 68df8c8dba
			
		
	
	
		68df8c8dba
		
	
	
	
	
		
			
			TB compile flags, tb_page_addr_t type, tb_cflags() and few
other methods are defined in "exec/translation-block.h".
All these files don't include "exec/translation-block.h" but
include "exec/exec-all.h" which include it. Explicitly include
"exec/translation-block.h" to be able to remove it from
"exec/exec-all.h" later when it won't be necessary. Otherwise
we'd get errors such:
  accel/tcg/internal-target.h:59:20: error: a parameter list without types is only allowed in a function definition
     59 | void tb_lock_page0(tb_page_addr_t);
        |                    ^
  accel/tcg/tb-hash.h:64:23: error: unknown type name 'tb_page_addr_t'
     64 | uint32_t tb_hash_func(tb_page_addr_t phys_pc, vaddr pc,
        |                       ^
  accel/tcg/tcg-accel-ops.c:62:36: error: use of undeclared identifier 'CF_CLUSTER_SHIFT'
     62 |     cflags = cpu->cluster_index << CF_CLUSTER_SHIFT;
        |                                    ^
  accel/tcg/watchpoint.c:102:47: error: use of undeclared identifier 'CF_NOIRQ'
    102 |                     cpu->cflags_next_tb = 1 | CF_NOIRQ | curr_cflags(cpu);
        |                                               ^
  target/i386/helper.c:536:28: error: use of undeclared identifier 'CF_PCREL'
    536 |     if (tcg_cflags_has(cs, CF_PCREL)) {
        |                            ^
  target/rx/cpu.c:51:21: error: incomplete definition of type 'struct TranslationBlock'
     51 |     cpu->env.pc = tb->pc;
        |                   ~~^
  system/physmem.c:2977:9: error: call to undeclared function 'tb_invalidate_phys_range'; ISO C99 and later do not support implicit function declarations [-Wimplicit-function-declaration]
   2977 |         tb_invalidate_phys_range(addr, addr + length - 1);
        |         ^
  plugins/api.c:96:12: error: call to undeclared function 'tb_cflags'; ISO C99 and later do not support implicit function declarations [-Wimplicit-function-declaration]
     96 |     return tb_cflags(tcg_ctx->gen_tb) & CF_MEMI_ONLY;
        |            ^
Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Reviewed-by: Pierrick Bouvier <pierrick.bouvier@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20241114011310.3615-5-philmd@linaro.org>
		
	
			
		
			
				
	
	
		
			4486 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4486 lines
		
	
	
		
			138 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This is the Linux kernel elf-loading code, ported into user space */
 | |
| #include "qemu/osdep.h"
 | |
| #include <sys/param.h>
 | |
| 
 | |
| #include <sys/prctl.h>
 | |
| #include <sys/resource.h>
 | |
| #include <sys/shm.h>
 | |
| 
 | |
| #include "qemu.h"
 | |
| #include "user/tswap-target.h"
 | |
| #include "user/page-protection.h"
 | |
| #include "exec/page-protection.h"
 | |
| #include "exec/translation-block.h"
 | |
| #include "user/guest-base.h"
 | |
| #include "user-internals.h"
 | |
| #include "signal-common.h"
 | |
| #include "loader.h"
 | |
| #include "user-mmap.h"
 | |
| #include "disas/disas.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/path.h"
 | |
| #include "qemu/queue.h"
 | |
| #include "qemu/guest-random.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qemu/selfmap.h"
 | |
| #include "qemu/lockable.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "target_signal.h"
 | |
| #include "tcg/debuginfo.h"
 | |
| 
 | |
| #ifdef TARGET_ARM
 | |
| #include "target/arm/cpu-features.h"
 | |
| #endif
 | |
| 
 | |
| #ifdef _ARCH_PPC64
 | |
| #undef ARCH_DLINFO
 | |
| #undef ELF_PLATFORM
 | |
| #undef ELF_HWCAP
 | |
| #undef ELF_HWCAP2
 | |
| #undef ELF_CLASS
 | |
| #undef ELF_DATA
 | |
| #undef ELF_ARCH
 | |
| #endif
 | |
| 
 | |
| #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
 | |
| #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
 | |
| #endif
 | |
| 
 | |
| typedef struct {
 | |
|     const uint8_t *image;
 | |
|     const uint32_t *relocs;
 | |
|     unsigned image_size;
 | |
|     unsigned reloc_count;
 | |
|     unsigned sigreturn_ofs;
 | |
|     unsigned rt_sigreturn_ofs;
 | |
| } VdsoImageInfo;
 | |
| 
 | |
| #define ELF_OSABI   ELFOSABI_SYSV
 | |
| 
 | |
| /* from personality.h */
 | |
| 
 | |
| /*
 | |
|  * Flags for bug emulation.
 | |
|  *
 | |
|  * These occupy the top three bytes.
 | |
|  */
 | |
| enum {
 | |
|     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
 | |
|     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
 | |
|                                            descriptors (signal handling) */
 | |
|     MMAP_PAGE_ZERO =    0x0100000,
 | |
|     ADDR_COMPAT_LAYOUT = 0x0200000,
 | |
|     READ_IMPLIES_EXEC = 0x0400000,
 | |
|     ADDR_LIMIT_32BIT =  0x0800000,
 | |
|     SHORT_INODE =       0x1000000,
 | |
|     WHOLE_SECONDS =     0x2000000,
 | |
|     STICKY_TIMEOUTS =   0x4000000,
 | |
|     ADDR_LIMIT_3GB =    0x8000000,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Personality types.
 | |
|  *
 | |
|  * These go in the low byte.  Avoid using the top bit, it will
 | |
|  * conflict with error returns.
 | |
|  */
 | |
| enum {
 | |
|     PER_LINUX =         0x0000,
 | |
|     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
 | |
|     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
 | |
|     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
 | |
|     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
 | |
|     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
 | |
|     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
 | |
|     PER_BSD =           0x0006,
 | |
|     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
 | |
|     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_LINUX32 =       0x0008,
 | |
|     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
 | |
|     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
 | |
|     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
 | |
|     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
 | |
|     PER_RISCOS =        0x000c,
 | |
|     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
 | |
|     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
 | |
|     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
 | |
|     PER_HPUX =          0x0010,
 | |
|     PER_MASK =          0x00ff,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return the base personality without flags.
 | |
|  */
 | |
| #define personality(pers)       (pers & PER_MASK)
 | |
| 
 | |
| int info_is_fdpic(struct image_info *info)
 | |
| {
 | |
|     return info->personality == PER_LINUX_FDPIC;
 | |
| }
 | |
| 
 | |
| /* this flag is uneffective under linux too, should be deleted */
 | |
| #ifndef MAP_DENYWRITE
 | |
| #define MAP_DENYWRITE 0
 | |
| #endif
 | |
| 
 | |
| /* should probably go in elf.h */
 | |
| #ifndef ELIBBAD
 | |
| #define ELIBBAD 80
 | |
| #endif
 | |
| 
 | |
| #if TARGET_BIG_ENDIAN
 | |
| #define ELF_DATA        ELFDATA2MSB
 | |
| #else
 | |
| #define ELF_DATA        ELFDATA2LSB
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ABI_MIPSN32
 | |
| typedef abi_ullong      target_elf_greg_t;
 | |
| #define tswapreg(ptr)   tswap64(ptr)
 | |
| #else
 | |
| typedef abi_ulong       target_elf_greg_t;
 | |
| #define tswapreg(ptr)   tswapal(ptr)
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_UID16
 | |
| typedef abi_ushort      target_uid_t;
 | |
| typedef abi_ushort      target_gid_t;
 | |
| #else
 | |
| typedef abi_uint        target_uid_t;
 | |
| typedef abi_uint        target_gid_t;
 | |
| #endif
 | |
| typedef abi_int         target_pid_t;
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     X86CPU *cpu = X86_CPU(thread_cpu);
 | |
| 
 | |
|     return cpu->env.features[FEAT_1_EDX];
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_X86_64
 | |
| #define ELF_CLASS      ELFCLASS64
 | |
| #define ELF_ARCH       EM_X86_64
 | |
| 
 | |
| #define ELF_PLATFORM   "x86_64"
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->rax = 0;
 | |
|     regs->rsp = infop->start_stack;
 | |
|     regs->rip = infop->entry;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    27
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /*
 | |
|  * Note that ELF_NREG should be 29 as there should be place for
 | |
|  * TRAPNO and ERR "registers" as well but linux doesn't dump
 | |
|  * those.
 | |
|  *
 | |
|  * See linux kernel: arch/x86/include/asm/elf.h
 | |
|  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 | |
| {
 | |
|     (*regs)[0] = tswapreg(env->regs[15]);
 | |
|     (*regs)[1] = tswapreg(env->regs[14]);
 | |
|     (*regs)[2] = tswapreg(env->regs[13]);
 | |
|     (*regs)[3] = tswapreg(env->regs[12]);
 | |
|     (*regs)[4] = tswapreg(env->regs[R_EBP]);
 | |
|     (*regs)[5] = tswapreg(env->regs[R_EBX]);
 | |
|     (*regs)[6] = tswapreg(env->regs[11]);
 | |
|     (*regs)[7] = tswapreg(env->regs[10]);
 | |
|     (*regs)[8] = tswapreg(env->regs[9]);
 | |
|     (*regs)[9] = tswapreg(env->regs[8]);
 | |
|     (*regs)[10] = tswapreg(env->regs[R_EAX]);
 | |
|     (*regs)[11] = tswapreg(env->regs[R_ECX]);
 | |
|     (*regs)[12] = tswapreg(env->regs[R_EDX]);
 | |
|     (*regs)[13] = tswapreg(env->regs[R_ESI]);
 | |
|     (*regs)[14] = tswapreg(env->regs[R_EDI]);
 | |
|     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
 | |
|     (*regs)[16] = tswapreg(env->eip);
 | |
|     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
 | |
|     (*regs)[18] = tswapreg(env->eflags);
 | |
|     (*regs)[19] = tswapreg(env->regs[R_ESP]);
 | |
|     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
 | |
|     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
 | |
|     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
 | |
|     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
 | |
|     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
 | |
|     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
 | |
|     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
 | |
| }
 | |
| 
 | |
| #if ULONG_MAX > UINT32_MAX
 | |
| #define INIT_GUEST_COMMPAGE
 | |
| static bool init_guest_commpage(void)
 | |
| {
 | |
|     /*
 | |
|      * The vsyscall page is at a high negative address aka kernel space,
 | |
|      * which means that we cannot actually allocate it with target_mmap.
 | |
|      * We still should be able to use page_set_flags, unless the user
 | |
|      * has specified -R reserved_va, which would trigger an assert().
 | |
|      */
 | |
|     if (reserved_va != 0 &&
 | |
|         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
 | |
|         error_report("Cannot allocate vsyscall page");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     page_set_flags(TARGET_VSYSCALL_PAGE,
 | |
|                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
 | |
|                    PAGE_EXEC | PAGE_VALID);
 | |
|     return true;
 | |
| }
 | |
| #endif
 | |
| #else
 | |
| 
 | |
| /*
 | |
|  * This is used to ensure we don't load something for the wrong architecture.
 | |
|  */
 | |
| #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 | |
| 
 | |
| /*
 | |
|  * These are used to set parameters in the core dumps.
 | |
|  */
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_386
 | |
| 
 | |
| #define ELF_PLATFORM get_elf_platform()
 | |
| #define EXSTACK_DEFAULT true
 | |
| 
 | |
| static const char *get_elf_platform(void)
 | |
| {
 | |
|     static char elf_platform[] = "i386";
 | |
|     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 | |
|     if (family > 6) {
 | |
|         family = 6;
 | |
|     }
 | |
|     if (family >= 3) {
 | |
|         elf_platform[1] = '0' + family;
 | |
|     }
 | |
|     return elf_platform;
 | |
| }
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->esp = infop->start_stack;
 | |
|     regs->eip = infop->entry;
 | |
| 
 | |
|     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 | |
|        starts %edx contains a pointer to a function which might be
 | |
|        registered using `atexit'.  This provides a mean for the
 | |
|        dynamic linker to call DT_FINI functions for shared libraries
 | |
|        that have been loaded before the code runs.
 | |
| 
 | |
|        A value of 0 tells we have no such handler.  */
 | |
|     regs->edx = 0;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    17
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /*
 | |
|  * Note that ELF_NREG should be 19 as there should be place for
 | |
|  * TRAPNO and ERR "registers" as well but linux doesn't dump
 | |
|  * those.
 | |
|  *
 | |
|  * See linux kernel: arch/x86/include/asm/elf.h
 | |
|  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 | |
| {
 | |
|     (*regs)[0] = tswapreg(env->regs[R_EBX]);
 | |
|     (*regs)[1] = tswapreg(env->regs[R_ECX]);
 | |
|     (*regs)[2] = tswapreg(env->regs[R_EDX]);
 | |
|     (*regs)[3] = tswapreg(env->regs[R_ESI]);
 | |
|     (*regs)[4] = tswapreg(env->regs[R_EDI]);
 | |
|     (*regs)[5] = tswapreg(env->regs[R_EBP]);
 | |
|     (*regs)[6] = tswapreg(env->regs[R_EAX]);
 | |
|     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
 | |
|     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
 | |
|     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
 | |
|     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
 | |
|     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
 | |
|     (*regs)[12] = tswapreg(env->eip);
 | |
|     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
 | |
|     (*regs)[14] = tswapreg(env->eflags);
 | |
|     (*regs)[15] = tswapreg(env->regs[R_ESP]);
 | |
|     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * i386 is the only target which supplies AT_SYSINFO for the vdso.
 | |
|  * All others only supply AT_SYSINFO_EHDR.
