Tested-by: Philippe Mathieu-Daudé <philmd@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20231221031652.119827-20-richard.henderson@linaro.org>
		
			
				
	
	
		
			486 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			486 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * General purpose implementation of a simple periodic countdown timer.
 | 
						|
 *
 | 
						|
 * Copyright (c) 2007 CodeSourcery.
 | 
						|
 *
 | 
						|
 * This code is licensed under the GNU LGPL.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "hw/ptimer.h"
 | 
						|
#include "migration/vmstate.h"
 | 
						|
#include "qemu/host-utils.h"
 | 
						|
#include "exec/replay-core.h"
 | 
						|
#include "sysemu/cpu-timers.h"
 | 
						|
#include "sysemu/qtest.h"
 | 
						|
#include "block/aio.h"
 | 
						|
#include "hw/clock.h"
 | 
						|
 | 
						|
#define DELTA_ADJUST     1
 | 
						|
#define DELTA_NO_ADJUST -1
 | 
						|
 | 
						|
struct ptimer_state
 | 
						|
{
 | 
						|
    uint8_t enabled; /* 0 = disabled, 1 = periodic, 2 = oneshot.  */
 | 
						|
    uint64_t limit;
 | 
						|
    uint64_t delta;
 | 
						|
    uint32_t period_frac;
 | 
						|
    int64_t period;
 | 
						|
    int64_t last_event;
 | 
						|
    int64_t next_event;
 | 
						|
    uint8_t policy_mask;
 | 
						|
    QEMUTimer *timer;
 | 
						|
    ptimer_cb callback;
 | 
						|
    void *callback_opaque;
 | 
						|
    /*
 | 
						|
     * These track whether we're in a transaction block, and if we
 | 
						|
     * need to do a timer reload when the block finishes. They don't
 | 
						|
     * need to be migrated because migration can never happen in the
 | 
						|
     * middle of a transaction block.
 | 
						|
     */
 | 
						|
    bool in_transaction;
 | 
						|
    bool need_reload;
 | 
						|
};
 | 
						|
 | 
						|
/* Use a bottom-half routine to avoid reentrancy issues.  */
 | 
						|
static void ptimer_trigger(ptimer_state *s)
 | 
						|
{
 | 
						|
    s->callback(s->callback_opaque);
 | 
						|
}
 | 
						|
 | 
						|
static void ptimer_reload(ptimer_state *s, int delta_adjust)
 | 
						|
{
 | 
						|
    uint32_t period_frac;
 | 
						|
    uint64_t period;
 | 
						|
    uint64_t delta;
 | 
						|
    bool suppress_trigger = false;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Note that if delta_adjust is 0 then we must be here because of
 | 
						|
     * a count register write or timer start, not because of timer expiry.
 | 
						|
     * In that case the policy might require us to suppress the timer trigger
 | 
						|
     * that we would otherwise generate for a zero delta.
 | 
						|
     */
 | 
						|
    if (delta_adjust == 0 &&
 | 
						|
        (s->policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT)) {
 | 
						|
        suppress_trigger = true;
 | 
						|
    }
 | 
						|
    if (s->delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)
 | 
						|
        && !suppress_trigger) {
 | 
						|
        ptimer_trigger(s);
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Note that ptimer_trigger() might call the device callback function,
 | 
						|
     * which can then modify timer state, so we must not cache any fields
 | 
						|
     * from ptimer_state until after we have called it.
