git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@699 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			420 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			420 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU MC146818 RTC emulation
 | 
						|
 * 
 | 
						|
 * Copyright (c) 2003-2004 Fabrice Bellard
 | 
						|
 * 
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
 * of this software and associated documentation files (the "Software"), to deal
 | 
						|
 * in the Software without restriction, including without limitation the rights
 | 
						|
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
 * copies of the Software, and to permit persons to whom the Software is
 | 
						|
 * furnished to do so, subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice shall be included in
 | 
						|
 * all copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | 
						|
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
 * THE SOFTWARE.
 | 
						|
 */
 | 
						|
#include "vl.h"
 | 
						|
 | 
						|
//#define DEBUG_CMOS
 | 
						|
 | 
						|
#define RTC_SECONDS             0
 | 
						|
#define RTC_SECONDS_ALARM       1
 | 
						|
#define RTC_MINUTES             2
 | 
						|
#define RTC_MINUTES_ALARM       3
 | 
						|
#define RTC_HOURS               4
 | 
						|
#define RTC_HOURS_ALARM         5
 | 
						|
#define RTC_ALARM_DONT_CARE    0xC0
 | 
						|
 | 
						|
#define RTC_DAY_OF_WEEK         6
 | 
						|
#define RTC_DAY_OF_MONTH        7
 | 
						|
#define RTC_MONTH               8
 | 
						|
#define RTC_YEAR                9
 | 
						|
 | 
						|
#define RTC_REG_A               10
 | 
						|
#define RTC_REG_B               11
 | 
						|
#define RTC_REG_C               12
 | 
						|
#define RTC_REG_D               13
 | 
						|
 | 
						|
#define REG_A_UIP 0x80
 | 
						|
 | 
						|
#define REG_B_SET 0x80
 | 
						|
#define REG_B_PIE 0x40
 | 
						|
#define REG_B_AIE 0x20
 | 
						|
#define REG_B_UIE 0x10
 | 
						|
 | 
						|
struct RTCState {
 | 
						|
    uint8_t cmos_data[128];
 | 
						|
    uint8_t cmos_index;
 | 
						|
    int current_time; /* in seconds */
 | 
						|
    int irq;
 | 
						|
    uint8_t buf_data[10]; /* buffered data */
 | 
						|
    /* periodic timer */
 | 
						|
    QEMUTimer *periodic_timer;
 | 
						|
    int64_t next_periodic_time;
 | 
						|
    /* second update */
 | 
						|
    int64_t next_second_time;
 | 
						|
    QEMUTimer *second_timer;
 | 
						|
    QEMUTimer *second_timer2;
 | 
						|
};
 | 
						|
 | 
						|
static void rtc_set_time(RTCState *s);
 | 
						|
static void rtc_set_date_buf(RTCState *s, const struct tm *tm);
 | 
						|
static void rtc_copy_date(RTCState *s);
 | 
						|
 | 
						|
static void rtc_timer_update(RTCState *s, int64_t current_time)
 | 
						|
{
 | 
						|
    int period_code, period;
 | 
						|
    int64_t cur_clock, next_irq_clock;
 | 
						|
 | 
						|
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
 | 
						|
    if (period_code != 0 && 
 | 
						|
        (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
 | 
						|
        if (period_code <= 2)
 | 
						|
            period_code += 7;
 | 
						|
        /* period in 32 Khz cycles */
 | 
						|
        period = 1 << (period_code - 1);
 | 
						|
        /* compute 32 khz clock */
 | 
						|
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
 | 
						|
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
 | 
						|
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
 | 
						|
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
 | 
						|
    } else {
 | 
						|
        qemu_del_timer(s->periodic_timer);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_periodic_timer(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    rtc_timer_update(s, s->next_periodic_time);
 | 
						|
    s->cmos_data[RTC_REG_C] |= 0xc0;
 | 
						|
    pic_set_irq(s->irq, 1);
 | 
						|
}
 | 
						|
 | 
						|
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    if ((addr & 1) == 0) {
 | 
						|
        s->cmos_index = data & 0x7f;
 | 
						|
    } else {