 | |
|  */
 | |
| #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
 | |
| #define ARCH_DLINFO                                     \
 | |
|     do {                                                \
 | |
|         if (vdso_info) {                                \
 | |
|             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
 | |
|         }                                               \
 | |
|     } while (0)
 | |
| 
 | |
| #endif /* TARGET_X86_64 */
 | |
| 
 | |
| #define VDSO_HEADER "vdso.c.inc"
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif /* TARGET_I386 */
 | |
| 
 | |
| #ifdef TARGET_ARM
 | |
| 
 | |
| #ifndef TARGET_AARCH64
 | |
| /* 32 bit ARM definitions */
 | |
| 
 | |
| #define ELF_ARCH        EM_ARM
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define EXSTACK_DEFAULT true
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     abi_long stack = infop->start_stack;
 | |
|     memset(regs, 0, sizeof(*regs));
 | |
| 
 | |
|     regs->uregs[16] = ARM_CPU_MODE_USR;
 | |
|     if (infop->entry & 1) {
 | |
|         regs->uregs[16] |= CPSR_T;
 | |
|     }
 | |
|     regs->uregs[15] = infop->entry & 0xfffffffe;
 | |
|     regs->uregs[13] = infop->start_stack;
 | |
|     /* FIXME - what to for failure of get_user()? */
 | |
|     get_user_ual(regs->uregs[2], stack + 8); /* envp */
 | |
|     get_user_ual(regs->uregs[1], stack + 4); /* envp */
 | |
|     /* XXX: it seems that r0 is zeroed after ! */
 | |
|     regs->uregs[0] = 0;
 | |
|     /* For uClinux PIC binaries.  */
 | |
|     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 | |
|     regs->uregs[10] = infop->start_data;
 | |
| 
 | |
|     /* Support ARM FDPIC.  */
 | |
|     if (info_is_fdpic(infop)) {
 | |
|         /* As described in the ABI document, r7 points to the loadmap info
 | |
|          * prepared by the kernel. If an interpreter is needed, r8 points
 | |
|          * to the interpreter loadmap and r9 points to the interpreter
 | |
|          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 | |
|          * r9 points to the main program PT_DYNAMIC info.
 | |
|          */
 | |
|         regs->uregs[7] = infop->loadmap_addr;
 | |
|         if (infop->interpreter_loadmap_addr) {
 | |
|             /* Executable is dynamically loaded.  */
 | |
|             regs->uregs[8] = infop->interpreter_loadmap_addr;
 | |
|             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 | |
|         } else {
 | |
|             regs->uregs[8] = 0;
 | |
|             regs->uregs[9] = infop->pt_dynamic_addr;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    18
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 | |
| {
 | |
|     (*regs)[0] = tswapreg(env->regs[0]);
 | |
|     (*regs)[1] = tswapreg(env->regs[1]);
 | |
|     (*regs)[2] = tswapreg(env->regs[2]);
 | |
|     (*regs)[3] = tswapreg(env->regs[3]);
 | |
|     (*regs)[4] = tswapreg(env->regs[4]);
 | |
|     (*regs)[5] = tswapreg(env->regs[5]);
 | |
|     (*regs)[6] = tswapreg(env->regs[6]);
 | |
|     (*regs)[7] = tswapreg(env->regs[7]);
 | |
|     (*regs)[8] = tswapreg(env->regs[8]);
 | |
|     (*regs)[9] = tswapreg(env->regs[9]);
 | |
|     (*regs)[10] = tswapreg(env->regs[10]);
 | |
|     (*regs)[11] = tswapreg(env->regs[11]);
 | |
|     (*regs)[12] = tswapreg(env->regs[12]);
 | |
|     (*regs)[13] = tswapreg(env->regs[13]);
 | |
|     (*regs)[14] = tswapreg(env->regs[14]);
 | |
|     (*regs)[15] = tswapreg(env->regs[15]);
 | |
| 
 | |
|     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 | |
|     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| enum
 | |
| {
 | |
|     ARM_HWCAP_ARM_SWP       = 1 << 0,
 | |
|     ARM_HWCAP_ARM_HALF      = 1 << 1,
 | |
|     ARM_HWCAP_ARM_THUMB     = 1 << 2,
 | |
|     ARM_HWCAP_ARM_26BIT     = 1 << 3,
 | |
|     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 | |
|     ARM_HWCAP_ARM_FPA       = 1 << 5,
 | |
|     ARM_HWCAP_ARM_VFP       = 1 << 6,
 | |
|     ARM_HWCAP_ARM_EDSP      = 1 << 7,
 | |
|     ARM_HWCAP_ARM_JAVA      = 1 << 8,
 | |
|     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 | |
|     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 | |
|     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 | |
|     ARM_HWCAP_ARM_NEON      = 1 << 12,
 | |
|     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 | |
|     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 | |
|     ARM_HWCAP_ARM_TLS       = 1 << 15,
 | |
|     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 | |
|     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 | |
|     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 | |
|     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 | |
|     ARM_HWCAP_ARM_LPAE      = 1 << 20,
 | |
|     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 | |
|     ARM_HWCAP_ARM_FPHP      = 1 << 22,
 | |
|     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
 | |
|     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
 | |
|     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
 | |
|     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
 | |
|     ARM_HWCAP_ARM_I8MM      = 1 << 27,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     ARM_HWCAP2_ARM_AES      = 1 << 0,
 | |
|     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 | |
|     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 | |
|     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 | |
|     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 | |
|     ARM_HWCAP2_ARM_SB       = 1 << 5,
 | |
|     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
 | |
| };
 | |
| 
 | |
| /* The commpage only exists for 32 bit kernels */
 | |
| 
 | |
| #define HI_COMMPAGE (intptr_t)0xffff0f00u
 | |
| 
 | |
| static bool init_guest_commpage(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     int host_page_size = qemu_real_host_page_size();
 | |
|     abi_ptr commpage;
 | |
|     void *want;
 | |
|     void *addr;
 | |
| 
 | |
|     /*
 | |
|      * M-profile allocates maximum of 2GB address space, so can never
 | |
|      * allocate the commpage.  Skip it.
 | |
|      */
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     commpage = HI_COMMPAGE & -host_page_size;
 | |
|     want = g2h_untagged(commpage);
 | |
|     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
 | |
|                 MAP_ANONYMOUS | MAP_PRIVATE |
 | |
|                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
 | |
|                 -1, 0);
 | |
| 
 | |
|     if (addr == MAP_FAILED) {
 | |
|         perror("Allocating guest commpage");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     if (addr != want) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* Set kernel helper versions; rest of page is 0.  */
 | |
|     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
 | |
| 
 | |
|     if (mprotect(addr, host_page_size, PROT_READ)) {
 | |
|         perror("Protecting guest commpage");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     page_set_flags(commpage, commpage | (host_page_size - 1),
 | |
|                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| #define ELF_HWCAP2 get_elf_hwcap2()
 | |
| 
 | |
| uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     hwcaps |= ARM_HWCAP_ARM_SWP;
 | |
|     hwcaps |= ARM_HWCAP_ARM_HALF;
 | |
|     hwcaps |= ARM_HWCAP_ARM_THUMB;
 | |
|     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 | |
| 
 | |
|     /* probe for the extra features */
 | |
| #define GET_FEATURE(feat, hwcap) \
 | |
|     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
| #define GET_FEATURE_ID(feat, hwcap) \
 | |
|     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
|     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 | |
|     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 | |
|     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 | |
|     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 | |
|     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 | |
|     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 | |
|     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 | |
|     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
 | |
|     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
 | |
|     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
 | |
| 
 | |
|     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
 | |
|         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
 | |
|         hwcaps |= ARM_HWCAP_ARM_VFPv3;
 | |
|         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 | |
|             hwcaps |= ARM_HWCAP_ARM_VFPD32;
 | |
|         } else {
 | |
|             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
 | |
|         }
 | |
|     }
 | |
|     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
 | |
|     /*
 | |
|      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
 | |
|      * isar_feature function for both. The kernel reports them as two hwcaps.
 | |
|      */
 | |
|     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
 | |
|     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
 | |
|     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
 | |
|     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
 | |
|     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
 | |
|     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| uint64_t get_elf_hwcap2(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint64_t hwcaps = 0;
 | |
| 
 | |
|     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 | |
|     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 | |
|     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 | |
|     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 | |
|     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 | |
|     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
 | |
|     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| const char *elf_hwcap_str(uint32_t bit)
 | |
| {
 | |
|     static const char *hwcap_str[] = {
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
 | |
|     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
 | |
|     };
 | |
| 
 | |
|     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
 | |
| }
 | |
| 
 | |
| const char *elf_hwcap2_str(uint32_t bit)
 | |
| {
 | |
|     static const char *hwcap_str[] = {
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
 | |
|     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
 | |
|     };
 | |
| 
 | |
|     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
 | |
| }
 | |
| 
 | |
| #undef GET_FEATURE
 | |
| #undef GET_FEATURE_ID
 | |
| 
 | |
| #define ELF_PLATFORM get_elf_platform()
 | |
| 
 | |
| static const char *get_elf_platform(void)
 | |
| {
 | |
|     CPUARMState *env = cpu_env(thread_cpu);
 | |
| 
 | |
| #if TARGET_BIG_ENDIAN
 | |
| # define END  "b"
 | |
| #else
 | |
| # define END  "l"
 | |
| #endif
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         return "v8" END;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             return "v7m" END;
 | |
|         } else {
 | |
|             return "v7" END;
 | |
|         }
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         return "v6" END;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V5)) {
 | |
|         return "v5" END;
 | |
|     } else {
 | |
|         return "v4" END;
 | |
|     }
 | |
| 
 | |
| #undef END
 | |
| }
 | |
| 
 | |
| #if TARGET_BIG_ENDIAN
 | |
| #include "elf.h"
 | |
| #include "vdso-be8.c.inc"
 | |
| #include "vdso-be32.c.inc"
 | |
| 
 | |
| static const VdsoImageInfo *vdso_image_info(uint32_t elf_flags)
 | |
| {
 | |
|     return (EF_ARM_EABI_VERSION(elf_flags) >= EF_ARM_EABI_VER4
 | |
|             && (elf_flags & EF_ARM_BE8)
 | |
|             ? &vdso_be8_image_info
 | |
|             : &vdso_be32_image_info);
 | |
| }
 | |
| #define vdso_image_info vdso_image_info
 | |
| #else
 | |
| # define VDSO_HEADER  "vdso-le.c.inc"
 | |
| #endif
 | |
| 
 | |
| #else
 | |
| /* 64 bit ARM definitions */
 | |
| 
 | |
| #define ELF_ARCH        EM_AARCH64
 | |
| #define ELF_CLASS       ELFCLASS64
 | |
| #if TARGET_BIG_ENDIAN
 | |
| # define ELF_PLATFORM    "aarch64_be"
 | |
| #else
 | |
| # define ELF_PLATFORM    "aarch64"
 | |
| #endif
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     abi_long stack = infop->start_stack;
 | |
|     memset(regs, 0, sizeof(*regs));
 | |
| 
 | |
|     regs->pc = infop->entry & ~0x3ULL;
 | |
|     regs->sp = stack;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    34
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[i] = tswapreg(env->xregs[i]);
 | |
|     }
 | |
|     (*regs)[32] = tswapreg(env->pc);
 | |
|     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| enum {
 | |
|     ARM_HWCAP_A64_FP            = 1 << 0,
 | |
|     ARM_HWCAP_A64_ASIMD         = 1 << 1,
 | |
|     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 | |
|     ARM_HWCAP_A64_AES           = 1 << 3,
 | |
|     ARM_HWCAP_A64_PMULL         = 1 << 4,
 | |
|     ARM_HWCAP_A64_SHA1          = 1 << 5,
 | |
|     ARM_HWCAP_A64_SHA2          = 1 << 6,
 | |
|     ARM_HWCAP_A64_CRC32         = 1 << 7,
 | |
|     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 | |
|     ARM_HWCAP_A64_FPHP          = 1 << 9,
 | |
|     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 | |
|     ARM_HWCAP_A64_CPUID         = 1 << 11,
 | |
|     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 | |
|     ARM_HWCAP_A64_JSCVT         = 1 << 13,
 | |
|     ARM_HWCAP_A64_FCMA          = 1 << 14,
 | |
|     ARM_HWCAP_A64_LRCPC         = 1 << 15,
 | |
|     ARM_HWCAP_A64_DCPOP         = 1 << 16,
 | |
|     ARM_HWCAP_A64_SHA3          = 1 << 17,
 | |
|     ARM_HWCAP_A64_SM3           = 1 << 18,
 | |
|     ARM_HWCAP_A64_SM4           = 1 << 19,
 | |
|     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 | |
|     ARM_HWCAP_A64_SHA512        = 1 << 21,
 | |
|     ARM_HWCAP_A64_SVE           = 1 << 22,
 | |
|     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 | |
|     ARM_HWCAP_A64_DIT           = 1 << 24,
 | |
|     ARM_HWCAP_A64_USCAT         = 1 << 25,
 | |
|     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 | |
|     ARM_HWCAP_A64_FLAGM         = 1 << 27,
 | |
|     ARM_HWCAP_A64_SSBS          = 1 << 28,
 | |
|     ARM_HWCAP_A64_SB            = 1 << 29,
 | |
|     ARM_HWCAP_A64_PACA          = 1 << 30,
 | |
|     ARM_HWCAP_A64_PACG          = 1UL << 31,
 | |
| 
 | |
|     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 | |
|     ARM_HWCAP2_A64_SVE2         = 1 << 1,
 | |
|     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 | |
|     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 | |
|     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 | |
|     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 | |
|     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 | |
|     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 | |
|     ARM_HWCAP2_A64_FRINT        = 1 << 8,
 | |
|     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
 | |
|     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
 | |
|     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
 | |
|     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
 | |
|     ARM_HWCAP2_A64_I8MM         = 1 << 13,
 | |
|     ARM_HWCAP2_A64_BF16         = 1 << 14,
 | |
|     ARM_HWCAP2_A64_DGH          = 1 << 15,
 | |
|     ARM_HWCAP2_A64_RNG          = 1 << 16,
 | |
|     ARM_HWCAP2_A64_BTI          = 1 << 17,
 | |
|     ARM_HWCAP2_A64_MTE          = 1 << 18,
 | |
|     ARM_HWCAP2_A64_ECV          = 1 << 19,
 | |
|     ARM_HWCAP2_A64_AFP          = 1 << 20,
 | |
|     ARM_HWCAP2_A64_RPRES        = 1 << 21,
 | |
|     ARM_HWCAP2_A64_MTE3         = 1 << 22,
 | |
|     ARM_HWCAP2_A64_SME          = 1 << 23,
 | |
|     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
 | |
|     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
 | |
|     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
 | |
|     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
 | |
|     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
 | |
|     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
 | |
|     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
 | |
|     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
 | |
|     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
 | |
|     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
 | |
|     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
 | |
|     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
 | |
|     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
 | |
|     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
 | |
|     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
 | |
|     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
 | |
|     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
 | |
|     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
 | |
|     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
 | |
|     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
 | |
|     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP   get_elf_hwcap()
 | |
| #define ELF_HWCAP2  get_elf_hwcap2()
 | |
| 
 | |
| #define GET_FEATURE_ID(feat, hwcap) \
 | |
|     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
| uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     hwcaps |= ARM_HWCAP_A64_FP;
 | |
|     hwcaps |= ARM_HWCAP_A64_ASIMD;
 | |
|     hwcaps |= ARM_HWCAP_A64_CPUID;
 | |
| 
 | |
|     /* probe for the extra features */
 | |
| 
 | |
|     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 | |
|     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 | |
|     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 | |
|     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 | |
|     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 | |
|     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 | |
|     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 | |
|     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 | |
|     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 | |
|     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 | |
|     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 | |
|     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
 | |
|     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 | |
|     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 | |
|     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 | |
|     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 | |
|     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 | |
|     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 | |
|     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
 | |
|     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 | |
|     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 | |
|     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 | |
|     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
 | |
|     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
 | |
|     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| uint64_t get_elf_hwcap2(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint64_t hwcaps = 0;
 | |
| 
 | |
|     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
 | |
|     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
 | |
|     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
 | |
|     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
 | |
|     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
 | |
|     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
 | |
|     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
 | |
|     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 | |
|     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 | |
|     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
 | |
|     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
 | |
|     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
 | |
|     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
 | |
|     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
 | |
|     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
 | |
|     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
 | |
|     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
 | |
|     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
 | |
|     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
 | |
|     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
 | |
|                               ARM_HWCAP2_A64_SME_F32F32 |
 | |
|                               ARM_HWCAP2_A64_SME_B16F32 |
 | |
|                               ARM_HWCAP2_A64_SME_F16F32 |
 | |
|                               ARM_HWCAP2_A64_SME_I8I32));
 | |
|     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
 | |
|     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
 | |
|     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
 | |
|     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
 | |
|     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| const char *elf_hwcap_str(uint32_t bit)
 | |
| {
 | |
|     static const char *hwcap_str[] = {
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
 | |
|     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
 | |
|     };
 | |
| 
 | |
|     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
 | |
| }
 | |
| 
 | |
| const char *elf_hwcap2_str(uint32_t bit)
 | |
| {
 | |
|     static const char *hwcap_str[] = {
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
 | |
|     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
 | |
|     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
 | |
|     };
 | |
| 
 | |
|     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
 | |
| }
 | |
| 
 | |
| #undef GET_FEATURE_ID
 | |
| 
 | |
| #if TARGET_BIG_ENDIAN
 | |
| # define VDSO_HEADER  "vdso-be.c.inc"
 | |
| #else
 | |
| # define VDSO_HEADER  "vdso-le.c.inc"
 | |
| #endif
 | |
| 
 | |
| #endif /* not TARGET_AARCH64 */
 | |
| 
 | |
| #endif /* TARGET_ARM */
 | |
| 
 | |
| #ifdef TARGET_SPARC
 | |
| 
 | |
| #ifndef TARGET_SPARC64
 | |
| # define ELF_CLASS  ELFCLASS32
 | |
| # define ELF_ARCH   EM_SPARC
 | |
| #elif defined(TARGET_ABI32)
 | |
| # define ELF_CLASS  ELFCLASS32
 | |
| # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
 | |
| #else
 | |
| # define ELF_CLASS  ELFCLASS64
 | |
| # define ELF_ARCH   EM_SPARCV9
 | |
| #endif
 | |
| 
 | |
| #include "elf.h"
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     /* There are not many sparc32 hwcap bits -- we have all of them. */
 | |
|     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
 | |
|                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
 | |
| 
 | |
| #ifdef TARGET_SPARC64
 | |
|     CPUSPARCState *env = cpu_env(thread_cpu);
 | |
|     uint32_t features = env->def.features;
 | |
| 
 | |
|     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
 | |
|     /* 32x32 multiply and divide are efficient. */
 | |
|     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
 | |
|     /* We don't have an internal feature bit for this. */
 | |
|     r |= HWCAP_SPARC_POPC;
 | |
|     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
 | |
|     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
 | |
|     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
 | |
|     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
 | |
|     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
 | |
|     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
 | |
| #endif
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     /* Note that target_cpu_copy_regs does not read psr/tstate. */
 | |
|     regs->pc = infop->entry;
 | |
|     regs->npc = regs->pc + 4;
 | |
|     regs->y = 0;
 | |
|     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
 | |
|                         - TARGET_STACK_BIAS);
 | |
| }
 | |
| #endif /* TARGET_SPARC */
 | |
| 
 | |
| #ifdef TARGET_PPC
 | |
| 
 | |
| #define ELF_MACHINE    PPC_ELF_MACHINE
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_PPC64 )
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS64
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define EXSTACK_DEFAULT true
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define ELF_ARCH        EM_PPC
 | |
| 
 | |
| /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 | |
|    See arch/powerpc/include/asm/cputable.h.  */
 | |
| enum {
 | |
|     QEMU_PPC_FEATURE_32 = 0x80000000,
 | |
|     QEMU_PPC_FEATURE_64 = 0x40000000,
 | |
|     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 | |
|     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 | |
|     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 | |
|     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 | |
|     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 | |
|     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 | |
|     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 | |
|     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 | |
|     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 | |
|     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 | |
|     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 | |
|     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 | |
|     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 | |
|     QEMU_PPC_FEATURE_CELL = 0x00010000,
 | |
|     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 | |
|     QEMU_PPC_FEATURE_SMT = 0x00004000,
 | |
|     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 | |
|     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 | |
|     QEMU_PPC_FEATURE_PA6T = 0x00000800,
 | |
|     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 | |
|     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 | |
|     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 | |
|     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 | |
|     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 | |
| 
 | |
|     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 | |
|     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 | |
| 
 | |
|     /* Feature definitions in AT_HWCAP2.  */
 | |
|     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 | |
|     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 | |
|     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 | |
|     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 | |
|     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 | |
|     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 | |
|     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 | |
|     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 | |
|     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 | |
|     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 | |
|     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 | |
|     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 | |
|     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 | |
|     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
 | |
|     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 | |
|     uint32_t features = 0;
 | |
| 
 | |
|     /* We don't have to be terribly complete here; the high points are
 | |
|        Altivec/FP/SPE support.  Anything else is just a bonus.  */
 | |
| #define GET_FEATURE(flag, feature)                                      \
 | |
|     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 | |
| #define GET_FEATURE2(flags, feature) \
 | |
|     do { \
 | |
|         if ((cpu->env.insns_flags2 & flags) == flags) { \
 | |
|             features |= feature; \
 | |
|         } \
 | |
|     } while (0)
 | |
|     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 | |
|     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 | |
|     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 | |
|     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 | |
|     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 | |
|     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 | |
|     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 | |
|     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 | |
|     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 | |
|     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 | |
|     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 | |
|                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 | |
|                   QEMU_PPC_FEATURE_ARCH_2_06);
 | |
| #undef GET_FEATURE
 | |
| #undef GET_FEATURE2
 | |
| 
 | |
|     return features;
 | |
| }
 | |
| 
 | |
| #define ELF_HWCAP2 get_elf_hwcap2()
 | |
| 
 | |
| static uint32_t get_elf_hwcap2(void)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 | |
|     uint32_t features = 0;
 | |
| 
 | |
| #define GET_FEATURE(flag, feature)                                      \
 | |
|     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 | |
| #define GET_FEATURE2(flag, feature)                                      \
 | |
|     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 | |
| 
 | |
|     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 | |
|     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 | |
|     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 | |
|                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 | |
|                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
 | |
|     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 | |
|                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
 | |
|     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
 | |
|                  QEMU_PPC_FEATURE2_MMA);
 | |
| 
 | |
| #undef GET_FEATURE
 | |
| #undef GET_FEATURE2
 | |
| 
 | |
|     return features;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The requirements here are:
 | |
|  * - keep the final alignment of sp (sp & 0xf)
 | |
|  * - make sure the 32-bit value at the first 16 byte aligned position of
 | |
|  *   AUXV is greater than 16 for glibc compatibility.
 | |
|  *   AT_IGNOREPPC is used for that.
 | |
|  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 | |
|  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 | |
|  */
 | |
| #define DLINFO_ARCH_ITEMS       5
 | |
| #define ARCH_DLINFO                                     \
 | |
|     do {                                                \
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 | |
|         /*                                              \
 | |
|          * Handle glibc compatibility: these magic entries must \
 | |
|          * be at the lowest addresses in the final auxv.        \
 | |
|          */                                             \
 | |
|         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 | |
|         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 | |
|         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 | |
|         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 | |
|         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 | |
|     } while (0)
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 | |
| {
 | |
|     _regs->gpr[1] = infop->start_stack;
 | |
| #if defined(TARGET_PPC64)
 | |
|     if (get_ppc64_abi(infop) < 2) {
 | |
|         uint64_t val;
 | |
|         get_user_u64(val, infop->entry + 8);
 | |
|         _regs->gpr[2] = val + infop->load_bias;
 | |
|         get_user_u64(val, infop->entry);
 | |
|         infop->entry = val + infop->load_bias;
 | |
|     } else {
 | |
|         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 | |
|     }
 | |
| #endif
 | |
|     _regs->nip = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 | |
| #define ELF_NREG 48
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 | |
| {
 | |
|     int i;
 | |
|     target_ulong ccr = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 | |
|         (*regs)[i] = tswapreg(env->gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[32] = tswapreg(env->nip);
 | |
|     (*regs)[33] = tswapreg(env->msr);
 | |
|     (*regs)[35] = tswapreg(env->ctr);
 | |
|     (*regs)[36] = tswapreg(env->lr);
 | |
|     (*regs)[37] = tswapreg(cpu_read_xer(env));
 | |
| 
 | |
|     ccr = ppc_get_cr(env);
 | |
|     (*regs)[38] = tswapreg(ccr);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #ifndef TARGET_PPC64
 | |
| # define VDSO_HEADER  "vdso-32.c.inc"
 | |
| #elif TARGET_BIG_ENDIAN
 | |
| # define VDSO_HEADER  "vdso-64.c.inc"
 | |
| #else
 | |
| # define VDSO_HEADER  "vdso-64le.c.inc"
 | |
| #endif
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_LOONGARCH64
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #define ELF_ARCH    EM_LOONGARCH
 | |
| #define EXSTACK_DEFAULT true
 | |
| 
 | |
| #define elf_check_arch(x) ((x) == EM_LOONGARCH)
 | |
| 
 | |
| #define VDSO_HEADER "vdso.c.inc"
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     /*Set crmd PG,DA = 1,0 */
 | |
|     regs->csr.crmd = 2 << 3;
 | |
|     regs->csr.era = infop->entry;
 | |
|     regs->regs[3] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/loongarch/include/asm/elf.h */
 | |
| #define ELF_NREG 45
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| enum {
 | |
|     TARGET_EF_R0 = 0,
 | |
|     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
 | |
|     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
 | |
| };
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPULoongArchState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     (*regs)[TARGET_EF_R0] = 0;
 | |
| 
 | |
|     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
 | |
|         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
 | |
|     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| /* See arch/loongarch/include/uapi/asm/hwcap.h */
 | |
| enum {
 | |
|     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
 | |
|     HWCAP_LOONGARCH_LAM      = (1 << 1),
 | |
|     HWCAP_LOONGARCH_UAL      = (1 << 2),
 | |
|     HWCAP_LOONGARCH_FPU      = (1 << 3),
 | |
|     HWCAP_LOONGARCH_LSX      = (1 << 4),
 | |
|     HWCAP_LOONGARCH_LASX     = (1 << 5),
 | |
|     HWCAP_LOONGARCH_CRC32    = (1 << 6),
 | |
|     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
 | |
|     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
 | |
|     HWCAP_LOONGARCH_LVZ      = (1 << 9),
 | |
|     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
 | |
|     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
 | |
|     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