 | 
						|
     */
 | 
						|
    delta = s->delta;
 | 
						|
    period = s->period;
 | 
						|
    period_frac = s->period_frac;
 | 
						|
 | 
						|
    if (delta == 0 && !(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 | 
						|
        delta = s->delta = s->limit;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->period == 0) {
 | 
						|
        if (!qtest_enabled()) {
 | 
						|
            fprintf(stderr, "Timer with period zero, disabling\n");
 | 
						|
        }
 | 
						|
        timer_del(s->timer);
 | 
						|
        s->enabled = 0;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 | 
						|
        if (delta_adjust != DELTA_NO_ADJUST) {
 | 
						|
            delta += delta_adjust;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_CONTINUOUS_TRIGGER)) {
 | 
						|
        if (s->enabled == 1 && s->limit == 0) {
 | 
						|
            delta = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 | 
						|
        if (delta_adjust != DELTA_NO_ADJUST) {
 | 
						|
            delta = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (delta == 0 && (s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_RELOAD)) {
 | 
						|
        if (s->enabled == 1 && s->limit != 0) {
 | 
						|
            delta = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (delta == 0) {
 | 
						|
        if (s->enabled == 0) {
 | 
						|
            /* trigger callback disabled the timer already */
 | 
						|
            return;
 | 
						|
        }
 | 
						|
        if (!qtest_enabled()) {
 | 
						|
            fprintf(stderr, "Timer with delta zero, disabling\n");
 | 
						|
        }
 | 
						|
        timer_del(s->timer);
 | 
						|
        s->enabled = 0;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Artificially limit timeout rate to something
 | 
						|
     * achievable under QEMU.  Otherwise, QEMU spends all
 | 
						|
     * its time generating timer interrupts, and there
 | 
						|
     * is no forward progress.
 | 
						|
     * About ten microseconds is the fastest that really works
 | 
						|
     * on the current generation of host machines.
 | 
						|
     */
 | 
						|
 | 
						|
    if (s->enabled == 1 && (delta * period < 10000) &&
 | 
						|
        !icount_enabled() && !qtest_enabled()) {
 | 
						|
        period = 10000 / delta;
 | 
						|
        period_frac = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    s->last_event = s->next_event;
 | 
						|
    s->next_event = s->last_event + delta * period;
 | 
						|
    if (period_frac) {
 | 
						|
        s->next_event += ((int64_t)period_frac * delta) >> 32;
 | 
						|
    }
 | 
						|
    timer_mod(s->timer, s->next_event);
 | 
						|
}
 | 
						|
 | 
						|
static void ptimer_tick(void *opaque)
 | 
						|
{
 | 
						|
    ptimer_state *s = (ptimer_state *)opaque;
 | 
						|
    bool trigger = true;
 | 
						|
 | 
						|
    /*
 | 
						|
     * We perform all the tick actions within a begin/commit block
 | 
						|
     * because the callback function that ptimer_trigger() calls
 | 
						|
     * might make calls into the ptimer APIs that provoke another
 | 
						|
     * trigger, and we want that to cause the callback function
 | 
						|
     * to be called iteratively, not recursively.
 | 
						|
     */
 | 
						|
    ptimer_transaction_begin(s);
 | 
						|
 | 
						|
    if (s->enabled == 2) {
 | 
						|
        s->delta = 0;
 | 
						|
        s->enabled = 0;
 | 
						|
    } else {
 | 
						|
        int delta_adjust = DELTA_ADJUST;
 | 
						|
 | 
						|
        if (s->delta == 0 || s->limit == 0) {
 | 
						|
            /* If a "continuous trigger" policy is not used and limit == 0,
 | 
						|
               we should error out. delta == 0 means that this tick is
 | 
						|
               caused by a "no immediate reload" policy, so it shouldn't
 | 
						|
               be adjusted.  */
 | 
						|
            delta_adjust = DELTA_NO_ADJUST;
 | 
						|
        }
 | 
						|
 | 
						|