 | 
						|
#ifdef DEBUG_CMOS
 | 
						|
        printf("cmos: write index=0x%02x val=0x%02x\n",
 | 
						|
               s->cmos_index, data);
 | 
						|
#endif        
 | 
						|
        switch(s->cmos_index) {
 | 
						|
        case RTC_SECONDS_ALARM:
 | 
						|
        case RTC_MINUTES_ALARM:
 | 
						|
        case RTC_HOURS_ALARM:
 | 
						|
            /* XXX: not supported */
 | 
						|
            s->cmos_data[s->cmos_index] = data;
 | 
						|
            break;
 | 
						|
        case RTC_SECONDS:
 | 
						|
        case RTC_MINUTES:
 | 
						|
        case RTC_HOURS:
 | 
						|
        case RTC_DAY_OF_WEEK:
 | 
						|
        case RTC_DAY_OF_MONTH:
 | 
						|
        case RTC_MONTH:
 | 
						|
        case RTC_YEAR:
 | 
						|
            s->cmos_data[s->cmos_index] = data;
 | 
						|
            /* if in set mode, do not update the time */
 | 
						|
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | 
						|
                rtc_set_time(s);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RTC_REG_A:
 | 
						|
            /* UIP bit is read only */
 | 
						|
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
 | 
						|
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
 | 
						|
            rtc_timer_update(s, qemu_get_clock(vm_clock));
 | 
						|
            break;
 | 
						|
        case RTC_REG_B:
 | 
						|
            if (data & REG_B_SET) {
 | 
						|
                /* set mode: reset UIP mode */
 | 
						|
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
						|
                data &= ~REG_B_UIE;
 | 
						|
            } else {
 | 
						|
                /* if disabling set mode, update the time */
 | 
						|
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
 | 
						|
                    rtc_set_time(s);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            s->cmos_data[RTC_REG_B] = data;
 | 
						|
            rtc_timer_update(s, qemu_get_clock(vm_clock));
 | 
						|
            break;
 | 
						|
        case RTC_REG_C:
 | 
						|
        case RTC_REG_D:
 | 
						|
            /* cannot write to them */
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            s->cmos_data[s->cmos_index] = data;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int to_bcd(RTCState *s, int a)
 | 
						|
{
 | 
						|
    if (s->cmos_data[RTC_REG_B] & 0x04) {
 | 
						|
        return a;
 | 
						|
    } else {
 | 
						|
        return ((a / 10) << 4) | (a % 10);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int from_bcd(RTCState *s, int a)
 | 
						|
{
 | 
						|
    if (s->cmos_data[RTC_REG_B] & 0x04) {
 | 
						|
        return a;
 | 
						|
    } else {
 | 
						|
        return ((a >> 4) * 10) + (a & 0x0f);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_set_time(RTCState *s)
 | 
						|
{
 | 
						|
    struct tm tm1, *tm = &tm1;
 | 
						|
 | 
						|
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
 | 
						|
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
 | 
						|
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS]);
 | 
						|
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
 | 
						|
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
 | 
						|
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
 | 
						|
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
 | 
						|
 | 
						|
    /* update internal state */
 | 
						|
    s->buf_data[RTC_SECONDS] = s->cmos_data[RTC_SECONDS];
 | 
						|
    s->buf_data[RTC_MINUTES] = s->cmos_data[RTC_MINUTES];
 | 
						|
    s->buf_data[RTC_HOURS] = s->cmos_data[RTC_HOURS];
 | 
						|
    s->buf_data[RTC_DAY_OF_WEEK] = s->cmos_data[RTC_DAY_OF_WEEK];
 | 
						|
    s->buf_data[RTC_DAY_OF_MONTH] = s->cmos_data[RTC_DAY_OF_MONTH];
 | 
						|
    s->buf_data[RTC_MONTH] = s->cmos_data[RTC_MONTH];
 | 
						|
    s->buf_data[RTC_YEAR] = s->cmos_data[RTC_YEAR];
 | 
						|
    s->current_time = mktime(tm);
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_update_second(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
    int64_t delay;
 | 
						|
 | 
						|