 | |
| };
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     hwcaps |= HWCAP_LOONGARCH_CRC32;
 | |
| 
 | |
|     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
 | |
|         hwcaps |= HWCAP_LOONGARCH_UAL;
 | |
|     }
 | |
| 
 | |
|     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
 | |
|         hwcaps |= HWCAP_LOONGARCH_FPU;
 | |
|     }
 | |
| 
 | |
|     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
 | |
|         hwcaps |= HWCAP_LOONGARCH_LAM;
 | |
|     }
 | |
| 
 | |
|     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
 | |
|         hwcaps |= HWCAP_LOONGARCH_LSX;
 | |
|     }
 | |
| 
 | |
|     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
 | |
|         hwcaps |= HWCAP_LOONGARCH_LASX;
 | |
|     }
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| #define ELF_PLATFORM "loongarch"
 | |
| 
 | |
| #endif /* TARGET_LOONGARCH64 */
 | |
| 
 | |
| #ifdef TARGET_MIPS
 | |
| 
 | |
| #ifdef TARGET_MIPS64
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #else
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #endif
 | |
| #define ELF_ARCH    EM_MIPS
 | |
| #define EXSTACK_DEFAULT true
 | |
| 
 | |
| #ifdef TARGET_ABI_MIPSN32
 | |
| #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
 | |
| #else
 | |
| #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
 | |
| #endif
 | |
| 
 | |
| #define ELF_BASE_PLATFORM get_elf_base_platform()
 | |
| 
 | |
| #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
 | |
|     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
 | |
|     { return _base_platform; } } while (0)
 | |
| 
 | |
| static const char *get_elf_base_platform(void)
 | |
| {
 | |
|     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
 | |
| 
 | |
|     /* 64 bit ISAs goes first */
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
 | |
| 
 | |
|     /* 32 bit ISAs */
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
 | |
|     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
 | |
| 
 | |
|     /* Fallback */
 | |
|     return "mips";
 | |
| }
 | |
| #undef MATCH_PLATFORM_INSN
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->cp0_status = 2 << CP0St_KSU;
 | |
|     regs->cp0_epc = infop->entry;
 | |
|     regs->regs[29] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/mips/include/asm/elf.h.  */
 | |
| #define ELF_NREG 45
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/include/asm/reg.h.  */
 | |
| enum {
 | |
| #ifdef TARGET_MIPS64
 | |
|     TARGET_EF_R0 = 0,
 | |
| #else
 | |
|     TARGET_EF_R0 = 6,
 | |
| #endif
 | |
|     TARGET_EF_R26 = TARGET_EF_R0 + 26,
 | |
|     TARGET_EF_R27 = TARGET_EF_R0 + 27,
 | |
|     TARGET_EF_LO = TARGET_EF_R0 + 32,
 | |
|     TARGET_EF_HI = TARGET_EF_R0 + 33,
 | |
|     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 | |
|     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 | |
|     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 | |
|     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 | |
| };
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < TARGET_EF_R0; i++) {
 | |
|         (*regs)[i] = 0;
 | |
|     }
 | |
|     (*regs)[TARGET_EF_R0] = 0;
 | |
| 
 | |
|     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 | |
|         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_EF_R26] = 0;
 | |
|     (*regs)[TARGET_EF_R27] = 0;
 | |
|     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 | |
|     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 | |
|     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 | |
|     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 | |
|     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 | |
|     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| /* See arch/mips/include/uapi/asm/hwcap.h.  */
 | |
| enum {
 | |
|     HWCAP_MIPS_R6           = (1 << 0),
 | |
|     HWCAP_MIPS_MSA          = (1 << 1),
 | |
|     HWCAP_MIPS_CRC32        = (1 << 2),
 | |
|     HWCAP_MIPS_MIPS16       = (1 << 3),
 | |
|     HWCAP_MIPS_MDMX         = (1 << 4),
 | |
|     HWCAP_MIPS_MIPS3D       = (1 << 5),
 | |
|     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
 | |
|     HWCAP_MIPS_DSP          = (1 << 7),
 | |
|     HWCAP_MIPS_DSP2         = (1 << 8),
 | |
|     HWCAP_MIPS_DSP3         = (1 << 9),
 | |
|     HWCAP_MIPS_MIPS16E2     = (1 << 10),
 | |
|     HWCAP_LOONGSON_MMI      = (1 << 11),
 | |
|     HWCAP_LOONGSON_EXT      = (1 << 12),
 | |
|     HWCAP_LOONGSON_EXT2     = (1 << 13),
 | |
|     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| #define GET_FEATURE_INSN(_flag, _hwcap) \
 | |
|     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
 | |
| 
 | |
| #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
 | |
|     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
 | |
| 
 | |
| #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
 | |
|     do { \
 | |
|         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
 | |
|             hwcaps |= _hwcap; \
 | |
|         } \
 | |
|     } while (0)
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
 | |
|                         2, HWCAP_MIPS_R6);
 | |
|     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
 | |
|     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
 | |
|     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| #undef GET_FEATURE_REG_EQU
 | |
| #undef GET_FEATURE_REG_SET
 | |
| #undef GET_FEATURE_INSN
 | |
| 
 | |
| #endif /* TARGET_MIPS */
 | |
| 
 | |
| #ifdef TARGET_MICROBLAZE
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #define ELF_ARCH    EM_MICROBLAZE
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->r1 = infop->start_stack;
 | |
| 
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_NREG 38
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
 | |
| {
 | |
|     int i, pos = 0;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[pos++] = tswapreg(env->regs[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[pos++] = tswapreg(env->pc);
 | |
|     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
 | |
|     (*regs)[pos++] = 0;
 | |
|     (*regs)[pos++] = tswapreg(env->ear);
 | |
|     (*regs)[pos++] = 0;
 | |
|     (*regs)[pos++] = tswapreg(env->esr);
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_MICROBLAZE */
 | |
| 
 | |
| #ifdef TARGET_OPENRISC
 | |
| 
 | |
| #define ELF_ARCH EM_OPENRISC
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_DATA  ELFDATA2MSB
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->gpr[1] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE 8192
 | |
| 
 | |
| /* See linux kernel arch/openrisc/include/asm/elf.h.  */
 | |
| #define ELF_NREG 34 /* gprs and pc, sr */
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUOpenRISCState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
 | |
|     }
 | |
|     (*regs)[32] = tswapreg(env->pc);
 | |
|     (*regs)[33] = tswapreg(cpu_get_sr(env));
 | |
| }
 | |
| #define ELF_HWCAP 0
 | |
| #define ELF_PLATFORM NULL
 | |
| 
 | |
| #endif /* TARGET_OPENRISC */
 | |
| 
 | |
| #ifdef TARGET_SH4
 | |
| 
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_ARCH  EM_SH
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     /* Check other registers XXXXX */
 | |
|     regs->pc = infop->entry;
 | |
|     regs->regs[15] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/sh/include/asm/elf.h.  */
 | |
| #define ELF_NREG 23
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
 | |
| enum {
 | |
|     TARGET_REG_PC = 16,
 | |
|     TARGET_REG_PR = 17,
 | |
|     TARGET_REG_SR = 18,
 | |
|     TARGET_REG_GBR = 19,
 | |
|     TARGET_REG_MACH = 20,
 | |
|     TARGET_REG_MACL = 21,
 | |
|     TARGET_REG_SYSCALL = 22
 | |
| };
 | |
| 
 | |
| static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                       const CPUSH4State *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         (*regs)[i] = tswapreg(env->gregs[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
 | |
|     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
 | |
|     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
 | |
|     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
 | |
|     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
 | |
|     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
 | |
|     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| enum {
 | |
|     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
 | |
|     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
 | |
|     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
 | |
|     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
 | |
|     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
 | |
|     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
 | |
|     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
 | |
|     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
 | |
|     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
 | |
|     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
 | |
|     uint32_t hwcap = 0;
 | |
| 
 | |
|     hwcap |= SH_CPU_HAS_FPU;
 | |
| 
 | |
|     if (cpu->env.features & SH_FEATURE_SH4A) {
 | |
|         hwcap |= SH_CPU_HAS_LLSC;
 | |
|     }
 | |
| 
 | |
|     return hwcap;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_M68K
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_68K
 | |
| 
 | |
| /* ??? Does this need to do anything?
 | |
|    #define ELF_PLAT_INIT(_r) */
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->usp = infop->start_stack;
 | |
|     regs->sr = 0;
 | |
|     regs->pc = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/m68k/include/asm/elf.h.  */
 | |
| #define ELF_NREG 20
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
 | |
| {
 | |
|     (*regs)[0] = tswapreg(env->dregs[1]);
 | |
|     (*regs)[1] = tswapreg(env->dregs[2]);
 | |
|     (*regs)[2] = tswapreg(env->dregs[3]);
 | |
|     (*regs)[3] = tswapreg(env->dregs[4]);
 | |
|     (*regs)[4] = tswapreg(env->dregs[5]);
 | |
|     (*regs)[5] = tswapreg(env->dregs[6]);
 | |
|     (*regs)[6] = tswapreg(env->dregs[7]);
 | |
|     (*regs)[7] = tswapreg(env->aregs[0]);
 | |
|     (*regs)[8] = tswapreg(env->aregs[1]);
 | |
|     (*regs)[9] = tswapreg(env->aregs[2]);
 | |
|     (*regs)[10] = tswapreg(env->aregs[3]);
 | |
|     (*regs)[11] = tswapreg(env->aregs[4]);
 | |
|     (*regs)[12] = tswapreg(env->aregs[5]);
 | |
|     (*regs)[13] = tswapreg(env->aregs[6]);
 | |
|     (*regs)[14] = tswapreg(env->dregs[0]);
 | |
|     (*regs)[15] = tswapreg(env->aregs[7]);
 | |
|     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
 | |
|     (*regs)[17] = tswapreg(env->sr);
 | |
|     (*regs)[18] = tswapreg(env->pc);
 | |
|     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       8192
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ALPHA
 | |
| 
 | |
| #define ELF_CLASS      ELFCLASS64
 | |
| #define ELF_ARCH       EM_ALPHA
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->ps = 8;
 | |
|     regs->usp = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        8192
 | |
| 
 | |
| #endif /* TARGET_ALPHA */
 | |
| 
 | |
| #ifdef TARGET_S390X
 | |
| 
 | |
| #define ELF_CLASS	ELFCLASS64
 | |
| #define ELF_DATA	ELFDATA2MSB
 | |
| #define ELF_ARCH	EM_S390
 | |
| 
 | |
| #include "elf.h"
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| #define GET_FEATURE(_feat, _hwcap) \
 | |
|     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
 | |
| 
 | |
| uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     /*
 | |
|      * Let's assume we always have esan3 and zarch.
 | |
|      * 31-bit processes can use 64-bit registers (high gprs).
 | |
|      */
 | |
|     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
 | |
| 
 | |
|     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
 | |
|     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
 | |
|     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
 | |
|     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
 | |
|     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
 | |
|         s390_has_feat(S390_FEAT_ETF3_ENH)) {
 | |
|         hwcap |= HWCAP_S390_ETF3EH;
 | |
|     }
 | |
|     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
 | |
|     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
 | |
|     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
 | |
| 
 | |
|     return hwcap;
 | |
| }
 | |
| 
 | |
| const char *elf_hwcap_str(uint32_t bit)
 | |
| {
 | |
|     static const char *hwcap_str[] = {
 | |
|         [HWCAP_S390_NR_ESAN3]     = "esan3",
 | |
|         [HWCAP_S390_NR_ZARCH]     = "zarch",
 | |
|         [HWCAP_S390_NR_STFLE]     = "stfle",
 | |
|         [HWCAP_S390_NR_MSA]       = "msa",
 | |
|         [HWCAP_S390_NR_LDISP]     = "ldisp",
 | |
|         [HWCAP_S390_NR_EIMM]      = "eimm",
 | |
|         [HWCAP_S390_NR_DFP]       = "dfp",
 | |
|         [HWCAP_S390_NR_HPAGE]     = "edat",
 | |
|         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
 | |
|         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
 | |
|         [HWCAP_S390_NR_TE]        = "te",
 | |
|         [HWCAP_S390_NR_VXRS]      = "vx",
 | |
|         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
 | |
|         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
 | |
|         [HWCAP_S390_NR_GS]        = "gs",
 | |
|         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
 | |
|         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
 | |
|         [HWCAP_S390_NR_SORT]      = "sort",
 | |
|         [HWCAP_S390_NR_DFLT]      = "dflt",
 | |
|         [HWCAP_S390_NR_NNPA]      = "nnpa",
 | |
|         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
 | |
|         [HWCAP_S390_NR_SIE]       = "sie",
 | |
|     };
 | |
| 
 | |
|     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
 | |
| }
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->psw.addr = infop->entry;
 | |
|     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
 | |
|                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
 | |
|                      PSW_MASK_32;
 | |
|     regs->gprs[15] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
 | |
| #define ELF_NREG 27
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| enum {
 | |
|     TARGET_REG_PSWM = 0,
 | |
|     TARGET_REG_PSWA = 1,
 | |
|     TARGET_REG_GPRS = 2,
 | |
|     TARGET_REG_ARS = 18,
 | |
|     TARGET_REG_ORIG_R2 = 26,
 | |
| };
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUS390XState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t *aregs;
 | |
| 
 | |
|     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
 | |
|     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
 | |
|     }
 | |
|     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         aregs[i] = tswap32(env->aregs[i]);
 | |
|     }
 | |
|     (*regs)[TARGET_REG_ORIG_R2] = 0;
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE 4096
 | |
| 
 | |
| #define VDSO_HEADER "vdso.c.inc"
 | |
| 
 | |
| #endif /* TARGET_S390X */
 | |
| 
 | |
| #ifdef TARGET_RISCV
 | |
| 
 | |
| #define ELF_ARCH  EM_RISCV
 | |
| 
 | |
| #ifdef TARGET_RISCV32
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define VDSO_HEADER "vdso-32.c.inc"
 | |
| #else
 | |
| #define ELF_CLASS ELFCLASS64
 | |
| #define VDSO_HEADER "vdso-64.c.inc"
 | |
| #endif
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
| #define MISA_BIT(EXT) (1 << (EXT - 'A'))
 | |
|     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
 | |
|     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
 | |
|                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
 | |
|                     | MISA_BIT('V');
 | |
| 
 | |
|     return cpu->env.misa_ext & mask;
 | |
| #undef MISA_BIT
 | |
| }
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->sepc = infop->entry;
 | |
|     regs->sp = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE 4096
 | |
| 
 | |
| #endif /* TARGET_RISCV */
 | |
| 
 | |
| #ifdef TARGET_HPPA
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_PARISC
 | |
| #define ELF_PLATFORM    "PARISC"
 | |
| #define STACK_GROWS_DOWN 0
 | |
| #define STACK_ALIGNMENT  64
 | |
| 
 | |
| #define VDSO_HEADER "vdso.c.inc"
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->iaoq[0] = infop->entry | PRIV_USER;
 | |
|     regs->iaoq[1] = regs->iaoq[0] + 4;
 | |
|     regs->gr[23] = 0;
 | |
|     regs->gr[24] = infop->argv;
 | |
|     regs->gr[25] = infop->argc;
 | |
|     /* The top-of-stack contains a linkage buffer.  */
 | |
|     regs->gr[30] = infop->start_stack + 64;
 | |
|     regs->gr[31] = infop->entry;
 | |
| }
 | |
| 
 | |
| #define LO_COMMPAGE  0
 | |
| 
 | |
| static bool init_guest_commpage(void)
 | |
| {
 | |
|     /* If reserved_va, then we have already mapped 0 page on the host. */
 | |
|     if (!reserved_va) {
 | |
|         void *want, *addr;
 | |
| 
 | |
|         want = g2h_untagged(LO_COMMPAGE);
 | |
|         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
 | |
|                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
 | |
|         if (addr == MAP_FAILED) {
 | |
|             perror("Allocating guest commpage");
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|         if (addr != want) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * On Linux, page zero is normally marked execute only + gateway.
