *
 | |
|                              sizeof(NvmeSglDescriptor));
 | |
|         if (ret) {
 | |
|             trace_pci_nvme_err_addr_read(addr);
 | |
|             status = NVME_DATA_TRAS_ERROR;
 | |
|             goto unmap;
 | |
|         }
 | |
| 
 | |
|         last_sgld = &segment[nsgld - 1];
 | |
| 
 | |
|         /*
 | |
|          * If the segment ends with a Data Block, then we are done.
 | |
|          */
 | |
|         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
 | |
|             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
 | |
|             if (status) {
 | |
|                 goto unmap;
 | |
|             }
 | |
| 
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * If the last descriptor was not a Data Block, then the current
 | |
|          * segment must not be a Last Segment.
 | |
|          */
 | |
|         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
 | |
|             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
 | |
|             goto unmap;
 | |
|         }
 | |
| 
 | |
|         sgld = last_sgld;
 | |
|         addr = le64_to_cpu(sgld->addr);
 | |
| 
 | |
|         /*
 | |
|          * Do not map the last descriptor; it will be a Segment or Last Segment
 | |
|          * descriptor and is handled by the next iteration.
 | |
|          */
 | |
|         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
 | |
|         if (status) {
 | |
|             goto unmap;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     /* if there is any residual left in len, the SGL was too short */
 | |
|     if (len) {
 | |
|         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
 | |
|         goto unmap;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| 
 | |
| unmap:
 | |
|     nvme_sg_unmap(sg);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
 | |
|                        NvmeCmd *cmd)
 | |
| {
 | |
|     uint64_t prp1, prp2;
 | |
| 
 | |
|     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
 | |
|     case NVME_PSDT_PRP:
 | |
|         prp1 = le64_to_cpu(cmd->dptr.prp1);
 | |
|         prp2 = le64_to_cpu(cmd->dptr.prp2);
 | |
| 
 | |
|         return nvme_map_prp(n, sg, prp1, prp2, len);
 | |
|     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
 | |
|     case NVME_PSDT_SGL_MPTR_SGL:
 | |
|         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
 | |
|     default:
 | |
|         return NVME_INVALID_FIELD;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
 | |
|                               NvmeCmd *cmd)
 | |
| {
 | |
|     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
 | |
|     hwaddr mptr = le64_to_cpu(cmd->mptr);
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
 | |
|         NvmeSglDescriptor sgl;
 | |
| 
 | |
|         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
 | |
|             return NVME_DATA_TRAS_ERROR;
 | |
|         }
 | |
| 
 | |
|         status = nvme_map_sgl(n, sg, sgl, len, cmd);
 | |
|         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
 | |
|             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
 | |
|     status = nvme_map_addr(n, sg, mptr, len);
 | |
|     if (status) {
 | |
|         nvme_sg_unmap(sg);
 | |
|     }
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
 | |
|     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
 | |
|     size_t len = nvme_l2b(ns, nlb);
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (nvme_ns_ext(ns) &&
 | |
|         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
 | |
|         NvmeSg sg;
 | |
| 
 | |
|         len += nvme_m2b(ns, nlb);
 | |
| 
 | |
|         status = nvme_map_dptr(n, &sg, len, &req->cmd);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
 | |
|         nvme_sg_split(&sg, ns, &req->sg, NULL);
 | |
|         nvme_sg_unmap(&sg);
 | |
| 
 | |
|         return NVME_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     size_t len = nvme_m2b(ns, nlb);
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (nvme_ns_ext(ns)) {
 | |
|         NvmeSg sg;
 | |
| 
 | |
|         len += nvme_l2b(ns, nlb);
 | |
| 
 | |
|         status = nvme_map_dptr(n, &sg, len, &req->cmd);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
 | |
|         nvme_sg_split(&sg, ns, NULL, &req->sg);
 | |
|         nvme_sg_unmap(&sg);
 | |
| 
 | |
|         return NVME_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
 | |
|                                     uint32_t len, uint32_t bytes,
 | |
|                                     int32_t skip_bytes, int64_t offset,
 | |
|                                     NvmeTxDirection dir)
 | |
| {
 | |
|     hwaddr addr;
 | |
|     uint32_t trans_len, count = bytes;
 | |
|     bool dma = sg->flags & NVME_SG_DMA;
 | |
|     int64_t sge_len;
 | |
|     int sg_idx = 0;
 | |
|     int ret;
 | |
| 
 | |
|     assert(sg->flags & NVME_SG_ALLOC);
 | |
| 
 | |
|     while (len) {
 | |
|         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
 | |
| 
 | |
|         if (sge_len - offset < 0) {
 | |
|             offset -= sge_len;
 | |
|             sg_idx++;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (sge_len == offset) {
 | |
|             offset = 0;
 | |
|             sg_idx++;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         trans_len = MIN(len, count);
 | |
|         trans_len = MIN(trans_len, sge_len - offset);
 | |
| 
 | |
|         if (dma) {
 | |
|             addr = sg->qsg.sg[sg_idx].base + offset;
 | |
|         } else {
 | |
|             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
 | |
|         }
 | |
| 
 | |
|         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
 | |
|             ret = nvme_addr_read(n, addr, ptr, trans_len);
 | |
|         } else {
 | |
|             ret = nvme_addr_write(n, addr, ptr, trans_len);
 | |
|         }
 | |
| 
 | |
|         if (ret) {
 | |
|             return NVME_DATA_TRAS_ERROR;
 | |
|         }
 | |
| 
 | |
|         ptr += trans_len;
 | |
|         len -= trans_len;
 | |
|         count -= trans_len;
 | |
|         offset += trans_len;
 | |
| 
 | |
|         if (count == 0) {
 | |
|             count = bytes;
 | |
|             offset += skip_bytes;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
 | |
|                         NvmeTxDirection dir)
 | |
| {
 | |
|     assert(sg->flags & NVME_SG_ALLOC);
 | |
| 
 | |
|     if (sg->flags & NVME_SG_DMA) {
 | |
|         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
 | |
|         dma_addr_t residual;
 | |
| 
 | |
|         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
 | |
|             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
 | |
|         } else {
 | |
|             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
 | |
|         }
 | |
| 
 | |
|         if (unlikely(residual)) {
 | |
|             trace_pci_nvme_err_invalid_dma();
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
|     } else {
 | |
|         size_t bytes;
 | |
| 
 | |
|         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
 | |
|             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
 | |
|         } else {
 | |
|             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
 | |
|         }
 | |
| 
 | |
|         if (unlikely(bytes != len)) {
 | |
|             trace_pci_nvme_err_invalid_dma();
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
 | |
|                                 NvmeRequest *req)
 | |
| {
 | |
|     uint16_t status;
 | |
| 
 | |
|     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
 | |
|                                 NvmeRequest *req)
 | |
| {
 | |
|     uint16_t status;
 | |
| 
 | |
|     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
 | |
| }
 | |
| 
 | |
| uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
 | |
|                           NvmeTxDirection dir, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
 | |
|     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
 | |
| 
 | |
|     if (nvme_ns_ext(ns) &&
 | |
|         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
 | |
|         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
 | |
|                                    ns->lbaf.ms, 0, dir);
 | |
|     }
 | |
| 
 | |
|     return nvme_tx(n, &req->sg, ptr, len, dir);
 | |
| }
 | |
| 
 | |
| uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
 | |
|                            NvmeTxDirection dir, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (nvme_ns_ext(ns)) {
 | |
|         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
 | |
|                                    ns->lbasz, ns->lbasz, dir);
 | |
|     }
 | |
| 
 | |
|     nvme_sg_unmap(&req->sg);
 | |
| 
 | |
|     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     return nvme_tx(n, &req->sg, ptr, len, dir);
 | |
| }
 | |
| 
 | |
| static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
 | |
|                                  BlockCompletionFunc *cb, NvmeRequest *req)
 | |
| {
 | |
|     assert(req->sg.flags & NVME_SG_ALLOC);
 | |
| 
 | |
|     if (req->sg.flags & NVME_SG_DMA) {
 | |
|         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
 | |
|                                   cb, req);
 | |
|     } else {
 | |
|         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
 | |
|                                   BlockCompletionFunc *cb, NvmeRequest *req)
 | |
| {
 | |
|     assert(req->sg.flags & NVME_SG_ALLOC);
 | |
| 
 | |
|     if (req->sg.flags & NVME_SG_DMA) {
 | |
|         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
 | |
|                                    cb, req);
 | |
|     } else {
 | |
|         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_update_cq_head(NvmeCQueue *cq)
 | |
| {
 | |
|     pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
 | |
|             sizeof(cq->head));
 | |
|     trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
 | |
| }
 | |
| 
 | |
| static void nvme_post_cqes(void *opaque)
 | |
| {
 | |
|     NvmeCQueue *cq = opaque;
 | |
|     NvmeCtrl *n = cq->ctrl;
 | |
|     NvmeRequest *req, *next;
 | |
|     bool pending = cq->head != cq->tail;
 | |
|     int ret;
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
 | |
|         NvmeSQueue *sq;
 | |
|         hwaddr addr;
 | |
| 
 | |
|         if (n->dbbuf_enabled) {
 | |
|             nvme_update_cq_head(cq);
 | |
|         }
 | |
| 
 | |
|         if (nvme_cq_full(cq)) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         sq = req->sq;
 | |
|         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
 | |
|         req->cqe.sq_id = cpu_to_le16(sq->sqid);
 | |
|         req->cqe.sq_head = cpu_to_le16(sq->head);
 | |
|         addr = cq->dma_addr + cq->tail * n->cqe_size;
 | |
|         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
 | |
|                             sizeof(req->cqe));
 | |
|         if (ret) {
 | |
|             trace_pci_nvme_err_addr_write(addr);
 | |
|             trace_pci_nvme_err_cfs();
 | |
|             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
 | |
|             break;
 | |
|         }
 | |
|         QTAILQ_REMOVE(&cq->req_list, req, entry);
 | |
|         nvme_inc_cq_tail(cq);
 | |
|         nvme_sg_unmap(&req->sg);
 | |
|         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
 | |
|     }
 | |
|     if (cq->tail != cq->head) {
 | |
|         if (cq->irq_enabled && !pending) {
 | |
|             n->cq_pending++;
 | |
|         }
 | |
| 
 | |
|         nvme_irq_assert(n, cq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
 | |
| {
 | |
|     assert(cq->cqid == req->sq->cqid);
 | |
|     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
 | |
|                                           le32_to_cpu(req->cqe.result),
 | |
|                                           le32_to_cpu(req->cqe.dw1),
 | |
|                                           req->status);
 | |
| 
 | |
|     if (req->status) {
 | |
|         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
 | |
|                                       req->status, req->cmd.opcode);
 | |
|     }
 | |
| 
 | |
|     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
 | |
|     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
 | |
| 
 | |
|     if (req->sq->ioeventfd_enabled) {
 | |
|         /* Post CQE directly since we are in main loop thread */
 | |
|         nvme_post_cqes(cq);
 | |
|     } else {
 | |
|         /* Schedule the timer to post CQE later since we are in vcpu thread */
 | |
|         timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_process_aers(void *opaque)
 | |
| {
 | |
|     NvmeCtrl *n = opaque;
 | |
|     NvmeAsyncEvent *event, *next;
 | |
| 
 | |
|     trace_pci_nvme_process_aers(n->aer_queued);
 | |
| 
 | |
|     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
 | |
|         NvmeRequest *req;
 | |
|         NvmeAerResult *result;
 | |
| 
 | |
|         /* can't post cqe if there is nothing to complete */
 | |
|         if (!n->outstanding_aers) {
 | |
|             trace_pci_nvme_no_outstanding_aers();
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* ignore if masked (cqe posted, but event not cleared) */
 | |
|         if (n->aer_mask & (1 << event->result.event_type)) {
 | |
|             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         QTAILQ_REMOVE(&n->aer_queue, event, entry);
 | |
|         n->aer_queued--;
 | |
| 
 | |
|         n->aer_mask |= 1 << event->result.event_type;
 | |
|         n->outstanding_aers--;
 | |
| 
 | |
|         req = n->aer_reqs[n->outstanding_aers];
 | |
| 
 | |
|         result = (NvmeAerResult *) &req->cqe.result;
 | |
|         result->event_type = event->result.event_type;
 | |
|         result->event_info = event->result.event_info;
 | |
|         result->log_page = event->result.log_page;
 | |
|         g_free(event);
 | |
| 
 | |
|         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
 | |
|                                     result->log_page);
 | |
| 
 | |
|         nvme_enqueue_req_completion(&n->admin_cq, req);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
 | |
|                                uint8_t event_info, uint8_t log_page)
 | |
| {
 | |
|     NvmeAsyncEvent *event;
 | |
| 
 | |
|     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
 | |
| 
 | |
|     if (n->aer_queued == n->params.aer_max_queued) {
 | |
|         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     event = g_new(NvmeAsyncEvent, 1);
 | |
|     event->result = (NvmeAerResult) {
 | |
|         .event_type = event_type,
 | |
|         .event_info = event_info,
 | |
|         .log_page   = log_page,
 | |
|     };
 | |
| 
 | |
|     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
 | |
|     n->aer_queued++;
 | |
| 
 | |
|     nvme_process_aers(n);
 | |
| }
 | |
| 
 | |
| static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
 | |
| {
 | |
|     uint8_t aer_info;
 | |
| 
 | |
|     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
 | |
|     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (event) {
 | |
|     case NVME_SMART_SPARE:
 | |
|         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
 | |
|         break;
 | |
|     case NVME_SMART_TEMPERATURE:
 | |
|         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
 | |
|         break;
 | |
|     case NVME_SMART_RELIABILITY:
 | |
|     case NVME_SMART_MEDIA_READ_ONLY:
 | |
|     case NVME_SMART_FAILED_VOLATILE_MEDIA:
 | |
|     case NVME_SMART_PMR_UNRELIABLE:
 | |
|         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
 | |
|         break;
 | |
|     default:
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
 | |
| }
 | |
| 
 | |
| static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
 | |
| {
 | |
|     n->aer_mask &= ~(1 << event_type);
 | |
|     if (!QTAILQ_EMPTY(&n->aer_queue)) {
 | |
|         nvme_process_aers(n);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
 | |
| {
 | |
|     uint8_t mdts = n->params.mdts;
 | |
| 
 | |
|     if (mdts && len > n->page_size << mdts) {
 | |
|         trace_pci_nvme_err_mdts(len);
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
 | |
|                                          uint32_t nlb)
 | |
| {
 | |
|     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
 | |
| 
 | |
|     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
 | |
|         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
 | |
|         return NVME_LBA_RANGE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
 | |
|                                  uint32_t nlb, int flags)
 | |
| {
 | |
|     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
 | |
| 
 | |
|     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
 | |
|     int64_t offset = nvme_l2b(ns, slba);
 | |
|     int ret;
 | |
| 
 | |
|     /*
 | |
|      * `pnum` holds the number of bytes after offset that shares the same
 | |
|      * allocation status as the byte at offset. If `pnum` is different from
 | |
|      * `bytes`, we should check the allocation status of the next range and
 | |
|      * continue this until all bytes have been checked.
 | |
|      */
 | |
|     do {
 | |
|         bytes -= pnum;
 | |
| 
 | |
|         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
 | |
|         if (ret < 0) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
| 
 | |
|         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
 | |
|                                     !!(ret & BDRV_BLOCK_ZERO));
 | |
| 
 | |
|         if (!(ret & flags)) {
 | |
|             return 1;
 | |
|         }
 | |
| 
 | |
|         offset += pnum;
 | |
|     } while (pnum != bytes);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
 | |
|                                  uint32_t nlb)
 | |
| {
 | |
|     int ret;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
 | |
|     if (ret) {
 | |
|         if (ret < 0) {
 | |
|             error_setg_errno(&err, -ret, "unable to get block status");
 | |
|             error_report_err(err);
 | |
| 
 | |
|             return NVME_INTERNAL_DEV_ERROR;
 | |
|         }
 | |
| 
 | |
|         return NVME_DULB;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void nvme_aio_err(NvmeRequest *req, int ret)
 | |
| {
 | |
|     uint16_t status = NVME_SUCCESS;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     switch (req->cmd.opcode) {
 | |
|     case NVME_CMD_READ:
 | |
|         status = NVME_UNRECOVERED_READ;
 | |
|         break;
 | |
|     case NVME_CMD_FLUSH:
 | |
|     case NVME_CMD_WRITE:
 | |
|     case NVME_CMD_WRITE_ZEROES:
 | |
|     case NVME_CMD_ZONE_APPEND:
 | |
|         status = NVME_WRITE_FAULT;
 | |
|         break;
 | |
|     default:
 | |
|         status = NVME_INTERNAL_DEV_ERROR;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
 | |
| 
 | |
|     error_setg_errno(&local_err, -ret, "aio failed");
 | |
|     error_report_err(local_err);
 | |
| 
 | |
|     /*
 | |
|      * Set the command status code to the first encountered error but allow a
 | |
|      * subsequent Internal Device Error to trump it.
 | |
|      */
 | |
|     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     req->status = status;
 | |
| }
 | |
| 
 | |
| static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
 | |
| {
 | |
|     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
 | |
|                                     slba / ns->zone_size;
 | |
| }
 | |
| 
 | |
| static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
 | |
| {
 | |
|     uint32_t zone_idx = nvme_zone_idx(ns, slba);
 | |
| 
 | |
|     if (zone_idx >= ns->num_zones) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return &ns->zone_array[zone_idx];
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
 | |
| {
 | |
|     uint64_t zslba = zone->d.zslba;
 | |
| 
 | |
|     switch (nvme_get_zone_state(zone)) {
 | |
|     case NVME_ZONE_STATE_EMPTY:
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         return NVME_SUCCESS;
 | |
|     case NVME_ZONE_STATE_FULL:
 | |
|         trace_pci_nvme_err_zone_is_full(zslba);
 | |
|         return NVME_ZONE_FULL;
 | |
|     case NVME_ZONE_STATE_OFFLINE:
 | |
|         trace_pci_nvme_err_zone_is_offline(zslba);
 | |
|         return NVME_ZONE_OFFLINE;
 | |
|     case NVME_ZONE_STATE_READ_ONLY:
 | |
|         trace_pci_nvme_err_zone_is_read_only(zslba);
 | |
|         return NVME_ZONE_READ_ONLY;
 | |
|     default:
 | |
|         assert(false);
 | |
|     }
 | |
| 
 | |
|     return NVME_INTERNAL_DEV_ERROR;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                       uint64_t slba, uint32_t nlb)
 | |
| {
 | |
|     uint64_t zcap = nvme_zone_wr_boundary(zone);
 | |
|     uint16_t status;
 | |
| 
 | |
|     status = nvme_check_zone_state_for_write(zone);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
 | |
|         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
 | |
| 
 | |
|         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
 | |
|             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
 | |
|             return NVME_ZONE_INVALID_WRITE;
 | |
|         }
 | |
|     } else {
 | |
|         if (unlikely(slba != zone->w_ptr)) {
 | |
|             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
 | |
|                                                zone->w_ptr);
 | |
|             return NVME_ZONE_INVALID_WRITE;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (unlikely((slba + nlb) > zcap)) {
 | |
|         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
 | |
|         return NVME_ZONE_BOUNDARY_ERROR;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
 | |
| {
 | |
|     switch (nvme_get_zone_state(zone)) {
 | |
|     case NVME_ZONE_STATE_EMPTY:
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_FULL:
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|     case NVME_ZONE_STATE_READ_ONLY:
 | |
|         return NVME_SUCCESS;
 | |
|     case NVME_ZONE_STATE_OFFLINE:
 | |
|         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
 | |
|         return NVME_ZONE_OFFLINE;
 | |
|     default:
 | |
|         assert(false);
 | |
|     }
 | |
| 
 | |
|     return NVME_INTERNAL_DEV_ERROR;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
 | |
|                                      uint32_t nlb)
 | |
| {
 | |
|     NvmeZone *zone;
 | |
|     uint64_t bndry, end;
 | |
|     uint16_t status;
 | |
| 
 | |
|     zone = nvme_get_zone_by_slba(ns, slba);
 | |
|     assert(zone);
 | |
| 
 | |
|     bndry = nvme_zone_rd_boundary(ns, zone);
 | |
|     end = slba + nlb;
 | |
| 
 | |
|     status = nvme_check_zone_state_for_read(zone);
 | |
|     if (status) {
 | |
|         ;
 | |
|     } else if (unlikely(end > bndry)) {
 | |
|         if (!ns->params.cross_zone_read) {
 | |
|             status = NVME_ZONE_BOUNDARY_ERROR;
 | |
|         } else {
 | |
|             /*
 | |
|              * Read across zone boundary - check that all subsequent
 | |
|              * zones that are being read have an appropriate state.
 | |
|              */
 | |
|             do {
 | |
|                 zone++;
 | |
|                 status = nvme_check_zone_state_for_read(zone);
 | |
|                 if (status) {
 | |
|                     break;
 | |
|                 }
 | |
|             } while (end > nvme_zone_rd_boundary(ns, zone));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
 | |
| {
 | |
|     switch (nvme_get_zone_state(zone)) {
 | |
|     case NVME_ZONE_STATE_FULL:
 | |
|         return NVME_SUCCESS;
 | |
| 
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|         nvme_aor_dec_open(ns);
 | |
|         /* fallthrough */
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         nvme_aor_dec_active(ns);
 | |
| 
 | |
|         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
 | |
|             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
 | |
|             if (ns->params.numzrwa) {
 | |
|                 ns->zns.numzrwa++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* fallthrough */
 | |
|     case NVME_ZONE_STATE_EMPTY:
 | |
|         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
 | |
|         return NVME_SUCCESS;
 | |
| 
 | |
|     default:
 | |
|         return NVME_ZONE_INVAL_TRANSITION;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
 | |
| {
 | |
|     switch (nvme_get_zone_state(zone)) {
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|         nvme_aor_dec_open(ns);
 | |
|         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
 | |
|         /* fall through */
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         return NVME_SUCCESS;
 | |
| 
 | |
|     default:
 | |
|         return NVME_ZONE_INVAL_TRANSITION;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
 | |
| {
 | |
|     switch (nvme_get_zone_state(zone)) {
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|         nvme_aor_dec_open(ns);
 | |
|         /* fallthrough */
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         nvme_aor_dec_active(ns);
 | |
| 
 | |
|         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
 | |
|             if (ns->params.numzrwa) {
 | |
|                 ns->zns.numzrwa++;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* fallthrough */
 | |
|     case NVME_ZONE_STATE_FULL:
 | |
|         zone->w_ptr = zone->d.zslba;
 | |
|         zone->d.wp = zone->w_ptr;
 | |
|         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
 | |
|         /* fallthrough */
 | |
|     case NVME_ZONE_STATE_EMPTY:
 | |
|         return NVME_SUCCESS;
 | |
| 
 | |
|     default:
 | |
|         return NVME_ZONE_INVAL_TRANSITION;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
 | |
| {
 | |
|     NvmeZone *zone;
 | |
| 
 | |
|     if (ns->params.max_open_zones &&
 | |
|         ns->nr_open_zones == ns->params.max_open_zones) {
 | |
|         zone = QTAILQ_FIRST(&ns->imp_open_zones);
 | |
|         if (zone) {
 | |
|             /*
 | |
|              * Automatically close this implicitly open zone.
