 dc5e9ac716
			
		
	
	
		dc5e9ac716
		
	
	
	
	
		
			
			Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-Id: <20190812052359.30071-20-armbru@redhat.com>
		
			
				
	
	
		
			679 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			679 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef QEMU_H
 | |
| #define QEMU_H
 | |
| 
 | |
| #include "hostdep.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| 
 | |
| #undef DEBUG_REMAP
 | |
| #ifdef DEBUG_REMAP
 | |
| #endif /* DEBUG_REMAP */
 | |
| 
 | |
| #include "exec/user/abitypes.h"
 | |
| 
 | |
| #include "exec/user/thunk.h"
 | |
| #include "syscall_defs.h"
 | |
| #include "target_syscall.h"
 | |
| #include "exec/gdbstub.h"
 | |
| 
 | |
| /* This is the size of the host kernel's sigset_t, needed where we make
 | |
|  * direct system calls that take a sigset_t pointer and a size.
 | |
|  */
 | |
| #define SIGSET_T_SIZE (_NSIG / 8)
 | |
| 
 | |
| /* This struct is used to hold certain information about the image.
 | |
|  * Basically, it replicates in user space what would be certain
 | |
|  * task_struct fields in the kernel
 | |
|  */
 | |
| struct image_info {
 | |
|         abi_ulong       load_bias;
 | |
|         abi_ulong       load_addr;
 | |
|         abi_ulong       start_code;
 | |
|         abi_ulong       end_code;
 | |
|         abi_ulong       start_data;
 | |
|         abi_ulong       end_data;
 | |
|         abi_ulong       start_brk;
 | |
|         abi_ulong       brk;
 | |
|         abi_ulong       start_mmap;
 | |
|         abi_ulong       start_stack;
 | |
|         abi_ulong       stack_limit;
 | |
|         abi_ulong       entry;
 | |
|         abi_ulong       code_offset;
 | |
|         abi_ulong       data_offset;
 | |
|         abi_ulong       saved_auxv;
 | |
|         abi_ulong       auxv_len;
 | |
|         abi_ulong       arg_start;
 | |
|         abi_ulong       arg_end;
 | |
|         abi_ulong       arg_strings;
 | |
|         abi_ulong       env_strings;
 | |
|         abi_ulong       file_string;
 | |
|         uint32_t        elf_flags;
 | |
|         int		personality;
 | |
|         abi_ulong       alignment;
 | |
| 
 | |
|         /* The fields below are used in FDPIC mode.  */
 | |
|         abi_ulong       loadmap_addr;
 | |
|         uint16_t        nsegs;
 | |
|         void           *loadsegs;
 | |
|         abi_ulong       pt_dynamic_addr;
 | |
|         abi_ulong       interpreter_loadmap_addr;
 | |
|         abi_ulong       interpreter_pt_dynamic_addr;
 | |
|         struct image_info *other_info;
 | |
| #ifdef TARGET_MIPS
 | |
|         int             fp_abi;
 | |
|         int             interp_fp_abi;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| /* Information about the current linux thread */
 | |
| struct vm86_saved_state {
 | |
|     uint32_t eax; /* return code */
 | |
|     uint32_t ebx;
 | |
|     uint32_t ecx;
 | |
|     uint32_t edx;
 | |
|     uint32_t esi;
 | |
|     uint32_t edi;
 | |
|     uint32_t ebp;
 | |
|     uint32_t esp;
 | |
|     uint32_t eflags;
 | |
|     uint32_t eip;
 | |
|     uint16_t cs, ss, ds, es, fs, gs;
 | |
| };
 | |
| #endif
 | |
| 
 | |
| #if defined(TARGET_ARM) && defined(TARGET_ABI32)
 | |
| /* FPU emulator */
 | |