 | |
|      * Normal read or write is supposed to fail (thus PROT_NONE above),
 | |
|      * but specific offsets have kernel code mapped to raise permissions
 | |
|      * and implement syscalls.  Here, simply mark the page executable.
 | |
|      * Special case the entry points during translation (see do_page_zero).
 | |
|      */
 | |
|     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
 | |
|                    PAGE_EXEC | PAGE_VALID);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_HPPA */
 | |
| 
 | |
| #ifdef TARGET_XTENSA
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_XTENSA
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->windowbase = 0;
 | |
|     regs->windowstart = 1;
 | |
|     regs->areg[1] = infop->start_stack;
 | |
|     regs->pc = infop->entry;
 | |
|     if (info_is_fdpic(infop)) {
 | |
|         regs->areg[4] = infop->loadmap_addr;
 | |
|         regs->areg[5] = infop->interpreter_loadmap_addr;
 | |
|         if (infop->interpreter_loadmap_addr) {
 | |
|             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
 | |
|         } else {
 | |
|             regs->areg[6] = infop->pt_dynamic_addr;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
 | |
| #define ELF_NREG 128
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| enum {
 | |
|     TARGET_REG_PC,
 | |
|     TARGET_REG_PS,
 | |
|     TARGET_REG_LBEG,
 | |
|     TARGET_REG_LEND,
 | |
|     TARGET_REG_LCOUNT,
 | |
|     TARGET_REG_SAR,
 | |
|     TARGET_REG_WINDOWSTART,
 | |
|     TARGET_REG_WINDOWBASE,
 | |
|     TARGET_REG_THREADPTR,
 | |
|     TARGET_REG_AR0 = 64,
 | |
| };
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUXtensaState *env)
 | |
| {
 | |
|     unsigned i;
 | |
| 
 | |
|     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
 | |
|     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
 | |
|     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
 | |
|     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
 | |
|     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
 | |
|     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
 | |
|     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
 | |
|     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
 | |
|     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
 | |
|     xtensa_sync_phys_from_window((CPUXtensaState *)env);
 | |
|     for (i = 0; i < env->config->nareg; ++i) {
 | |
|         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif /* TARGET_XTENSA */
 | |
| 
 | |
| #ifdef TARGET_HEXAGON
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_HEXAGON
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->sepc = infop->entry;
 | |
|     regs->sp = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_HEXAGON */
 | |
| 
 | |
| #ifndef ELF_BASE_PLATFORM
 | |
| #define ELF_BASE_PLATFORM (NULL)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_PLATFORM
 | |
| #define ELF_PLATFORM (NULL)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_MACHINE
 | |
| #define ELF_MACHINE ELF_ARCH
 | |
| #endif
 | |
| 
 | |
| #ifndef elf_check_arch
 | |
| #define elf_check_arch(x) ((x) == ELF_ARCH)
 | |
| #endif
 | |
| 
 | |
| #ifndef elf_check_abi
 | |
| #define elf_check_abi(x) (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_HWCAP
 | |
| #define ELF_HWCAP 0
 | |
| #endif
 | |
| 
 | |
| #ifndef STACK_GROWS_DOWN
 | |
| #define STACK_GROWS_DOWN 1
 | |
| #endif
 | |
| 
 | |
| #ifndef STACK_ALIGNMENT
 | |
| #define STACK_ALIGNMENT 16
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ABI32
 | |
| #undef ELF_CLASS
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #undef bswaptls
 | |
| #define bswaptls(ptr) bswap32s(ptr)
 | |
| #endif
 | |
| 
 | |
| #ifndef EXSTACK_DEFAULT
 | |
| #define EXSTACK_DEFAULT false
 | |
| #endif
 | |
| 
 | |
| #include "elf.h"
 | |
| 
 | |
| /* We must delay the following stanzas until after "elf.h". */
 | |
| #if defined(TARGET_AARCH64)
 | |
| 
 | |
| static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
 | |
|                                     const uint32_t *data,
 | |
|                                     struct image_info *info,
 | |
|                                     Error **errp)
 | |
| {
 | |
|     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
 | |
|         if (pr_datasz != sizeof(uint32_t)) {
 | |
|             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
 | |
|             return false;
 | |
|         }
 | |
|         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
 | |
|         info->note_flags = *data;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| #define ARCH_USE_GNU_PROPERTY 1
 | |
| 
 | |
| #else
 | |
| 
 | |
| static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
 | |
|                                     const uint32_t *data,
 | |
|                                     struct image_info *info,
 | |
|                                     Error **errp)
 | |
| {
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| #define ARCH_USE_GNU_PROPERTY 0
 | |
| 
 | |
| #endif
 | |
| 
 | |
| struct exec
 | |
| {
 | |
|     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
 | |
|     unsigned int a_text;   /* length of text, in bytes */
 | |
|     unsigned int a_data;   /* length of data, in bytes */
 | |
|     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
 | |
|     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
 | |
|     unsigned int a_entry;  /* start address */
 | |
|     unsigned int a_trsize; /* length of relocation info for text, in bytes */
 | |
|     unsigned int a_drsize; /* length of relocation info for data, in bytes */
 | |
| };
 | |
| 
 | |
| 
 | |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff)
 | |
| #define OMAGIC 0407
 | |
| #define NMAGIC 0410
 | |
| #define ZMAGIC 0413
 | |
| #define QMAGIC 0314
 | |
| 
 | |
| #define DLINFO_ITEMS 16
 | |
| 
 | |
| static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
 | |
| {
 | |
|     memcpy(to, from, n);
 | |
| }
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| static void bswap_ehdr(struct elfhdr *ehdr)
 | |
| {
 | |
|     bswap16s(&ehdr->e_type);            /* Object file type */
 | |
|     bswap16s(&ehdr->e_machine);         /* Architecture */
 | |
|     bswap32s(&ehdr->e_version);         /* Object file version */
 | |
|     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
 | |
|     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
 | |
|     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
 | |
|     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
 | |
|     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
 | |
|     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
 | |
|     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
 | |
|     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
 | |
|     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
 | |
|     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
 | |
| }
 | |
| 
 | |
| static void bswap_phdr(struct elf_phdr *phdr, int phnum)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < phnum; ++i, ++phdr) {
 | |
|         bswap32s(&phdr->p_type);        /* Segment type */
 | |
|         bswap32s(&phdr->p_flags);       /* Segment flags */
 | |
|         bswaptls(&phdr->p_offset);      /* Segment file offset */
 | |
|         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
 | |
|         bswaptls(&phdr->p_paddr);       /* Segment physical address */
 | |
|         bswaptls(&phdr->p_filesz);      /* Segment size in file */
 | |
|         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
 | |
|         bswaptls(&phdr->p_align);       /* Segment alignment */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bswap_shdr(struct elf_shdr *shdr, int shnum)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < shnum; ++i, ++shdr) {
 | |
|         bswap32s(&shdr->sh_name);
 | |
|         bswap32s(&shdr->sh_type);
 | |
|         bswaptls(&shdr->sh_flags);
 | |
|         bswaptls(&shdr->sh_addr);
 | |
|         bswaptls(&shdr->sh_offset);
 | |
|         bswaptls(&shdr->sh_size);
 | |
|         bswap32s(&shdr->sh_link);
 | |
|         bswap32s(&shdr->sh_info);
 | |
|         bswaptls(&shdr->sh_addralign);
 | |
|         bswaptls(&shdr->sh_entsize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bswap_sym(struct elf_sym *sym)
 | |
| {
 | |
|     bswap32s(&sym->st_name);
 | |
|     bswaptls(&sym->st_value);
 | |
|     bswaptls(&sym->st_size);
 | |
|     bswap16s(&sym->st_shndx);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_MIPS
 | |
| static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
 | |
| {
 | |
|     bswap16s(&abiflags->version);
 | |
|     bswap32s(&abiflags->ases);
 | |
|     bswap32s(&abiflags->isa_ext);
 | |
|     bswap32s(&abiflags->flags1);
 | |
|     bswap32s(&abiflags->flags2);
 | |
| }
 | |
| #endif
 | |
| #else
 | |
| static inline void bswap_ehdr(struct elfhdr *ehdr) { }
 | |
| static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
 | |
| static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
 | |
| static inline void bswap_sym(struct elf_sym *sym) { }
 | |
| #ifdef TARGET_MIPS
 | |
| static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
| static int elf_core_dump(int, const CPUArchState *);
 | |
| #endif /* USE_ELF_CORE_DUMP */
 | |
| static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
 | |
|                          abi_ulong load_bias);
 | |
| 
 | |
| /* Verify the portions of EHDR within E_IDENT for the target.
 | |
|    This can be performed before bswapping the entire header.  */
 | |
| static bool elf_check_ident(struct elfhdr *ehdr)
 | |
| {
 | |
|     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
 | |
|             && ehdr->e_ident[EI_MAG1] == ELFMAG1
 | |
|             && ehdr->e_ident[EI_MAG2] == ELFMAG2
 | |
|             && ehdr->e_ident[EI_MAG3] == ELFMAG3
 | |
|             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
 | |
|             && ehdr->e_ident[EI_DATA] == ELF_DATA
 | |
|             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
 | |
| }
 | |
| 
 | |
| /* Verify the portions of EHDR outside of E_IDENT for the target.
 | |
|    This has to wait until after bswapping the header.  */
 | |
| static bool elf_check_ehdr(struct elfhdr *ehdr)
 | |
| {
 | |
|     return (elf_check_arch(ehdr->e_machine)
 | |
|             && elf_check_abi(ehdr->e_flags)
 | |
|             && ehdr->e_ehsize == sizeof(struct elfhdr)
 | |
|             && ehdr->e_phentsize == sizeof(struct elf_phdr)
 | |
|             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'copy_elf_strings()' copies argument/envelope strings from user
 | |
|  * memory to free pages in kernel mem. These are in a format ready
 | |
|  * to be put directly into the top of new user memory.
 | |
|  *
 | |
|  */
 | |
| static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
 | |
|                                   abi_ulong p, abi_ulong stack_limit)
 | |
| {
 | |
|     char *tmp;
 | |
|     int len, i;
 | |
|     abi_ulong top = p;
 | |
| 
 | |
|     if (!p) {
 | |
|         return 0;       /* bullet-proofing */
 | |
|     }
 | |
| 
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
 | |
|         for (i = argc - 1; i >= 0; --i) {
 | |
|             tmp = argv[i];
 | |
|             if (!tmp) {
 | |
|                 fprintf(stderr, "VFS: argc is wrong");
 | |
|                 exit(-1);
 | |
|             }
 | |
|             len = strlen(tmp) + 1;
 | |
|             tmp += len;
 | |
| 
 | |
|             if (len > (p - stack_limit)) {
 | |
|                 return 0;
 | |
|             }
 | |
|             while (len) {
 | |
|                 int bytes_to_copy = (len > offset) ? offset : len;
 | |
|                 tmp -= bytes_to_copy;
 | |
|                 p -= bytes_to_copy;
 | |
|                 offset -= bytes_to_copy;
 | |
|                 len -= bytes_to_copy;
 | |
| 
 | |
|                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
 | |
| 
 | |
|                 if (offset == 0) {
 | |
|                     memcpy_to_target(p, scratch, top - p);
 | |
|                     top = p;
 | |
|                     offset = TARGET_PAGE_SIZE;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (p != top) {
 | |
|             memcpy_to_target(p, scratch + offset, top - p);
 | |
|         }
 | |
|     } else {
 | |
|         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
 | |
|         for (i = 0; i < argc; ++i) {
 | |
|             tmp = argv[i];
 | |
|             if (!tmp) {
 | |
|                 fprintf(stderr, "VFS: argc is wrong");
 | |
|                 exit(-1);
 | |
|             }
 | |
|             len = strlen(tmp) + 1;
 | |
|             if (len > (stack_limit - p)) {
 | |
|                 return 0;
 | |
|             }
 | |
|             while (len) {
 | |
|                 int bytes_to_copy = (len > remaining) ? remaining : len;
 | |
| 
 | |
|                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
 | |
| 
 | |
|                 tmp += bytes_to_copy;
 | |
|                 remaining -= bytes_to_copy;
 | |
|                 p += bytes_to_copy;
 | |
|                 len -= bytes_to_copy;
 | |
| 
 | |
|                 if (remaining == 0) {
 | |
|                     memcpy_to_target(top, scratch, p - top);
 | |
|                     top = p;
 | |
|                     remaining = TARGET_PAGE_SIZE;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (p != top) {
 | |
|             memcpy_to_target(top, scratch, p - top);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
 | |
|  * argument/environment space. Newer kernels (>2.6.33) allow more,
 | |
|  * dependent on stack size, but guarantee at least 32 pages for
 | |
|  * backwards compatibility.