    /* if the oscillator is not in normal operation, we do not update */
 | 
						|
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
 | 
						|
        s->next_second_time += ticks_per_sec;
 | 
						|
        qemu_mod_timer(s->second_timer, s->next_second_time);
 | 
						|
    } else {
 | 
						|
        s->current_time++;
 | 
						|
        
 | 
						|
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | 
						|
            /* update in progress bit */
 | 
						|
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
 | 
						|
        }
 | 
						|
        /* should be 244 us = 8 / 32768 seconds, but currently the
 | 
						|
           timers do not have the necessary resolution. */
 | 
						|
        delay = (ticks_per_sec * 1) / 100;
 | 
						|
        if (delay < 1)
 | 
						|
            delay = 1;
 | 
						|
        qemu_mod_timer(s->second_timer2, 
 | 
						|
                       s->next_second_time + delay);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_update_second2(void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
    time_t ti;
 | 
						|
 | 
						|
    ti = s->current_time;
 | 
						|
    rtc_set_date_buf(s, gmtime(&ti));
 | 
						|
 | 
						|
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
 | 
						|
        rtc_copy_date(s);
 | 
						|
    }
 | 
						|
 | 
						|
    /* check alarm */
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
 | 
						|
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
 | 
						|
             s->cmos_data[RTC_SECONDS_ALARM] == s->buf_data[RTC_SECONDS]) &&
 | 
						|
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
 | 
						|
             s->cmos_data[RTC_MINUTES_ALARM] == s->buf_data[RTC_MINUTES]) &&
 | 
						|
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
 | 
						|
             s->cmos_data[RTC_HOURS_ALARM] == s->buf_data[RTC_HOURS])) {
 | 
						|
 | 
						|
            s->cmos_data[RTC_REG_C] |= 0xa0; 
 | 
						|
            pic_set_irq(s->irq, 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* update ended interrupt */
 | 
						|
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
 | 
						|
        s->cmos_data[RTC_REG_C] |= 0x90; 
 | 
						|
        pic_set_irq(s->irq, 1);
 | 
						|
    }
 | 
						|
 | 
						|
    /* clear update in progress bit */
 | 
						|
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
 | 
						|
 | 
						|
    s->next_second_time += ticks_per_sec;
 | 
						|
    qemu_mod_timer(s->second_timer, s->next_second_time);
 | 
						|
}
 | 
						|
 | 
						|
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
    int ret;
 | 
						|
    if ((addr & 1) == 0) {
 | 
						|
        return 0xff;
 | 
						|
    } else {
 | 
						|
        switch(s->cmos_index) {
 | 
						|
        case RTC_SECONDS:
 | 
						|
        case RTC_MINUTES:
 | 
						|
        case RTC_HOURS:
 | 
						|
        case RTC_DAY_OF_WEEK:
 | 
						|
        case RTC_DAY_OF_MONTH:
 | 
						|
        case RTC_MONTH:
 | 
						|
        case RTC_YEAR:
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            break;
 | 
						|
        case RTC_REG_A:
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            break;
 | 
						|
        case RTC_REG_C:
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            pic_set_irq(s->irq, 0);
 | 
						|
            s->cmos_data[RTC_REG_C] = 0x00; 
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            ret = s->cmos_data[s->cmos_index];
 | 
						|
            break;
 | 
						|
        }
 | 
						|
#ifdef DEBUG_CMOS
 | 
						|
        printf("cmos: read index=0x%02x val=0x%02x\n",
 | 
						|
               s->cmos_index, ret);
 | 
						|
#endif
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_set_date_buf(RTCState *s, const struct tm *tm)
 | 
						|
{
 | 
						|
    s->buf_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
 | 
						|
    s->buf_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
 | 
						|
    if (s->cmos_data[RTC_REG_B] & 0x02) {
 | 
						|
        /* 24 hour format */
 | 
						|
        s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
 | 
						|
    } else {
 | 