        if (!(s->policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
 | 
						|
            /* Avoid re-trigger on deferred reload if "no immediate trigger"
 | 
						|
               policy isn't used.  */
 | 
						|
            trigger = (delta_adjust == DELTA_ADJUST);
 | 
						|
        }
 | 
						|
 | 
						|
        s->delta = s->limit;
 | 
						|
 | 
						|
        ptimer_reload(s, delta_adjust);
 | 
						|
    }
 | 
						|
 | 
						|
    if (trigger) {
 | 
						|
        ptimer_trigger(s);
 | 
						|
    }
 | 
						|
 | 
						|
    ptimer_transaction_commit(s);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ptimer_get_count(ptimer_state *s)
 | 
						|
{
 | 
						|
    uint64_t counter;
 | 
						|
 | 
						|
    if (s->enabled && s->delta != 0) {
 | 
						|
        int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        int64_t next = s->next_event;
 | 
						|
        int64_t last = s->last_event;
 | 
						|
        bool expired = (now - next >= 0);
 | 
						|
        bool oneshot = (s->enabled == 2);
 | 
						|
 | 
						|
        /* Figure out the current counter value.  */
 | 
						|
        if (expired) {
 | 
						|
            /* Prevent timer underflowing if it should already have
 | 
						|
               triggered.  */
 | 
						|
            counter = 0;
 | 
						|
        } else {
 | 
						|
            uint64_t rem;
 | 
						|
            uint64_t div;
 | 
						|
            int clz1, clz2;
 | 
						|
            int shift;
 | 
						|
            uint32_t period_frac = s->period_frac;
 | 
						|
            uint64_t period = s->period;
 | 
						|
 | 
						|
            if (!oneshot && (s->delta * period < 10000) &&
 | 
						|
                !icount_enabled() && !qtest_enabled()) {
 | 
						|
                period = 10000 / s->delta;
 | 
						|
                period_frac = 0;
 | 
						|
            }
 | 
						|
 | 
						|
            /* We need to divide time by period, where time is stored in
 | 
						|
               rem (64-bit integer) and period is stored in period/period_frac
 | 
						|
               (64.32 fixed point).
 | 
						|
 | 
						|
               Doing full precision division is hard, so scale values and
 | 
						|
               do a 64-bit division.  The result should be rounded down,
 | 
						|
               so that the rounding error never causes the timer to go
 | 
						|
               backwards.
 | 
						|
            */
 | 
						|
 | 
						|
            rem = next - now;
 | 
						|
            div = period;
 | 
						|
 | 
						|
            clz1 = clz64(rem);
 | 
						|
            clz2 = clz64(div);
 | 
						|
            shift = clz1 < clz2 ? clz1 : clz2;
 | 
						|
 | 
						|
            rem <<= shift;
 | 
						|
            div <<= shift;
 | 
						|
            if (shift >= 32) {
 | 
						|
                div |= ((uint64_t)period_frac << (shift - 32));
 | 
						|
            } else {
 | 
						|
                if (shift != 0)
 | 
						|
                    div |= (period_frac >> (32 - shift));
 | 
						|
                /* Look at remaining bits of period_frac and round div up if 
 | 
						|
                   necessary.  */
 | 
						|
                if ((uint32_t)(period_frac << shift))
 | 
						|
                    div += 1;
 | 
						|
            }
 | 
						|
            counter = rem / div;
 | 
						|
 | 
						|
            if (s->policy_mask & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
 | 
						|
                /* Before wrapping around, timer should stay with counter = 0
 | 
						|
                   for a one period.  */
 | 
						|
                if (!oneshot && s->delta == s->limit) {
 | 
						|
                    if (now == last) {
 | 
						|
                        /* Counter == delta here, check whether it was
 | 
						|
                           adjusted and if it was, then right now it is
 | 
						|
                           that "one period".  */
 | 
						|
                        if (counter == s->limit + DELTA_ADJUST) {