 | |
|              */
 | |
|             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
 | |
|             nvme_zrm_close(ns, zone);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| enum {
 | |
|     NVME_ZRM_AUTO = 1 << 0,
 | |
|     NVME_ZRM_ZRWA = 1 << 1,
 | |
| };
 | |
| 
 | |
| static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
 | |
|                                     NvmeZone *zone, int flags)
 | |
| {
 | |
|     int act = 0;
 | |
|     uint16_t status;
 | |
| 
 | |
|     switch (nvme_get_zone_state(zone)) {
 | |
|     case NVME_ZONE_STATE_EMPTY:
 | |
|         act = 1;
 | |
| 
 | |
|         /* fallthrough */
 | |
| 
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         if (n->params.auto_transition_zones) {
 | |
|             nvme_zrm_auto_transition_zone(ns);
 | |
|         }
 | |
|         status = nvme_zns_check_resources(ns, act, 1,
 | |
|                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         if (act) {
 | |
|             nvme_aor_inc_active(ns);
 | |
|         }
 | |
| 
 | |
|         nvme_aor_inc_open(ns);
 | |
| 
 | |
|         if (flags & NVME_ZRM_AUTO) {
 | |
|             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
 | |
|             return NVME_SUCCESS;
 | |
|         }
 | |
| 
 | |
|         /* fallthrough */
 | |
| 
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|         if (flags & NVME_ZRM_AUTO) {
 | |
|             return NVME_SUCCESS;
 | |
|         }
 | |
| 
 | |
|         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
 | |
| 
 | |
|         /* fallthrough */
 | |
| 
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|         if (flags & NVME_ZRM_ZRWA) {
 | |
|             ns->zns.numzrwa--;
 | |
| 
 | |
|             zone->d.za |= NVME_ZA_ZRWA_VALID;
 | |
|         }
 | |
| 
 | |
|         return NVME_SUCCESS;
 | |
| 
 | |
|     default:
 | |
|         return NVME_ZONE_INVAL_TRANSITION;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
 | |
|                                      NvmeZone *zone)
 | |
| {
 | |
|     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
 | |
| }
 | |
| 
 | |
| static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                  uint32_t nlb)
 | |
| {
 | |
|     zone->d.wp += nlb;
 | |
| 
 | |
|     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
 | |
|         nvme_zrm_finish(ns, zone);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                            uint32_t nlbc)
 | |
| {
 | |
|     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
 | |
| 
 | |
|     nlbc = nzrwafgs * ns->zns.zrwafg;
 | |
| 
 | |
|     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
 | |
| 
 | |
|     zone->w_ptr += nlbc;
 | |
| 
 | |
|     nvme_advance_zone_wp(ns, zone, nlbc);
 | |
| }
 | |
| 
 | |
| static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
 | |
| {
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     NvmeZone *zone;
 | |
|     uint64_t slba;
 | |
|     uint32_t nlb;
 | |
| 
 | |
|     slba = le64_to_cpu(rw->slba);
 | |
|     nlb = le16_to_cpu(rw->nlb) + 1;
 | |
|     zone = nvme_get_zone_by_slba(ns, slba);
 | |
|     assert(zone);
 | |
| 
 | |
|     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
 | |
|         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
 | |
|         uint64_t elba = slba + nlb - 1;
 | |
| 
 | |
|         if (elba > ezrwa) {
 | |
|             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_advance_zone_wp(ns, zone, nlb);
 | |
| }
 | |
| 
 | |
| static inline bool nvme_is_write(NvmeRequest *req)
 | |
| {
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
| 
 | |
|     return rw->opcode == NVME_CMD_WRITE ||
 | |
|            rw->opcode == NVME_CMD_ZONE_APPEND ||
 | |
|            rw->opcode == NVME_CMD_WRITE_ZEROES;
 | |
| }
 | |
| 
 | |
| static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
 | |
| {
 | |
|     return qemu_get_aio_context();
 | |
| }
 | |
| 
 | |
| static void nvme_misc_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeRequest *req = opaque;
 | |
| 
 | |
|     trace_pci_nvme_misc_cb(nvme_cid(req));
 | |
| 
 | |
|     if (ret) {
 | |
|         nvme_aio_err(req, ret);
 | |
|     }
 | |
| 
 | |
|     nvme_enqueue_req_completion(nvme_cq(req), req);
 | |
| }
 | |
| 
 | |
| void nvme_rw_complete_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeRequest *req = opaque;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     BlockAcctCookie *acct = &req->acct;
 | |
|     BlockAcctStats *stats = blk_get_stats(blk);
 | |
| 
 | |
|     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
 | |
| 
 | |
|     if (ret) {
 | |
|         block_acct_failed(stats, acct);
 | |
|         nvme_aio_err(req, ret);
 | |
|     } else {
 | |
|         block_acct_done(stats, acct);
 | |
|     }
 | |
| 
 | |
|     if (ns->params.zoned && nvme_is_write(req)) {
 | |
|         nvme_finalize_zoned_write(ns, req);
 | |
|     }
 | |
| 
 | |
|     nvme_enqueue_req_completion(nvme_cq(req), req);
 | |
| }
 | |
| 
 | |
| static void nvme_rw_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeRequest *req = opaque;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
| 
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
| 
 | |
|     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
 | |
| 
 | |
|     if (ret) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (ns->lbaf.ms) {
 | |
|         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|         uint64_t slba = le64_to_cpu(rw->slba);
 | |
|         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
 | |
|         uint64_t offset = nvme_moff(ns, slba);
 | |
| 
 | |
|         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
 | |
|             size_t mlen = nvme_m2b(ns, nlb);
 | |
| 
 | |
|             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
 | |
|                                                BDRV_REQ_MAY_UNMAP,
 | |
|                                                nvme_rw_complete_cb, req);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (nvme_ns_ext(ns) || req->cmd.mptr) {
 | |
|             uint16_t status;
 | |
| 
 | |
|             nvme_sg_unmap(&req->sg);
 | |
|             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
 | |
|             if (status) {
 | |
|                 ret = -EFAULT;
 | |
|                 goto out;
 | |
|             }
 | |
| 
 | |
|             if (req->cmd.opcode == NVME_CMD_READ) {
 | |
|                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
 | |
|             }
 | |
| 
 | |
|             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
 | |
|         }
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     nvme_rw_complete_cb(req, ret);
 | |
| }
 | |
| 
 | |
| static void nvme_verify_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeBounceContext *ctx = opaque;
 | |
|     NvmeRequest *req = ctx->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     BlockAcctCookie *acct = &req->acct;
 | |
|     BlockAcctStats *stats = blk_get_stats(blk);
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     uint64_t slba = le64_to_cpu(rw->slba);
 | |
|     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
 | |
|     uint16_t apptag = le16_to_cpu(rw->apptag);
 | |
|     uint16_t appmask = le16_to_cpu(rw->appmask);
 | |
|     uint64_t reftag = le32_to_cpu(rw->reftag);
 | |
|     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
 | |
|     uint16_t status;
 | |
| 
 | |
|     reftag |= cdw3 << 32;
 | |
| 
 | |
|     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
 | |
| 
 | |
|     if (ret) {
 | |
|         block_acct_failed(stats, acct);
 | |
|         nvme_aio_err(req, ret);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     block_acct_done(stats, acct);
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
 | |
|                                        ctx->mdata.iov.size, slba);
 | |
|         if (status) {
 | |
|             req->status = status;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
 | |
|                                      ctx->mdata.bounce, ctx->mdata.iov.size,
 | |
|                                      prinfo, slba, apptag, appmask, &reftag);
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     qemu_iovec_destroy(&ctx->data.iov);
 | |
|     g_free(ctx->data.bounce);
 | |
| 
 | |
|     qemu_iovec_destroy(&ctx->mdata.iov);
 | |
|     g_free(ctx->mdata.bounce);
 | |
| 
 | |
|     g_free(ctx);
 | |
| 
 | |
|     nvme_enqueue_req_completion(nvme_cq(req), req);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void nvme_verify_mdata_in_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeBounceContext *ctx = opaque;
 | |
|     NvmeRequest *req = ctx->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     uint64_t slba = le64_to_cpu(rw->slba);
 | |
|     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
 | |
|     size_t mlen = nvme_m2b(ns, nlb);
 | |
|     uint64_t offset = nvme_moff(ns, slba);
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
| 
 | |
|     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
 | |
| 
 | |
|     if (ret) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     ctx->mdata.bounce = g_malloc(mlen);
 | |
| 
 | |
|     qemu_iovec_reset(&ctx->mdata.iov);
 | |
|     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
 | |
| 
 | |
|     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
 | |
|                                 nvme_verify_cb, ctx);
 | |
|     return;
 | |
| 
 | |
| out:
 | |
|     nvme_verify_cb(ctx, ret);
 | |
| }
 | |
| 
 | |
| struct nvme_compare_ctx {
 | |
|     struct {
 | |
|         QEMUIOVector iov;
 | |
|         uint8_t *bounce;
 | |
|     } data;
 | |
| 
 | |
|     struct {
 | |
|         QEMUIOVector iov;
 | |
|         uint8_t *bounce;
 | |
|     } mdata;
 | |
| };
 | |
| 
 | |
| static void nvme_compare_mdata_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeRequest *req = opaque;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeCtrl *n = nvme_ctrl(req);
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
 | |
|     uint16_t apptag = le16_to_cpu(rw->apptag);
 | |
|     uint16_t appmask = le16_to_cpu(rw->appmask);
 | |
|     uint64_t reftag = le32_to_cpu(rw->reftag);
 | |
|     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
 | |
|     struct nvme_compare_ctx *ctx = req->opaque;
 | |
|     g_autofree uint8_t *buf = NULL;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     BlockAcctCookie *acct = &req->acct;
 | |
|     BlockAcctStats *stats = blk_get_stats(blk);
 | |
|     uint16_t status = NVME_SUCCESS;
 | |
| 
 | |
|     reftag |= cdw3 << 32;
 | |
| 
 | |
|     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
 | |
| 
 | |
|     if (ret) {
 | |
|         block_acct_failed(stats, acct);
 | |
|         nvme_aio_err(req, ret);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     buf = g_malloc(ctx->mdata.iov.size);
 | |
| 
 | |
|     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
 | |
|                                NVME_TX_DIRECTION_TO_DEVICE, req);
 | |
|     if (status) {
 | |
|         req->status = status;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|         uint64_t slba = le64_to_cpu(rw->slba);
 | |
|         uint8_t *bufp;
 | |
|         uint8_t *mbufp = ctx->mdata.bounce;
 | |
|         uint8_t *end = mbufp + ctx->mdata.iov.size;
 | |
|         int16_t pil = 0;
 | |
| 
 | |
|         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
 | |
|                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
 | |
|                                 slba, apptag, appmask, &reftag);
 | |
|         if (status) {
 | |
|             req->status = status;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * When formatted with protection information, do not compare the DIF
 | |
|          * tuple.
 | |
|          */
 | |
|         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
 | |
|             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
 | |
|         }
 | |
| 
 | |
|         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
 | |
|             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
 | |
|                 req->status = NVME_CMP_FAILURE;
 | |
|                 goto out;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
 | |
|         req->status = NVME_CMP_FAILURE;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     block_acct_done(stats, acct);
 | |
| 
 | |
| out:
 | |
|     qemu_iovec_destroy(&ctx->data.iov);
 | |
|     g_free(ctx->data.bounce);
 | |
| 
 | |
|     qemu_iovec_destroy(&ctx->mdata.iov);
 | |
|     g_free(ctx->mdata.bounce);
 | |
| 
 | |
|     g_free(ctx);
 | |
| 
 | |
|     nvme_enqueue_req_completion(nvme_cq(req), req);
 | |
| }
 | |
| 
 | |
| static void nvme_compare_data_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeRequest *req = opaque;
 | |
|     NvmeCtrl *n = nvme_ctrl(req);
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     BlockAcctCookie *acct = &req->acct;
 | |
|     BlockAcctStats *stats = blk_get_stats(blk);
 | |
| 
 | |
|     struct nvme_compare_ctx *ctx = req->opaque;
 | |
|     g_autofree uint8_t *buf = NULL;
 | |
|     uint16_t status;
 | |
| 
 | |
|     trace_pci_nvme_compare_data_cb(nvme_cid(req));
 | |
| 
 | |
|     if (ret) {
 | |
|         block_acct_failed(stats, acct);
 | |
|         nvme_aio_err(req, ret);
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     buf = g_malloc(ctx->data.iov.size);
 | |
| 
 | |
|     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
 | |
|                               NVME_TX_DIRECTION_TO_DEVICE, req);
 | |
|     if (status) {
 | |
|         req->status = status;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
 | |
|         req->status = NVME_CMP_FAILURE;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (ns->lbaf.ms) {
 | |
|         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|         uint64_t slba = le64_to_cpu(rw->slba);
 | |
|         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
 | |
|         size_t mlen = nvme_m2b(ns, nlb);
 | |
|         uint64_t offset = nvme_moff(ns, slba);
 | |
| 
 | |
|         ctx->mdata.bounce = g_malloc(mlen);
 | |
| 
 | |
|         qemu_iovec_init(&ctx->mdata.iov, 1);
 | |
|         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
 | |
| 
 | |
|         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
 | |
|                                     nvme_compare_mdata_cb, req);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     block_acct_done(stats, acct);
 | |
| 
 | |
| out:
 | |
|     qemu_iovec_destroy(&ctx->data.iov);
 | |
|     g_free(ctx->data.bounce);
 | |
|     g_free(ctx);
 | |
| 
 | |
|     nvme_enqueue_req_completion(nvme_cq(req), req);
 | |
| }
 | |
| 
 | |
| typedef struct NvmeDSMAIOCB {
 | |
|     BlockAIOCB common;
 | |
|     BlockAIOCB *aiocb;
 | |
|     NvmeRequest *req;
 | |
|     QEMUBH *bh;
 | |
|     int ret;
 | |
| 
 | |
|     NvmeDsmRange *range;
 | |
|     unsigned int nr;
 | |
|     unsigned int idx;
 | |
| } NvmeDSMAIOCB;
 | |
| 
 | |
| static void nvme_dsm_cancel(BlockAIOCB *aiocb)
 | |
| {
 | |
|     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
 | |
| 
 | |
|     /* break nvme_dsm_cb loop */
 | |
|     iocb->idx = iocb->nr;
 | |
|     iocb->ret = -ECANCELED;
 | |
| 
 | |
|     if (iocb->aiocb) {
 | |
|         blk_aio_cancel_async(iocb->aiocb);
 | |
|         iocb->aiocb = NULL;
 | |
|     } else {
 | |
|         /*
 | |
|          * We only reach this if nvme_dsm_cancel() has already been called or
 | |
|          * the command ran to completion and nvme_dsm_bh is scheduled to run.
 | |
|          */
 | |
|         assert(iocb->idx == iocb->nr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const AIOCBInfo nvme_dsm_aiocb_info = {
 | |
|     .aiocb_size   = sizeof(NvmeDSMAIOCB),
 | |
|     .cancel_async = nvme_dsm_cancel,
 | |
| };
 | |
| 
 | |
| static void nvme_dsm_bh(void *opaque)
 | |
| {
 | |
|     NvmeDSMAIOCB *iocb = opaque;
 | |
| 
 | |
|     iocb->common.cb(iocb->common.opaque, iocb->ret);
 | |
| 
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
|     qemu_aio_unref(iocb);
 | |
| }
 | |
| 
 | |
| static void nvme_dsm_cb(void *opaque, int ret);
 | |
| 
 | |
| static void nvme_dsm_md_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeDSMAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeDsmRange *range;
 | |
|     uint64_t slba;
 | |
|     uint32_t nlb;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (!ns->lbaf.ms) {
 | |
|         nvme_dsm_cb(iocb, 0);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     range = &iocb->range[iocb->idx - 1];
 | |
|     slba = le64_to_cpu(range->slba);
 | |
|     nlb = le32_to_cpu(range->nlb);
 | |
| 
 | |
|     /*
 | |
|      * Check that all block were discarded (zeroed); otherwise we do not zero
 | |
|      * the metadata.
 | |
|      */
 | |
| 
 | |
|     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
 | |
|     if (ret) {
 | |
|         if (ret < 0) {
 | |
|             iocb->ret = ret;
 | |
|             goto done;
 | |
|         }
 | |
| 
 | |
|         nvme_dsm_cb(iocb, 0);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
 | |
|                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
 | |
|                                         nvme_dsm_cb, iocb);
 | |
|     return;
 | |
| 
 | |
| done:
 | |
|     iocb->aiocb = NULL;
 | |
|     qemu_bh_schedule(iocb->bh);
 | |
| }
 | |
| 
 | |
| static void nvme_dsm_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeDSMAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeCtrl *n = nvme_ctrl(req);
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeDsmRange *range;
 | |
|     uint64_t slba;
 | |
|     uint32_t nlb;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
| next:
 | |
|     if (iocb->idx == iocb->nr) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     range = &iocb->range[iocb->idx++];
 | |
|     slba = le64_to_cpu(range->slba);
 | |
|     nlb = le32_to_cpu(range->nlb);
 | |
| 
 | |
|     trace_pci_nvme_dsm_deallocate(slba, nlb);
 | |
| 
 | |
|     if (nlb > n->dmrsl) {
 | |
|         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
 | |
|         goto next;
 | |
|     }
 | |
| 
 | |
|     if (nvme_check_bounds(ns, slba, nlb)) {
 | |
|         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
 | |
|                                              ns->id_ns.nsze);
 | |
|         goto next;
 | |
|     }
 | |
| 
 | |
|     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
 | |
|                                    nvme_l2b(ns, nlb),
 | |
|                                    nvme_dsm_md_cb, iocb);
 | |
|     return;
 | |
| 
 | |
| done:
 | |
|     iocb->aiocb = NULL;
 | |
|     qemu_bh_schedule(iocb->bh);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
 | |
|     uint32_t attr = le32_to_cpu(dsm->attributes);
 | |
|     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
 | |
|     uint16_t status = NVME_SUCCESS;
 | |
| 
 | |
|     trace_pci_nvme_dsm(nr, attr);
 | |
| 
 | |
|     if (attr & NVME_DSMGMT_AD) {
 | |
|         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
 | |
|                                          nvme_misc_cb, req);
 | |
| 
 | |
|         iocb->req = req;
 | |
|         iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
 | |
|         iocb->ret = 0;
 | |
|         iocb->range = g_new(NvmeDsmRange, nr);
 | |
|         iocb->nr = nr;
 | |
|         iocb->idx = 0;
 | |
| 
 | |
|         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
 | |
|                           req);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         req->aiocb = &iocb->common;
 | |
|         nvme_dsm_cb(iocb, 0);
 | |
| 
 | |
|         return NVME_NO_COMPLETE;
 | |
|     }
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     uint64_t slba = le64_to_cpu(rw->slba);
 | |
|     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
 | |
|     size_t len = nvme_l2b(ns, nlb);
 | |
|     int64_t offset = nvme_l2b(ns, slba);
 | |
|     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
 | |
|     uint32_t reftag = le32_to_cpu(rw->reftag);
 | |
|     NvmeBounceContext *ctx = NULL;
 | |
|     uint16_t status;
 | |
| 
 | |
|     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         if (prinfo & NVME_PRINFO_PRACT) {
 | |
|             return NVME_INVALID_PROT_INFO | NVME_DNR;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (len > n->page_size << n->params.vsl) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_bounds(ns, slba, nlb);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
 | |
|         status = nvme_check_dulbe(ns, slba, nlb);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ctx = g_new0(NvmeBounceContext, 1);
 | |
|     ctx->req = req;
 | |
| 
 | |
|     ctx->data.bounce = g_malloc(len);
 | |
| 
 | |
|     qemu_iovec_init(&ctx->data.iov, 1);
 | |
|     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
 | |
| 
 | |
|     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
 | |
|                      BLOCK_ACCT_READ);
 | |
| 
 | |
|     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
 | |
|                                 nvme_verify_mdata_in_cb, ctx);
 | |
|     return NVME_NO_COMPLETE;
 | |
| }
 | |
| 
 | |
| typedef struct NvmeCopyAIOCB {
 | |
|     BlockAIOCB common;
 | |
|     BlockAIOCB *aiocb;
 | |
|     NvmeRequest *req;
 | |
|     QEMUBH *bh;
 | |
|     int ret;
 | |
| 
 | |
|     void *ranges;
 | |
|     unsigned int format;
 | |
|     int nr;
 | |
|     int idx;
 | |
| 
 | |
|     uint8_t *bounce;
 | |
|     QEMUIOVector iov;
 | |
|     struct {
 | |
|         BlockAcctCookie read;
 | |
|         BlockAcctCookie write;
 | |
|     } acct;
 | |
| 
 | |
|     uint64_t reftag;
 | |
|     uint64_t slba;
 | |
| 
 | |
|     NvmeZone *zone;
 | |
| } NvmeCopyAIOCB;
 | |
| 
 | |
| static void nvme_copy_cancel(BlockAIOCB *aiocb)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
 | |
| 
 | |
|     iocb->ret = -ECANCELED;
 | |
| 
 | |
|     if (iocb->aiocb) {
 | |
|         blk_aio_cancel_async(iocb->aiocb);
 | |
|         iocb->aiocb = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const AIOCBInfo nvme_copy_aiocb_info = {
 | |
|     .aiocb_size   = sizeof(NvmeCopyAIOCB),
 | |
|     .cancel_async = nvme_copy_cancel,
 | |
| };
 | |
| 
 | |
| static void nvme_copy_bh(void *opaque)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
 | |
| 
 | |
|     if (iocb->idx != iocb->nr) {
 | |
|         req->cqe.result = cpu_to_le32(iocb->idx);
 | |
|     }
 | |
| 
 | |
|     qemu_iovec_destroy(&iocb->iov);
 | |
|     g_free(iocb->bounce);
 | |
| 
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
| 
 | |
|     if (iocb->ret < 0) {
 | |
|         block_acct_failed(stats, &iocb->acct.read);
 | |
|         block_acct_failed(stats, &iocb->acct.write);
 | |
|     } else {
 | |
|         block_acct_done(stats, &iocb->acct.read);
 | |
|         block_acct_done(stats, &iocb->acct.write);
 | |
|     }
 | |
| 
 | |
|     iocb->common.cb(iocb->common.opaque, iocb->ret);
 | |
|     qemu_aio_unref(iocb);
 | |
| }
 | |
| 
 | |
| static void nvme_copy_cb(void *opaque, int ret);
 | |
| 
 | |
| static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
 | |
|                                                  uint64_t *slba, uint32_t *nlb,
 | |
|                                                  uint16_t *apptag,
 | |
|                                                  uint16_t *appmask,
 | |
|                                                  uint64_t *reftag)
 | |
| {
 | |
|     NvmeCopySourceRangeFormat0 *_ranges = ranges;
 | |
| 
 | |
|     if (slba) {
 | |
|         *slba = le64_to_cpu(_ranges[idx].slba);
 | |
|     }
 | |
| 
 | |
|     if (nlb) {
 | |
|         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
 | |
|     }
 | |
| 
 | |
|     if (apptag) {
 | |
|         *apptag = le16_to_cpu(_ranges[idx].apptag);
 | |
|     }
 | |
| 
 | |
|     if (appmask) {
 | |
|         *appmask = le16_to_cpu(_ranges[idx].appmask);
 | |
|     }
 | |
| 
 | |
|     if (reftag) {
 | |
|         *reftag = le32_to_cpu(_ranges[idx].reftag);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
 | |
|                                                  uint64_t *slba, uint32_t *nlb,
 | |
|                                                  uint16_t *apptag,
 | |
|                                                  uint16_t *appmask,
 | |
|                                                  uint64_t *reftag)
 | |
| {
 | |
|     NvmeCopySourceRangeFormat1 *_ranges = ranges;
 | |
| 
 | |
|     if (slba) {
 | |
|         *slba = le64_to_cpu(_ranges[idx].slba);
 | |
|     }
 | |
| 
 | |
|     if (nlb) {
 | |
|         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
 | |
|     }
 | |
| 
 | |
|     if (apptag) {
 | |
|         *apptag = le16_to_cpu(_ranges[idx].apptag);
 | |
|     }
 | |
| 
 | |
|     if (appmask) {
 | |
|         *appmask = le16_to_cpu(_ranges[idx].appmask);
 | |
|     }
 | |
| 
 | |
|     if (reftag) {
 | |
|         *reftag = 0;
 | |
| 
 | |
|         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
 | |
|         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
 | |
|         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
 | |
|         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
 | |
|         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
 | |
|         *reftag |= (uint64_t)_ranges[idx].sr[9];
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
 | |
|                                          uint64_t *slba, uint32_t *nlb,
 | |
|                                          uint16_t *apptag, uint16_t *appmask,
 | |
|                                          uint64_t *reftag)
 | |
| {
 | |
|     switch (format) {
 | |
|     case NVME_COPY_FORMAT_0:
 | |
|         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
 | |
|                                              appmask, reftag);
 | |
|         break;
 | |
| 
 | |
|     case NVME_COPY_FORMAT_1:
 | |
|         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
 | |
|                                              appmask, reftag);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_copy_out_completed_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint32_t nlb;
 | |
| 
 | |
|     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
 | |
|                                  &nlb, NULL, NULL, NULL);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto out;
 | |
|     } else if (iocb->ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (ns->params.zoned) {
 | |
|         nvme_advance_zone_wp(ns, iocb->zone, nlb);
 | |
|     }
 | |
| 
 | |
|     iocb->idx++;