 | |
|  */
 | |
| #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
 | |
| 
 | |
| static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
 | |
|                                  struct image_info *info)
 | |
| {
 | |
|     abi_ulong size, error, guard;
 | |
|     int prot;
 | |
| 
 | |
|     size = guest_stack_size;
 | |
|     if (size < STACK_LOWER_LIMIT) {
 | |
|         size = STACK_LOWER_LIMIT;
 | |
|     }
 | |
| 
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         guard = TARGET_PAGE_SIZE;
 | |
|         if (guard < qemu_real_host_page_size()) {
 | |
|             guard = qemu_real_host_page_size();
 | |
|         }
 | |
|     } else {
 | |
|         /* no guard page for hppa target where stack grows upwards. */
 | |
|         guard = 0;
 | |
|     }
 | |
| 
 | |
|     prot = PROT_READ | PROT_WRITE;
 | |
|     if (info->exec_stack) {
 | |
|         prot |= PROT_EXEC;
 | |
|     }
 | |
|     error = target_mmap(0, size + guard, prot,
 | |
|                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|     if (error == -1) {
 | |
|         perror("mmap stack");
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     /* We reserve one extra page at the top of the stack as guard.  */
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         target_mprotect(error, guard, PROT_NONE);
 | |
|         info->stack_limit = error + guard;
 | |
|         return info->stack_limit + size - sizeof(void *);
 | |
|     } else {
 | |
|         info->stack_limit = error + size;
 | |
|         return error;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * zero_bss:
 | |
|  *
 | |
|  * Map and zero the bss.  We need to explicitly zero any fractional pages
 | |
|  * after the data section (i.e. bss).  Return false on mapping failure.
 | |
|  */
 | |
| static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
 | |
|                      int prot, Error **errp)
 | |
| {
 | |
|     abi_ulong align_bss;
 | |
| 
 | |
|     /* We only expect writable bss; the code segment shouldn't need this. */
 | |
|     if (!(prot & PROT_WRITE)) {
 | |
|         error_setg(errp, "PT_LOAD with non-writable bss");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     align_bss = TARGET_PAGE_ALIGN(start_bss);
 | |
|     end_bss = TARGET_PAGE_ALIGN(end_bss);
 | |
| 
 | |
|     if (start_bss < align_bss) {
 | |
|         int flags = page_get_flags(start_bss);
 | |
| 
 | |
|         if (!(flags & PAGE_RWX)) {
 | |
|             /*
 | |
|              * The whole address space of the executable was reserved
 | |
|              * at the start, therefore all pages will be VALID.
 | |
|              * But assuming there are no PROT_NONE PT_LOAD segments,
 | |
|              * a PROT_NONE page means no data all bss, and we can
 | |
|              * simply extend the new anon mapping back to the start
 | |
|              * of the page of bss.
 | |
|              */
 | |
|             align_bss -= TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             /*
 | |
|              * The start of the bss shares a page with something.
 | |
|              * The only thing that we expect is the data section,
 | |
|              * which would already be marked writable.
 | |
|              * Overlapping the RX code segment seems malformed.
 | |
|              */
 | |
|             if (!(flags & PAGE_WRITE)) {
 | |
|                 error_setg(errp, "PT_LOAD with bss overlapping "
 | |
|                            "non-writable page");
 | |
|                 return false;
 | |
|             }
 | |
| 
 | |
|             /* The page is already mapped and writable. */
 | |
|             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (align_bss < end_bss &&
 | |
|         target_mmap(align_bss, end_bss - align_bss, prot,
 | |
|                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
 | |
|         error_setg_errno(errp, errno, "Error mapping bss");
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #if defined(TARGET_ARM)
 | |
| static int elf_is_fdpic(struct elfhdr *exec)
 | |
| {
 | |
|     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
 | |
| }
 | |
| #elif defined(TARGET_XTENSA)
 | |
| static int elf_is_fdpic(struct elfhdr *exec)
 | |
| {
 | |
|     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
 | |
| }
 | |
| #else
 | |
| /* Default implementation, always false.  */
 | |
| static int elf_is_fdpic(struct elfhdr *exec)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
 | |
| {
 | |
|     uint16_t n;
 | |
|     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
 | |
| 
 | |
|     /* elf32_fdpic_loadseg */
 | |
|     n = info->nsegs;
 | |
|     while (n--) {
 | |
|         sp -= 12;
 | |
|         put_user_u32(loadsegs[n].addr, sp+0);
 | |
|         put_user_u32(loadsegs[n].p_vaddr, sp+4);
 | |
|         put_user_u32(loadsegs[n].p_memsz, sp+8);
 | |
|     }
 | |
| 
 | |
|     /* elf32_fdpic_loadmap */
 | |
|     sp -= 4;
 | |
|     put_user_u16(0, sp+0); /* version */
 | |
|     put_user_u16(info->nsegs, sp+2); /* nsegs */
 | |
| 
 | |
|     info->personality = PER_LINUX_FDPIC;
 | |
|     info->loadmap_addr = sp;
 | |
| 
 | |
|     return sp;
 | |
| }
 | |
| 
 | |
| static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
 | |
|                                    struct elfhdr *exec,
 | |
|                                    struct image_info *info,
 | |
|                                    struct image_info *interp_info,
 | |
|                                    struct image_info *vdso_info)
 | |
| {
 | |
|     abi_ulong sp;
 | |
|     abi_ulong u_argc, u_argv, u_envp, u_auxv;
 | |
|     int size;
 | |
|     int i;
 | |
|     abi_ulong u_rand_bytes;
 | |
|     uint8_t k_rand_bytes[16];
 | |
|     abi_ulong u_platform, u_base_platform;
 | |
|     const char *k_platform, *k_base_platform;
 | |
|     const int n = sizeof(elf_addr_t);
 | |
| 
 | |
|     sp = p;
 | |
| 
 | |
|     /* Needs to be before we load the env/argc/... */
 | |
|     if (elf_is_fdpic(exec)) {
 | |
|         /* Need 4 byte alignment for these structs */
 | |
|         sp &= ~3;
 | |
|         sp = loader_build_fdpic_loadmap(info, sp);
 | |
|         info->other_info = interp_info;
 | |
|         if (interp_info) {
 | |
|             interp_info->other_info = info;
 | |
|             sp = loader_build_fdpic_loadmap(interp_info, sp);
 | |
|             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
 | |
|             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
 | |
|         } else {
 | |
|             info->interpreter_loadmap_addr = 0;
 | |
|             info->interpreter_pt_dynamic_addr = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     u_base_platform = 0;
 | |
|     k_base_platform = ELF_BASE_PLATFORM;
 | |
|     if (k_base_platform) {
 | |
|         size_t len = strlen(k_base_platform) + 1;
 | |
|         if (STACK_GROWS_DOWN) {
 | |
|             sp -= (len + n - 1) & ~(n - 1);
 | |
|             u_base_platform = sp;
 | |
|             /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|             memcpy_to_target(sp, k_base_platform, len);
 | |
|         } else {
 | |
|             memcpy_to_target(sp, k_base_platform, len);
 | |
|             u_base_platform = sp;
 | |
|             sp += len + 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     u_platform = 0;
 | |
|     k_platform = ELF_PLATFORM;
 | |
|     if (k_platform) {
 | |
|         size_t len = strlen(k_platform) + 1;
 | |
|         if (STACK_GROWS_DOWN) {
 | |
|             sp -= (len + n - 1) & ~(n - 1);
 | |
|             u_platform = sp;
 | |
|             /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|             memcpy_to_target(sp, k_platform, len);
 | |
|         } else {
 | |
|             memcpy_to_target(sp, k_platform, len);
 | |
|             u_platform = sp;
 | |
|             sp += len + 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Provide 16 byte alignment for the PRNG, and basic alignment for
 | |
|      * the argv and envp pointers.
 | |
|      */
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         sp = QEMU_ALIGN_DOWN(sp, 16);
 | |
|     } else {
 | |
|         sp = QEMU_ALIGN_UP(sp, 16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Generate 16 random bytes for userspace PRNG seeding.
 | |
|      */
 | |
|     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         sp -= 16;
 | |
|         u_rand_bytes = sp;
 | |
|         /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|         memcpy_to_target(sp, k_rand_bytes, 16);
 | |
|     } else {
 | |
|         memcpy_to_target(sp, k_rand_bytes, 16);
 | |
|         u_rand_bytes = sp;
 | |
|         sp += 16;
 | |
|     }
 | |
| 
 | |
|     size = (DLINFO_ITEMS + 1) * 2;
 | |
|     if (k_base_platform) {
 | |
|         size += 2;
 | |
|     }
 | |
|     if (k_platform) {
 | |
|         size += 2;
 | |
|     }
 | |
|     if (vdso_info) {
 | |
|         size += 2;
 | |
|     }
 | |
| #ifdef DLINFO_ARCH_ITEMS
 | |
|     size += DLINFO_ARCH_ITEMS * 2;
 | |
| #endif
 | |
| #ifdef ELF_HWCAP2
 | |
|     size += 2;
 | |
| #endif
 | |
|     info->auxv_len = size * n;
 | |
| 
 | |
|     size += envc + argc + 2;
 | |
|     size += 1;  /* argc itself */
 | |
|     size *= n;
 | |
| 
 | |
|     /* Allocate space and finalize stack alignment for entry now.  */
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
 | |
|         sp = u_argc;
 | |
|     } else {
 | |
|         u_argc = sp;
 | |
|         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
 | |
|     }
 | |
| 
 | |
|     u_argv = u_argc + n;
 | |
|     u_envp = u_argv + (argc + 1) * n;
 | |
|     u_auxv = u_envp + (envc + 1) * n;
 | |
|     info->saved_auxv = u_auxv;
 | |
|     info->argc = argc;
 | |
|     info->envc = envc;
 | |
|     info->argv = u_argv;
 | |
|     info->envp = u_envp;
 | |
| 
 | |
|     /* This is correct because Linux defines
 | |
|      * elf_addr_t as Elf32_Off / Elf64_Off
 | |
|      */
 | |
| #define NEW_AUX_ENT(id, val) do {               \
 | |
|         put_user_ual(id, u_auxv);  u_auxv += n; \
 | |
|         put_user_ual(val, u_auxv); u_auxv += n; \
 | |
|     } while(0)
 | |
| 
 | |
| #ifdef ARCH_DLINFO
 | |
|     /*
 | |
|      * ARCH_DLINFO must come first so platform specific code can enforce
 | |
|      * special alignment requirements on the AUXV if necessary (eg. PPC).
 | |
|      */
 | |
|     ARCH_DLINFO;
 | |
| #endif
 | |
|     /* There must be exactly DLINFO_ITEMS entries here, or the assert
 | |
|      * on info->auxv_len will trigger.
 | |
|      */
 | |
|     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
 | |
|     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
 | |
|     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
 | |
|     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
 | |
|     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
 | |
|     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
 | |
|     NEW_AUX_ENT(AT_ENTRY, info->entry);
 | |
|     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
 | |
|     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
 | |
|     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
 | |
|     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
 | |
|     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
 | |
|     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
 | |
|     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
 | |
|     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
 | |
|     NEW_AUX_ENT(AT_EXECFN, info->file_string);
 | |
| 
 | |
| #ifdef ELF_HWCAP2
 | |
|     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
 | |
| #endif
 | |
| 
 | |
|     if (u_base_platform) {
 | |
|         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
 | |
|     }
 | |
|     if (u_platform) {
 | |
|         NEW_AUX_ENT(AT_PLATFORM, u_platform);
 | |
|     }
 | |
|     if (vdso_info) {
 | |
|         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
 | |
|     }
 | |
|     NEW_AUX_ENT (AT_NULL, 0);
 | |
| #undef NEW_AUX_ENT
 | |
| 
 | |
|     /* Check that our initial calculation of the auxv length matches how much
 | |
|      * we actually put into it.
 | |
|      */
 | |
|     assert(info->auxv_len == u_auxv - info->saved_auxv);
 | |
| 
 | |
|     put_user_ual(argc, u_argc);
 | |
| 
 | |
|     p = info->arg_strings;
 | |
|     for (i = 0; i < argc; ++i) {
 | |
|         put_user_ual(p, u_argv);
 | |
|         u_argv += n;
 | |
|         p += target_strlen(p) + 1;
 | |
|     }
 | |
|     put_user_ual(0, u_argv);
 | |
| 
 | |
|     p = info->env_strings;
 | |
|     for (i = 0; i < envc; ++i) {
 | |
|         put_user_ual(p, u_envp);
 | |
|         u_envp += n;
 | |
|         p += target_strlen(p) + 1;
 | |
|     }
 | |
|     put_user_ual(0, u_envp);
 | |
| 
 | |
|     return sp;
 | |
| }
 | |
| 
 | |
| #if defined(HI_COMMPAGE)
 | |
| #define LO_COMMPAGE -1
 | |
| #elif defined(LO_COMMPAGE)
 | |
| #define HI_COMMPAGE 0
 | |
| #else
 | |
| #define HI_COMMPAGE 0
 | |
| #define LO_COMMPAGE -1
 | |
| #ifndef INIT_GUEST_COMMPAGE
 | |
| #define init_guest_commpage() true
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * pgb_try_mmap:
 | |
|  * @addr: host start address
 | |
|  * @addr_last: host last address
 | |
|  * @keep: do not unmap the probe region
 | |
|  *
 | |
|  * Return 1 if [@addr, @addr_last] is not mapped in the host,
 | |
|  * return 0 if it is not available to map, and -1 on mmap error.