| #include "nwfpe/fpa11.h"
 | |
| #endif
 | |
| 
 | |
| #define MAX_SIGQUEUE_SIZE 1024
 | |
| 
 | |
| struct emulated_sigtable {
 | |
|     int pending; /* true if signal is pending */
 | |
|     target_siginfo_t info;
 | |
| };
 | |
| 
 | |
| /* NOTE: we force a big alignment so that the stack stored after is
 | |
|    aligned too */
 | |
| typedef struct TaskState {
 | |
|     pid_t ts_tid;     /* tid (or pid) of this task */
 | |
| #ifdef TARGET_ARM
 | |
| # ifdef TARGET_ABI32
 | |
|     /* FPA state */
 | |
|     FPA11 fpa;
 | |
| # endif
 | |
|     int swi_errno;
 | |
| #endif
 | |
| #if defined(TARGET_I386) && !defined(TARGET_X86_64)
 | |
|     abi_ulong target_v86;
 | |
|     struct vm86_saved_state vm86_saved_regs;
 | |
|     struct target_vm86plus_struct vm86plus;
 | |
|     uint32_t v86flags;
 | |
|     uint32_t v86mask;
 | |
| #endif
 | |
|     abi_ulong child_tidptr;
 | |
| #ifdef TARGET_M68K
 | |
|     abi_ulong tp_value;
 | |
| #endif
 | |
| #if defined(TARGET_ARM) || defined(TARGET_M68K)
 | |
|     /* Extra fields for semihosted binaries.  */
 | |
|     abi_ulong heap_base;
 | |
|     abi_ulong heap_limit;
 | |
| #endif
 | |
|     abi_ulong stack_base;
 | |
|     int used; /* non zero if used */
 | |
|     struct image_info *info;
 | |
|     struct linux_binprm *bprm;
 | |
| 
 | |
|     struct emulated_sigtable sync_signal;
 | |
|     struct emulated_sigtable sigtab[TARGET_NSIG];
 | |
|     /* This thread's signal mask, as requested by the guest program.
 | |
|      * The actual signal mask of this thread may differ:
 | |
|      *  + we don't let SIGSEGV and SIGBUS be blocked while running guest code
 | |
|      *  + sometimes we block all signals to avoid races
 | |
|      */
 | |
|     sigset_t signal_mask;
 | |
|     /* The signal mask imposed by a guest sigsuspend syscall, if we are
 | |
|      * currently in the middle of such a syscall
 | |
|      */
 | |
|     sigset_t sigsuspend_mask;
 | |
|     /* Nonzero if we're leaving a sigsuspend and sigsuspend_mask is valid. */
 | |
|     int in_sigsuspend;
 | |
| 
 | |
|     /* Nonzero if process_pending_signals() needs to do something (either
 | |
|      * handle a pending signal or unblock signals).
 | |
|      * This flag is written from a signal handler so should be accessed via
 | |
|      * the atomic_read() and atomic_set() functions. (It is not accessed
 | |
|      * from multiple threads.)
 | |
|      */
 | |
|     int signal_pending;
 | |
| 
 | |
|     /* This thread's sigaltstack, if it has one */
 | |
|     struct target_sigaltstack sigaltstack_used;
 | |
| } __attribute__((aligned(16))) TaskState;
 | |
| 
 | |
| extern char *exec_path;
 | |
| void init_task_state(TaskState *ts);
 | |
| void task_settid(TaskState *);
 | |
| void stop_all_tasks(void);
 | |
| extern const char *qemu_uname_release;
 | |
| extern unsigned long mmap_min_addr;
 | |
| 
 | |
| /* ??? See if we can avoid exposing so much of the loader internals.  */
 | |
| 
 | |
| /* Read a good amount of data initially, to hopefully get all the
 | |
|    program headers loaded.  */
 | |
| #define BPRM_BUF_SIZE  1024
 | |
| 
 | |
| /*
 | |
|  * This structure is used to hold the arguments that are
 | |
|  * used when loading binaries.