 | |
|     iocb->slba += nlb;
 | |
| out:
 | |
|     nvme_copy_cb(iocb, iocb->ret);
 | |
| }
 | |
| 
 | |
| static void nvme_copy_out_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint32_t nlb;
 | |
|     size_t mlen;
 | |
|     uint8_t *mbounce;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto out;
 | |
|     } else if (iocb->ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (!ns->lbaf.ms) {
 | |
|         nvme_copy_out_completed_cb(iocb, 0);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
 | |
|                                  &nlb, NULL, NULL, NULL);
 | |
| 
 | |
|     mlen = nvme_m2b(ns, nlb);
 | |
|     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
 | |
| 
 | |
|     qemu_iovec_reset(&iocb->iov);
 | |
|     qemu_iovec_add(&iocb->iov, mbounce, mlen);
 | |
| 
 | |
|     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
 | |
|                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
 | |
|                                   iocb);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| out:
 | |
|     nvme_copy_cb(iocb, ret);
 | |
| }
 | |
| 
 | |
| static void nvme_copy_in_completed_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint32_t nlb;
 | |
|     uint64_t slba;
 | |
|     uint16_t apptag, appmask;
 | |
|     uint64_t reftag;
 | |
|     size_t len;
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto out;
 | |
|     } else if (iocb->ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
 | |
|                                  &nlb, &apptag, &appmask, &reftag);
 | |
|     len = nvme_l2b(ns, nlb);
 | |
| 
 | |
|     trace_pci_nvme_copy_out(iocb->slba, nlb);
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
 | |
| 
 | |
|         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
 | |
|         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
 | |
| 
 | |
|         size_t mlen = nvme_m2b(ns, nlb);
 | |
|         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
 | |
| 
 | |
|         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
|         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
 | |
|                                 slba, apptag, appmask, &reftag);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
| 
 | |
|         apptag = le16_to_cpu(copy->apptag);
 | |
|         appmask = le16_to_cpu(copy->appmask);
 | |
| 
 | |
|         if (prinfow & NVME_PRINFO_PRACT) {
 | |
|             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
 | |
|             if (status) {
 | |
|                 goto invalid;
 | |
|             }
 | |
| 
 | |
|             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
 | |
|                                         apptag, &iocb->reftag);
 | |
|         } else {
 | |
|             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
 | |
|                                     prinfow, iocb->slba, apptag, appmask,
 | |
|                                     &iocb->reftag);
 | |
|             if (status) {
 | |
|                 goto invalid;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_bounds(ns, iocb->slba, nlb);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (ns->params.zoned) {
 | |
|         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
| 
 | |
|         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
 | |
|             iocb->zone->w_ptr += nlb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_iovec_reset(&iocb->iov);
 | |
|     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
 | |
| 
 | |
|     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
 | |
|                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| invalid:
 | |
|     req->status = status;
 | |
|     iocb->aiocb = NULL;
 | |
|     if (iocb->bh) {
 | |
|         qemu_bh_schedule(iocb->bh);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| out:
 | |
|     nvme_copy_cb(iocb, ret);
 | |
| }
 | |
| 
 | |
| static void nvme_copy_in_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint64_t slba;
 | |
|     uint32_t nlb;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto out;
 | |
|     } else if (iocb->ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (!ns->lbaf.ms) {
 | |
|         nvme_copy_in_completed_cb(iocb, 0);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
 | |
|                                  &nlb, NULL, NULL, NULL);
 | |
| 
 | |
|     qemu_iovec_reset(&iocb->iov);
 | |
|     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
 | |
|                    nvme_m2b(ns, nlb));
 | |
| 
 | |
|     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
 | |
|                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
 | |
|                                  iocb);
 | |
|     return;
 | |
| 
 | |
| out:
 | |
|     nvme_copy_cb(iocb, iocb->ret);
 | |
| }
 | |
| 
 | |
| static void nvme_copy_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeCopyAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint64_t slba;
 | |
|     uint32_t nlb;
 | |
|     size_t len;
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto done;
 | |
|     } else if (iocb->ret < 0) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (iocb->idx == iocb->nr) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
 | |
|                                  &nlb, NULL, NULL, NULL);
 | |
|     len = nvme_l2b(ns, nlb);
 | |
| 
 | |
|     trace_pci_nvme_copy_source_range(slba, nlb);
 | |
| 
 | |
|     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
 | |
|         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_bounds(ns, slba, nlb);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
 | |
|         status = nvme_check_dulbe(ns, slba, nlb);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (ns->params.zoned) {
 | |
|         status = nvme_check_zone_read(ns, slba, nlb);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_iovec_reset(&iocb->iov);
 | |
|     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
 | |
| 
 | |
|     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
 | |
|                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
 | |
|     return;
 | |
| 
 | |
| invalid:
 | |
|     req->status = status;
 | |
| done:
 | |
|     iocb->aiocb = NULL;
 | |
|     if (iocb->bh) {
 | |
|         qemu_bh_schedule(iocb->bh);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
 | |
|     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
 | |
|                                       nvme_misc_cb, req);
 | |
|     uint16_t nr = copy->nr + 1;
 | |
|     uint8_t format = copy->control[0] & 0xf;
 | |
|     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
 | |
|     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
 | |
|     size_t len = sizeof(NvmeCopySourceRangeFormat0);
 | |
| 
 | |
|     uint16_t status;
 | |
| 
 | |
|     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
 | |
| 
 | |
|     iocb->ranges = NULL;
 | |
|     iocb->zone = NULL;
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
 | |
|         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
 | |
|         status = NVME_INVALID_FIELD | NVME_DNR;
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (!(n->id_ctrl.ocfs & (1 << format))) {
 | |
|         trace_pci_nvme_err_copy_invalid_format(format);
 | |
|         status = NVME_INVALID_FIELD | NVME_DNR;
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (nr > ns->id_ns.msrc + 1) {
 | |
|         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (ns->pif && format != 0x1) {
 | |
|         status = NVME_INVALID_FORMAT | NVME_DNR;
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (ns->pif) {
 | |
|         len = sizeof(NvmeCopySourceRangeFormat1);
 | |
|     }
 | |
| 
 | |
|     iocb->format = format;
 | |
|     iocb->ranges = g_malloc_n(nr, len);
 | |
|     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     iocb->slba = le64_to_cpu(copy->sdlba);
 | |
| 
 | |
|     if (ns->params.zoned) {
 | |
|         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
 | |
|         if (!iocb->zone) {
 | |
|             status = NVME_LBA_RANGE | NVME_DNR;
 | |
|             goto invalid;
 | |
|         }
 | |
| 
 | |
|         status = nvme_zrm_auto(n, ns, iocb->zone);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     iocb->req = req;
 | |
|     iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
 | |
|     iocb->ret = 0;
 | |
|     iocb->nr = nr;
 | |
|     iocb->idx = 0;
 | |
|     iocb->reftag = le32_to_cpu(copy->reftag);
 | |
|     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
 | |
|     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
 | |
|                               ns->lbasz + ns->lbaf.ms);
 | |
| 
 | |
|     qemu_iovec_init(&iocb->iov, 1);
 | |
| 
 | |
|     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
 | |
|                      BLOCK_ACCT_READ);
 | |
|     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
 | |
|                      BLOCK_ACCT_WRITE);
 | |
| 
 | |
|     req->aiocb = &iocb->common;
 | |
|     nvme_copy_cb(iocb, 0);
 | |
| 
 | |
|     return NVME_NO_COMPLETE;
 | |
| 
 | |
| invalid:
 | |
|     g_free(iocb->ranges);
 | |
|     qemu_aio_unref(iocb);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     uint64_t slba = le64_to_cpu(rw->slba);
 | |
|     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
 | |
|     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
 | |
|     size_t data_len = nvme_l2b(ns, nlb);
 | |
|     size_t len = data_len;
 | |
|     int64_t offset = nvme_l2b(ns, slba);
 | |
|     struct nvme_compare_ctx *ctx = NULL;
 | |
|     uint16_t status;
 | |
| 
 | |
|     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
 | |
|         return NVME_INVALID_PROT_INFO | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (nvme_ns_ext(ns)) {
 | |
|         len += nvme_m2b(ns, nlb);
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_mdts(n, len);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_bounds(ns, slba, nlb);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
 | |
|         status = nvme_check_dulbe(ns, slba, nlb);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     ctx = g_new(struct nvme_compare_ctx, 1);
 | |
|     ctx->data.bounce = g_malloc(data_len);
 | |
| 
 | |
|     req->opaque = ctx;
 | |
| 
 | |
|     qemu_iovec_init(&ctx->data.iov, 1);
 | |
|     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
 | |
| 
 | |
|     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
 | |
|                      BLOCK_ACCT_READ);
 | |
|     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
 | |
|                                 nvme_compare_data_cb, req);
 | |
| 
 | |
|     return NVME_NO_COMPLETE;
 | |
| }
 | |
| 
 | |
| typedef struct NvmeFlushAIOCB {
 | |
|     BlockAIOCB common;
 | |
|     BlockAIOCB *aiocb;
 | |
|     NvmeRequest *req;
 | |
|     QEMUBH *bh;
 | |
|     int ret;
 | |
| 
 | |
|     NvmeNamespace *ns;
 | |
|     uint32_t nsid;
 | |
|     bool broadcast;
 | |
| } NvmeFlushAIOCB;
 | |
| 
 | |
| static void nvme_flush_cancel(BlockAIOCB *acb)
 | |
| {
 | |
|     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
 | |
| 
 | |
|     iocb->ret = -ECANCELED;
 | |
| 
 | |
|     if (iocb->aiocb) {
 | |
|         blk_aio_cancel_async(iocb->aiocb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const AIOCBInfo nvme_flush_aiocb_info = {
 | |
|     .aiocb_size = sizeof(NvmeFlushAIOCB),
 | |
|     .cancel_async = nvme_flush_cancel,
 | |
|     .get_aio_context = nvme_get_aio_context,
 | |
| };
 | |
| 
 | |
| static void nvme_flush_ns_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeFlushAIOCB *iocb = opaque;
 | |
|     NvmeNamespace *ns = iocb->ns;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto out;
 | |
|     } else if (iocb->ret < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (ns) {
 | |
|         trace_pci_nvme_flush_ns(iocb->nsid);
 | |
| 
 | |
|         iocb->ns = NULL;
 | |
|         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     iocb->aiocb = NULL;
 | |
|     qemu_bh_schedule(iocb->bh);
 | |
| }
 | |
| 
 | |
| static void nvme_flush_bh(void *opaque)
 | |
| {
 | |
|     NvmeFlushAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeCtrl *n = nvme_ctrl(req);
 | |
|     int i;
 | |
| 
 | |
|     if (iocb->ret < 0) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (iocb->broadcast) {
 | |
|         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             iocb->ns = nvme_ns(n, i);
 | |
|             if (iocb->ns) {
 | |
|                 iocb->nsid = i;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!iocb->ns) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     nvme_flush_ns_cb(iocb, 0);
 | |
|     return;
 | |
| 
 | |
| done:
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
| 
 | |
|     iocb->common.cb(iocb->common.opaque, iocb->ret);
 | |
| 
 | |
|     qemu_aio_unref(iocb);
 | |
| 
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeFlushAIOCB *iocb;
 | |
|     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
 | |
|     uint16_t status;
 | |
| 
 | |
|     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
 | |
| 
 | |
|     iocb->req = req;
 | |
|     iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
 | |
|     iocb->ret = 0;
 | |
|     iocb->ns = NULL;
 | |
|     iocb->nsid = 0;
 | |
|     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
 | |
| 
 | |
|     if (!iocb->broadcast) {
 | |
|         if (!nvme_nsid_valid(n, nsid)) {
 | |
|             status = NVME_INVALID_NSID | NVME_DNR;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         iocb->ns = nvme_ns(n, nsid);
 | |
|         if (!iocb->ns) {
 | |
|             status = NVME_INVALID_FIELD | NVME_DNR;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         iocb->nsid = nsid;
 | |
|     }
 | |
| 
 | |
|     req->aiocb = &iocb->common;
 | |
|     qemu_bh_schedule(iocb->bh);
 | |
| 
 | |
|     return NVME_NO_COMPLETE;
 | |
| 
 | |
| out:
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
|     qemu_aio_unref(iocb);
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint64_t slba = le64_to_cpu(rw->slba);
 | |
|     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
 | |
|     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
 | |
|     uint64_t data_size = nvme_l2b(ns, nlb);
 | |
|     uint64_t mapped_size = data_size;
 | |
|     uint64_t data_offset;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (nvme_ns_ext(ns)) {
 | |
|         mapped_size += nvme_m2b(ns, nlb);
 | |
| 
 | |
|         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|             bool pract = prinfo & NVME_PRINFO_PRACT;
 | |
| 
 | |
|             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
 | |
|                 mapped_size = data_size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
 | |
| 
 | |
|     status = nvme_check_mdts(n, mapped_size);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_bounds(ns, slba, nlb);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (ns->params.zoned) {
 | |
|         status = nvme_check_zone_read(ns, slba, nlb);
 | |
|         if (status) {
 | |
|             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
 | |
|             goto invalid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
 | |
|         status = nvme_check_dulbe(ns, slba, nlb);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|         return nvme_dif_rw(n, req);
 | |
|     }
 | |
| 
 | |
|     status = nvme_map_data(n, nlb, req);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     data_offset = nvme_l2b(ns, slba);
 | |
| 
 | |
|     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
 | |
|                      BLOCK_ACCT_READ);
 | |
|     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
 | |
|     return NVME_NO_COMPLETE;
 | |
| 
 | |
| invalid:
 | |
|     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
 | |
|     return status | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
 | |
|                               bool wrz)
 | |
| {
 | |
|     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint64_t slba = le64_to_cpu(rw->slba);
 | |
|     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
 | |
|     uint16_t ctrl = le16_to_cpu(rw->control);
 | |
|     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
 | |
|     uint64_t data_size = nvme_l2b(ns, nlb);
 | |
|     uint64_t mapped_size = data_size;
 | |
|     uint64_t data_offset;
 | |
|     NvmeZone *zone;
 | |
|     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
 | |
|     BlockBackend *blk = ns->blkconf.blk;
 | |
|     uint16_t status;
 | |
| 
 | |
|     if (nvme_ns_ext(ns)) {
 | |
|         mapped_size += nvme_m2b(ns, nlb);
 | |
| 
 | |
|         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|             bool pract = prinfo & NVME_PRINFO_PRACT;
 | |
| 
 | |
|             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
 | |
|                 mapped_size -= nvme_m2b(ns, nlb);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
 | |
|                          nvme_nsid(ns), nlb, mapped_size, slba);
 | |
| 
 | |
|     if (!wrz) {
 | |
|         status = nvme_check_mdts(n, mapped_size);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_bounds(ns, slba, nlb);
 | |
|     if (status) {
 | |
|         goto invalid;
 | |
|     }
 | |
| 
 | |
|     if (ns->params.zoned) {
 | |
|         zone = nvme_get_zone_by_slba(ns, slba);
 | |
|         assert(zone);
 | |
| 
 | |
|         if (append) {
 | |
|             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
 | |
| 
 | |
|             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
 | |
|                 return NVME_INVALID_ZONE_OP | NVME_DNR;
 | |
|             }
 | |
| 
 | |
|             if (unlikely(slba != zone->d.zslba)) {
 | |
|                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
 | |
|                 status = NVME_INVALID_FIELD;
 | |
|                 goto invalid;
 | |
|             }
 | |
| 
 | |
|             if (n->params.zasl &&
 | |
|                 data_size > (uint64_t)n->page_size << n->params.zasl) {
 | |
|                 trace_pci_nvme_err_zasl(data_size);
 | |
|                 return NVME_INVALID_FIELD | NVME_DNR;
 | |
|             }
 | |
| 
 | |
|             slba = zone->w_ptr;
 | |
|             rw->slba = cpu_to_le64(slba);
 | |
|             res->slba = cpu_to_le64(slba);
 | |
| 
 | |
|             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|             case NVME_ID_NS_DPS_TYPE_1:
 | |
|                 if (!piremap) {
 | |
|                     return NVME_INVALID_PROT_INFO | NVME_DNR;
 | |
|                 }
 | |
| 
 | |
|                 /* fallthrough */
 | |
| 
 | |
|             case NVME_ID_NS_DPS_TYPE_2:
 | |
|                 if (piremap) {
 | |
|                     uint32_t reftag = le32_to_cpu(rw->reftag);
 | |
|                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
| 
 | |
|             case NVME_ID_NS_DPS_TYPE_3:
 | |
|                 if (piremap) {
 | |
|                     return NVME_INVALID_PROT_INFO | NVME_DNR;
 | |
|                 }
 | |
| 
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         status = nvme_check_zone_write(ns, zone, slba, nlb);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
| 
 | |
|         status = nvme_zrm_auto(n, ns, zone);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
| 
 | |
|         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
 | |
|             zone->w_ptr += nlb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     data_offset = nvme_l2b(ns, slba);
 | |
| 
 | |
|     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
 | |
|         return nvme_dif_rw(n, req);
 | |
|     }
 | |
| 
 | |
|     if (!wrz) {
 | |
|         status = nvme_map_data(n, nlb, req);
 | |
|         if (status) {
 | |
|             goto invalid;
 | |
|         }
 | |
| 
 | |
|         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
 | |
|                          BLOCK_ACCT_WRITE);
 | |
|         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
 | |
|     } else {
 | |
|         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
 | |
|                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
 | |
|                                            req);
 | |
|     }
 | |
| 
 | |
|     return NVME_NO_COMPLETE;
 | |
| 
 | |
| invalid:
 | |
|     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
 | |
|     return status | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     return nvme_do_write(n, req, false, false);
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     return nvme_do_write(n, req, false, true);
 | |
| }
 | |
| 
 | |
| static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     return nvme_do_write(n, req, true, false);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
 | |
|                                             uint64_t *slba, uint32_t *zone_idx)
 | |
| {
 | |
|     uint32_t dw10 = le32_to_cpu(c->cdw10);
 | |
|     uint32_t dw11 = le32_to_cpu(c->cdw11);
 | |
| 
 | |
|     if (!ns->params.zoned) {
 | |
|         trace_pci_nvme_err_invalid_opc(c->opcode);
 | |
|         return NVME_INVALID_OPCODE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     *slba = ((uint64_t)dw11) << 32 | dw10;
 | |
|     if (unlikely(*slba >= ns->id_ns.nsze)) {
 | |
|         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
 | |
|         *slba = 0;
 | |
|         return NVME_LBA_RANGE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     *zone_idx = nvme_zone_idx(ns, *slba);
 | |
|     assert(*zone_idx < ns->num_zones);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
 | |
|                                  NvmeRequest *);
 | |
| 
 | |
| enum NvmeZoneProcessingMask {
 | |
|     NVME_PROC_CURRENT_ZONE    = 0,
 | |
|     NVME_PROC_OPENED_ZONES    = 1 << 0,
 | |
|     NVME_PROC_CLOSED_ZONES    = 1 << 1,
 | |
|     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
 | |
|     NVME_PROC_FULL_ZONES      = 1 << 3,
 | |
| };
 | |
| 
 | |
| static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                NvmeZoneState state, NvmeRequest *req)
 | |
| {
 | |
|     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
 | |
|     int flags = 0;
 | |
| 
 | |
|     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
 | |
|         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
 | |
| 
 | |
|         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
 | |
|             return NVME_INVALID_ZONE_OP | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         if (zone->w_ptr % ns->zns.zrwafg) {
 | |
|             return NVME_NOZRWA | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         flags = NVME_ZRM_ZRWA;
 | |
|     }
 | |
| 
 | |
|     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                 NvmeZoneState state, NvmeRequest *req)
 | |
| {
 | |
|     return nvme_zrm_close(ns, zone);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                  NvmeZoneState state, NvmeRequest *req)
 | |
| {
 | |
|     return nvme_zrm_finish(ns, zone);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                   NvmeZoneState state, NvmeRequest *req)
 | |
| {
 | |
|     switch (state) {
 | |
|     case NVME_ZONE_STATE_READ_ONLY:
 | |
|         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
 | |
|         /* fall through */
 | |
|     case NVME_ZONE_STATE_OFFLINE:
 | |
|         return NVME_SUCCESS;
 | |
|     default:
 | |
|         return NVME_ZONE_INVAL_TRANSITION;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
 | |
| {
 | |
|     uint16_t status;
 | |
|     uint8_t state = nvme_get_zone_state(zone);
 | |
| 
 | |
|     if (state == NVME_ZONE_STATE_EMPTY) {
 | |
|         status = nvme_aor_check(ns, 1, 0);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
|         nvme_aor_inc_active(ns);
 | |
|         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
 | |
|         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
 | |
|         return NVME_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     return NVME_ZONE_INVAL_TRANSITION;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                     enum NvmeZoneProcessingMask proc_mask,
 | |
|                                     op_handler_t op_hndlr, NvmeRequest *req)
 | |
| {
 | |
|     uint16_t status = NVME_SUCCESS;
 | |
|     NvmeZoneState zs = nvme_get_zone_state(zone);
 | |
|     bool proc_zone;
 | |
| 
 | |
|     switch (zs) {
 | |
|     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
 | |
|         break;
 | |
|     case NVME_ZONE_STATE_CLOSED:
 | |
|         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
 | |
|         break;
 | |
|     case NVME_ZONE_STATE_READ_ONLY:
 | |
|         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
 | |
|         break;
 | |
|     case NVME_ZONE_STATE_FULL:
 | |
|         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
 | |
|         break;
 | |
|     default:
 | |
|         proc_zone = false;
 | |
|     }
 | |
| 
 | |
|     if (proc_zone) {
 | |
|         status = op_hndlr(ns, zone, zs, req);
 | |
|     }
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
 | |
|                                 enum NvmeZoneProcessingMask proc_mask,
 | |
|                                 op_handler_t op_hndlr, NvmeRequest *req)
 | |
| {
 | |
|     NvmeZone *next;
 | |
|     uint16_t status = NVME_SUCCESS;
 | |
|     int i;
 | |
| 
 | |
|     if (!proc_mask) {
 | |
|         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
 | |
|     } else {
 | |
|         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
 | |
|             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
 | |
|                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
 | |
|                                              req);
 | |
|                 if (status && status != NVME_NO_COMPLETE) {
 | |
|                     goto out;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (proc_mask & NVME_PROC_OPENED_ZONES) {
 | |
|             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
 | |
|                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
 | |
|                                              req);
 | |
|                 if (status && status != NVME_NO_COMPLETE) {
 | |
|                     goto out;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
 | |
|                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
 | |
|                                              req);
 | |
|                 if (status && status != NVME_NO_COMPLETE) {
 | |
|                     goto out;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (proc_mask & NVME_PROC_FULL_ZONES) {