 | |
|  * If @keep, the region is left mapped on success, otherwise unmapped.
 | |
|  */
 | |
| static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
 | |
| {
 | |
|     size_t size = addr_last - addr + 1;
 | |
|     void *p = mmap((void *)addr, size, PROT_NONE,
 | |
|                    MAP_ANONYMOUS | MAP_PRIVATE |
 | |
|                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
 | |
|     int ret;
 | |
| 
 | |
|     if (p == MAP_FAILED) {
 | |
|         return errno == EEXIST ? 0 : -1;
 | |
|     }
 | |
|     ret = p == (void *)addr;
 | |
|     if (!keep || !ret) {
 | |
|         munmap(p, size);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
 | |
|  * @addr: host address
 | |
|  * @addr_last: host last address
 | |
|  * @brk: host brk
 | |
|  *
 | |
|  * Like pgb_try_mmap, but additionally reserve some memory following brk.
 | |
|  */
 | |
| static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
 | |
|                                  uintptr_t brk, bool keep)
 | |
| {
 | |
|     uintptr_t brk_last = brk + 16 * MiB - 1;
 | |
| 
 | |
|     /* Do not map anything close to the host brk. */
 | |
|     if (addr <= brk_last && brk <= addr_last) {
 | |
|         return 0;
 | |
|     }
 | |
|     return pgb_try_mmap(addr, addr_last, keep);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pgb_try_mmap_set:
 | |
|  * @ga: set of guest addrs
 | |
|  * @base: guest_base
 | |
|  * @brk: host brk
 | |
|  *
 | |
|  * Return true if all @ga can be mapped by the host at @base.
 | |
|  * On success, retain the mapping at index 0 for reserved_va.
 | |
|  */
 | |
| 
 | |
| typedef struct PGBAddrs {
 | |
|     uintptr_t bounds[3][2]; /* start/last pairs */
 | |
|     int nbounds;
 | |
| } PGBAddrs;
 | |
| 
 | |
| static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
 | |
| {
 | |
|     for (int i = ga->nbounds - 1; i >= 0; --i) {
 | |
|         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
 | |
|                                   ga->bounds[i][1] + base,
 | |
|                                   brk, i == 0 && reserved_va) <= 0) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pgb_addr_set:
 | |
|  * @ga: output set of guest addrs
 | |
|  * @guest_loaddr: guest image low address
 | |
|  * @guest_loaddr: guest image high address
 | |
|  * @identity: create for identity mapping
 | |
|  *
 | |
|  * Fill in @ga with the image, COMMPAGE and NULL page.
 | |
|  */
 | |
| static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
 | |
|                          abi_ulong guest_hiaddr, bool try_identity)
 | |
| {
 | |
|     int n;
 | |
| 
 | |
|     /*
 | |
|      * With a low commpage, or a guest mapped very low,
 | |
|      * we may not be able to use the identity map.
 | |
|      */
 | |
|     if (try_identity) {
 | |
|         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
 | |
|             return false;
 | |
|         }
 | |
|         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     memset(ga, 0, sizeof(*ga));
 | |
|     n = 0;
 | |
| 
 | |
|     if (reserved_va) {
 | |
|         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
 | |
|         ga->bounds[n][1] = reserved_va;
 | |
|         n++;
 | |
|         /* LO_COMMPAGE and NULL handled by reserving from 0. */
 | |
|     } else {
 | |
|         /* Add any LO_COMMPAGE or NULL page. */
 | |
|         if (LO_COMMPAGE != -1) {
 | |
|             ga->bounds[n][0] = 0;
 | |
|             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
 | |
|             n++;
 | |
|         } else if (!try_identity) {
 | |
|             ga->bounds[n][0] = 0;
 | |
|             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
 | |
|             n++;
 | |
|         }
 | |
| 
 | |
|         /* Add the guest image for ET_EXEC. */
 | |
|         if (guest_loaddr) {
 | |
|             ga->bounds[n][0] = guest_loaddr;
 | |
|             ga->bounds[n][1] = guest_hiaddr;
 | |
|             n++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Temporarily disable
 | |
|      *   "comparison is always false due to limited range of data type"
 | |
|      * due to comparison between unsigned and (possible) 0.
 | |
|      */
 | |
| #pragma GCC diagnostic push
 | |
| #pragma GCC diagnostic ignored "-Wtype-limits"
 | |
| 
 | |
|     /* Add any HI_COMMPAGE not covered by reserved_va. */
 | |
|     if (reserved_va < HI_COMMPAGE) {
 | |
|         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
 | |
|         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
 | |
|         n++;
 | |
|     }
 | |
| 
 | |
| #pragma GCC diagnostic pop
 | |
| 
 | |
|     ga->nbounds = n;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static void pgb_fail_in_use(const char *image_name)
 | |
| {
 | |
|     error_report("%s: requires virtual address space that is in use "
 | |
|                  "(omit the -B option or choose a different value)",
 | |
|                  image_name);
 | |
|     exit(EXIT_FAILURE);
 | |
| }
 | |
| 
 | |
| static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
 | |
|                       uintptr_t guest_hiaddr, uintptr_t align)
 | |
| {
 | |
|     PGBAddrs ga;
 | |
|     uintptr_t brk = (uintptr_t)sbrk(0);
 | |
| 
 | |
|     if (!QEMU_IS_ALIGNED(guest_base, align)) {
 | |
|         fprintf(stderr, "Requested guest base %p does not satisfy "
 | |
|                 "host minimum alignment (0x%" PRIxPTR ")\n",
 | |
|                 (void *)guest_base, align);
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
 | |
|         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
 | |
|         pgb_fail_in_use(image_name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pgb_find_fallback:
 | |
|  *
 | |
|  * This is a fallback method for finding holes in the host address space
 | |
|  * if we don't have the benefit of being able to access /proc/self/map.
 | |
|  * It can potentially take a very long time as we can only dumbly iterate
 | |
|  * up the host address space seeing if the allocation would work.
 | |
|  */
 | |
| static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
 | |
|                                    uintptr_t brk)
 | |
| {
 | |
|     /* TODO: come up with a better estimate of how much to skip. */
 | |
|     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
 | |
| 
 | |
|     for (uintptr_t base = skip; ; base += skip) {
 | |
|         base = ROUND_UP(base, align);
 | |
|         if (pgb_try_mmap_set(ga, base, brk)) {
 | |
|             return base;
 | |
|         }
 | |
|         if (base >= -skip) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
 | |
|                                IntervalTreeRoot *root)
 | |
| {
 | |
|     for (int i = ga->nbounds - 1; i >= 0; --i) {
 | |
|         uintptr_t s = base + ga->bounds[i][0];
 | |
|         uintptr_t l = base + ga->bounds[i][1];
 | |
|         IntervalTreeNode *n;
 | |
| 
 | |
|         if (l < s) {
 | |
|             /* Wraparound. Skip to advance S to mmap_min_addr. */
 | |
|             return mmap_min_addr - s;
 | |
|         }
 | |
| 
 | |
|         n = interval_tree_iter_first(root, s, l);
 | |
|         if (n != NULL) {
 | |
|             /* Conflict.  Skip to advance S to LAST + 1. */
 | |
|             return n->last - s + 1;
 | |
|         }
 | |
|     }
 | |
|     return 0;  /* success */
 | |
| }
 | |
| 
 | |
| static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
 | |
|                                 uintptr_t align, uintptr_t brk)
 | |
| {
 | |
|     uintptr_t last = sizeof(uintptr_t) == 4 ? MiB : GiB;
 | |
|     uintptr_t base, skip;
 | |
| 
 | |
|     while (true) {
 | |
|         base = ROUND_UP(last, align);
 | |
|         if (base < last) {
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         skip = pgb_try_itree(ga, base, root);
 | |
|         if (skip == 0) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         last = base + skip;
 | |
|         if (last < base) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We've chosen 'base' based on holes in the interval tree,
 | |
|      * but we don't yet know if it is a valid host address.
 | |
|      * Because it is the first matching hole, if the host addresses
 | |
|      * are invalid we know there are no further matches.
 | |
|      */
 | |
|     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
 | |
| }
 | |
| 
 | |
| static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
 | |
|                         uintptr_t guest_hiaddr, uintptr_t align)
 | |
| {
 | |
|     IntervalTreeRoot *root;
 | |
|     uintptr_t brk, ret;
 | |
|     PGBAddrs ga;
 | |
| 
 | |
|     /* Try the identity map first. */
 | |
|     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
 | |
|         brk = (uintptr_t)sbrk(0);
 | |
|         if (pgb_try_mmap_set(&ga, 0, brk)) {
 | |
|             guest_base = 0;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Rebuild the address set for non-identity map.
 | |
|      * This differs in the mapping of the guest NULL page.
 | |
|      */
 | |
|     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
 | |
| 
 | |
|     root = read_self_maps();
 | |
| 
 | |
|     /* Read brk after we've read the maps, which will malloc. */
 | |
|     brk = (uintptr_t)sbrk(0);
 | |
| 
 | |
|     if (!root) {
 | |
|         ret = pgb_find_fallback(&ga, align, brk);
 | |
|     } else {
 | |
|         /*
 | |
|          * Reserve the area close to the host brk.
 | |
|          * This will be freed with the rest of the tree.
 | |
|          */
 | |
|         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
 | |
|         b->start = brk;
 | |
|         b->last = brk + 16 * MiB - 1;
 | |
|         interval_tree_insert(b, root);
 | |
| 
 | |
|         ret = pgb_find_itree(&ga, root, align, brk);
 | |
|         free_self_maps(root);
 | |
|     }
 | |
| 
 | |
|     if (ret == -1) {
 | |
|         int w = TARGET_LONG_BITS / 4;
 | |
| 
 | |
|         error_report("%s: Unable to find a guest_base to satisfy all "
 | |
|                      "guest address mapping requirements", image_name);
 | |
| 
 | |
|         for (int i = 0; i < ga.nbounds; ++i) {
 | |
|             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
 | |
|                          w, (uint64_t)ga.bounds[i][0],
 | |
|                          w, (uint64_t)ga.bounds[i][1]);
 | |
|         }
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     guest_base = ret;
 | |
| }
 | |
| 
 | |
| void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
 | |
|                       abi_ulong guest_hiaddr)
 | |
| {
 | |
|     /* In order to use host shmat, we must be able to honor SHMLBA.  */
 | |
|     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
 | |
| 
 | |
|     /* Sanity check the guest binary. */
 | |
|     if (reserved_va) {
 | |
|         if (guest_hiaddr > reserved_va) {
 | |
|             error_report("%s: requires more than reserved virtual "
 | |
|                          "address space (0x%" PRIx64 " > 0x%lx)",
 | |
|                          image_name, (uint64_t)guest_hiaddr, reserved_va);
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     } else {
 | |
|         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
 | |
|             error_report("%s: requires more virtual address space "
 | |
|                          "than the host can provide (0x%" PRIx64 ")",
 | |
|                          image_name, (uint64_t)guest_hiaddr + 1);
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (have_guest_base) {
 | |
|         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
 | |
|     } else {
 | |
|         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
 | |
|     }
 | |
| 
 | |
|     /* Reserve and initialize the commpage. */
 | |
|     if (!init_guest_commpage()) {
 | |
|         /* We have already probed for the commpage being free. */
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     assert(QEMU_IS_ALIGNED(guest_base, align));
 | |
|     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
 | |
|                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
 | |
| }
 | |
| 
 | |
| enum {
 | |
|     /* The string "GNU\0" as a magic number. */
 | |
|     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
 | |
|     NOTE_DATA_SZ = 1 * KiB,
 | |
|     NOTE_NAME_SZ = 4,
 | |
|     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Process a single gnu_property entry.
 | |
|  * Return false for error.
 | |
|  */
 | |
| static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
 | |
|                                struct image_info *info, bool have_prev_type,
 | |
|                                uint32_t *prev_type, Error **errp)
 | |
| {
 | |
|     uint32_t pr_type, pr_datasz, step;
 | |
| 
 | |
|     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
 | |
|         goto error_data;
 | |
|     }
 | |
|     datasz -= *off;
 | |
|     data += *off / sizeof(uint32_t);
 | |
| 
 | |
|     if (datasz < 2 * sizeof(uint32_t)) {
 | |
|         goto error_data;
 | |
|     }
 | |
|     pr_type = data[0];
 | |
|     pr_datasz = data[1];
 | |
|     data += 2;
 | |
|     datasz -= 2 * sizeof(uint32_t);
 | |
|     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
 | |
|     if (step > datasz) {
 | |
|         goto error_data;
 | |
|     }
 | |
| 
 | |
|     /* Properties are supposed to be unique and sorted on pr_type. */
 | |
|     if (have_prev_type && pr_type <= *prev_type) {
 | |
|         if (pr_type == *prev_type) {
 | |
|             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
 | |
|         } else {
 | |
|             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
 | |
|         }
 | |
|         return false;
 | |
|     }
 | |
|     *prev_type = pr_type;
 | |
| 
 | |
|     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     *off += 2 * sizeof(uint32_t) + step;
 | |
|     return true;
 | |
| 
 | |
|  error_data:
 | |
|     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Process NT_GNU_PROPERTY_TYPE_0. */
 | |
| static bool parse_elf_properties(const ImageSource *src,
 | |
|                                  struct image_info *info,
 | |
|                                  const struct elf_phdr *phdr,
 | |
|                                  Error **errp)
 | |
| {
 | |
|     union {
 | |
|         struct elf_note nhdr;
 | |
|         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
 | |
|     } note;
 | |
| 
 | |
|     int n, off, datasz;
 | |
|     bool have_prev_type;
 | |
|     uint32_t prev_type;
 | |
| 
 | |
|     /* Unless the arch requires properties, ignore them. */
 | |
|     if (!ARCH_USE_GNU_PROPERTY) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     /* If the properties are crazy large, that's too bad. */
 | |
|     n = phdr->p_filesz;
 | |
|     if (n > sizeof(note)) {
 | |
|         error_setg(errp, "PT_GNU_PROPERTY too large");
 | |
|         return false;
 | |
|     }
 | |
|     if (n < sizeof(note.nhdr)) {
 | |
|         error_setg(errp, "PT_GNU_PROPERTY too small");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
 | |
|      * Swap most of them now, beyond the header and namesz.