 | |
|  */
 | |
| struct linux_binprm {
 | |
|         char buf[BPRM_BUF_SIZE] __attribute__((aligned));
 | |
|         abi_ulong p;
 | |
|         int fd;
 | |
|         int e_uid, e_gid;
 | |
|         int argc, envc;
 | |
|         char **argv;
 | |
|         char **envp;
 | |
|         char * filename;        /* Name of binary */
 | |
|         int (*core_dump)(int, const CPUArchState *); /* coredump routine */
 | |
| };
 | |
| 
 | |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
 | |
| abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
 | |
|                               abi_ulong stringp, int push_ptr);
 | |
| int loader_exec(int fdexec, const char *filename, char **argv, char **envp,
 | |
|              struct target_pt_regs * regs, struct image_info *infop,
 | |
|              struct linux_binprm *);
 | |
| 
 | |
| /* Returns true if the image uses the FDPIC ABI. If this is the case,
 | |
|  * we have to provide some information (loadmap, pt_dynamic_info) such
 | |
|  * that the program can be relocated adequately. This is also useful
 | |
|  * when handling signals.
 | |
|  */
 | |
| int info_is_fdpic(struct image_info *info);
 | |
| 
 | |
| uint32_t get_elf_eflags(int fd);
 | |
| int load_elf_binary(struct linux_binprm *bprm, struct image_info *info);
 | |
| int load_flt_binary(struct linux_binprm *bprm, struct image_info *info);
 | |
| 
 | |
| abi_long memcpy_to_target(abi_ulong dest, const void *src,
 | |
|                           unsigned long len);
 | |
| void target_set_brk(abi_ulong new_brk);
 | |
| abi_long do_brk(abi_ulong new_brk);
 | |
| void syscall_init(void);
 | |
| abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
 | |
|                     abi_long arg2, abi_long arg3, abi_long arg4,
 | |
|                     abi_long arg5, abi_long arg6, abi_long arg7,
 | |
|                     abi_long arg8);
 | |
| void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
 | |
| extern __thread CPUState *thread_cpu;
 | |
| void cpu_loop(CPUArchState *env);
 | |
| const char *target_strerror(int err);
 | |
| int get_osversion(void);
 | |
| void init_qemu_uname_release(void);
 | |
| void fork_start(void);
 | |
| void fork_end(int child);
 | |
| 
 | |
| /* Creates the initial guest address space in the host memory space using
 | |
|  * the given host start address hint and size.  The guest_start parameter
 | |
|  * specifies the start address of the guest space.  guest_base will be the
 | |
|  * difference between the host start address computed by this function and
 | |
|  * guest_start.  If fixed is specified, then the mapped address space must
 | |
|  * start at host_start.  The real start address of the mapped memory space is
 | |
|  * returned or -1 if there was an error.
 | |
|  */
 | |
| unsigned long init_guest_space(unsigned long host_start,
 | |
|                                unsigned long host_size,
 | |
|                                unsigned long guest_start,
 | |
|                                bool fixed);
 | |
| 
 | |
| #include "qemu/log.h"
 | |
| 
 | |
| /* safe_syscall.S */
 | |
| 
 | |
| /**
 | |
|  * safe_syscall:
 | |
|  * @int number: number of system call to make
 | |
|  * ...: arguments to the system call
 | |
|  *
 | |
|  * Call a system call if guest signal not pending.
 | |
|  * This has the same API as the libc syscall() function, except that it
 | |
|  * may return -1 with errno == TARGET_ERESTARTSYS if a signal was pending.
 | |
|  *
 | |
|  * Returns: the system call result, or -1 with an error code in errno
 | |
|  * (Errnos are host errnos; we rely on TARGET_ERESTARTSYS not clashing
 | |
|  * with any of the host errno values.)
 | |
|  */
 | |
| 
 | |
| /* A guide to using safe_syscall() to handle interactions between guest
 | |
|  * syscalls and guest signals:
 | |
|  *
 | |
|  * Guest syscalls come in two flavours:
 | |
|  *
 | |
|  * (1) Non-interruptible syscalls
 | |
|  *
 | |
|  * These are guest syscalls that never get interrupted by signals and
 | |
|  * so never return EINTR. They can be implemented straightforwardly in
 | |
|  * QEMU: just make sure that if the implementation code has to make any
 | |
|  * blocking calls that those calls are retried if they return EINTR.