 | |
|             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
 | |
|                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
 | |
|                                              req);
 | |
|                 if (status && status != NVME_NO_COMPLETE) {
 | |
|                     goto out;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
 | |
|             for (i = 0; i < ns->num_zones; i++, zone++) {
 | |
|                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
 | |
|                                              req);
 | |
|                 if (status && status != NVME_NO_COMPLETE) {
 | |
|                     goto out;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| typedef struct NvmeZoneResetAIOCB {
 | |
|     BlockAIOCB common;
 | |
|     BlockAIOCB *aiocb;
 | |
|     NvmeRequest *req;
 | |
|     QEMUBH *bh;
 | |
|     int ret;
 | |
| 
 | |
|     bool all;
 | |
|     int idx;
 | |
|     NvmeZone *zone;
 | |
| } NvmeZoneResetAIOCB;
 | |
| 
 | |
| static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
 | |
| {
 | |
|     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
| 
 | |
|     iocb->idx = ns->num_zones;
 | |
| 
 | |
|     iocb->ret = -ECANCELED;
 | |
| 
 | |
|     if (iocb->aiocb) {
 | |
|         blk_aio_cancel_async(iocb->aiocb);
 | |
|         iocb->aiocb = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const AIOCBInfo nvme_zone_reset_aiocb_info = {
 | |
|     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
 | |
|     .cancel_async = nvme_zone_reset_cancel,
 | |
| };
 | |
| 
 | |
| static void nvme_zone_reset_bh(void *opaque)
 | |
| {
 | |
|     NvmeZoneResetAIOCB *iocb = opaque;
 | |
| 
 | |
|     iocb->common.cb(iocb->common.opaque, iocb->ret);
 | |
| 
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
|     qemu_aio_unref(iocb);
 | |
| }
 | |
| 
 | |
| static void nvme_zone_reset_cb(void *opaque, int ret);
 | |
| 
 | |
| static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeZoneResetAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     int64_t moff;
 | |
|     int count;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         nvme_zone_reset_cb(iocb, ret);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!ns->lbaf.ms) {
 | |
|         nvme_zone_reset_cb(iocb, 0);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     moff = nvme_moff(ns, iocb->zone->d.zslba);
 | |
|     count = nvme_m2b(ns, ns->zone_size);
 | |
| 
 | |
|     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
 | |
|                                         BDRV_REQ_MAY_UNMAP,
 | |
|                                         nvme_zone_reset_cb, iocb);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static void nvme_zone_reset_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeZoneResetAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (iocb->zone) {
 | |
|         nvme_zrm_reset(ns, iocb->zone);
 | |
| 
 | |
|         if (!iocb->all) {
 | |
|             goto done;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (iocb->idx < ns->num_zones) {
 | |
|         NvmeZone *zone = &ns->zone_array[iocb->idx++];
 | |
| 
 | |
|         switch (nvme_get_zone_state(zone)) {
 | |
|         case NVME_ZONE_STATE_EMPTY:
 | |
|             if (!iocb->all) {
 | |
|                 goto done;
 | |
|             }
 | |
| 
 | |
|             continue;
 | |
| 
 | |
|         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
 | |
|         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
 | |
|         case NVME_ZONE_STATE_CLOSED:
 | |
|         case NVME_ZONE_STATE_FULL:
 | |
|             iocb->zone = zone;
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
 | |
| 
 | |
|         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
 | |
|                                             nvme_l2b(ns, zone->d.zslba),
 | |
|                                             nvme_l2b(ns, ns->zone_size),
 | |
|                                             BDRV_REQ_MAY_UNMAP,
 | |
|                                             nvme_zone_reset_epilogue_cb,
 | |
|                                             iocb);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| done:
 | |
|     iocb->aiocb = NULL;
 | |
|     if (iocb->bh) {
 | |
|         qemu_bh_schedule(iocb->bh);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
 | |
|                                                uint64_t elba, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
 | |
|     uint64_t wp = zone->d.wp;
 | |
|     uint32_t nlb = elba - wp + 1;
 | |
|     uint16_t status;
 | |
| 
 | |
| 
 | |
|     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
 | |
|         return NVME_INVALID_ZONE_OP | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (elba < wp || elba > wp + ns->zns.zrwas) {
 | |
|         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (nlb % ns->zns.zrwafg) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     status = nvme_zrm_auto(n, ns, zone);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     zone->w_ptr += nlb;
 | |
| 
 | |
|     nvme_advance_zone_wp(ns, zone, nlb);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     NvmeZone *zone;
 | |
|     NvmeZoneResetAIOCB *iocb;
 | |
|     uint8_t *zd_ext;
 | |
|     uint64_t slba = 0;
 | |
|     uint32_t zone_idx = 0;
 | |
|     uint16_t status;
 | |
|     uint8_t action = cmd->zsa;
 | |
|     bool all;
 | |
|     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
 | |
| 
 | |
|     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
 | |
| 
 | |
|     req->status = NVME_SUCCESS;
 | |
| 
 | |
|     if (!all) {
 | |
|         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     zone = &ns->zone_array[zone_idx];
 | |
|     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
 | |
|         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     switch (action) {
 | |
| 
 | |
|     case NVME_ZONE_ACTION_OPEN:
 | |
|         if (all) {
 | |
|             proc_mask = NVME_PROC_CLOSED_ZONES;
 | |
|         }
 | |
|         trace_pci_nvme_open_zone(slba, zone_idx, all);
 | |
|         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
 | |
|         break;
 | |
| 
 | |
|     case NVME_ZONE_ACTION_CLOSE:
 | |
|         if (all) {
 | |
|             proc_mask = NVME_PROC_OPENED_ZONES;
 | |
|         }
 | |
|         trace_pci_nvme_close_zone(slba, zone_idx, all);
 | |
|         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
 | |
|         break;
 | |
| 
 | |
|     case NVME_ZONE_ACTION_FINISH:
 | |
|         if (all) {
 | |
|             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
 | |
|         }
 | |
|         trace_pci_nvme_finish_zone(slba, zone_idx, all);
 | |
|         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
 | |
|         break;
 | |
| 
 | |
|     case NVME_ZONE_ACTION_RESET:
 | |
|         trace_pci_nvme_reset_zone(slba, zone_idx, all);
 | |
| 
 | |
|         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
 | |
|                            nvme_misc_cb, req);
 | |
| 
 | |
|         iocb->req = req;
 | |
|         iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
 | |
|         iocb->ret = 0;
 | |
|         iocb->all = all;
 | |
|         iocb->idx = zone_idx;
 | |
|         iocb->zone = NULL;
 | |
| 
 | |
|         req->aiocb = &iocb->common;
 | |
|         nvme_zone_reset_cb(iocb, 0);
 | |
| 
 | |
|         return NVME_NO_COMPLETE;
 | |
| 
 | |
|     case NVME_ZONE_ACTION_OFFLINE:
 | |
|         if (all) {
 | |
|             proc_mask = NVME_PROC_READ_ONLY_ZONES;
 | |
|         }
 | |
|         trace_pci_nvme_offline_zone(slba, zone_idx, all);
 | |
|         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
 | |
|         break;
 | |
| 
 | |
|     case NVME_ZONE_ACTION_SET_ZD_EXT:
 | |
|         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
 | |
|         if (all || !ns->params.zd_extension_size) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
|         zd_ext = nvme_get_zd_extension(ns, zone_idx);
 | |
|         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
 | |
|         if (status) {
 | |
|             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         status = nvme_set_zd_ext(ns, zone);
 | |
|         if (status == NVME_SUCCESS) {
 | |
|             trace_pci_nvme_zd_extension_set(zone_idx);
 | |
|             return status;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case NVME_ZONE_ACTION_ZRWA_FLUSH:
 | |
|         if (all) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
 | |
| 
 | |
|     default:
 | |
|         trace_pci_nvme_err_invalid_mgmt_action(action);
 | |
|         status = NVME_INVALID_FIELD;
 | |
|     }
 | |
| 
 | |
|     if (status == NVME_ZONE_INVAL_TRANSITION) {
 | |
|         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
 | |
|                                                          zone->d.za);
 | |
|     }
 | |
|     if (status) {
 | |
|         status |= NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
 | |
| {
 | |
|     NvmeZoneState zs = nvme_get_zone_state(zl);
 | |
| 
 | |
|     switch (zafs) {
 | |
|     case NVME_ZONE_REPORT_ALL:
 | |
|         return true;
 | |
|     case NVME_ZONE_REPORT_EMPTY:
 | |
|         return zs == NVME_ZONE_STATE_EMPTY;
 | |
|     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
 | |
|         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
 | |
|     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
 | |
|         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
 | |
|     case NVME_ZONE_REPORT_CLOSED:
 | |
|         return zs == NVME_ZONE_STATE_CLOSED;
 | |
|     case NVME_ZONE_REPORT_FULL:
 | |
|         return zs == NVME_ZONE_STATE_FULL;
 | |
|     case NVME_ZONE_REPORT_READ_ONLY:
 | |
|         return zs == NVME_ZONE_STATE_READ_ONLY;
 | |
|     case NVME_ZONE_REPORT_OFFLINE:
 | |
|         return zs == NVME_ZONE_STATE_OFFLINE;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
 | |
|     NvmeNamespace *ns = req->ns;
 | |
|     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
 | |
|     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
 | |
|     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
 | |
|     uint32_t zone_idx, zra, zrasf, partial;
 | |
|     uint64_t max_zones, nr_zones = 0;
 | |
|     uint16_t status;
 | |
|     uint64_t slba;
 | |
|     NvmeZoneDescr *z;
 | |
|     NvmeZone *zone;
 | |
|     NvmeZoneReportHeader *header;
 | |
|     void *buf, *buf_p;
 | |
|     size_t zone_entry_sz;
 | |
|     int i;
 | |
| 
 | |
|     req->status = NVME_SUCCESS;
 | |
| 
 | |
|     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     zra = dw13 & 0xff;
 | |
|     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
|     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     zrasf = (dw13 >> 8) & 0xff;
 | |
|     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (data_size < sizeof(NvmeZoneReportHeader)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     status = nvme_check_mdts(n, data_size);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     partial = (dw13 >> 16) & 0x01;
 | |
| 
 | |
|     zone_entry_sz = sizeof(NvmeZoneDescr);
 | |
|     if (zra == NVME_ZONE_REPORT_EXTENDED) {
 | |
|         zone_entry_sz += ns->params.zd_extension_size;
 | |
|     }
 | |
| 
 | |
|     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
 | |
|     buf = g_malloc0(data_size);
 | |
| 
 | |
|     zone = &ns->zone_array[zone_idx];
 | |
|     for (i = zone_idx; i < ns->num_zones; i++) {
 | |
|         if (partial && nr_zones >= max_zones) {
 | |
|             break;
 | |
|         }
 | |
|         if (nvme_zone_matches_filter(zrasf, zone++)) {
 | |
|             nr_zones++;
 | |
|         }
 | |
|     }
 | |
|     header = (NvmeZoneReportHeader *)buf;
 | |
|     header->nr_zones = cpu_to_le64(nr_zones);
 | |
| 
 | |
|     buf_p = buf + sizeof(NvmeZoneReportHeader);
 | |
|     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
 | |
|         zone = &ns->zone_array[zone_idx];
 | |
|         if (nvme_zone_matches_filter(zrasf, zone)) {
 | |
|             z = (NvmeZoneDescr *)buf_p;
 | |
|             buf_p += sizeof(NvmeZoneDescr);
 | |
| 
 | |
|             z->zt = zone->d.zt;
 | |
|             z->zs = zone->d.zs;
 | |
|             z->zcap = cpu_to_le64(zone->d.zcap);
 | |
|             z->zslba = cpu_to_le64(zone->d.zslba);
 | |
|             z->za = zone->d.za;
 | |
| 
 | |
|             if (nvme_wp_is_valid(zone)) {
 | |
|                 z->wp = cpu_to_le64(zone->d.wp);
 | |
|             } else {
 | |
|                 z->wp = cpu_to_le64(~0ULL);
 | |
|             }
 | |
| 
 | |
|             if (zra == NVME_ZONE_REPORT_EXTENDED) {
 | |
|                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
 | |
|                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
 | |
|                            ns->params.zd_extension_size);
 | |
|                 }
 | |
|                 buf_p += ns->params.zd_extension_size;
 | |
|             }
 | |
| 
 | |
|             max_zones--;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
 | |
| 
 | |
|     g_free(buf);
 | |
| 
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
 | |
| 
 | |
|     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
 | |
|                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
 | |
| 
 | |
|     if (!nvme_nsid_valid(n, nsid)) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In the base NVM command set, Flush may apply to all namespaces
 | |
|      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
 | |
|      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
 | |
|      *
 | |
|      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
 | |
|      * opcode with a specific command since we cannot determine a unique I/O
 | |
|      * command set. Opcode 0h could have any other meaning than something
 | |
|      * equivalent to flushing and say it DOES have completely different
 | |
|      * semantics in some other command set - does an NSID of FFFFFFFFh then
 | |
|      * mean "for all namespaces, apply whatever command set specific command
 | |
|      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
 | |
|      * whatever command that uses the 0h opcode if, and only if, it allows NSID
 | |
|      * to be FFFFFFFFh"?
 | |
|      *
 | |
|      * Anyway (and luckily), for now, we do not care about this since the
 | |
|      * device only supports namespace types that includes the NVM Flush command
 | |
|      * (NVM and Zoned), so always do an NVM Flush.
 | |
|      */
 | |
|     if (req->cmd.opcode == NVME_CMD_FLUSH) {
 | |
|         return nvme_flush(n, req);
 | |
|     }
 | |
| 
 | |
|     ns = nvme_ns(n, nsid);
 | |
|     if (unlikely(!ns)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
 | |
|         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
 | |
|         return NVME_INVALID_OPCODE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (ns->status) {
 | |
|         return ns->status;
 | |
|     }
 | |
| 
 | |
|     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
 | |
|         return NVME_INVALID_FIELD;
 | |
|     }
 | |
| 
 | |
|     req->ns = ns;
 | |
| 
 | |
|     switch (req->cmd.opcode) {
 | |
|     case NVME_CMD_WRITE_ZEROES:
 | |
|         return nvme_write_zeroes(n, req);
 | |
|     case NVME_CMD_ZONE_APPEND:
 | |
|         return nvme_zone_append(n, req);
 | |
|     case NVME_CMD_WRITE:
 | |
|         return nvme_write(n, req);
 | |
|     case NVME_CMD_READ:
 | |
|         return nvme_read(n, req);
 | |
|     case NVME_CMD_COMPARE:
 | |
|         return nvme_compare(n, req);
 | |
|     case NVME_CMD_DSM:
 | |
|         return nvme_dsm(n, req);
 | |
|     case NVME_CMD_VERIFY:
 | |
|         return nvme_verify(n, req);
 | |
|     case NVME_CMD_COPY:
 | |
|         return nvme_copy(n, req);
 | |
|     case NVME_CMD_ZONE_MGMT_SEND:
 | |
|         return nvme_zone_mgmt_send(n, req);
 | |
|     case NVME_CMD_ZONE_MGMT_RECV:
 | |
|         return nvme_zone_mgmt_recv(n, req);
 | |
|     default:
 | |
|         assert(false);
 | |
|     }
 | |
| 
 | |
|     return NVME_INVALID_OPCODE | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static void nvme_cq_notifier(EventNotifier *e)
 | |
| {
 | |
|     NvmeCQueue *cq = container_of(e, NvmeCQueue, notifier);
 | |
|     NvmeCtrl *n = cq->ctrl;
 | |
| 
 | |
|     if (!event_notifier_test_and_clear(e)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_update_cq_head(cq);
 | |
| 
 | |
|     if (cq->tail == cq->head) {
 | |
|         if (cq->irq_enabled) {
 | |
|             n->cq_pending--;
 | |
|         }
 | |
| 
 | |
|         nvme_irq_deassert(n, cq);
 | |
|     }
 | |
| 
 | |
|     nvme_post_cqes(cq);
 | |
| }
 | |
| 
 | |
| static int nvme_init_cq_ioeventfd(NvmeCQueue *cq)
 | |
| {
 | |
|     NvmeCtrl *n = cq->ctrl;
 | |
|     uint16_t offset = (cq->cqid << 3) + (1 << 2);
 | |
|     int ret;
 | |
| 
 | |
|     ret = event_notifier_init(&cq->notifier, 0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     event_notifier_set_handler(&cq->notifier, nvme_cq_notifier);
 | |
|     memory_region_add_eventfd(&n->iomem,
 | |
|                               0x1000 + offset, 4, false, 0, &cq->notifier);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void nvme_sq_notifier(EventNotifier *e)
 | |
| {
 | |
|     NvmeSQueue *sq = container_of(e, NvmeSQueue, notifier);
 | |
| 
 | |
|     if (!event_notifier_test_and_clear(e)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_process_sq(sq);
 | |
| }
 | |
| 
 | |
| static int nvme_init_sq_ioeventfd(NvmeSQueue *sq)
 | |
| {
 | |
|     NvmeCtrl *n = sq->ctrl;
 | |
|     uint16_t offset = sq->sqid << 3;
 | |
|     int ret;
 | |
| 
 | |
|     ret = event_notifier_init(&sq->notifier, 0);
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     event_notifier_set_handler(&sq->notifier, nvme_sq_notifier);
 | |
|     memory_region_add_eventfd(&n->iomem,
 | |
|                               0x1000 + offset, 4, false, 0, &sq->notifier);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
 | |
| {
 | |
|     uint16_t offset = sq->sqid << 3;
 | |
| 
 | |
|     n->sq[sq->sqid] = NULL;
 | |
|     timer_free(sq->timer);
 | |
|     if (sq->ioeventfd_enabled) {
 | |
|         memory_region_del_eventfd(&n->iomem,
 | |
|                                   0x1000 + offset, 4, false, 0, &sq->notifier);
 | |
|         event_notifier_cleanup(&sq->notifier);
 | |
|     }
 | |
|     g_free(sq->io_req);
 | |
|     if (sq->sqid) {
 | |
|         g_free(sq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
 | |
|     NvmeRequest *r, *next;
 | |
|     NvmeSQueue *sq;
 | |
|     NvmeCQueue *cq;
 | |
|     uint16_t qid = le16_to_cpu(c->qid);
 | |
| 
 | |
|     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
 | |
|         trace_pci_nvme_err_invalid_del_sq(qid);
 | |
|         return NVME_INVALID_QID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_del_sq(qid);
 | |
| 
 | |
|     sq = n->sq[qid];
 | |
|     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
 | |
|         r = QTAILQ_FIRST(&sq->out_req_list);
 | |
|         assert(r->aiocb);
 | |
|         blk_aio_cancel(r->aiocb);
 | |
|     }
 | |
| 
 | |
|     assert(QTAILQ_EMPTY(&sq->out_req_list));
 | |
| 
 | |
|     if (!nvme_check_cqid(n, sq->cqid)) {
 | |
|         cq = n->cq[sq->cqid];
 | |
|         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
 | |
| 
 | |
|         nvme_post_cqes(cq);
 | |
|         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
 | |
|             if (r->sq == sq) {
 | |
|                 QTAILQ_REMOVE(&cq->req_list, r, entry);
 | |
|                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nvme_free_sq(sq, n);
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
 | |
|                          uint16_t sqid, uint16_t cqid, uint16_t size)
 | |
| {
 | |
|     int i;
 | |
|     NvmeCQueue *cq;
 | |
| 
 | |
|     sq->ctrl = n;
 | |
|     sq->dma_addr = dma_addr;
 | |
|     sq->sqid = sqid;
 | |
|     sq->size = size;
 | |
|     sq->cqid = cqid;
 | |
|     sq->head = sq->tail = 0;
 | |
|     sq->io_req = g_new0(NvmeRequest, sq->size);
 | |
| 
 | |
|     QTAILQ_INIT(&sq->req_list);
 | |
|     QTAILQ_INIT(&sq->out_req_list);
 | |
|     for (i = 0; i < sq->size; i++) {
 | |
|         sq->io_req[i].sq = sq;
 | |
|         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
 | |
|     }
 | |
|     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
 | |
| 
 | |
|     if (n->dbbuf_enabled) {
 | |
|         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
 | |
|         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
 | |
| 
 | |
|         if (n->params.ioeventfd && sq->sqid != 0) {
 | |
|             if (!nvme_init_sq_ioeventfd(sq)) {
 | |
|                 sq->ioeventfd_enabled = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     assert(n->cq[cqid]);
 | |
|     cq = n->cq[cqid];
 | |
|     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
 | |
|     n->sq[sqid] = sq;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeSQueue *sq;
 | |
|     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
 | |
| 
 | |
|     uint16_t cqid = le16_to_cpu(c->cqid);
 | |
|     uint16_t sqid = le16_to_cpu(c->sqid);
 | |
|     uint16_t qsize = le16_to_cpu(c->qsize);
 | |
|     uint16_t qflags = le16_to_cpu(c->sq_flags);
 | |
|     uint64_t prp1 = le64_to_cpu(c->prp1);
 | |
| 
 | |
|     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
 | |
| 
 | |
|     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
 | |
|         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
 | |
|         return NVME_INVALID_CQID | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
 | |
|         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
 | |
|         return NVME_INVALID_QID | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
 | |
|         trace_pci_nvme_err_invalid_create_sq_size(qsize);
 | |
|         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(prp1 & (n->page_size - 1))) {
 | |
|         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
 | |
|         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
 | |
|         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
|     sq = g_malloc0(sizeof(*sq));
 | |
|     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| struct nvme_stats {
 | |
|     uint64_t units_read;
 | |
|     uint64_t units_written;
 | |
|     uint64_t read_commands;
 | |
|     uint64_t write_commands;
 | |
| };
 | |
| 
 | |
| static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
 | |
| {
 | |
|     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
 | |
| 
 | |
|     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
 | |
|     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
 | |
|     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
 | |
|     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
 | |
|                                 uint64_t off, NvmeRequest *req)
 | |
| {
 | |
|     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
 | |
|     struct nvme_stats stats = { 0 };
 | |
|     NvmeSmartLog smart = { 0 };
 | |
|     uint32_t trans_len;
 | |
|     NvmeNamespace *ns;
 | |
|     time_t current_ms;
 | |
| 
 | |
|     if (off >= sizeof(smart)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (nsid != 0xffffffff) {
 | |
|         ns = nvme_ns(n, nsid);
 | |
|         if (!ns) {
 | |
|             return NVME_INVALID_NSID | NVME_DNR;
 | |
|         }
 | |
|         nvme_set_blk_stats(ns, &stats);
 | |
|     } else {
 | |
|         int i;
 | |
| 
 | |
|         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             ns = nvme_ns(n, i);
 | |
|             if (!ns) {
 | |
|                 continue;
 | |
|             }
 | |
|             nvme_set_blk_stats(ns, &stats);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trans_len = MIN(sizeof(smart) - off, buf_len);
 | |
|     smart.critical_warning = n->smart_critical_warning;
 | |
| 
 | |
|     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
 | |
|                                                         1000));
 | |
|     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
 | |
|                                                            1000));
 | |
|     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
 | |
|     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
 | |
| 
 | |
|     smart.temperature = cpu_to_le16(n->temperature);
 | |
| 
 | |
|     if ((n->temperature >= n->features.temp_thresh_hi) ||
 | |
|         (n->temperature <= n->features.temp_thresh_low)) {
 | |
|         smart.critical_warning |= NVME_SMART_TEMPERATURE;
 | |
|     }
 | |
| 
 | |
|     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
 | |
|     smart.power_on_hours[0] =
 | |
|         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
 | |
| 
 | |
|     if (!rae) {
 | |
|         nvme_clear_events(n, NVME_AER_TYPE_SMART);
 | |
|     }
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
 | |
|                                  NvmeRequest *req)
 | |
| {
 | |
|     uint32_t trans_len;
 | |
|     NvmeFwSlotInfoLog fw_log = {
 | |
|         .afi = 0x1,
 | |
|     };
 | |
| 
 | |
|     if (off >= sizeof(fw_log)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
 | |
|     trans_len = MIN(sizeof(fw_log) - off, buf_len);
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
 | |
|                                 uint64_t off, NvmeRequest *req)
 | |
| {
 | |
|     uint32_t trans_len;
 | |
|     NvmeErrorLog errlog;
 | |
| 
 | |
|     if (off >= sizeof(errlog)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!rae) {
 | |
|         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
 | |
|     }
 | |
| 
 | |
|     memset(&errlog, 0x0, sizeof(errlog));
 | |
|     trans_len = MIN(sizeof(errlog) - off, buf_len);
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
 | |
|                                     uint64_t off, NvmeRequest *req)
 | |
| {
 | |
|     uint32_t nslist[1024];
 | |
|     uint32_t trans_len;
 | |
|     int i = 0;
 | |
|     uint32_t nsid;
 | |
| 
 | |
|     if (off >= sizeof(nslist)) {
 | |
|         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     memset(nslist, 0x0, sizeof(nslist));
 | |
|     trans_len = MIN(sizeof(nslist) - off, buf_len);
 | |
| 
 | |
|     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
 | |
|             NVME_CHANGED_NSID_SIZE) {
 | |
|         /*
 | |
|          * If more than 1024 namespaces, the first entry in the log page should
 | |
|          * be set to FFFFFFFFh and the others to 0 as spec.