						|
        /* 12 hour format */
 | 
						|
        s->buf_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
 | 
						|
        if (tm->tm_hour >= 12)
 | 
						|
            s->buf_data[RTC_HOURS] |= 0x80;
 | 
						|
    }
 | 
						|
    s->buf_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
 | 
						|
    s->buf_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
 | 
						|
    s->buf_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
 | 
						|
    s->buf_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_copy_date(RTCState *s)
 | 
						|
{
 | 
						|
    s->cmos_data[RTC_SECONDS] = s->buf_data[RTC_SECONDS];
 | 
						|
    s->cmos_data[RTC_MINUTES] = s->buf_data[RTC_MINUTES];
 | 
						|
    s->cmos_data[RTC_HOURS] = s->buf_data[RTC_HOURS];
 | 
						|
    s->cmos_data[RTC_DAY_OF_WEEK] = s->buf_data[RTC_DAY_OF_WEEK];
 | 
						|
    s->cmos_data[RTC_DAY_OF_MONTH] = s->buf_data[RTC_DAY_OF_MONTH];
 | 
						|
    s->cmos_data[RTC_MONTH] = s->buf_data[RTC_MONTH];
 | 
						|
    s->cmos_data[RTC_YEAR] = s->buf_data[RTC_YEAR];
 | 
						|
}
 | 
						|
 | 
						|
void rtc_set_memory(RTCState *s, int addr, int val)
 | 
						|
{
 | 
						|
    if (addr >= 0 && addr <= 127)
 | 
						|
        s->cmos_data[addr] = val;
 | 
						|
}
 | 
						|
 | 
						|
void rtc_set_date(RTCState *s, const struct tm *tm)
 | 
						|
{
 | 
						|
    s->current_time = mktime((struct tm *)tm);
 | 
						|
    rtc_set_date_buf(s, tm);
 | 
						|
    rtc_copy_date(s);
 | 
						|
}
 | 
						|
 | 
						|
static void rtc_save(QEMUFile *f, void *opaque)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    qemu_put_buffer(f, s->cmos_data, 128);
 | 
						|
    qemu_put_8s(f, &s->cmos_index);
 | 
						|
    qemu_put_be32s(f, &s->current_time);
 | 
						|
    qemu_put_buffer(f, s->buf_data, 10);
 | 
						|
 | 
						|
    qemu_put_timer(f, s->periodic_timer);
 | 
						|
    qemu_put_be64s(f, &s->next_periodic_time);
 | 
						|
 | 
						|
    qemu_put_be64s(f, &s->next_second_time);
 | 
						|
    qemu_put_timer(f, s->second_timer);
 | 
						|
    qemu_put_timer(f, s->second_timer2);
 | 
						|
}
 | 
						|
 | 
						|
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
 | 
						|
{
 | 
						|
    RTCState *s = opaque;
 | 
						|
 | 
						|
    if (version_id != 1)
 | 
						|
        return -EINVAL;
 | 
						|
 | 
						|
    qemu_get_buffer(f, s->cmos_data, 128);
 | 
						|
    qemu_get_8s(f, &s->cmos_index);
 | 
						|
    qemu_get_be32s(f, &s->current_time);
 | 
						|
    qemu_get_buffer(f, s->buf_data, 10);
 | 
						|
 | 
						|
    qemu_get_timer(f, s->periodic_timer);
 | 
						|
    qemu_get_be64s(f, &s->next_periodic_time);
 | 
						|
 | 
						|
    qemu_get_be64s(f, &s->next_second_time);
 | 
						|
    qemu_get_timer(f, s->second_timer);
 | 
						|
    qemu_get_timer(f, s->second_timer2);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
RTCState *rtc_init(int base, int irq)
 | 
						|
{
 | 
						|
    RTCState *s;
 | 
						|
 | 
						|
    s = qemu_mallocz(sizeof(RTCState));
 | 
						|
    if (!s)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    s->irq = irq;
 | 
						|
    s->cmos_data[RTC_REG_A] = 0x26;
 | 
						|
    s->cmos_data[RTC_REG_B] = 0x02;
 | 
						|
    s->cmos_data[RTC_REG_C] = 0x00;
 | 
						|
    s->cmos_data[RTC_REG_D] = 0x80;
 | 
						|
 | 
						|
    s->periodic_timer = qemu_new_timer(vm_clock, 
 | 
						|
                                       rtc_periodic_timer, s);
 | 
						|
    s->second_timer = qemu_new_timer(vm_clock, 
 | 
						|
                                     rtc_update_second, s);
 | 
						|
    s->second_timer2 = qemu_new_timer(vm_clock, 
 | 
						|
                                      rtc_update_second2, s);
 | 
						|
 | 
						|
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
 | 
						|
    qemu_mod_timer(s->second_timer2, s->next_second_time);
 | 
						|
 | 
						|
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
 | 
						|
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
 | 
						|
 | 
						|
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 |