 | |
|  * It's also OK to implement these with safe_syscall, though it will be
 | |
|  * a little less efficient if a signal is delivered at the 'wrong' moment.
 | |
|  *
 | |
|  * Some non-interruptible syscalls need to be handled using block_signals()
 | |
|  * to block signals for the duration of the syscall. This mainly applies
 | |
|  * to code which needs to modify the data structures used by the
 | |
|  * host_signal_handler() function and the functions it calls, including
 | |
|  * all syscalls which change the thread's signal mask.
 | |
|  *
 | |
|  * (2) Interruptible syscalls
 | |
|  *
 | |
|  * These are guest syscalls that can be interrupted by signals and
 | |
|  * for which we need to either return EINTR or arrange for the guest
 | |
|  * syscall to be restarted. This category includes both syscalls which
 | |
|  * always restart (and in the kernel return -ERESTARTNOINTR), ones
 | |
|  * which only restart if there is no handler (kernel returns -ERESTARTNOHAND
 | |
|  * or -ERESTART_RESTARTBLOCK), and the most common kind which restart
 | |
|  * if the handler was registered with SA_RESTART (kernel returns
 | |
|  * -ERESTARTSYS). System calls which are only interruptible in some
 | |
|  * situations (like 'open') also need to be handled this way.
 | |
|  *
 | |
|  * Here it is important that the host syscall is made
 | |
|  * via this safe_syscall() function, and *not* via the host libc.
 | |
|  * If the host libc is used then the implementation will appear to work
 | |
|  * most of the time, but there will be a race condition where a
 | |
|  * signal could arrive just before we make the host syscall inside libc,
 | |
|  * and then then guest syscall will not correctly be interrupted.
 | |
|  * Instead the implementation of the guest syscall can use the safe_syscall
 | |
|  * function but otherwise just return the result or errno in the usual
 | |
|  * way; the main loop code will take care of restarting the syscall
 | |
|  * if appropriate.
 | |
|  *
 | |
|  * (If the implementation needs to make multiple host syscalls this is
 | |
|  * OK; any which might really block must be via safe_syscall(); for those
 | |
|  * which are only technically blocking (ie which we know in practice won't
 | |
|  * stay in the host kernel indefinitely) it's OK to use libc if necessary.
 | |
|  * You must be able to cope with backing out correctly if some safe_syscall
 | |
|  * you make in the implementation returns either -TARGET_ERESTARTSYS or
 | |
|  * EINTR though.)
 | |
|  *
 | |
|  * block_signals() cannot be used for interruptible syscalls.
 | |
|  *
 | |
|  *
 | |
|  * How and why the safe_syscall implementation works:
 | |
|  *
 | |
|  * The basic setup is that we make the host syscall via a known
 | |
|  * section of host native assembly. If a signal occurs, our signal
 | |
|  * handler checks the interrupted host PC against the addresse of that
 | |
|  * known section. If the PC is before or at the address of the syscall
 | |
|  * instruction then we change the PC to point at a "return
 | |
|  * -TARGET_ERESTARTSYS" code path instead, and then exit the signal handler
 | |
|  * (causing the safe_syscall() call to immediately return that value).
 | |
|  * Then in the main.c loop if we see this magic return value we adjust
 | |
|  * the guest PC to wind it back to before the system call, and invoke
 | |
|  * the guest signal handler as usual.
 | |
|  *
 | |
|  * This winding-back will happen in two cases:
 | |
|  * (1) signal came in just before we took the host syscall (a race);
 | |
|  *   in this case we'll take the guest signal and have another go
 | |
|  *   at the syscall afterwards, and this is indistinguishable for the
 | |
|  *   guest from the timing having been different such that the guest
 | |
|  *   signal really did win the race
 | |
|  * (2) signal came in while the host syscall was blocking, and the
 | |
|  *   host kernel decided the syscall should be restarted;
 | |
|  *   in this case we want to restart the guest syscall also, and so
 | |
|  *   rewinding is the right thing. (Note that "restart" semantics mean
 | |
|  *   "first call the signal handler, then reattempt the syscall".)