 | |
|          */
 | |
|         if (i == ARRAY_SIZE(nslist)) {
 | |
|             memset(nslist, 0x0, sizeof(nslist));
 | |
|             nslist[0] = 0xffffffff;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         nslist[i++] = nsid;
 | |
|         clear_bit(nsid, n->changed_nsids);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Remove all the remaining list entries in case returns directly due to
 | |
|      * more than 1024 namespaces.
 | |
|      */
 | |
|     if (nslist[0] == 0xffffffff) {
 | |
|         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
 | |
|     }
 | |
| 
 | |
|     if (!rae) {
 | |
|         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
 | |
|     }
 | |
| 
 | |
|     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
 | |
|                                  uint64_t off, NvmeRequest *req)
 | |
| {
 | |
|     NvmeEffectsLog log = {};
 | |
|     const uint32_t *src_iocs = NULL;
 | |
|     uint32_t trans_len;
 | |
| 
 | |
|     if (off >= sizeof(log)) {
 | |
|         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
 | |
|     case NVME_CC_CSS_NVM:
 | |
|         src_iocs = nvme_cse_iocs_nvm;
 | |
|         /* fall through */
 | |
|     case NVME_CC_CSS_ADMIN_ONLY:
 | |
|         break;
 | |
|     case NVME_CC_CSS_CSI:
 | |
|         switch (csi) {
 | |
|         case NVME_CSI_NVM:
 | |
|             src_iocs = nvme_cse_iocs_nvm;
 | |
|             break;
 | |
|         case NVME_CSI_ZONED:
 | |
|             src_iocs = nvme_cse_iocs_zoned;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
 | |
| 
 | |
|     if (src_iocs) {
 | |
|         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
 | |
|     }
 | |
| 
 | |
|     trans_len = MIN(sizeof(log) - off, buf_len);
 | |
| 
 | |
|     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeCmd *cmd = &req->cmd;
 | |
| 
 | |
|     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 | |
|     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 | |
|     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
 | |
|     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
 | |
|     uint8_t  lid = dw10 & 0xff;
 | |
|     uint8_t  lsp = (dw10 >> 8) & 0xf;
 | |
|     uint8_t  rae = (dw10 >> 15) & 0x1;
 | |
|     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
 | |
|     uint32_t numdl, numdu;
 | |
|     uint64_t off, lpol, lpou;
 | |
|     size_t   len;
 | |
|     uint16_t status;
 | |
| 
 | |
|     numdl = (dw10 >> 16);
 | |
|     numdu = (dw11 & 0xffff);
 | |
|     lpol = dw12;
 | |
|     lpou = dw13;
 | |
| 
 | |
|     len = (((numdu << 16) | numdl) + 1) << 2;
 | |
|     off = (lpou << 32ULL) | lpol;
 | |
| 
 | |
|     if (off & 0x3) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
 | |
| 
 | |
|     status = nvme_check_mdts(n, len);
 | |
|     if (status) {
 | |
|         return status;
 | |
|     }
 | |
| 
 | |
|     switch (lid) {
 | |
|     case NVME_LOG_ERROR_INFO:
 | |
|         return nvme_error_info(n, rae, len, off, req);
 | |
|     case NVME_LOG_SMART_INFO:
 | |
|         return nvme_smart_info(n, rae, len, off, req);
 | |
|     case NVME_LOG_FW_SLOT_INFO:
 | |
|         return nvme_fw_log_info(n, len, off, req);
 | |
|     case NVME_LOG_CHANGED_NSLIST:
 | |
|         return nvme_changed_nslist(n, rae, len, off, req);
 | |
|     case NVME_LOG_CMD_EFFECTS:
 | |
|         return nvme_cmd_effects(n, csi, len, off, req);
 | |
|     default:
 | |
|         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
 | |
| {
 | |
|     uint16_t offset = (cq->cqid << 3) + (1 << 2);
 | |
| 
 | |
|     n->cq[cq->cqid] = NULL;
 | |
|     timer_free(cq->timer);
 | |
|     if (cq->ioeventfd_enabled) {
 | |
|         memory_region_del_eventfd(&n->iomem,
 | |
|                                   0x1000 + offset, 4, false, 0, &cq->notifier);
 | |
|         event_notifier_cleanup(&cq->notifier);
 | |
|     }
 | |
|     if (msix_enabled(&n->parent_obj)) {
 | |
|         msix_vector_unuse(&n->parent_obj, cq->vector);
 | |
|     }
 | |
|     if (cq->cqid) {
 | |
|         g_free(cq);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
 | |
|     NvmeCQueue *cq;
 | |
|     uint16_t qid = le16_to_cpu(c->qid);
 | |
| 
 | |
|     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
 | |
|         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
 | |
|         return NVME_INVALID_CQID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     cq = n->cq[qid];
 | |
|     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
 | |
|         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
 | |
|         return NVME_INVALID_QUEUE_DEL;
 | |
|     }
 | |
| 
 | |
|     if (cq->irq_enabled && cq->tail != cq->head) {
 | |
|         n->cq_pending--;
 | |
|     }
 | |
| 
 | |
|     nvme_irq_deassert(n, cq);
 | |
|     trace_pci_nvme_del_cq(qid);
 | |
|     nvme_free_cq(cq, n);
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
 | |
|                          uint16_t cqid, uint16_t vector, uint16_t size,
 | |
|                          uint16_t irq_enabled)
 | |
| {
 | |
|     int ret;
 | |
| 
 | |
|     if (msix_enabled(&n->parent_obj)) {
 | |
|         ret = msix_vector_use(&n->parent_obj, vector);
 | |
|         assert(ret == 0);
 | |
|     }
 | |
|     cq->ctrl = n;
 | |
|     cq->cqid = cqid;
 | |
|     cq->size = size;
 | |
|     cq->dma_addr = dma_addr;
 | |
|     cq->phase = 1;
 | |
|     cq->irq_enabled = irq_enabled;
 | |
|     cq->vector = vector;
 | |
|     cq->head = cq->tail = 0;
 | |
|     QTAILQ_INIT(&cq->req_list);
 | |
|     QTAILQ_INIT(&cq->sq_list);
 | |
|     if (n->dbbuf_enabled) {
 | |
|         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
 | |
|         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
 | |
| 
 | |
|         if (n->params.ioeventfd && cqid != 0) {
 | |
|             if (!nvme_init_cq_ioeventfd(cq)) {
 | |
|                 cq->ioeventfd_enabled = true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     n->cq[cqid] = cq;
 | |
|     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeCQueue *cq;
 | |
|     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
 | |
|     uint16_t cqid = le16_to_cpu(c->cqid);
 | |
|     uint16_t vector = le16_to_cpu(c->irq_vector);
 | |
|     uint16_t qsize = le16_to_cpu(c->qsize);
 | |
|     uint16_t qflags = le16_to_cpu(c->cq_flags);
 | |
|     uint64_t prp1 = le64_to_cpu(c->prp1);
 | |
| 
 | |
|     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
 | |
|                              NVME_CQ_FLAGS_IEN(qflags) != 0);
 | |
| 
 | |
|     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
 | |
|         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
 | |
|         return NVME_INVALID_QID | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
 | |
|         trace_pci_nvme_err_invalid_create_cq_size(qsize);
 | |
|         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(prp1 & (n->page_size - 1))) {
 | |
|         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
 | |
|         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
 | |
|         trace_pci_nvme_err_invalid_create_cq_vector(vector);
 | |
|         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(vector >= n->conf_msix_qsize)) {
 | |
|         trace_pci_nvme_err_invalid_create_cq_vector(vector);
 | |
|         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
 | |
|     }
 | |
|     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
 | |
|         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     cq = g_malloc0(sizeof(*cq));
 | |
|     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
 | |
|                  NVME_CQ_FLAGS_IEN(qflags));
 | |
| 
 | |
|     /*
 | |
|      * It is only required to set qs_created when creating a completion queue;
 | |
|      * creating a submission queue without a matching completion queue will
 | |
|      * fail.
 | |
|      */
 | |
|     n->qs_created = true;
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
 | |
| 
 | |
|     return nvme_c2h(n, id, sizeof(id), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     trace_pci_nvme_identify_ctrl();
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
 | |
|     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
 | |
| 
 | |
|     trace_pci_nvme_identify_ctrl_csi(c->csi);
 | |
| 
 | |
|     switch (c->csi) {
 | |
|     case NVME_CSI_NVM:
 | |
|         id_nvm->vsl = n->params.vsl;
 | |
|         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
 | |
|         break;
 | |
| 
 | |
|     case NVME_CSI_ZONED:
 | |
|         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return nvme_c2h(n, id, sizeof(id), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint32_t nsid = le32_to_cpu(c->nsid);
 | |
| 
 | |
|     trace_pci_nvme_identify_ns(nsid);
 | |
| 
 | |
|     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     ns = nvme_ns(n, nsid);
 | |
|     if (unlikely(!ns)) {
 | |
|         if (!active) {
 | |
|             ns = nvme_subsys_ns(n->subsys, nsid);
 | |
|             if (!ns) {
 | |
|                 return nvme_rpt_empty_id_struct(n, req);
 | |
|             }
 | |
|         } else {
 | |
|             return nvme_rpt_empty_id_struct(n, req);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (active || ns->csi == NVME_CSI_NVM) {
 | |
|         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
 | |
|     }
 | |
| 
 | |
|     return NVME_INVALID_CMD_SET | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
 | |
|                                         bool attached)
 | |
| {
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint32_t nsid = le32_to_cpu(c->nsid);
 | |
|     uint16_t min_id = le16_to_cpu(c->ctrlid);
 | |
|     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
 | |
|     uint16_t *ids = &list[1];
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeCtrl *ctrl;
 | |
|     int cntlid, nr_ids = 0;
 | |
| 
 | |
|     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
 | |
| 
 | |
|     if (!n->subsys) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (attached) {
 | |
|         if (nsid == NVME_NSID_BROADCAST) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         ns = nvme_subsys_ns(n->subsys, nsid);
 | |
|         if (!ns) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
 | |
|         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
 | |
|         if (!ctrl) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (attached && !nvme_ns(ctrl, nsid)) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         ids[nr_ids++] = cntlid;
 | |
|     }
 | |
| 
 | |
|     list[0] = nr_ids;
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
 | |
|                     sizeof(NvmePriCtrlCap), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
 | |
|     uint16_t min_id = le16_to_cpu(c->ctrlid);
 | |
|     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
 | |
|     NvmeSecCtrlList list = {0};
 | |
|     uint8_t i;
 | |
| 
 | |
|     for (i = 0; i < num_sec_ctrl; i++) {
 | |
|         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
 | |
|             list.numcntl = num_sec_ctrl - i;
 | |
|             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
 | |
|                    list.numcntl * sizeof(NvmeSecCtrlEntry));
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
 | |
|                                      bool active)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint32_t nsid = le32_to_cpu(c->nsid);
 | |
| 
 | |
|     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
 | |
| 
 | |
|     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     ns = nvme_ns(n, nsid);
 | |
|     if (unlikely(!ns)) {
 | |
|         if (!active) {
 | |
|             ns = nvme_subsys_ns(n->subsys, nsid);
 | |
|             if (!ns) {
 | |
|                 return nvme_rpt_empty_id_struct(n, req);
 | |
|             }
 | |
|         } else {
 | |
|             return nvme_rpt_empty_id_struct(n, req);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (c->csi == NVME_CSI_NVM) {
 | |
|         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
 | |
|                         req);
 | |
|     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
 | |
|         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
 | |
|                         req);
 | |
|     }
 | |
| 
 | |
|     return NVME_INVALID_FIELD | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
 | |
|                                      bool active)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint32_t min_nsid = le32_to_cpu(c->nsid);
 | |
|     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
 | |
|     static const int data_len = sizeof(list);
 | |
|     uint32_t *list_ptr = (uint32_t *)list;
 | |
|     int i, j = 0;
 | |
| 
 | |
|     trace_pci_nvme_identify_nslist(min_nsid);
 | |
| 
 | |
|     /*
 | |
|      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
 | |
|      * since the Active Namespace ID List should return namespaces with ids
 | |
|      * *higher* than the NSID specified in the command. This is also specified
 | |
|      * in the spec (NVM Express v1.3d, Section 5.15.4).
 | |
|      */
 | |
|     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|         ns = nvme_ns(n, i);
 | |
|         if (!ns) {
 | |
|             if (!active) {
 | |
|                 ns = nvme_subsys_ns(n->subsys, i);
 | |
|                 if (!ns) {
 | |
|                     continue;
 | |
|                 }
 | |
|             } else {
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         if (ns->params.nsid <= min_nsid) {
 | |
|             continue;
 | |
|         }
 | |
|         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
 | |
|         if (j == data_len / sizeof(uint32_t)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return nvme_c2h(n, list, data_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
 | |
|                                          bool active)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint32_t min_nsid = le32_to_cpu(c->nsid);
 | |
|     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
 | |
|     static const int data_len = sizeof(list);
 | |
|     uint32_t *list_ptr = (uint32_t *)list;
 | |
|     int i, j = 0;
 | |
| 
 | |
|     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
 | |
| 
 | |
|     /*
 | |
|      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
 | |
|      */
 | |
|     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|         ns = nvme_ns(n, i);
 | |
|         if (!ns) {
 | |
|             if (!active) {
 | |
|                 ns = nvme_subsys_ns(n->subsys, i);
 | |
|                 if (!ns) {
 | |
|                     continue;
 | |
|                 }
 | |
|             } else {
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
|         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
 | |
|             continue;
 | |
|         }
 | |
|         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
 | |
|         if (j == data_len / sizeof(uint32_t)) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return nvme_c2h(n, list, data_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
|     uint32_t nsid = le32_to_cpu(c->nsid);
 | |
|     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
 | |
|     uint8_t *pos = list;
 | |
|     struct {
 | |
|         NvmeIdNsDescr hdr;
 | |
|         uint8_t v[NVME_NIDL_UUID];
 | |
|     } QEMU_PACKED uuid = {};
 | |
|     struct {
 | |
|         NvmeIdNsDescr hdr;
 | |
|         uint64_t v;
 | |
|     } QEMU_PACKED eui64 = {};
 | |
|     struct {
 | |
|         NvmeIdNsDescr hdr;
 | |
|         uint8_t v;
 | |
|     } QEMU_PACKED csi = {};
 | |
| 
 | |
|     trace_pci_nvme_identify_ns_descr_list(nsid);
 | |
| 
 | |
|     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     ns = nvme_ns(n, nsid);
 | |
|     if (unlikely(!ns)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!qemu_uuid_is_null(&ns->params.uuid)) {
 | |
|         uuid.hdr.nidt = NVME_NIDT_UUID;
 | |
|         uuid.hdr.nidl = NVME_NIDL_UUID;
 | |
|         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
 | |
|         memcpy(pos, &uuid, sizeof(uuid));
 | |
|         pos += sizeof(uuid);
 | |
|     }
 | |
| 
 | |
|     if (ns->params.eui64) {
 | |
|         eui64.hdr.nidt = NVME_NIDT_EUI64;
 | |
|         eui64.hdr.nidl = NVME_NIDL_EUI64;
 | |
|         eui64.v = cpu_to_be64(ns->params.eui64);
 | |
|         memcpy(pos, &eui64, sizeof(eui64));
 | |
|         pos += sizeof(eui64);
 | |
|     }
 | |
| 
 | |
|     csi.hdr.nidt = NVME_NIDT_CSI;
 | |
|     csi.hdr.nidl = NVME_NIDL_CSI;
 | |
|     csi.v = ns->csi;
 | |
|     memcpy(pos, &csi, sizeof(csi));
 | |
|     pos += sizeof(csi);
 | |
| 
 | |
|     return nvme_c2h(n, list, sizeof(list), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
 | |
|     static const int data_len = sizeof(list);
 | |
| 
 | |
|     trace_pci_nvme_identify_cmd_set();
 | |
| 
 | |
|     NVME_SET_CSI(*list, NVME_CSI_NVM);
 | |
|     NVME_SET_CSI(*list, NVME_CSI_ZONED);
 | |
| 
 | |
|     return nvme_c2h(n, list, data_len, req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
 | |
| 
 | |
|     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
 | |
|                             c->csi);
 | |
| 
 | |
|     switch (c->cns) {
 | |
|     case NVME_ID_CNS_NS:
 | |
|         return nvme_identify_ns(n, req, true);
 | |
|     case NVME_ID_CNS_NS_PRESENT:
 | |
|         return nvme_identify_ns(n, req, false);
 | |
|     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
 | |
|         return nvme_identify_ctrl_list(n, req, true);
 | |
|     case NVME_ID_CNS_CTRL_LIST:
 | |
|         return nvme_identify_ctrl_list(n, req, false);
 | |
|     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
 | |
|         return nvme_identify_pri_ctrl_cap(n, req);
 | |
|     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
 | |
|         return nvme_identify_sec_ctrl_list(n, req);
 | |
|     case NVME_ID_CNS_CS_NS:
 | |
|         return nvme_identify_ns_csi(n, req, true);
 | |
|     case NVME_ID_CNS_CS_NS_PRESENT:
 | |
|         return nvme_identify_ns_csi(n, req, false);
 | |
|     case NVME_ID_CNS_CTRL:
 | |
|         return nvme_identify_ctrl(n, req);
 | |
|     case NVME_ID_CNS_CS_CTRL:
 | |
|         return nvme_identify_ctrl_csi(n, req);
 | |
|     case NVME_ID_CNS_NS_ACTIVE_LIST:
 | |
|         return nvme_identify_nslist(n, req, true);
 | |
|     case NVME_ID_CNS_NS_PRESENT_LIST:
 | |
|         return nvme_identify_nslist(n, req, false);
 | |
|     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
 | |
|         return nvme_identify_nslist_csi(n, req, true);
 | |
|     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
 | |
|         return nvme_identify_nslist_csi(n, req, false);
 | |
|     case NVME_ID_CNS_NS_DESCR_LIST:
 | |
|         return nvme_identify_ns_descr_list(n, req);
 | |
|     case NVME_ID_CNS_IO_COMMAND_SET:
 | |
|         return nvme_identify_cmd_set(n, req);
 | |
|     default:
 | |
|         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
 | |
| 
 | |
|     req->cqe.result = 1;
 | |
|     if (nvme_check_sqid(n, sqid)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
 | |
| {
 | |
|     trace_pci_nvme_setfeat_timestamp(ts);
 | |
| 
 | |
|     n->host_timestamp = le64_to_cpu(ts);
 | |
|     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
 | |
| }
 | |
| 
 | |
| static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
 | |
| {
 | |
|     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
 | |
|     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
 | |
| 
 | |
|     union nvme_timestamp {
 | |
|         struct {
 | |
|             uint64_t timestamp:48;
 | |
|             uint64_t sync:1;
 | |
|             uint64_t origin:3;
 | |
|             uint64_t rsvd1:12;
 | |
|         };
 | |
|         uint64_t all;
 | |
|     };
 | |
| 
 | |
|     union nvme_timestamp ts;
 | |
|     ts.all = 0;
 | |
|     ts.timestamp = n->host_timestamp + elapsed_time;
 | |
| 
 | |
|     /* If the host timestamp is non-zero, set the timestamp origin */
 | |
|     ts.origin = n->host_timestamp ? 0x01 : 0x00;
 | |
| 
 | |
|     trace_pci_nvme_getfeat_timestamp(ts.all);
 | |
| 
 | |
|     return cpu_to_le64(ts.all);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     uint64_t timestamp = nvme_get_timestamp(n);
 | |
| 
 | |
|     return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeCmd *cmd = &req->cmd;
 | |
|     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 | |
|     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 | |
|     uint32_t nsid = le32_to_cpu(cmd->nsid);
 | |
|     uint32_t result;
 | |
|     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
 | |
|     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
 | |
|     uint16_t iv;
 | |
|     NvmeNamespace *ns;
 | |
|     int i;
 | |
| 
 | |
|     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
 | |
|         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
 | |
|     };
 | |
| 
 | |
|     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
 | |
| 
 | |
|     if (!nvme_feature_support[fid]) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
 | |
|         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
 | |
|             /*
 | |
|              * The Reservation Notification Mask and Reservation Persistence
 | |
|              * features require a status code of Invalid Field in Command when
 | |
|              * NSID is FFFFFFFFh. Since the device does not support those
 | |
|              * features we can always return Invalid Namespace or Format as we
 | |
|              * should do for all other features.
 | |
|              */
 | |
|             return NVME_INVALID_NSID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         if (!nvme_ns(n, nsid)) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (sel) {
 | |
|     case NVME_GETFEAT_SELECT_CURRENT:
 | |
|         break;
 | |
|     case NVME_GETFEAT_SELECT_SAVED:
 | |
|         /* no features are saveable by the controller; fallthrough */
 | |
|     case NVME_GETFEAT_SELECT_DEFAULT:
 | |
|         goto defaults;
 | |
|     case NVME_GETFEAT_SELECT_CAP:
 | |
|         result = nvme_feature_cap[fid];
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     switch (fid) {
 | |
|     case NVME_TEMPERATURE_THRESHOLD:
 | |
|         result = 0;
 | |
| 
 | |
|         /*
 | |
|          * The controller only implements the Composite Temperature sensor, so
 | |
|          * return 0 for all other sensors.
 | |
|          */
 | |
|         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         switch (NVME_TEMP_THSEL(dw11)) {
 | |
|         case NVME_TEMP_THSEL_OVER:
 | |
|             result = n->features.temp_thresh_hi;
 | |
|             goto out;
 | |
|         case NVME_TEMP_THSEL_UNDER:
 | |
|             result = n->features.temp_thresh_low;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     case NVME_ERROR_RECOVERY:
 | |
|         if (!nvme_nsid_valid(n, nsid)) {
 | |
|             return NVME_INVALID_NSID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         ns = nvme_ns(n, nsid);
 | |
|         if (unlikely(!ns)) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         result = ns->features.err_rec;
 | |
|         goto out;
 | |
|     case NVME_VOLATILE_WRITE_CACHE:
 | |
|         result = 0;
 | |
|         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             ns = nvme_ns(n, i);
 | |
|             if (!ns) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             result = blk_enable_write_cache(ns->blkconf.blk);
 | |
|             if (result) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
 | |
|         goto out;
 | |
|     case NVME_ASYNCHRONOUS_EVENT_CONF:
 | |
|         result = n->features.async_config;
 | |
|         goto out;
 | |
|     case NVME_TIMESTAMP:
 | |
|         return nvme_get_feature_timestamp(n, req);
 | |
|     case NVME_HOST_BEHAVIOR_SUPPORT:
 | |
|         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
 | |
|                         sizeof(n->features.hbs), req);
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
| defaults:
 | |
|     switch (fid) {
 | |
|     case NVME_TEMPERATURE_THRESHOLD:
 | |
|         result = 0;
 | |
| 
 | |
|         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
 | |
|             result = NVME_TEMPERATURE_WARNING;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     case NVME_NUMBER_OF_QUEUES:
 | |
|         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
 | |
|         trace_pci_nvme_getfeat_numq(result);
 | |
|         break;
 | |
|     case NVME_INTERRUPT_VECTOR_CONF:
 | |
|         iv = dw11 & 0xffff;
 | |
|         if (iv >= n->conf_ioqpairs + 1) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         result = iv;
 | |
|         if (iv == n->admin_cq.vector) {
 | |
|             result |= NVME_INTVC_NOCOALESCING;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         result = nvme_feature_default[fid];
 | |
|         break;
 | |
|     }
 | |
| 
 | |
| out:
 | |
|     req->cqe.result = cpu_to_le32(result);
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     uint16_t ret;
 | |
|     uint64_t timestamp;
 | |
| 
 | |
|     ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     nvme_set_timestamp(n, timestamp);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns = NULL;
 | |
| 
 | |
|     NvmeCmd *cmd = &req->cmd;
 | |
|     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
 | |
|     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
 | |
|     uint32_t nsid = le32_to_cpu(cmd->nsid);
 | |
|     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
 | |
|     uint8_t save = NVME_SETFEAT_SAVE(dw10);
 | |
|     uint16_t status;
 | |
|     int i;
 | |
| 
 | |
|     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
 | |
| 
 | |
|     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
 | |
|         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!nvme_feature_support[fid]) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
 | |
|         if (nsid != NVME_NSID_BROADCAST) {
 | |
|             if (!nvme_nsid_valid(n, nsid)) {
 | |
|                 return NVME_INVALID_NSID | NVME_DNR;
 | |
|             }
 | |
| 
 | |
|             ns = nvme_ns(n, nsid);
 | |
|             if (unlikely(!ns)) {
 | |
|                 return NVME_INVALID_FIELD | NVME_DNR;
 | |
|             }
 | |
|         }
 | |
|     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
 | |
|         if (!nvme_nsid_valid(n, nsid)) {
 | |
|             return NVME_INVALID_NSID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
 | |
|         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     switch (fid) {
 | |
|     case NVME_TEMPERATURE_THRESHOLD:
 | |
|         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         switch (NVME_TEMP_THSEL(dw11)) {
 | |
|         case NVME_TEMP_THSEL_OVER:
 | |
|             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
 | |
|             break;
 | |
|         case NVME_TEMP_THSEL_UNDER:
 | |
|             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
 | |
|             break;
 | |
|         default:
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         if ((n->temperature >= n->features.temp_thresh_hi) ||
 | |
|             (n->temperature <= n->features.temp_thresh_low)) {
 | |
|             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     case NVME_ERROR_RECOVERY:
 | |
|         if (nsid == NVME_NSID_BROADCAST) {
 | |
|             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|                 ns = nvme_ns(n, i);
 | |
| 
 | |
|                 if (!ns) {
 | |
|                     continue;
 | |
|                 }
 | |
| 
 | |
|                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
 | |
|                     ns->features.err_rec = dw11;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         assert(ns);
 | |
|         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
 | |
|             ns->features.err_rec = dw11;
 | |
|         }
 | |
|         break;
 | |
|     case NVME_VOLATILE_WRITE_CACHE:
 | |
|         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             ns = nvme_ns(n, i);
 | |
|             if (!ns) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
 | |
|                 blk_flush(ns->blkconf.blk);
 | |
|             }
 | |
| 
 | |
|             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
 | |
|         }
 | |
| 
 | |
|         break;
 | |
| 
 | |
|     case NVME_NUMBER_OF_QUEUES:
 | |
|         if (n->qs_created) {
 | |
|             return NVME_CMD_SEQ_ERROR | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
 | |
|          * and NSQR.