 | 
						|
                            return 0;
 | 
						|
                        }
 | 
						|
                    } else if (counter == s->limit) {
 | 
						|
                        /* Since the counter is rounded down and now != last,
 | 
						|
                           the counter == limit means that delta was adjusted
 | 
						|
                           by +1 and right now it is that adjusted period.  */
 | 
						|
                        return 0;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        if (s->policy_mask & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
 | 
						|
            /* If now == last then delta == limit, i.e. the counter already
 | 
						|
               represents the correct value. It would be rounded down a 1ns
 | 
						|
               later.  */
 | 
						|
            if (now != last) {
 | 
						|
                counter += 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        counter = s->delta;
 | 
						|
    }
 | 
						|
    return counter;
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_set_count(ptimer_state *s, uint64_t count)
 | 
						|
{
 | 
						|
    assert(s->in_transaction);
 | 
						|
    s->delta = count;
 | 
						|
    if (s->enabled) {
 | 
						|
        s->need_reload = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_run(ptimer_state *s, int oneshot)
 | 
						|
{
 | 
						|
    bool was_disabled = !s->enabled;
 | 
						|
 | 
						|
    assert(s->in_transaction);
 | 
						|
 | 
						|
    if (was_disabled && s->period == 0) {
 | 
						|
        if (!qtest_enabled()) {
 | 
						|
            fprintf(stderr, "Timer with period zero, disabling\n");
 | 
						|
        }
 | 
						|
        return;
 | 
						|
    }
 | 
						|
    s->enabled = oneshot ? 2 : 1;
 | 
						|
    if (was_disabled) {
 | 
						|
        s->need_reload = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Pause a timer.  Note that this may cause it to "lose" time, even if it
 | 
						|
   is immediately restarted.  */
 | 
						|
void ptimer_stop(ptimer_state *s)
 | 
						|
{
 | 
						|
    assert(s->in_transaction);
 | 
						|
 | 
						|
    if (!s->enabled)
 | 
						|
        return;
 | 
						|
 | 
						|
    s->delta = ptimer_get_count(s);
 | 
						|
    timer_del(s->timer);
 | 
						|
    s->enabled = 0;
 | 
						|
    s->need_reload = false;
 | 
						|
}
 | 
						|
 | 
						|
/* Set counter increment interval in nanoseconds.  */
 | 
						|
void ptimer_set_period(ptimer_state *s, int64_t period)
 | 
						|
{
 | 
						|
    assert(s->in_transaction);
 | 
						|
    s->delta = ptimer_get_count(s);
 | 
						|
    s->period = period;
 | 
						|
    s->period_frac = 0;
 | 
						|
    if (s->enabled) {
 | 
						|
        s->need_reload = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Set counter increment interval from a Clock */
 | 
						|
void ptimer_set_period_from_clock(ptimer_state *s, const Clock *clk,
 | 
						|
                                  unsigned int divisor)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * The raw clock period is a 64-bit value in units of 2^-32 ns;
 | 
						|
     * put another way it's a 32.32 fixed-point ns value. Our internal
 | 
						|
     * representation of the period is 64.32 fixed point ns, so
 | 
						|
     * the conversion is simple.
 | 
						|
     */
 | 
						|
    uint64_t raw_period = clock_get(clk);
 | 
						|
    uint64_t period_frac;
 | 
						|
 | 
						|
    assert(s->in_transaction);
 | 
						|
    s->delta = ptimer_get_count(s);
 | 
						|
    s->period = extract64(raw_period, 32, 32);
 | 
						|
    period_frac = extract64(raw_period, 0, 32);
 | 
						|
    /*
 | 
						|
     * divisor specifies a possible frequency divisor between the
 | 
						|
     * clock and the timer, so it is a multiplier on the period.
 | 
						|
     * We do the multiply after splitting the raw period out into
 | 
						|
     * period and frac to avoid having to do a 32*64->96 multiply.