 | |
|  * The other situation to consider is when a signal came in while the
 | |
|  * host syscall was blocking, and the host kernel decided that the syscall
 | |
|  * should not be restarted; in this case QEMU's host signal handler will
 | |
|  * be invoked with the PC pointing just after the syscall instruction,
 | |
|  * with registers indicating an EINTR return; the special code in the
 | |
|  * handler will not kick in, and we will return EINTR to the guest as
 | |
|  * we should.
 | |
|  *
 | |
|  * Notice that we can leave the host kernel to make the decision for
 | |
|  * us about whether to do a restart of the syscall or not; we do not
 | |
|  * need to check SA_RESTART flags in QEMU or distinguish the various
 | |
|  * kinds of restartability.
 | |
|  */
 | |
| #ifdef HAVE_SAFE_SYSCALL
 | |
| /* The core part of this function is implemented in assembly */
 | |
| extern long safe_syscall_base(int *pending, long number, ...);
 | |
| 
 | |
| #define safe_syscall(...)                                               \
 | |
|     ({                                                                  \
 | |
|         long ret_;                                                      \
 | |
|         int *psp_ = &((TaskState *)thread_cpu->opaque)->signal_pending; \
 | |
|         ret_ = safe_syscall_base(psp_, __VA_ARGS__);                    \
 | |
|         if (is_error(ret_)) {                                           \
 | |
|             errno = -ret_;                                              \
 | |
|             ret_ = -1;                                                  \
 | |
|         }                                                               \
 | |
|         ret_;                                                           \
 | |
|     })
 | |
| 
 | |
| #else
 | |
| 
 | |
| /* Fallback for architectures which don't yet provide a safe-syscall assembly
 | |
|  * fragment; note that this is racy!
 | |
|  * This should go away when all host architectures have been updated.
 | |
|  */
 | |
| #define safe_syscall syscall
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* syscall.c */
 | |
| int host_to_target_waitstatus(int status);
 | |
| 
 | |
| /* strace.c */
 | |
| void print_syscall(int num,
 | |
|                    abi_long arg1, abi_long arg2, abi_long arg3,
 | |
|                    abi_long arg4, abi_long arg5, abi_long arg6);
 | |
| void print_syscall_ret(int num, abi_long arg1);
 | |
| /**
 | |
|  * print_taken_signal:
 | |
|  * @target_signum: target signal being taken
 | |
|  * @tinfo: target_siginfo_t which will be passed to the guest for the signal
 | |
|  *
 | |
|  * Print strace output indicating that this signal is being taken by the guest,
 | |
|  * in a format similar to:
 | |
|  * --- SIGSEGV {si_signo=SIGSEGV, si_code=SI_KERNEL, si_addr=0} ---
 | |
|  */
 | |
| void print_taken_signal(int target_signum, const target_siginfo_t *tinfo);
 | |
| extern int do_strace;
 | |
| 
 | |
| /* signal.c */
 | |
| void process_pending_signals(CPUArchState *cpu_env);
 | |
| void signal_init(void);
 | |
| int queue_signal(CPUArchState *env, int sig, int si_type,
 | |
|                  target_siginfo_t *info);
 | |
| void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
 | |
| void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
 | |
| int target_to_host_signal(int sig);
 | |
| int host_to_target_signal(int sig);
 | |
| long do_sigreturn(CPUArchState *env);
 | |
| long do_rt_sigreturn(CPUArchState *env);
 | |
| abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
 | |
| int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset);
 | |
| abi_long do_swapcontext(CPUArchState *env, abi_ulong uold_ctx,
 | |
|                         abi_ulong unew_ctx, abi_long ctx_size);
 | |
| /**
 | |
|  * block_signals: block all signals while handling this guest syscall
 | |
|  *
 | |
|  * Block all signals, and arrange that the signal mask is returned to
 | |
|  * its correct value for the guest before we resume execution of guest code.