 | |
|          */
 | |
|         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
 | |
|                                     ((dw11 >> 16) & 0xffff) + 1,
 | |
|                                     n->conf_ioqpairs,
 | |
|                                     n->conf_ioqpairs);
 | |
|         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
 | |
|                                       ((n->conf_ioqpairs - 1) << 16));
 | |
|         break;
 | |
|     case NVME_ASYNCHRONOUS_EVENT_CONF:
 | |
|         n->features.async_config = dw11;
 | |
|         break;
 | |
|     case NVME_TIMESTAMP:
 | |
|         return nvme_set_feature_timestamp(n, req);
 | |
|     case NVME_HOST_BEHAVIOR_SUPPORT:
 | |
|         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
 | |
|                           sizeof(n->features.hbs), req);
 | |
|         if (status) {
 | |
|             return status;
 | |
|         }
 | |
| 
 | |
|         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             ns = nvme_ns(n, i);
 | |
| 
 | |
|             if (!ns) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             ns->id_ns.nlbaf = ns->nlbaf - 1;
 | |
|             if (!n->features.hbs.lbafee) {
 | |
|                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         return status;
 | |
|     case NVME_COMMAND_SET_PROFILE:
 | |
|         if (dw11 & 0x1ff) {
 | |
|             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
 | |
|             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
 | |
|     }
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     trace_pci_nvme_aer(nvme_cid(req));
 | |
| 
 | |
|     if (n->outstanding_aers > n->params.aerl) {
 | |
|         trace_pci_nvme_aer_aerl_exceeded();
 | |
|         return NVME_AER_LIMIT_EXCEEDED;
 | |
|     }
 | |
| 
 | |
|     n->aer_reqs[n->outstanding_aers] = req;
 | |
|     n->outstanding_aers++;
 | |
| 
 | |
|     if (!QTAILQ_EMPTY(&n->aer_queue)) {
 | |
|         nvme_process_aers(n);
 | |
|     }
 | |
| 
 | |
|     return NVME_NO_COMPLETE;
 | |
| }
 | |
| 
 | |
| static void nvme_update_dmrsl(NvmeCtrl *n)
 | |
| {
 | |
|     int nsid;
 | |
| 
 | |
|     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
 | |
|         NvmeNamespace *ns = nvme_ns(n, nsid);
 | |
|         if (!ns) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
 | |
|                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
 | |
| {
 | |
|     uint32_t cc = ldl_le_p(&n->bar.cc);
 | |
| 
 | |
|     ns->iocs = nvme_cse_iocs_none;
 | |
|     switch (ns->csi) {
 | |
|     case NVME_CSI_NVM:
 | |
|         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
 | |
|             ns->iocs = nvme_cse_iocs_nvm;
 | |
|         }
 | |
|         break;
 | |
|     case NVME_CSI_ZONED:
 | |
|         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
 | |
|             ns->iocs = nvme_cse_iocs_zoned;
 | |
|         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
 | |
|             ns->iocs = nvme_cse_iocs_nvm;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     NvmeCtrl *ctrl;
 | |
|     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
 | |
|     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
 | |
|     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
 | |
|     uint8_t sel = dw10 & 0xf;
 | |
|     uint16_t *nr_ids = &list[0];
 | |
|     uint16_t *ids = &list[1];
 | |
|     uint16_t ret;
 | |
|     int i;
 | |
| 
 | |
|     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
 | |
| 
 | |
|     if (!nvme_nsid_valid(n, nsid)) {
 | |
|         return NVME_INVALID_NSID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     ns = nvme_subsys_ns(n->subsys, nsid);
 | |
|     if (!ns) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (!*nr_ids) {
 | |
|         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
 | |
|     for (i = 0; i < *nr_ids; i++) {
 | |
|         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
 | |
|         if (!ctrl) {
 | |
|             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         switch (sel) {
 | |
|         case NVME_NS_ATTACHMENT_ATTACH:
 | |
|             if (nvme_ns(ctrl, nsid)) {
 | |
|                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
 | |
|             }
 | |
| 
 | |
|             if (ns->attached && !ns->params.shared) {
 | |
|                 return NVME_NS_PRIVATE | NVME_DNR;
 | |
|             }
 | |
| 
 | |
|             nvme_attach_ns(ctrl, ns);
 | |
|             nvme_select_iocs_ns(ctrl, ns);
 | |
| 
 | |
|             break;
 | |
| 
 | |
|         case NVME_NS_ATTACHMENT_DETACH:
 | |
|             if (!nvme_ns(ctrl, nsid)) {
 | |
|                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
 | |
|             }
 | |
| 
 | |
|             ctrl->namespaces[nsid] = NULL;
 | |
|             ns->attached--;
 | |
| 
 | |
|             nvme_update_dmrsl(ctrl);
 | |
| 
 | |
|             break;
 | |
| 
 | |
|         default:
 | |
|             return NVME_INVALID_FIELD | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Add namespace id to the changed namespace id list for event clearing
 | |
|          * via Get Log Page command.
 | |
|          */
 | |
|         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
 | |
|             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
 | |
|                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
 | |
|                                NVME_LOG_CHANGED_NSLIST);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| typedef struct NvmeFormatAIOCB {
 | |
|     BlockAIOCB common;
 | |
|     BlockAIOCB *aiocb;
 | |
|     QEMUBH *bh;
 | |
|     NvmeRequest *req;
 | |
|     int ret;
 | |
| 
 | |
|     NvmeNamespace *ns;
 | |
|     uint32_t nsid;
 | |
|     bool broadcast;
 | |
|     int64_t offset;
 | |
| 
 | |
|     uint8_t lbaf;
 | |
|     uint8_t mset;
 | |
|     uint8_t pi;
 | |
|     uint8_t pil;
 | |
| } NvmeFormatAIOCB;
 | |
| 
 | |
| static void nvme_format_bh(void *opaque);
 | |
| 
 | |
| static void nvme_format_cancel(BlockAIOCB *aiocb)
 | |
| {
 | |
|     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
 | |
| 
 | |
|     if (iocb->aiocb) {
 | |
|         blk_aio_cancel_async(iocb->aiocb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const AIOCBInfo nvme_format_aiocb_info = {
 | |
|     .aiocb_size = sizeof(NvmeFormatAIOCB),
 | |
|     .cancel_async = nvme_format_cancel,
 | |
|     .get_aio_context = nvme_get_aio_context,
 | |
| };
 | |
| 
 | |
| static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
 | |
|                             uint8_t pi, uint8_t pil)
 | |
| {
 | |
|     uint8_t lbafl = lbaf & 0xf;
 | |
|     uint8_t lbafu = lbaf >> 4;
 | |
| 
 | |
|     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
 | |
| 
 | |
|     ns->id_ns.dps = (pil << 3) | pi;
 | |
|     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
 | |
| 
 | |
|     nvme_ns_init_format(ns);
 | |
| }
 | |
| 
 | |
| static void nvme_format_ns_cb(void *opaque, int ret)
 | |
| {
 | |
|     NvmeFormatAIOCB *iocb = opaque;
 | |
|     NvmeNamespace *ns = iocb->ns;
 | |
|     int bytes;
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         iocb->ret = ret;
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     assert(ns);
 | |
| 
 | |
|     if (iocb->offset < ns->size) {
 | |
|         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
 | |
| 
 | |
|         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
 | |
|                                             bytes, BDRV_REQ_MAY_UNMAP,
 | |
|                                             nvme_format_ns_cb, iocb);
 | |
| 
 | |
|         iocb->offset += bytes;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
 | |
|     ns->status = 0x0;
 | |
|     iocb->ns = NULL;
 | |
|     iocb->offset = 0;
 | |
| 
 | |
| done:
 | |
|     iocb->aiocb = NULL;
 | |
|     qemu_bh_schedule(iocb->bh);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
 | |
| {
 | |
|     if (ns->params.zoned) {
 | |
|         return NVME_INVALID_FORMAT | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (lbaf > ns->id_ns.nlbaf) {
 | |
|         return NVME_INVALID_FORMAT | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
 | |
|         return NVME_INVALID_FORMAT | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void nvme_format_bh(void *opaque)
 | |
| {
 | |
|     NvmeFormatAIOCB *iocb = opaque;
 | |
|     NvmeRequest *req = iocb->req;
 | |
|     NvmeCtrl *n = nvme_ctrl(req);
 | |
|     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
 | |
|     uint8_t lbaf = dw10 & 0xf;
 | |
|     uint8_t pi = (dw10 >> 5) & 0x7;
 | |
|     uint16_t status;
 | |
|     int i;
 | |
| 
 | |
|     if (iocb->ret < 0) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (iocb->broadcast) {
 | |
|         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             iocb->ns = nvme_ns(n, i);
 | |
|             if (iocb->ns) {
 | |
|                 iocb->nsid = i;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!iocb->ns) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     status = nvme_format_check(iocb->ns, lbaf, pi);
 | |
|     if (status) {
 | |
|         req->status = status;
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
 | |
|     nvme_format_ns_cb(iocb, 0);
 | |
|     return;
 | |
| 
 | |
| done:
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
| 
 | |
|     iocb->common.cb(iocb->common.opaque, iocb->ret);
 | |
| 
 | |
|     qemu_aio_unref(iocb);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     NvmeFormatAIOCB *iocb;
 | |
|     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
 | |
|     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
 | |
|     uint8_t lbaf = dw10 & 0xf;
 | |
|     uint8_t mset = (dw10 >> 4) & 0x1;
 | |
|     uint8_t pi = (dw10 >> 5) & 0x7;
 | |
|     uint8_t pil = (dw10 >> 8) & 0x1;
 | |
|     uint8_t lbafu = (dw10 >> 12) & 0x3;
 | |
|     uint16_t status;
 | |
| 
 | |
|     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
 | |
| 
 | |
|     iocb->req = req;
 | |
|     iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
 | |
|     iocb->ret = 0;
 | |
|     iocb->ns = NULL;
 | |
|     iocb->nsid = 0;
 | |
|     iocb->lbaf = lbaf;
 | |
|     iocb->mset = mset;
 | |
|     iocb->pi = pi;
 | |
|     iocb->pil = pil;
 | |
|     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
 | |
|     iocb->offset = 0;
 | |
| 
 | |
|     if (n->features.hbs.lbafee) {
 | |
|         iocb->lbaf |= lbafu << 4;
 | |
|     }
 | |
| 
 | |
|     if (!iocb->broadcast) {
 | |
|         if (!nvme_nsid_valid(n, nsid)) {
 | |
|             status = NVME_INVALID_NSID | NVME_DNR;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         iocb->ns = nvme_ns(n, nsid);
 | |
|         if (!iocb->ns) {
 | |
|             status = NVME_INVALID_FIELD | NVME_DNR;
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     req->aiocb = &iocb->common;
 | |
|     qemu_bh_schedule(iocb->bh);
 | |
| 
 | |
|     return NVME_NO_COMPLETE;
 | |
| 
 | |
| out:
 | |
|     qemu_bh_delete(iocb->bh);
 | |
|     iocb->bh = NULL;
 | |
|     qemu_aio_unref(iocb);
 | |
|     return status;
 | |
| }
 | |
| 
 | |
| static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
 | |
|                                   int *num_prim, int *num_sec)
 | |
| {
 | |
|     *num_total = le32_to_cpu(rt ?
 | |
|                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
 | |
|     *num_prim = le16_to_cpu(rt ?
 | |
|                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
 | |
|     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
 | |
|                                              uint16_t cntlid, uint8_t rt,
 | |
|                                              int nr)
 | |
| {
 | |
|     int num_total, num_prim, num_sec;
 | |
| 
 | |
|     if (cntlid != n->cntlid) {
 | |
|         return NVME_INVALID_CTRL_ID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
 | |
| 
 | |
|     if (nr > num_total) {
 | |
|         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (nr > num_total - num_sec) {
 | |
|         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (rt) {
 | |
|         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
 | |
|     } else {
 | |
|         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
 | |
|     }
 | |
| 
 | |
|     req->cqe.result = cpu_to_le32(nr);
 | |
|     return req->status;
 | |
| }
 | |
| 
 | |
| static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
 | |
|                                  uint8_t rt, int nr)
 | |
| {
 | |
|     int prev_nr, prev_total;
 | |
| 
 | |
|     if (rt) {
 | |
|         prev_nr = le16_to_cpu(sctrl->nvi);
 | |
|         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
 | |
|         sctrl->nvi = cpu_to_le16(nr);
 | |
|         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
 | |
|     } else {
 | |
|         prev_nr = le16_to_cpu(sctrl->nvq);
 | |
|         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
 | |
|         sctrl->nvq = cpu_to_le16(nr);
 | |
|         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
 | |
|                                             uint16_t cntlid, uint8_t rt, int nr)
 | |
| {
 | |
|     int num_total, num_prim, num_sec, num_free, diff, limit;
 | |
|     NvmeSecCtrlEntry *sctrl;
 | |
| 
 | |
|     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
 | |
|     if (!sctrl) {
 | |
|         return NVME_INVALID_CTRL_ID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (sctrl->scs) {
 | |
|         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
 | |
|     if (nr > limit) {
 | |
|         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
 | |
|     num_free = num_total - num_prim - num_sec;
 | |
|     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
 | |
| 
 | |
|     if (diff > num_free) {
 | |
|         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     nvme_update_virt_res(n, sctrl, rt, nr);
 | |
|     req->cqe.result = cpu_to_le32(nr);
 | |
| 
 | |
|     return req->status;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
 | |
| {
 | |
|     NvmeCtrl *sn = NULL;
 | |
|     NvmeSecCtrlEntry *sctrl;
 | |
|     int vf_index;
 | |
| 
 | |
|     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
 | |
|     if (!sctrl) {
 | |
|         return NVME_INVALID_CTRL_ID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (!pci_is_vf(&n->parent_obj)) {
 | |
|         vf_index = le16_to_cpu(sctrl->vfn) - 1;
 | |
|         sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
 | |
|     }
 | |
| 
 | |
|     if (online) {
 | |
|         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
 | |
|             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
 | |
|         }
 | |
| 
 | |
|         if (!sctrl->scs) {
 | |
|             sctrl->scs = 0x1;
 | |
|             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
 | |
|         }
 | |
|     } else {
 | |
|         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
 | |
|         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
 | |
| 
 | |
|         if (sctrl->scs) {
 | |
|             sctrl->scs = 0x0;
 | |
|             if (sn) {
 | |
|                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
 | |
|     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
 | |
|     uint8_t act = dw10 & 0xf;
 | |
|     uint8_t rt = (dw10 >> 8) & 0x7;
 | |
|     uint16_t cntlid = (dw10 >> 16) & 0xffff;
 | |
|     int nr = dw11 & 0xffff;
 | |
| 
 | |
|     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
 | |
| 
 | |
|     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
 | |
|         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     switch (act) {
 | |
|     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
 | |
|         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
 | |
|     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
 | |
|         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
 | |
|     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
 | |
|         return nvme_virt_set_state(n, cntlid, true);
 | |
|     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
 | |
|         return nvme_virt_set_state(n, cntlid, false);
 | |
|     default:
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
 | |
| {
 | |
|     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
 | |
|     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
 | |
|     int i;
 | |
| 
 | |
|     /* Address should be page aligned */
 | |
|     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     /* Save shadow buffer base addr for use during queue creation */
 | |
|     n->dbbuf_dbs = dbs_addr;
 | |
|     n->dbbuf_eis = eis_addr;
 | |
|     n->dbbuf_enabled = true;
 | |
| 
 | |
|     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
 | |
|         NvmeSQueue *sq = n->sq[i];
 | |
|         NvmeCQueue *cq = n->cq[i];
 | |
| 
 | |
|         if (sq) {
 | |
|             /*
 | |
|              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
 | |
|              * nvme_process_db() uses this hard-coded way to calculate
 | |
|              * doorbell offsets. Be consistent with that here.