 | 
						|
     */
 | 
						|
    s->period *= divisor;
 | 
						|
    period_frac *= divisor;
 | 
						|
    s->period += extract64(period_frac, 32, 32);
 | 
						|
    s->period_frac = (uint32_t)period_frac;
 | 
						|
 | 
						|
    if (s->enabled) {
 | 
						|
        s->need_reload = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Set counter frequency in Hz.  */
 | 
						|
void ptimer_set_freq(ptimer_state *s, uint32_t freq)
 | 
						|
{
 | 
						|
    assert(s->in_transaction);
 | 
						|
    s->delta = ptimer_get_count(s);
 | 
						|
    s->period = 1000000000ll / freq;
 | 
						|
    s->period_frac = (1000000000ll << 32) / freq;
 | 
						|
    if (s->enabled) {
 | 
						|
        s->need_reload = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Set the initial countdown value.  If reload is nonzero then also set
 | 
						|
   count = limit.  */
 | 
						|
void ptimer_set_limit(ptimer_state *s, uint64_t limit, int reload)
 | 
						|
{
 | 
						|
    assert(s->in_transaction);
 | 
						|
    s->limit = limit;
 | 
						|
    if (reload)
 | 
						|
        s->delta = limit;
 | 
						|
    if (s->enabled && reload) {
 | 
						|
        s->need_reload = true;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ptimer_get_limit(ptimer_state *s)
 | 
						|
{
 | 
						|
    return s->limit;
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_transaction_begin(ptimer_state *s)
 | 
						|
{
 | 
						|
    assert(!s->in_transaction);
 | 
						|
    s->in_transaction = true;
 | 
						|
    s->need_reload = false;
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_transaction_commit(ptimer_state *s)
 | 
						|
{
 | 
						|
    assert(s->in_transaction);
 | 
						|
    /*
 | 
						|
     * We must loop here because ptimer_reload() can call the callback
 | 
						|
     * function, which might then update ptimer state in a way that
 | 
						|
     * means we need to do another reload and possibly another callback.
 | 
						|
     * A disabled timer never needs reloading (and if we don't check
 | 
						|
     * this then we loop forever if ptimer_reload() disables the timer).
 | 
						|
     */
 | 
						|
    while (s->need_reload && s->enabled) {
 | 
						|
        s->need_reload = false;
 | 
						|
        s->next_event = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
 | 
						|
        ptimer_reload(s, 0);
 | 
						|
    }
 | 
						|
    /* Now we've finished reload we can leave the transaction block. */
 | 
						|
    s->in_transaction = false;
 | 
						|
}
 | 
						|
 | 
						|
const VMStateDescription vmstate_ptimer = {
 | 
						|
    .name = "ptimer",
 | 
						|
    .version_id = 1,
 | 
						|
    .minimum_version_id = 1,
 | 
						|
    .fields = (const VMStateField[]) {
 | 
						|
        VMSTATE_UINT8(enabled, ptimer_state),
 | 
						|
        VMSTATE_UINT64(limit, ptimer_state),
 | 
						|
        VMSTATE_UINT64(delta, ptimer_state),
 | 
						|
        VMSTATE_UINT32(period_frac, ptimer_state),
 | 
						|
        VMSTATE_INT64(period, ptimer_state),
 | 
						|
        VMSTATE_INT64(last_event, ptimer_state),
 | 
						|
        VMSTATE_INT64(next_event, ptimer_state),
 | 
						|
        VMSTATE_TIMER_PTR(timer, ptimer_state),
 | 
						|
        VMSTATE_END_OF_LIST()
 | 
						|
    }
 | 
						|
};
 | 
						|
 | 
						|
ptimer_state *ptimer_init(ptimer_cb callback, void *callback_opaque,
 | 
						|
                          uint8_t policy_mask)
 | 
						|
{
 | 
						|
    ptimer_state *s;
 | 
						|
 | 
						|
    /* The callback function is mandatory. */
 | 
						|
    assert(callback);
 | 
						|
 | 
						|
    s = g_new0(ptimer_state, 1);
 | 
						|
    s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, ptimer_tick, s);
 | 
						|
    s->policy_mask = policy_mask;
 | 
						|
    s->callback = callback;
 | 
						|
    s->callback_opaque = callback_opaque;
 | 
						|
 | 
						|
    /*
 | 
						|
     * These two policies are incompatible -- trigger-on-decrement implies
 | 
						|
     * a timer trigger when the count becomes 0, but no-immediate-trigger
 | 
						|
     * implies a trigger when the count stops being 0.
 | 
						|
     */
 | 
						|
    assert(!((policy_mask & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
 | 
						|
             (policy_mask & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)));
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
void ptimer_free(ptimer_state *s)
 | 
						|
{
 | 
						|
    timer_free(s->timer);
 | 
						|
    g_free(s);
 | 
						|
}
 |