 | |
|  * If this function returns non-zero, then the caller should immediately
 | |
|  * return -TARGET_ERESTARTSYS to the main loop, which will take the pending
 | |
|  * signal and restart execution of the syscall.
 | |
|  * If block_signals() returns zero, then the caller can continue with
 | |
|  * emulation of the system call knowing that no signals can be taken
 | |
|  * (and therefore that no race conditions will result).
 | |
|  * This should only be called once, because if it is called a second time
 | |
|  * it will always return non-zero. (Think of it like a mutex that can't
 | |
|  * be recursively locked.)
 | |
|  * Signals will be unblocked again by process_pending_signals().
 | |
|  *
 | |
|  * Return value: non-zero if there was a pending signal, zero if not.
 | |
|  */
 | |
| int block_signals(void); /* Returns non zero if signal pending */
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| /* vm86.c */
 | |
| void save_v86_state(CPUX86State *env);
 | |
| void handle_vm86_trap(CPUX86State *env, int trapno);
 | |
| void handle_vm86_fault(CPUX86State *env);
 | |
| int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
 | |
| #elif defined(TARGET_SPARC64)
 | |
| void sparc64_set_context(CPUSPARCState *env);
 | |
| void sparc64_get_context(CPUSPARCState *env);
 | |
| #endif
 | |
| 
 | |
| /* mmap.c */
 | |
| int target_mprotect(abi_ulong start, abi_ulong len, int prot);
 | |
| abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
 | |
|                      int flags, int fd, abi_ulong offset);
 | |
| int target_munmap(abi_ulong start, abi_ulong len);
 | |
| abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
 | |
|                        abi_ulong new_size, unsigned long flags,
 | |
|                        abi_ulong new_addr);
 | |
| extern unsigned long last_brk;
 | |
| extern abi_ulong mmap_next_start;
 | |
| abi_ulong mmap_find_vma(abi_ulong, abi_ulong, abi_ulong);
 | |
| void mmap_fork_start(void);
 | |
| void mmap_fork_end(int child);
 | |
| 
 | |
| /* main.c */
 | |
| extern unsigned long guest_stack_size;
 | |
| 
 | |
| /* user access */
 | |
| 
 | |
| #define VERIFY_READ 0
 | |
| #define VERIFY_WRITE 1 /* implies read access */
 | |
| 
 | |
| static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
 | |
| {
 | |
|     return guest_addr_valid(addr) &&
 | |
|            (size == 0 || guest_addr_valid(addr + size - 1)) &&
 | |
|            page_check_range((target_ulong)addr, size,
 | |
|                             (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
 | |
| }
 | |
| 
 | |
| /* NOTE __get_user and __put_user use host pointers and don't check access.
 | |
|    These are usually used to access struct data members once the struct has
 | |
|    been locked - usually with lock_user_struct.  */
 | |
| 
 | |
| /*
 | |
|  * Tricky points:
 | |
|  * - Use __builtin_choose_expr to avoid type promotion from ?:,
 | |
|  * - Invalid sizes result in a compile time error stemming from
 | |
|  *   the fact that abort has no parameters.
 | |
|  * - It's easier to use the endian-specific unaligned load/store
 | |
|  *   functions than host-endian unaligned load/store plus tswapN.
 | |
|  * - The pragmas are necessary only to silence a clang false-positive
 | |
|  *   warning: see https://bugs.llvm.org/show_bug.cgi?id=39113 .