 | |
|              */
 | |
|             sq->db_addr = dbs_addr + (i << 3);
 | |
|             sq->ei_addr = eis_addr + (i << 3);
 | |
|             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
 | |
|                     sizeof(sq->tail));
 | |
| 
 | |
|             if (n->params.ioeventfd && sq->sqid != 0) {
 | |
|                 if (!nvme_init_sq_ioeventfd(sq)) {
 | |
|                     sq->ioeventfd_enabled = true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (cq) {
 | |
|             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
 | |
|             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
 | |
|             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
 | |
|             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
 | |
|                     sizeof(cq->head));
 | |
| 
 | |
|             if (n->params.ioeventfd && cq->cqid != 0) {
 | |
|                 if (!nvme_init_cq_ioeventfd(cq)) {
 | |
|                     cq->ioeventfd_enabled = true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
 | |
| 
 | |
|     return NVME_SUCCESS;
 | |
| }
 | |
| 
 | |
| static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
 | |
| {
 | |
|     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
 | |
|                              nvme_adm_opc_str(req->cmd.opcode));
 | |
| 
 | |
|     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
 | |
|         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
 | |
|         return NVME_INVALID_OPCODE | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
 | |
|     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
 | |
|         return NVME_INVALID_FIELD | NVME_DNR;
 | |
|     }
 | |
| 
 | |
|     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
 | |
|         return NVME_INVALID_FIELD;
 | |
|     }
 | |
| 
 | |
|     switch (req->cmd.opcode) {
 | |
|     case NVME_ADM_CMD_DELETE_SQ:
 | |
|         return nvme_del_sq(n, req);
 | |
|     case NVME_ADM_CMD_CREATE_SQ:
 | |
|         return nvme_create_sq(n, req);
 | |
|     case NVME_ADM_CMD_GET_LOG_PAGE:
 | |
|         return nvme_get_log(n, req);
 | |
|     case NVME_ADM_CMD_DELETE_CQ:
 | |
|         return nvme_del_cq(n, req);
 | |
|     case NVME_ADM_CMD_CREATE_CQ:
 | |
|         return nvme_create_cq(n, req);
 | |
|     case NVME_ADM_CMD_IDENTIFY:
 | |
|         return nvme_identify(n, req);
 | |
|     case NVME_ADM_CMD_ABORT:
 | |
|         return nvme_abort(n, req);
 | |
|     case NVME_ADM_CMD_SET_FEATURES:
 | |
|         return nvme_set_feature(n, req);
 | |
|     case NVME_ADM_CMD_GET_FEATURES:
 | |
|         return nvme_get_feature(n, req);
 | |
|     case NVME_ADM_CMD_ASYNC_EV_REQ:
 | |
|         return nvme_aer(n, req);
 | |
|     case NVME_ADM_CMD_NS_ATTACHMENT:
 | |
|         return nvme_ns_attachment(n, req);
 | |
|     case NVME_ADM_CMD_VIRT_MNGMT:
 | |
|         return nvme_virt_mngmt(n, req);
 | |
|     case NVME_ADM_CMD_DBBUF_CONFIG:
 | |
|         return nvme_dbbuf_config(n, req);
 | |
|     case NVME_ADM_CMD_FORMAT_NVM:
 | |
|         return nvme_format(n, req);
 | |
|     default:
 | |
|         assert(false);
 | |
|     }
 | |
| 
 | |
|     return NVME_INVALID_OPCODE | NVME_DNR;
 | |
| }
 | |
| 
 | |
| static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
 | |
| {
 | |
|     pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
 | |
|                   sizeof(sq->tail));
 | |
|     trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
 | |
| }
 | |
| 
 | |
| static void nvme_update_sq_tail(NvmeSQueue *sq)
 | |
| {
 | |
|     pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
 | |
|                  sizeof(sq->tail));
 | |
|     trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
 | |
| }
 | |
| 
 | |
| static void nvme_process_sq(void *opaque)
 | |
| {
 | |
|     NvmeSQueue *sq = opaque;
 | |
|     NvmeCtrl *n = sq->ctrl;
 | |
|     NvmeCQueue *cq = n->cq[sq->cqid];
 | |
| 
 | |
|     uint16_t status;
 | |
|     hwaddr addr;
 | |
|     NvmeCmd cmd;
 | |
|     NvmeRequest *req;
 | |
| 
 | |
|     if (n->dbbuf_enabled) {
 | |
|         nvme_update_sq_tail(sq);
 | |
|     }
 | |
| 
 | |
|     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
 | |
|         addr = sq->dma_addr + sq->head * n->sqe_size;
 | |
|         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
 | |
|             trace_pci_nvme_err_addr_read(addr);
 | |
|             trace_pci_nvme_err_cfs();
 | |
|             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
 | |
|             break;
 | |
|         }
 | |
|         nvme_inc_sq_head(sq);
 | |
| 
 | |
|         req = QTAILQ_FIRST(&sq->req_list);
 | |
|         QTAILQ_REMOVE(&sq->req_list, req, entry);
 | |
|         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
 | |
|         nvme_req_clear(req);
 | |
|         req->cqe.cid = cmd.cid;
 | |
|         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
 | |
| 
 | |
|         status = sq->sqid ? nvme_io_cmd(n, req) :
 | |
|             nvme_admin_cmd(n, req);
 | |
|         if (status != NVME_NO_COMPLETE) {
 | |
|             req->status = status;
 | |
|             nvme_enqueue_req_completion(cq, req);
 | |
|         }
 | |
| 
 | |
|         if (n->dbbuf_enabled) {
 | |
|             nvme_update_sq_eventidx(sq);
 | |
|             nvme_update_sq_tail(sq);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
 | |
| {
 | |
|     uint8_t *config;
 | |
| 
 | |
|     if (!msix_present(pci_dev)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
 | |
| 
 | |
|     config = pci_dev->config + pci_dev->msix_cap;
 | |
|     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
 | |
|                          table_size - 1);
 | |
| }
 | |
| 
 | |
| static void nvme_activate_virt_res(NvmeCtrl *n)
 | |
| {
 | |
|     PCIDevice *pci_dev = &n->parent_obj;
 | |
|     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
 | |
|     NvmeSecCtrlEntry *sctrl;
 | |
| 
 | |
|     /* -1 to account for the admin queue */
 | |
|     if (pci_is_vf(pci_dev)) {
 | |
|         sctrl = nvme_sctrl(n);
 | |
|         cap->vqprt = sctrl->nvq;
 | |
|         cap->viprt = sctrl->nvi;
 | |
|         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
 | |
|         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
 | |
|     } else {
 | |
|         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
 | |
|         cap->virfap = n->next_pri_ctrl_cap.virfap;
 | |
|         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
 | |
|                            le16_to_cpu(cap->vqrfap) - 1;
 | |
|         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
 | |
|                              le16_to_cpu(cap->virfap);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
 | |
| {
 | |
|     PCIDevice *pci_dev = &n->parent_obj;
 | |
|     NvmeSecCtrlEntry *sctrl;
 | |
|     NvmeNamespace *ns;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|         ns = nvme_ns(n, i);
 | |
|         if (!ns) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         nvme_ns_drain(ns);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
 | |
|         if (n->sq[i] != NULL) {
 | |
|             nvme_free_sq(n->sq[i], n);
 | |
|         }
 | |
|     }
 | |
|     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
 | |
|         if (n->cq[i] != NULL) {
 | |
|             nvme_free_cq(n->cq[i], n);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     while (!QTAILQ_EMPTY(&n->aer_queue)) {
 | |
|         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
 | |
|         QTAILQ_REMOVE(&n->aer_queue, event, entry);
 | |
|         g_free(event);
 | |
|     }
 | |
| 
 | |
|     if (n->params.sriov_max_vfs) {
 | |
|         if (!pci_is_vf(pci_dev)) {
 | |
|             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
 | |
|                 sctrl = &n->sec_ctrl_list.sec[i];
 | |
|                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
 | |
|             }
 | |
| 
 | |
|             if (rst != NVME_RESET_CONTROLLER) {
 | |
|                 pcie_sriov_pf_disable_vfs(pci_dev);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (rst != NVME_RESET_CONTROLLER) {
 | |
|             nvme_activate_virt_res(n);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     n->aer_queued = 0;
 | |
|     n->aer_mask = 0;
 | |
|     n->outstanding_aers = 0;
 | |
|     n->qs_created = false;
 | |
| 
 | |
|     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
 | |
| 
 | |
|     if (pci_is_vf(pci_dev)) {
 | |
|         sctrl = nvme_sctrl(n);
 | |
| 
 | |
|         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
 | |
|     } else {
 | |
|         stl_le_p(&n->bar.csts, 0);
 | |
|     }
 | |
| 
 | |
|     stl_le_p(&n->bar.intms, 0);
 | |
|     stl_le_p(&n->bar.intmc, 0);
 | |
|     stl_le_p(&n->bar.cc, 0);
 | |
| 
 | |
|     n->dbbuf_dbs = 0;
 | |
|     n->dbbuf_eis = 0;
 | |
|     n->dbbuf_enabled = false;
 | |
| }
 | |
| 
 | |
| static void nvme_ctrl_shutdown(NvmeCtrl *n)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     int i;
 | |
| 
 | |
|     if (n->pmr.dev) {
 | |
|         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
 | |
|     }
 | |
| 
 | |
|     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|         ns = nvme_ns(n, i);
 | |
|         if (!ns) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         nvme_ns_shutdown(ns);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_select_iocs(NvmeCtrl *n)
 | |
| {
 | |
|     NvmeNamespace *ns;
 | |
|     int i;
 | |
| 
 | |
|     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|         ns = nvme_ns(n, i);
 | |
|         if (!ns) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         nvme_select_iocs_ns(n, ns);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int nvme_start_ctrl(NvmeCtrl *n)
 | |
| {
 | |
|     uint64_t cap = ldq_le_p(&n->bar.cap);
 | |
|     uint32_t cc = ldl_le_p(&n->bar.cc);
 | |
|     uint32_t aqa = ldl_le_p(&n->bar.aqa);
 | |
|     uint64_t asq = ldq_le_p(&n->bar.asq);
 | |
|     uint64_t acq = ldq_le_p(&n->bar.acq);
 | |
|     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
 | |
|     uint32_t page_size = 1 << page_bits;
 | |
|     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
 | |
|         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
 | |
|                                                 le16_to_cpu(sctrl->nvq),
 | |
|                                                 sctrl->scs ? "ONLINE" :
 | |
|                                                              "OFFLINE");
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(n->cq[0])) {
 | |
|         trace_pci_nvme_err_startfail_cq();
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(n->sq[0])) {
 | |
|         trace_pci_nvme_err_startfail_sq();
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(asq & (page_size - 1))) {
 | |
|         trace_pci_nvme_err_startfail_asq_misaligned(asq);
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(acq & (page_size - 1))) {
 | |
|         trace_pci_nvme_err_startfail_acq_misaligned(acq);
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
 | |
|         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
 | |
|         trace_pci_nvme_err_startfail_page_too_small(
 | |
|                     NVME_CC_MPS(cc),
 | |
|                     NVME_CAP_MPSMIN(cap));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(NVME_CC_MPS(cc) >
 | |
|                  NVME_CAP_MPSMAX(cap))) {
 | |
|         trace_pci_nvme_err_startfail_page_too_large(
 | |
|                     NVME_CC_MPS(cc),
 | |
|                     NVME_CAP_MPSMAX(cap));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(NVME_CC_IOCQES(cc) <
 | |
|                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
 | |
|         trace_pci_nvme_err_startfail_cqent_too_small(
 | |
|                     NVME_CC_IOCQES(cc),
 | |
|                     NVME_CTRL_CQES_MIN(cap));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(NVME_CC_IOCQES(cc) >
 | |
|                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
 | |
|         trace_pci_nvme_err_startfail_cqent_too_large(
 | |
|                     NVME_CC_IOCQES(cc),
 | |
|                     NVME_CTRL_CQES_MAX(cap));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(NVME_CC_IOSQES(cc) <
 | |
|                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
 | |
|         trace_pci_nvme_err_startfail_sqent_too_small(
 | |
|                     NVME_CC_IOSQES(cc),
 | |
|                     NVME_CTRL_SQES_MIN(cap));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(NVME_CC_IOSQES(cc) >
 | |
|                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
 | |
|         trace_pci_nvme_err_startfail_sqent_too_large(
 | |
|                     NVME_CC_IOSQES(cc),
 | |
|                     NVME_CTRL_SQES_MAX(cap));
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(!NVME_AQA_ASQS(aqa))) {
 | |
|         trace_pci_nvme_err_startfail_asqent_sz_zero();
 | |
|         return -1;
 | |
|     }
 | |
|     if (unlikely(!NVME_AQA_ACQS(aqa))) {
 | |
|         trace_pci_nvme_err_startfail_acqent_sz_zero();
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     n->page_bits = page_bits;
 | |
|     n->page_size = page_size;
 | |
|     n->max_prp_ents = n->page_size / sizeof(uint64_t);
 | |
|     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
 | |
|     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
 | |
|     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
 | |
|     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
 | |
| 
 | |
|     nvme_set_timestamp(n, 0ULL);
 | |
| 
 | |
|     nvme_select_iocs(n);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void nvme_cmb_enable_regs(NvmeCtrl *n)
 | |
| {
 | |
|     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
 | |
|     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
 | |
| 
 | |
|     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
 | |
|     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
 | |
|     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
 | |
|     stl_le_p(&n->bar.cmbloc, cmbloc);
 | |
| 
 | |
|     NVME_CMBSZ_SET_SQS(cmbsz, 1);
 | |
|     NVME_CMBSZ_SET_CQS(cmbsz, 0);
 | |
|     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
 | |
|     NVME_CMBSZ_SET_RDS(cmbsz, 1);
 | |
|     NVME_CMBSZ_SET_WDS(cmbsz, 1);
 | |
|     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
 | |
|     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
 | |
|     stl_le_p(&n->bar.cmbsz, cmbsz);
 | |
| }
 | |
| 
 | |
| static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
 | |
|                            unsigned size)
 | |
| {
 | |
|     uint64_t cap = ldq_le_p(&n->bar.cap);
 | |
|     uint32_t cc = ldl_le_p(&n->bar.cc);
 | |
|     uint32_t intms = ldl_le_p(&n->bar.intms);
 | |
|     uint32_t csts = ldl_le_p(&n->bar.csts);
 | |
|     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
 | |
| 
 | |
|     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
 | |
|                        "MMIO write not 32-bit aligned,"
 | |
|                        " offset=0x%"PRIx64"", offset);
 | |
|         /* should be ignored, fall through for now */
 | |
|     }
 | |
| 
 | |
|     if (unlikely(size < sizeof(uint32_t))) {
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
 | |
|                        "MMIO write smaller than 32-bits,"
 | |
|                        " offset=0x%"PRIx64", size=%u",
 | |
|                        offset, size);
 | |
|         /* should be ignored, fall through for now */
 | |
|     }
 | |
| 
 | |
|     switch (offset) {
 | |
|     case NVME_REG_INTMS:
 | |
|         if (unlikely(msix_enabled(&(n->parent_obj)))) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
 | |
|                            "undefined access to interrupt mask set"
 | |
|                            " when MSI-X is enabled");
 | |
|             /* should be ignored, fall through for now */
 | |
|         }
 | |
|         intms |= data;
 | |
|         stl_le_p(&n->bar.intms, intms);
 | |
|         n->bar.intmc = n->bar.intms;
 | |
|         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
 | |
|         nvme_irq_check(n);
 | |
|         break;
 | |
|     case NVME_REG_INTMC:
 | |
|         if (unlikely(msix_enabled(&(n->parent_obj)))) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
 | |
|                            "undefined access to interrupt mask clr"
 | |
|                            " when MSI-X is enabled");
 | |
|             /* should be ignored, fall through for now */
 | |
|         }
 | |
|         intms &= ~data;
 | |
|         stl_le_p(&n->bar.intms, intms);
 | |
|         n->bar.intmc = n->bar.intms;
 | |
|         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
 | |
|         nvme_irq_check(n);
 | |
|         break;
 | |
|     case NVME_REG_CC:
 | |
|         stl_le_p(&n->bar.cc, data);
 | |
| 
 | |
|         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
 | |
| 
 | |
|         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
 | |
|             trace_pci_nvme_mmio_shutdown_set();
 | |
|             nvme_ctrl_shutdown(n);
 | |
|             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
 | |
|             csts |= NVME_CSTS_SHST_COMPLETE;
 | |
|         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
 | |
|             trace_pci_nvme_mmio_shutdown_cleared();
 | |
|             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
 | |
|         }
 | |
| 
 | |
|         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
 | |
|             if (unlikely(nvme_start_ctrl(n))) {
 | |
|                 trace_pci_nvme_err_startfail();
 | |
|                 csts = NVME_CSTS_FAILED;
 | |
|             } else {
 | |
|                 trace_pci_nvme_mmio_start_success();
 | |
|                 csts = NVME_CSTS_READY;
 | |
|             }
 | |
|         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
 | |
|             trace_pci_nvme_mmio_stopped();
 | |
|             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         stl_le_p(&n->bar.csts, csts);
 | |
| 
 | |
|         break;
 | |
|     case NVME_REG_CSTS:
 | |
|         if (data & (1 << 4)) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
 | |
|                            "attempted to W1C CSTS.NSSRO"
 | |
|                            " but CAP.NSSRS is zero (not supported)");
 | |
|         } else if (data != 0) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
 | |
|                            "attempted to set a read only bit"
 | |
|                            " of controller status");
 | |
|         }
 | |
|         break;
 | |
|     case NVME_REG_NSSR:
 | |
|         if (data == 0x4e564d65) {
 | |
|             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
 | |
|         } else {
 | |
|             /* The spec says that writes of other values have no effect */
 | |
|             return;
 | |
|         }
 | |
|         break;
 | |
|     case NVME_REG_AQA:
 | |
|         stl_le_p(&n->bar.aqa, data);
 | |
|         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
 | |
|         break;
 | |
|     case NVME_REG_ASQ:
 | |
|         stn_le_p(&n->bar.asq, size, data);
 | |
|         trace_pci_nvme_mmio_asqaddr(data);
 | |
|         break;
 | |
|     case NVME_REG_ASQ + 4:
 | |
|         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
 | |
|         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
 | |
|         break;
 | |
|     case NVME_REG_ACQ:
 | |
|         trace_pci_nvme_mmio_acqaddr(data);
 | |
|         stn_le_p(&n->bar.acq, size, data);
 | |
|         break;
 | |
|     case NVME_REG_ACQ + 4:
 | |
|         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
 | |
|         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
 | |
|         break;
 | |
|     case NVME_REG_CMBLOC:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
 | |
|                        "invalid write to reserved CMBLOC"
 | |
|                        " when CMBSZ is zero, ignored");
 | |
|         return;
 | |
|     case NVME_REG_CMBSZ:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
 | |
|                        "invalid write to read only CMBSZ, ignored");
 | |
|         return;
 | |
|     case NVME_REG_CMBMSC:
 | |
|         if (!NVME_CAP_CMBS(cap)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         stn_le_p(&n->bar.cmbmsc, size, data);
 | |
|         n->cmb.cmse = false;
 | |
| 
 | |
|         if (NVME_CMBMSC_CRE(data)) {
 | |
|             nvme_cmb_enable_regs(n);
 | |
| 
 | |
|             if (NVME_CMBMSC_CMSE(data)) {
 | |
|                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
 | |
|                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
 | |
|                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
 | |
|                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
 | |
|                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
 | |
|                     stl_le_p(&n->bar.cmbsts, cmbsts);
 | |
|                     return;
 | |
|                 }
 | |
| 
 | |
|                 n->cmb.cba = cba;
 | |
|                 n->cmb.cmse = true;
 | |
|             }
 | |
|         } else {
 | |
|             n->bar.cmbsz = 0;
 | |
|             n->bar.cmbloc = 0;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     case NVME_REG_CMBMSC + 4:
 | |
|         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
 | |
|         return;
 | |
| 
 | |
|     case NVME_REG_PMRCAP:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
 | |
|                        "invalid write to PMRCAP register, ignored");
 | |
|         return;
 | |
|     case NVME_REG_PMRCTL:
 | |
|         if (!NVME_CAP_PMRS(cap)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         stl_le_p(&n->bar.pmrctl, data);
 | |
|         if (NVME_PMRCTL_EN(data)) {
 | |
|             memory_region_set_enabled(&n->pmr.dev->mr, true);
 | |
|             pmrsts = 0;
 | |
|         } else {
 | |
|             memory_region_set_enabled(&n->pmr.dev->mr, false);
 | |
|             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
 | |
|             n->pmr.cmse = false;
 | |
|         }
 | |
|         stl_le_p(&n->bar.pmrsts, pmrsts);
 | |
|         return;
 | |
|     case NVME_REG_PMRSTS:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
 | |
|                        "invalid write to PMRSTS register, ignored");
 | |
|         return;
 | |
|     case NVME_REG_PMREBS:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
 | |
|                        "invalid write to PMREBS register, ignored");
 | |
|         return;
 | |
|     case NVME_REG_PMRSWTP:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
 | |
|                        "invalid write to PMRSWTP register, ignored");
 | |
|         return;
 | |
|     case NVME_REG_PMRMSCL:
 | |
|         if (!NVME_CAP_PMRS(cap)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         stl_le_p(&n->bar.pmrmscl, data);
 | |
|         n->pmr.cmse = false;
 | |
| 
 | |
|         if (NVME_PMRMSCL_CMSE(data)) {
 | |
|             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
 | |
|             hwaddr cba = pmrmscu << 32 |
 | |
|                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
 | |
|             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
 | |
|                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
 | |
|                 stl_le_p(&n->bar.pmrsts, pmrsts);
 | |
|                 return;
 | |
|             }
 | |
| 
 | |
|             n->pmr.cmse = true;
 | |
|             n->pmr.cba = cba;
 | |
|         }
 | |
| 
 | |
|         return;
 | |
|     case NVME_REG_PMRMSCU:
 | |
|         if (!NVME_CAP_PMRS(cap)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         stl_le_p(&n->bar.pmrmscu, data);
 | |
|         return;
 | |
|     default:
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
 | |
|                        "invalid MMIO write,"
 | |
|                        " offset=0x%"PRIx64", data=%"PRIx64"",
 | |
|                        offset, data);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
 | |
| {
 | |
|     NvmeCtrl *n = (NvmeCtrl *)opaque;
 | |
|     uint8_t *ptr = (uint8_t *)&n->bar;
 | |
| 
 | |
|     trace_pci_nvme_mmio_read(addr, size);
 | |
| 
 | |
|     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
 | |
|                        "MMIO read not 32-bit aligned,"
 | |
|                        " offset=0x%"PRIx64"", addr);
 | |
|         /* should RAZ, fall through for now */
 | |
|     } else if (unlikely(size < sizeof(uint32_t))) {
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
 | |
|                        "MMIO read smaller than 32-bits,"
 | |
|                        " offset=0x%"PRIx64"", addr);
 | |
|         /* should RAZ, fall through for now */
 | |
|     }
 | |
| 
 | |
|     if (addr > sizeof(n->bar) - size) {
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
 | |
|                        "MMIO read beyond last register,"
 | |
|                        " offset=0x%"PRIx64", returning 0", addr);
 | |
| 
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
 | |
|         addr != NVME_REG_CSTS) {
 | |
|         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When PMRWBM bit 1 is set then read from
 | |
|      * from PMRSTS should ensure prior writes
 | |
|      * made it to persistent media
 | |
|      */
 | |
|     if (addr == NVME_REG_PMRSTS &&
 | |
|         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
 | |
|         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
 | |
|     }
 | |
| 
 | |
|     return ldn_le_p(ptr + addr, size);
 | |
| }
 | |
| 
 | |
| static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
 | |
| {
 | |
|     uint32_t qid;
 | |
| 
 | |
|     if (unlikely(addr & ((1 << 2) - 1))) {
 | |
|         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
 | |
|                        "doorbell write not 32-bit aligned,"
 | |
|                        " offset=0x%"PRIx64", ignoring", addr);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (((addr - 0x1000) >> 2) & 1) {
 | |
|         /* Completion queue doorbell write */
 | |
| 
 | |
|         uint16_t new_head = val & 0xffff;
 | |
|         int start_sqs;
 | |
|         NvmeCQueue *cq;
 | |
| 
 | |
|         qid = (addr - (0x1000 + (1 << 2))) >> 3;
 | |
|         if (unlikely(nvme_check_cqid(n, qid))) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
 | |
|                            "completion queue doorbell write"
 | |
|                            " for nonexistent queue,"
 | |
|                            " sqid=%"PRIu32", ignoring", qid);
 | |
| 
 | |
|             /*
 | |
|              * NVM Express v1.3d, Section 4.1 state: "If host software writes
 | |
|              * an invalid value to the Submission Queue Tail Doorbell or
 | |
|              * Completion Queue Head Doorbell regiter and an Asynchronous Event
 | |
|              * Request command is outstanding, then an asynchronous event is
 | |
|              * posted to the Admin Completion Queue with a status code of
 | |
|              * Invalid Doorbell Write Value."
 | |
|              *
 | |
|              * Also note that the spec includes the "Invalid Doorbell Register"
 | |
|              * status code, but nowhere does it specify when to use it.
 | |
|              * However, it seems reasonable to use it here in a similar
 | |
|              * fashion.
 | |
|              */
 | |
|             if (n->outstanding_aers) {
 | |
|                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
 | |
|                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
 | |
|                                    NVME_LOG_ERROR_INFO);
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         cq = n->cq[qid];
 | |
|         if (unlikely(new_head >= cq->size)) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
 | |
|                            "completion queue doorbell write value"
 | |
|                            " beyond queue size, sqid=%"PRIu32","
 | |
|                            " new_head=%"PRIu16", ignoring",
 | |
|                            qid, new_head);
 | |
| 
 | |
|             if (n->outstanding_aers) {
 | |
|                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
 | |
|                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
 | |
|                                    NVME_LOG_ERROR_INFO);
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
 | |
| 
 | |
|         start_sqs = nvme_cq_full(cq) ? 1 : 0;
 | |
|         cq->head = new_head;
 | |
|         if (!qid && n->dbbuf_enabled) {
 | |
|             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
 | |
|                           sizeof(cq->head));
 | |
|         }
 | |
|         if (start_sqs) {
 | |
|             NvmeSQueue *sq;
 | |
|             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
 | |
|                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 | |
|             }
 | |
|             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 | |
|         }
 | |
| 
 | |
|         if (cq->tail == cq->head) {
 | |
|             if (cq->irq_enabled) {
 | |
|                 n->cq_pending--;
 | |
|             }
 | |
| 
 | |
|             nvme_irq_deassert(n, cq);
 | |
|         }
 | |
|     } else {
 | |
|         /* Submission queue doorbell write */
 | |
| 
 | |
|         uint16_t new_tail = val & 0xffff;
 | |
|         NvmeSQueue *sq;
 | |
| 
 | |
|         qid = (addr - 0x1000) >> 3;
 | |
|         if (unlikely(nvme_check_sqid(n, qid))) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
 | |
|                            "submission queue doorbell write"
 | |
|                            " for nonexistent queue,"
 | |
|                            " sqid=%"PRIu32", ignoring", qid);
 | |
| 
 | |
|             if (n->outstanding_aers) {
 | |
|                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
 | |
|                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
 | |
|                                    NVME_LOG_ERROR_INFO);
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         sq = n->sq[qid];
 | |
|         if (unlikely(new_tail >= sq->size)) {
 | |
|             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
 | |
|                            "submission queue doorbell write value"
 | |
|                            " beyond queue size, sqid=%"PRIu32","
 | |
|                            " new_tail=%"PRIu16", ignoring",
 | |
|                            qid, new_tail);
 | |
| 
 | |
|             if (n->outstanding_aers) {
 | |
|                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
 | |
|                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
 | |
|                                    NVME_LOG_ERROR_INFO);
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
 | |
| 
 | |
|         sq->tail = new_tail;
 | |
|         if (!qid && n->dbbuf_enabled) {
 | |
|             /*
 | |
|              * The spec states "the host shall also update the controller's
 | |
|              * corresponding doorbell property to match the value of that entry
 | |
|              * in the Shadow Doorbell buffer."
 | |
|              *
 | |
|              * Since this context is currently a VM trap, we can safely enforce
 | |
|              * the requirement from the device side in case the host is
 | |
|              * misbehaving.
 | |
|              *
 | |
|              * Note, we shouldn't have to do this, but various drivers
 | |
|              * including ones that run on Linux, are not updating Admin Queues,
 | |
|              * so we can't trust reading it for an appropriate sq tail.
 | |
|              */
 | |
|             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
 | |
|                           sizeof(sq->tail));
 | |
|         }
 | |
|         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
 | |
|                             unsigned size)
 | |
| {
 | |
|     NvmeCtrl *n = (NvmeCtrl *)opaque;
 | |
| 
 | |
|     trace_pci_nvme_mmio_write(addr, data, size);
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
 | |
|         addr != NVME_REG_CSTS) {
 | |
|         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (addr < sizeof(n->bar)) {
 | |
|         nvme_write_bar(n, addr, data, size);
 | |
|     } else {
 | |
|         nvme_process_db(n, addr, data);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps nvme_mmio_ops = {
 | |
|     .read = nvme_mmio_read,
 | |
|     .write = nvme_mmio_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
|     .impl = {
 | |
|         .min_access_size = 2,
 | |
|         .max_access_size = 8,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
 | |
|                            unsigned size)
 | |
| {
 | |
|     NvmeCtrl *n = (NvmeCtrl *)opaque;
 | |
|     stn_le_p(&n->cmb.buf[addr], size, data);
 | |
| }
 | |
| 
 | |
| static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
 | |
| {
 | |
|     NvmeCtrl *n = (NvmeCtrl *)opaque;
 | |
|     return ldn_le_p(&n->cmb.buf[addr], size);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps nvme_cmb_ops = {
 | |
|     .read = nvme_cmb_read,
 | |
|     .write = nvme_cmb_write,
 | |
|     .endianness = DEVICE_LITTLE_ENDIAN,
 | |
|     .impl = {
 | |
|         .min_access_size = 1,
 | |
|         .max_access_size = 8,
 | |
|     },
 | |
| };
 | |
| 
 | |
| static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
 | |
| {
 | |
|     NvmeParams *params = &n->params;
 | |
| 
 | |
|     if (params->num_queues) {
 | |
|         warn_report("num_queues is deprecated; please use max_ioqpairs "
 | |
|                     "instead");
 | |
| 
 | |
|         params->max_ioqpairs = params->num_queues - 1;
 | |
|     }
 | |
| 
 | |
|     if (n->namespace.blkconf.blk && n->subsys) {
 | |
|         error_setg(errp, "subsystem support is unavailable with legacy "
 | |
|                    "namespace ('drive' property)");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->max_ioqpairs < 1 ||
 | |
|         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
 | |
|         error_setg(errp, "max_ioqpairs must be between 1 and %d",
 | |
|                    NVME_MAX_IOQPAIRS);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->msix_qsize < 1 ||
 | |
|         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
 | |
|         error_setg(errp, "msix_qsize must be between 1 and %d",
 | |
|                    PCI_MSIX_FLAGS_QSIZE + 1);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!params->serial) {
 | |
|         error_setg(errp, "serial property not set");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (n->pmr.dev) {
 | |
|         if (host_memory_backend_is_mapped(n->pmr.dev)) {
 | |
|             error_setg(errp, "can't use already busy memdev: %s",
 | |
|                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (!is_power_of_2(n->pmr.dev->size)) {
 | |
|             error_setg(errp, "pmr backend size needs to be power of 2 in size");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         host_memory_backend_set_mapped(n->pmr.dev, true);
 | |
|     }
 | |
| 
 | |
|     if (n->params.zasl > n->params.mdts) {
 | |
|         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
 | |
|                    "than or equal to mdts (Maximum Data Transfer Size)");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!n->params.vsl) {
 | |
|         error_setg(errp, "vsl must be non-zero");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (params->sriov_max_vfs) {
 | |
|         if (!n->subsys) {
 | |
|             error_setg(errp, "subsystem is required for the use of SR-IOV");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->sriov_max_vfs > NVME_MAX_VFS) {
 | |
|             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
 | |
|                        NVME_MAX_VFS);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->cmb_size_mb) {
 | |
|             error_setg(errp, "CMB is not supported with SR-IOV");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (n->pmr.dev) {
 | |
|             error_setg(errp, "PMR is not supported with SR-IOV");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
 | |
|             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
 | |
|                        " must be set for the use of SR-IOV");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
 | |
|             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
 | |
|                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
 | |
|             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
 | |
|                        " greater than or equal to 2");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
 | |
|             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
 | |
|                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
 | |
|             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
 | |
|                        " greater than or equal to 1");
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->sriov_max_vi_per_vf &&
 | |
|             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
 | |
|             error_setg(errp, "sriov_max_vi_per_vf must meet:"
 | |
|                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
 | |
|                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (params->sriov_max_vq_per_vf &&
 | |
|             (params->sriov_max_vq_per_vf < 2 ||
 | |
|              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
 | |
|             error_setg(errp, "sriov_max_vq_per_vf must meet:"
 | |
|                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
 | |
|                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_init_state(NvmeCtrl *n)
 | |
| {
 | |
|     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
 | |
|     NvmeSecCtrlList *list = &n->sec_ctrl_list;
 | |
|     NvmeSecCtrlEntry *sctrl;
 | |
|     uint8_t max_vfs;
 | |
|     int i;
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj)) {
 | |
|         sctrl = nvme_sctrl(n);
 | |
|         max_vfs = 0;
 | |
|         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
 | |
|         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
 | |
|     } else {
 | |
|         max_vfs = n->params.sriov_max_vfs;
 | |
|         n->conf_ioqpairs = n->params.max_ioqpairs;
 | |
|         n->conf_msix_qsize = n->params.msix_qsize;
 | |
|     }
 | |
| 
 | |
|     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
 | |
|     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
 | |
|     n->temperature = NVME_TEMPERATURE;
 | |
|     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
 | |
|     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
 | |
|     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
 | |
|     QTAILQ_INIT(&n->aer_queue);
 | |
| 
 | |
|     list->numcntl = cpu_to_le16(max_vfs);
 | |
|     for (i = 0; i < max_vfs; i++) {
 | |
|         sctrl = &list->sec[i];
 | |
|         sctrl->pcid = cpu_to_le16(n->cntlid);
 | |
|         sctrl->vfn = cpu_to_le16(i + 1);
 | |
|     }
 | |
| 
 | |
|     cap->cntlid = cpu_to_le16(n->cntlid);
 | |
|     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj)) {
 | |
|         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
 | |
|     } else {
 | |
|         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
 | |
|                                  n->params.sriov_vq_flexible);
 | |
|         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
 | |
|         cap->vqrfap = cap->vqfrt;
 | |
|         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
 | |
|         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
 | |
|                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
 | |
|                         cap->vqfrt / MAX(max_vfs, 1);
 | |
|     }
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj)) {
 | |
|         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
 | |
|     } else {
 | |
|         cap->viprt = cpu_to_le16(n->params.msix_qsize -
 | |
|                                  n->params.sriov_vi_flexible);
 | |
|         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
 | |
|         cap->virfap = cap->vifrt;
 | |
|         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
 | |
|         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
 | |
|                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
 | |
|                         cap->vifrt / MAX(max_vfs, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
 | |
| {
 | |
|     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
 | |
|     uint64_t cap = ldq_le_p(&n->bar.cap);
 | |
| 
 | |
|     n->cmb.buf = g_malloc0(cmb_size);
 | |
|     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
 | |
|                           "nvme-cmb", cmb_size);
 | |
|     pci_register_bar(pci_dev, NVME_CMB_BIR,
 | |
|                      PCI_BASE_ADDRESS_SPACE_MEMORY |
 | |
|                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
 | |
|                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
 | |
| 
 | |
|     NVME_CAP_SET_CMBS(cap, 1);
 | |
|     stq_le_p(&n->bar.cap, cap);
 | |
| 
 | |
|     if (n->params.legacy_cmb) {
 | |
|         nvme_cmb_enable_regs(n);
 | |
|         n->cmb.cmse = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
 | |
| {
 | |
|     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
 | |
| 
 | |
|     NVME_PMRCAP_SET_RDS(pmrcap, 1);
 | |
|     NVME_PMRCAP_SET_WDS(pmrcap, 1);
 | |
|     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
 | |
|     /* Turn on bit 1 support */
 | |
|     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
 | |
|     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
 | |
|     stl_le_p(&n->bar.pmrcap, pmrcap);
 | |
| 
 | |
|     pci_register_bar(pci_dev, NVME_PMR_BIR,
 | |
|                      PCI_BASE_ADDRESS_SPACE_MEMORY |
 | |
|                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
 | |
|                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
 | |
| 
 | |
|     memory_region_set_enabled(&n->pmr.dev->mr, false);
 | |
| }
 | |
| 
 | |
| static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
 | |
|                               unsigned *msix_table_offset,
 | |
|                               unsigned *msix_pba_offset)
 | |
| {
 | |
|     uint64_t bar_size, msix_table_size, msix_pba_size;
 | |
| 
 | |
|     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
 | |
|     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
 | |
| 
 | |
|     if (msix_table_offset) {
 | |
|         *msix_table_offset = bar_size;
 | |
|     }
 | |
| 
 | |
|     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
 | |
|     bar_size += msix_table_size;
 | |
|     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
 | |
| 
 | |
|     if (msix_pba_offset) {
 | |
|         *msix_pba_offset = bar_size;
 | |
|     }
 | |
| 
 | |
|     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
 | |
|     bar_size += msix_pba_size;
 | |
| 
 | |
|     bar_size = pow2ceil(bar_size);
 | |
|     return bar_size;
 | |
| }
 | |
| 
 | |
| static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
 | |
| {
 | |
|     uint16_t vf_dev_id = n->params.use_intel_id ?
 | |
|                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
 | |
|     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
 | |
|     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
 | |
|                                       le16_to_cpu(cap->vifrsm),
 | |
|                                       NULL, NULL);
 | |
| 
 | |
|     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
 | |
|                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
 | |
|                        NVME_VF_OFFSET, NVME_VF_STRIDE);
 | |
| 
 | |
|     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
 | |
|                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
 | |
| }
 | |
| 
 | |
| static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
 | |
| {
 | |
|     Error *err = NULL;
 | |
|     int ret;
 | |
| 
 | |
|     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
 | |
|                              PCI_PM_SIZEOF, &err);
 | |
|     if (err) {
 | |
|         error_report_err(err);
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
 | |
|                  PCI_PM_CAP_VER_1_2);
 | |
|     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
 | |
|                  PCI_PM_CTRL_NO_SOFT_RESET);
 | |
|     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
 | |
|                  PCI_PM_CTRL_STATE_MASK);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
 | |
| {
 | |
|     uint8_t *pci_conf = pci_dev->config;
 | |
|     uint64_t bar_size;
 | |
|     unsigned msix_table_offset, msix_pba_offset;
 | |
|     int ret;
 | |
| 
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     pci_conf[PCI_INTERRUPT_PIN] = 1;
 | |
|     pci_config_set_prog_interface(pci_conf, 0x2);
 | |
| 
 | |
|     if (n->params.use_intel_id) {
 | |
|         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
 | |
|         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
 | |
|     } else {
 | |
|         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
 | |
|         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
 | |
|     }
 | |
| 
 | |
|     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
 | |
|     nvme_add_pm_capability(pci_dev, 0x60);
 | |
|     pcie_endpoint_cap_init(pci_dev, 0x80);
 | |
|     pcie_cap_flr_init(pci_dev);
 | |
|     if (n->params.sriov_max_vfs) {
 | |
|         pcie_ari_init(pci_dev, 0x100, 1);
 | |
|     }
 | |
| 
 | |
|     /* add one to max_ioqpairs to account for the admin queue pair */
 | |
|     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
 | |
|                              &msix_table_offset, &msix_pba_offset);
 | |
| 
 | |
|     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
 | |
|     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
 | |
|                           msix_table_offset);
 | |
|     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
 | |
| 
 | |
|     if (pci_is_vf(pci_dev)) {
 | |
|         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
 | |
|     } else {
 | |
|         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
 | |
|                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
 | |
|     }
 | |
|     ret = msix_init(pci_dev, n->params.msix_qsize,
 | |
|                     &n->bar0, 0, msix_table_offset,
 | |
|                     &n->bar0, 0, msix_pba_offset, 0, &err);
 | |
|     if (ret < 0) {
 | |
|         if (ret == -ENOTSUP) {
 | |
|             warn_report_err(err);
 | |
|         } else {
 | |
|             error_propagate(errp, err);
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
 | |
| 
 | |
|     if (n->params.cmb_size_mb) {
 | |
|         nvme_init_cmb(n, pci_dev);
 | |
|     }
 | |
| 
 | |
|     if (n->pmr.dev) {
 | |
|         nvme_init_pmr(n, pci_dev);
 | |
|     }
 | |
| 
 | |
|     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
 | |
|         nvme_init_sriov(n, pci_dev, 0x120);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void nvme_init_subnqn(NvmeCtrl *n)
 | |
| {
 | |
|     NvmeSubsystem *subsys = n->subsys;
 | |
|     NvmeIdCtrl *id = &n->id_ctrl;
 | |
| 
 | |
|     if (!subsys) {
 | |
|         snprintf((char *)id->subnqn, sizeof(id->subnqn),
 | |
|                  "nqn.2019-08.org.qemu:%s", n->params.serial);
 | |
|     } else {
 | |
|         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
 | |
| {
 | |
|     NvmeIdCtrl *id = &n->id_ctrl;
 | |
|     uint8_t *pci_conf = pci_dev->config;
 | |
|     uint64_t cap = ldq_le_p(&n->bar.cap);
 | |
|     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
 | |
| 
 | |
|     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
 | |
|     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
 | |
|     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
 | |
|     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
 | |
|     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
 | |
| 
 | |
|     id->cntlid = cpu_to_le16(n->cntlid);
 | |
| 
 | |
|     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
 | |
|     id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
 | |
| 
 | |
|     id->rab = 6;
 | |
| 
 | |
|     if (n->params.use_intel_id) {
 | |
|         id->ieee[0] = 0xb3;
 | |
|         id->ieee[1] = 0x02;
 | |
|         id->ieee[2] = 0x00;
 | |
|     } else {
 | |
|         id->ieee[0] = 0x00;
 | |
|         id->ieee[1] = 0x54;
 | |
|         id->ieee[2] = 0x52;
 | |
|     }
 | |
| 
 | |
|     id->mdts = n->params.mdts;
 | |
|     id->ver = cpu_to_le32(NVME_SPEC_VER);
 | |
|     id->oacs =
 | |
|         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
 | |
|     id->cntrltype = 0x1;
 | |
| 
 | |
|     /*
 | |
|      * Because the controller always completes the Abort command immediately,
 | |
|      * there can never be more than one concurrently executing Abort command,
 | |
|      * so this value is never used for anything. Note that there can easily be
 | |
|      * many Abort commands in the queues, but they are not considered
 | |
|      * "executing" until processed by nvme_abort.
 | |
|      *
 | |
|      * The specification recommends a value of 3 for Abort Command Limit (four
 | |
|      * concurrently outstanding Abort commands), so lets use that though it is
 | |
|      * inconsequential.
 | |
|      */
 | |
|     id->acl = 3;
 | |
|     id->aerl = n->params.aerl;
 | |
|     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
 | |
|     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
 | |
| 
 | |
|     /* recommended default value (~70 C) */
 | |
|     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
 | |
|     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
 | |
| 
 | |
|     id->sqes = (0x6 << 4) | 0x6;
 | |
|     id->cqes = (0x4 << 4) | 0x4;
 | |
|     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
 | |
|     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
 | |
|                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
 | |
|                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
 | |
| 
 | |
|     /*
 | |
|      * NOTE: If this device ever supports a command set that does NOT use 0x0
 | |
|      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
 | |
|      * should probably be removed.
 | |
|      *
 | |
|      * See comment in nvme_io_cmd.
 | |
|      */
 | |
|     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
 | |
| 
 | |
|     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
 | |
|     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
 | |
| 
 | |
|     nvme_init_subnqn(n);
 | |
| 
 | |
|     id->psd[0].mp = cpu_to_le16(0x9c4);
 | |
|     id->psd[0].enlat = cpu_to_le32(0x10);
 | |
|     id->psd[0].exlat = cpu_to_le32(0x4);
 | |
| 
 | |
|     if (n->subsys) {
 | |
|         id->cmic |= NVME_CMIC_MULTI_CTRL;
 | |
|     }
 | |
| 
 | |
|     NVME_CAP_SET_MQES(cap, 0x7ff);
 | |
|     NVME_CAP_SET_CQR(cap, 1);
 | |
|     NVME_CAP_SET_TO(cap, 0xf);
 | |
|     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
 | |
|     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
 | |
|     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
 | |
|     NVME_CAP_SET_MPSMAX(cap, 4);
 | |
|     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
 | |
|     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
 | |
|     stq_le_p(&n->bar.cap, cap);
 | |
| 
 | |
|     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
 | |
|     n->bar.intmc = n->bar.intms = 0;
 | |
| 
 | |
|     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
 | |
|         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
 | |
| {
 | |
|     int cntlid;
 | |
| 
 | |
|     if (!n->subsys) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     cntlid = nvme_subsys_register_ctrl(n, errp);
 | |
|     if (cntlid < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     n->cntlid = cntlid;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
 | |
| {
 | |
|     uint32_t nsid = ns->params.nsid;
 | |
|     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
 | |
| 
 | |
|     n->namespaces[nsid] = ns;
 | |
|     ns->attached++;
 | |
| 
 | |
|     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
 | |
|                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
 | |
| }
 | |
| 
 | |
| static void nvme_realize(PCIDevice *pci_dev, Error **errp)
 | |
| {
 | |
|     NvmeCtrl *n = NVME(pci_dev);
 | |
|     NvmeNamespace *ns;
 | |
|     Error *local_err = NULL;
 | |
|     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
 | |
| 
 | |
|     if (pci_is_vf(pci_dev)) {
 | |
|         /*
 | |
|          * VFs derive settings from the parent. PF's lifespan exceeds
 | |
|          * that of VF's, so it's safe to share params.serial.
 | |
|          */
 | |
|         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
 | |
|         n->subsys = pn->subsys;
 | |
|     }
 | |
| 
 | |
|     nvme_check_constraints(n, &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
 | |
|               &pci_dev->qdev, n->parent_obj.qdev.id);
 | |
| 
 | |
|     if (nvme_init_subsys(n, errp)) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
|     nvme_init_state(n);
 | |
|     if (nvme_init_pci(n, pci_dev, errp)) {
 | |
|         return;
 | |
|     }
 | |
|     nvme_init_ctrl(n, pci_dev);
 | |
| 
 | |
|     /* setup a namespace if the controller drive property was given */
 | |
|     if (n->namespace.blkconf.blk) {
 | |
|         ns = &n->namespace;
 | |
|         ns->params.nsid = 1;
 | |
| 
 | |
|         if (nvme_ns_setup(ns, errp)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         nvme_attach_ns(n, ns);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_exit(PCIDevice *pci_dev)
 | |
| {
 | |
|     NvmeCtrl *n = NVME(pci_dev);
 | |
|     NvmeNamespace *ns;
 | |
|     int i;
 | |
| 
 | |
|     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
 | |
| 
 | |
|     if (n->subsys) {
 | |
|         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
 | |
|             ns = nvme_ns(n, i);
 | |
|             if (ns) {
 | |
|                 ns->attached--;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         nvme_subsys_unregister_ctrl(n->subsys, n);
 | |
|     }
 | |
| 
 | |
|     g_free(n->cq);
 | |
|     g_free(n->sq);
 | |
|     g_free(n->aer_reqs);
 | |
| 
 | |
|     if (n->params.cmb_size_mb) {
 | |
|         g_free(n->cmb.buf);
 | |
|     }
 | |
| 
 | |
|     if (n->pmr.dev) {
 | |
|         host_memory_backend_set_mapped(n->pmr.dev, false);
 | |
|     }
 | |
| 
 | |
|     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
 | |
|         pcie_sriov_pf_exit(pci_dev);
 | |
|     }
 | |
| 
 | |
|     msix_uninit(pci_dev, &n->bar0, &n->bar0);
 | |
|     memory_region_del_subregion(&n->bar0, &n->iomem);
 | |
| }
 | |
| 
 | |
| static Property nvme_props[] = {
 | |
|     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
 | |
|     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
 | |
|                      HostMemoryBackend *),
 | |
|     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
 | |
|                      NvmeSubsystem *),
 | |
|     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
 | |
|     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
 | |
|     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
 | |
|     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
 | |
|     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
 | |
|     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
 | |
|     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
 | |
|     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
 | |
|     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
 | |
|     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
 | |
|     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
 | |
|     DEFINE_PROP_BOOL("ioeventfd", NvmeCtrl, params.ioeventfd, true),
 | |
|     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
 | |
|     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
 | |
|                      params.auto_transition_zones, true),
 | |
|     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
 | |
|     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
 | |
|                        params.sriov_vq_flexible, 0),
 | |
|     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
 | |
|                        params.sriov_vi_flexible, 0),
 | |
|     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
 | |
|                       params.sriov_max_vi_per_vf, 0),
 | |
|     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
 | |
|                       params.sriov_max_vq_per_vf, 0),
 | |
|     DEFINE_PROP_END_OF_LIST(),
 | |
| };
 | |
| 
 | |
| static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
 | |
|                                    void *opaque, Error **errp)
 | |
| {
 | |
|     NvmeCtrl *n = NVME(obj);
 | |
|     uint8_t value = n->smart_critical_warning;
 | |
| 
 | |
|     visit_type_uint8(v, name, &value, errp);
 | |
| }
 | |
| 
 | |
| static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
 | |
|                                    void *opaque, Error **errp)
 | |
| {
 | |
|     NvmeCtrl *n = NVME(obj);
 | |
|     uint8_t value, old_value, cap = 0, index, event;
 | |
| 
 | |
|     if (!visit_type_uint8(v, name, &value, errp)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
 | |
|           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
 | |
|     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
 | |
|         cap |= NVME_SMART_PMR_UNRELIABLE;
 | |
|     }
 | |
| 
 | |
|     if ((value & cap) != value) {
 | |
|         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
 | |
|                    value & ~cap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     old_value = n->smart_critical_warning;
 | |
|     n->smart_critical_warning = value;
 | |
| 
 | |
|     /* only inject new bits of smart critical warning */
 | |
|     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
 | |
|         event = 1 << index;
 | |
|         if (value & ~old_value & event)
 | |
|             nvme_smart_event(n, event);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_pci_reset(DeviceState *qdev)
 | |
| {
 | |
|     PCIDevice *pci_dev = PCI_DEVICE(qdev);
 | |
|     NvmeCtrl *n = NVME(pci_dev);
 | |
| 
 | |
|     trace_pci_nvme_pci_reset();
 | |
|     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
 | |
| }
 | |
| 
 | |
| static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
 | |
|                                       uint32_t val, int len)
 | |
| {
 | |
|     NvmeCtrl *n = NVME(dev);
 | |
|     NvmeSecCtrlEntry *sctrl;
 | |
|     uint16_t sriov_cap = dev->exp.sriov_cap;
 | |
|     uint32_t off = address - sriov_cap;
 | |
|     int i, num_vfs;
 | |
| 
 | |
|     if (!sriov_cap) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
 | |
|         if (!(val & PCI_SRIOV_CTRL_VFE)) {
 | |
|             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
 | |
|             for (i = 0; i < num_vfs; i++) {
 | |
|                 sctrl = &n->sec_ctrl_list.sec[i];
 | |
|                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
 | |
|                                   uint32_t val, int len)
 | |
| {
 | |
|     nvme_sriov_pre_write_ctrl(dev, address, val, len);
 | |
|     pci_default_write_config(dev, address, val, len);
 | |
|     pcie_cap_flr_write_config(dev, address, val, len);
 | |
| }
 | |
| 
 | |
| static const VMStateDescription nvme_vmstate = {
 | |
|     .name = "nvme",
 | |
|     .unmigratable = 1,
 | |
| };
 | |
| 
 | |
| static void nvme_class_init(ObjectClass *oc, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(oc);
 | |
|     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
 | |
| 
 | |
|     pc->realize = nvme_realize;
 | |
|     pc->config_write = nvme_pci_write_config;
 | |
|     pc->exit = nvme_exit;
 | |
|     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
 | |
|     pc->revision = 2;
 | |
| 
 | |
|     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
 | |
|     dc->desc = "Non-Volatile Memory Express";
 | |
|     device_class_set_props(dc, nvme_props);
 | |
|     dc->vmsd = &nvme_vmstate;
 | |
|     dc->reset = nvme_pci_reset;
 | |
| }
 | |
| 
 | |
| static void nvme_instance_init(Object *obj)
 | |
| {
 | |
|     NvmeCtrl *n = NVME(obj);
 | |
| 
 | |
|     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
 | |
|                                   "bootindex", "/namespace@1,0",
 | |
|                                   DEVICE(obj));
 | |
| 
 | |
|     object_property_add(obj, "smart_critical_warning", "uint8",
 | |
|                         nvme_get_smart_warning,
 | |
|                         nvme_set_smart_warning, NULL, NULL);
 | |
| }
 | |
| 
 | |
| static const TypeInfo nvme_info = {
 | |
|     .name          = TYPE_NVME,
 | |
|     .parent        = TYPE_PCI_DEVICE,
 | |
|     .instance_size = sizeof(NvmeCtrl),
 | |
|     .instance_init = nvme_instance_init,
 | |
|     .class_init    = nvme_class_init,
 | |
|     .interfaces = (InterfaceInfo[]) {
 | |
|         { INTERFACE_PCIE_DEVICE },
 | |
|         { }
 | |
|     },
 | |
| };
 | |
| 
 | |
| static const TypeInfo nvme_bus_info = {
 | |
|     .name = TYPE_NVME_BUS,
 | |
|     .parent = TYPE_BUS,
 | |
|     .instance_size = sizeof(NvmeBus),
 | |
| };
 | |
| 
 | |
| static void nvme_register_types(void)
 | |
| {
 | |
|     type_register_static(&nvme_info);
 | |
|     type_register_static(&nvme_bus_info);
 | |
| }
 | |
| 
 | |
| type_init(nvme_register_types)
 |