 | |
|  * - gcc has bugs in its _Pragma() support in some versions, eg
 | |
|  *   https://gcc.gnu.org/bugzilla/show_bug.cgi?id=83256 -- so we only
 | |
|  *   include the warning-suppression pragmas for clang
 | |
|  */
 | |
| #if defined(__clang__) && __has_warning("-Waddress-of-packed-member")
 | |
| #define PRAGMA_DISABLE_PACKED_WARNING                                   \
 | |
|     _Pragma("GCC diagnostic push");                                     \
 | |
|     _Pragma("GCC diagnostic ignored \"-Waddress-of-packed-member\"")
 | |
| 
 | |
| #define PRAGMA_REENABLE_PACKED_WARNING          \
 | |
|     _Pragma("GCC diagnostic pop")
 | |
| 
 | |
| #else
 | |
| #define PRAGMA_DISABLE_PACKED_WARNING
 | |
| #define PRAGMA_REENABLE_PACKED_WARNING
 | |
| #endif
 | |
| 
 | |
| #define __put_user_e(x, hptr, e)                                            \
 | |
|     do {                                                                    \
 | |
|         PRAGMA_DISABLE_PACKED_WARNING;                                      \
 | |
|         (__builtin_choose_expr(sizeof(*(hptr)) == 1, stb_p,                 \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 2, stw_##e##_p,            \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 4, stl_##e##_p,            \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 8, stq_##e##_p, abort))))  \
 | |
|             ((hptr), (x)), (void)0);                                        \
 | |
|         PRAGMA_REENABLE_PACKED_WARNING;                                     \
 | |
|     } while (0)
 | |
| 
 | |
| #define __get_user_e(x, hptr, e)                                            \
 | |
|     do {                                                                    \
 | |
|         PRAGMA_DISABLE_PACKED_WARNING;                                      \
 | |
|         ((x) = (typeof(*hptr))(                                             \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 1, ldub_p,                 \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 2, lduw_##e##_p,           \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 4, ldl_##e##_p,            \
 | |
|         __builtin_choose_expr(sizeof(*(hptr)) == 8, ldq_##e##_p, abort))))  \
 | |
|             (hptr)), (void)0);                                              \
 | |
|         PRAGMA_REENABLE_PACKED_WARNING;                                     \
 | |
|     } while (0)
 | |
| 
 | |
| 
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
| # define __put_user(x, hptr)  __put_user_e(x, hptr, be)
 | |
| # define __get_user(x, hptr)  __get_user_e(x, hptr, be)
 | |
| #else
 | |
| # define __put_user(x, hptr)  __put_user_e(x, hptr, le)
 | |
| # define __get_user(x, hptr)  __get_user_e(x, hptr, le)
 | |
| #endif
 | |
| 
 | |
| /* put_user()/get_user() take a guest address and check access */
 | |
| /* These are usually used to access an atomic data type, such as an int,
 | |
|  * that has been passed by address.  These internally perform locking
 | |
|  * and unlocking on the data type.
 | |
|  */
 | |
| #define put_user(x, gaddr, target_type)					\
 | |
| ({									\
 | |
|     abi_ulong __gaddr = (gaddr);					\
 | |
|     target_type *__hptr;						\
 | |
|     abi_long __ret = 0;							\
 | |
|     if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
 | |
|         __put_user((x), __hptr);				\
 | |
|         unlock_user(__hptr, __gaddr, sizeof(target_type));		\
 | |
|     } else								\
 | |
|         __ret = -TARGET_EFAULT;						\
 | |
|     __ret;								\
 | |
| })
 | |
| 
 | |
| #define get_user(x, gaddr, target_type)					\
 | |
| ({									\
 | |
|     abi_ulong __gaddr = (gaddr);					\
 | |
|     target_type *__hptr;						\
 | |
|     abi_long __ret = 0;							\
 | |
|     if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
 | |
|         __get_user((x), __hptr);				\
 | |
|         unlock_user(__hptr, __gaddr, 0);				\
 | |
|     } else {								\
 | |
|         /* avoid warning */						\
 | |
|         (x) = 0;							\
 | |
|         __ret = -TARGET_EFAULT;						\
 | |
|     }									\
 | |
|     __ret;								\
 | |
| })
 | |
| 
 | |
| #define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
 | |
| #define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
 | |
| #define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
 | |
| #define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
 | |
| #define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
 | |
| #define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
 | |
| #define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
 | |
| #define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
 | |
| #define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
 | |
| #define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
 | |
| 
 | |
| #define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
 | |
| #define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
 | |
| #define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
 | |
| #define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
 | |
| #define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
 | |
| #define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
 | |
| #define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
 | |
| #define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
 | |
| #define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
 | |
| #define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
 | |
| 
 | |
| /* copy_from_user() and copy_to_user() are usually used to copy data
 | |
|  * buffers between the target and host.  These internally perform
 | |
|  * locking/unlocking of the memory.
 | |
|  */
 | |
| abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
 | |
| abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
 | |
| 
 | |
| /* Functions for accessing guest memory.  The tget and tput functions
 | |
|    read/write single values, byteswapping as necessary.  The lock_user function
 | |
|    gets a pointer to a contiguous area of guest memory, but does not perform
 | |
|    any byteswapping.  lock_user may return either a pointer to the guest
 | |
|    memory, or a temporary buffer.  */
 | |
| 
 | |
| /* Lock an area of guest memory into the host.  If copy is true then the
 | |
|    host area will have the same contents as the guest.  */
 | |
| static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
 | |
| {
 | |
|     if (!access_ok(type, guest_addr, len))
 | |
|         return NULL;
 | |
| #ifdef DEBUG_REMAP
 | |
|     {
 | |
|         void *addr;
 | |
|         addr = g_malloc(len);
 | |
|         if (copy)
 | |
|             memcpy(addr, g2h(guest_addr), len);
 | |
|         else
 | |
|             memset(addr, 0, len);
 | |
|         return addr;
 | |
|     }
 | |
| #else
 | |
|     return g2h(guest_addr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Unlock an area of guest memory.  The first LEN bytes must be
 | |
|    flushed back to guest memory. host_ptr = NULL is explicitly
 | |
|    allowed and does nothing. */
 | |
| static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
 | |
|                                long len)
 | |
| {
 | |
| 
 | |
| #ifdef DEBUG_REMAP
 | |
|     if (!host_ptr)
 | |
|         return;
 | |
|     if (host_ptr == g2h(guest_addr))
 | |
|         return;
 | |
|     if (len > 0)
 | |
|         memcpy(g2h(guest_addr), host_ptr, len);
 | |
|     g_free(host_ptr);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Return the length of a string in target memory or -TARGET_EFAULT if
 | |
|    access error. */
 | |
| abi_long target_strlen(abi_ulong gaddr);
 | |
| 
 | |
| /* Like lock_user but for null terminated strings.  */
 | |
| static inline void *lock_user_string(abi_ulong guest_addr)
 | |
| {
 | |
|     abi_long len;
 | |
|     len = target_strlen(guest_addr);
 | |
|     if (len < 0)
 | |
|         return NULL;
 | |
|     return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
 | |
| }
 | |
| 
 | |
| /* Helper macros for locking/unlocking a target struct.  */
 | |
| #define lock_user_struct(type, host_ptr, guest_addr, copy)	\
 | |
|     (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
 | |
| #define unlock_user_struct(host_ptr, guest_addr, copy)		\
 | |
|     unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
 | |
| 
 | |
| #include <pthread.h>
 | |
| 
 | |
| static inline int is_error(abi_long ret)
 | |
| {
 | |
|     return (abi_ulong)ret >= (abi_ulong)(-4096);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * preexit_cleanup: housekeeping before the guest exits
 | |
|  *
 | |
|  * env: the CPU state
 | |
|  * code: the exit code
 | |
|  */
 | |
| void preexit_cleanup(CPUArchState *env, int code);
 | |
| 
 | |
| /* Include target-specific struct and function definitions;
 | |
|  * they may need access to the target-independent structures
 | |
|  * above, so include them last.
 | |
|  */
 | |
| #include "target_cpu.h"
 | |
| #include "target_structs.h"
 | |
| 
 | |
| #endif /* QEMU_H */
 |