 | |
|      */
 | |
| #ifdef BSWAP_NEEDED
 | |
|     for (int i = 4; i < n / 4; i++) {
 | |
|         bswap32s(note.data + i);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * Note that nhdr is 3 words, and that the "name" described by namesz
 | |
|      * immediately follows nhdr and is thus at the 4th word.  Further, all
 | |
|      * of the inputs to the kernel's round_up are multiples of 4.
 | |
|      */
 | |
|     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
 | |
|         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
 | |
|         note.data[3] != GNU0_MAGIC) {
 | |
|         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
 | |
|         return false;
 | |
|     }
 | |
|     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
 | |
| 
 | |
|     datasz = tswap32(note.nhdr.n_descsz) + off;
 | |
|     if (datasz > n) {
 | |
|         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     have_prev_type = false;
 | |
|     prev_type = 0;
 | |
|     while (1) {
 | |
|         if (off == datasz) {
 | |
|             return true;  /* end, exit ok */
 | |
|         }
 | |
|         if (!parse_elf_property(note.data, &off, datasz, info,
 | |
|                                 have_prev_type, &prev_type, errp)) {
 | |
|             return false;
 | |
|         }
 | |
|         have_prev_type = true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * load_elf_image: Load an ELF image into the address space.
 | |
|  * @image_name: the filename of the image, to use in error messages.
 | |
|  * @src: the ImageSource from which to read.
 | |
|  * @info: info collected from the loaded image.
 | |
|  * @ehdr: the ELF header, not yet bswapped.
 | |
|  * @pinterp_name: record any PT_INTERP string found.
 | |
|  *
 | |
|  * On return: @info values will be filled in, as necessary or available.
 | |
|  */
 | |
| 
 | |
| static void load_elf_image(const char *image_name, const ImageSource *src,
 | |
|                            struct image_info *info, struct elfhdr *ehdr,
 | |
|                            char **pinterp_name)
 | |
| {
 | |
|     g_autofree struct elf_phdr *phdr = NULL;
 | |
|     abi_ulong load_addr, load_bias, loaddr, hiaddr, error, align;
 | |
|     size_t reserve_size, align_size;
 | |
|     int i, prot_exec;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     /*
 | |
|      * First of all, some simple consistency checks.
 | |
|      * Note that we rely on the bswapped ehdr staying in bprm_buf,
 | |
|      * for later use by load_elf_binary and create_elf_tables.
 | |
|      */
 | |
|     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|     if (!elf_check_ident(ehdr)) {
 | |
|         error_setg(&err, "Invalid ELF image for this architecture");
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|     bswap_ehdr(ehdr);
 | |
|     if (!elf_check_ehdr(ehdr)) {
 | |
|         error_setg(&err, "Invalid ELF image for this architecture");
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
| 
 | |
|     phdr = imgsrc_read_alloc(ehdr->e_phoff,
 | |
|                              ehdr->e_phnum * sizeof(struct elf_phdr),
 | |
|                              src, &err);
 | |
|     if (phdr == NULL) {
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|     bswap_phdr(phdr, ehdr->e_phnum);
 | |
| 
 | |
|     info->nsegs = 0;
 | |
|     info->pt_dynamic_addr = 0;
 | |
| 
 | |
|     mmap_lock();
 | |
| 
 | |
|     /*
 | |
|      * Find the maximum size of the image and allocate an appropriate
 | |
|      * amount of memory to handle that.  Locate the interpreter, if any.
 | |
|      */
 | |
|     loaddr = -1, hiaddr = 0;
 | |
|     align = 0;
 | |
|     info->exec_stack = EXSTACK_DEFAULT;
 | |
|     for (i = 0; i < ehdr->e_phnum; ++i) {
 | |
|         struct elf_phdr *eppnt = phdr + i;
 | |
|         if (eppnt->p_type == PT_LOAD) {
 | |
|             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
 | |
|             if (a < loaddr) {
 | |
|                 loaddr = a;
 | |
|             }
 | |
|             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
 | |
|             if (a > hiaddr) {
 | |
|                 hiaddr = a;
 | |
|             }
 | |
|             ++info->nsegs;
 | |
|             align |= eppnt->p_align;
 | |
|         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
 | |
|             g_autofree char *interp_name = NULL;
 | |
| 
 | |
|             if (*pinterp_name) {
 | |
|                 error_setg(&err, "Multiple PT_INTERP entries");
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
| 
 | |
|             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
 | |
|                                             src, &err);
 | |
|             if (interp_name == NULL) {
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             if (interp_name[eppnt->p_filesz - 1] != 0) {
 | |
|                 error_setg(&err, "Invalid PT_INTERP entry");
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             *pinterp_name = g_steal_pointer(&interp_name);
 | |
|         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
 | |
|             if (!parse_elf_properties(src, info, eppnt, &err)) {
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|         } else if (eppnt->p_type == PT_GNU_STACK) {
 | |
|             info->exec_stack = eppnt->p_flags & PF_X;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     load_addr = loaddr;
 | |
| 
 | |
|     align = pow2ceil(align);
 | |
| 
 | |
|     if (pinterp_name != NULL) {
 | |
|         if (ehdr->e_type == ET_EXEC) {
 | |
|             /*
 | |
|              * Make sure that the low address does not conflict with
 | |
|              * MMAP_MIN_ADDR or the QEMU application itself.
 | |
|              */
 | |
|             probe_guest_base(image_name, loaddr, hiaddr);
 | |
|         } else {
 | |
|             /*
 | |
|              * The binary is dynamic, but we still need to
 | |
|              * select guest_base.  In this case we pass a size.
 | |
|              */
 | |
|             probe_guest_base(image_name, 0, hiaddr - loaddr);
 | |
| 
 | |
|             /*
 | |
|              * Avoid collision with the loader by providing a different
 | |
|              * default load address.
 | |
|              */
 | |
|             load_addr += elf_et_dyn_base;
 | |
| 
 | |
|             /*
 | |
|              * TODO: Better support for mmap alignment is desirable.
 | |
|              * Since we do not have complete control over the guest
 | |
|              * address space, we prefer the kernel to choose some address
 | |
|              * rather than force the use of LOAD_ADDR via MAP_FIXED.
 | |
|              */
 | |
|             if (align) {
 | |
|                 load_addr &= -align;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Reserve address space for all of this.
 | |
|      *
 | |
|      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
 | |
|      * exactly the address range that is required.  Without reserved_va,
 | |
|      * the guest address space is not isolated.  We have attempted to avoid
 | |
|      * conflict with the host program itself via probe_guest_base, but using
 | |
|      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
 | |
|      *
 | |
|      * Otherwise this is ET_DYN, and we are searching for a location
 | |
|      * that can hold the memory space required.  If the image is
 | |
|      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
 | |
|      * honor that address if it happens to be free.
 | |
|      *
 | |
|      * In both cases, we will overwrite pages in this range with mappings
 | |
|      * from the executable.
 | |
|      */
 | |
|     reserve_size = (size_t)hiaddr - loaddr + 1;
 | |
|     align_size = reserve_size;
 | |
| 
 | |
|     if (ehdr->e_type != ET_EXEC && align > qemu_real_host_page_size()) {
 | |
|         align_size += align - 1;
 | |
|     }
 | |
| 
 | |
|     load_addr = target_mmap(load_addr, align_size, PROT_NONE,
 | |
|                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
 | |
|                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
 | |
|                             -1, 0);
 | |
|     if (load_addr == -1) {
 | |
|         goto exit_mmap;
 | |
|     }
 | |
| 
 | |
|     if (align_size != reserve_size) {
 | |
|         abi_ulong align_addr = ROUND_UP(load_addr, align);
 | |
|         abi_ulong align_end = align_addr + reserve_size;
 | |
|         abi_ulong load_end = load_addr + align_size;
 | |
| 
 | |
|         if (align_addr != load_addr) {
 | |
|             target_munmap(load_addr, align_addr - load_addr);
 | |
|         }
 | |
|         if (align_end != load_end) {
 | |
|             target_munmap(align_end, load_end - align_end);
 | |
|         }
 | |
|         load_addr = align_addr;
 | |
|     }
 | |
| 
 | |
|     load_bias = load_addr - loaddr;
 | |
| 
 | |
|     if (elf_is_fdpic(ehdr)) {
 | |
|         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
 | |
|             g_malloc(sizeof(*loadsegs) * info->nsegs);
 | |
| 
 | |
|         for (i = 0; i < ehdr->e_phnum; ++i) {
 | |
|             switch (phdr[i].p_type) {
 | |
|             case PT_DYNAMIC:
 | |
|                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
 | |
|                 break;
 | |
|             case PT_LOAD:
 | |
|                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
 | |
|                 loadsegs->p_vaddr = phdr[i].p_vaddr;
 | |
|                 loadsegs->p_memsz = phdr[i].p_memsz;
 | |
|                 ++loadsegs;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     info->load_bias = load_bias;
 | |
|     info->code_offset = load_bias;
 | |
|     info->data_offset = load_bias;
 | |
|     info->load_addr = load_addr;
 | |
|     info->entry = ehdr->e_entry + load_bias;
 | |
|     info->start_code = -1;
 | |
|     info->end_code = 0;
 | |
|     info->start_data = -1;
 | |
|     info->end_data = 0;
 | |
|     /* Usual start for brk is after all sections of the main executable. */
 | |
|     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
 | |
|     info->elf_flags = ehdr->e_flags;
 | |
| 
 | |
|     prot_exec = PROT_EXEC;
 | |
| #ifdef TARGET_AARCH64
 | |
|     /*
 | |
|      * If the BTI feature is present, this indicates that the executable
 | |
|      * pages of the startup binary should be mapped with PROT_BTI, so that
 | |
|      * branch targets are enforced.
 | |
|      *
 | |
|      * The startup binary is either the interpreter or the static executable.
 | |
|      * The interpreter is responsible for all pages of a dynamic executable.
 | |
|      *
 | |
|      * Elf notes are backward compatible to older cpus.
 | |
|      * Do not enable BTI unless it is supported.
 | |
|      */
 | |
|     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
 | |
|         && (pinterp_name == NULL || *pinterp_name == 0)
 | |
|         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
 | |
|         prot_exec |= TARGET_PROT_BTI;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     for (i = 0; i < ehdr->e_phnum; i++) {
 | |
|         struct elf_phdr *eppnt = phdr + i;
 | |
|         if (eppnt->p_type == PT_LOAD) {
 | |
|             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
 | |
|             int elf_prot = 0;
 | |
| 
 | |
|             if (eppnt->p_flags & PF_R) {
 | |
|                 elf_prot |= PROT_READ;
 | |
|             }
 | |
|             if (eppnt->p_flags & PF_W) {
 | |
|                 elf_prot |= PROT_WRITE;
 | |
|             }
 | |
|             if (eppnt->p_flags & PF_X) {
 | |
|                 elf_prot |= prot_exec;
 | |
|             }
 | |
| 
 | |
|             vaddr = load_bias + eppnt->p_vaddr;
 | |
|             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
 | |
|             vaddr_ps = vaddr & TARGET_PAGE_MASK;
 | |
| 
 | |
|             vaddr_ef = vaddr + eppnt->p_filesz;
 | |
|             vaddr_em = vaddr + eppnt->p_memsz;
 | |
| 
 | |
|             /*
 | |
|              * Some segments may be completely empty, with a non-zero p_memsz
 | |
|              * but no backing file segment.
 | |
|              */
 | |
|             if (eppnt->p_filesz != 0) {
 | |
|                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
 | |
|                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
 | |
|                                     src, eppnt->p_offset - vaddr_po);
 | |
|                 if (error == -1) {
 | |
|                     goto exit_mmap;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* If the load segment requests extra zeros (e.g. bss), map it. */
 | |
|             if (vaddr_ef < vaddr_em &&
 | |
|                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
| 
 | |
|             /* Find the full program boundaries.  */
 | |
|             if (elf_prot & PROT_EXEC) {
 | |
|                 if (vaddr < info->start_code) {
 | |
|                     info->start_code = vaddr;
 | |
|                 }
 | |
|                 if (vaddr_ef > info->end_code) {
 | |
|                     info->end_code = vaddr_ef;
 | |
|                 }
 | |
|             }
 | |
|             if (elf_prot & PROT_WRITE) {
 | |
|                 if (vaddr < info->start_data) {
 | |
|                     info->start_data = vaddr;
 | |
|                 }
 | |
|                 if (vaddr_ef > info->end_data) {
 | |
|                     info->end_data = vaddr_ef;
 | |
|                 }
 | |
|             }
 | |
| #ifdef TARGET_MIPS
 | |
|         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
 | |
|             Mips_elf_abiflags_v0 abiflags;
 | |
| 
 | |
|             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
 | |
|                              src, &err)) {
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             bswap_mips_abiflags(&abiflags);
 | |
|             info->fp_abi = abiflags.fp_abi;
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (info->end_data == 0) {
 | |
|         info->start_data = info->end_code;
 | |
|         info->end_data = info->end_code;
 | |
|     }
 | |
| 
 | |
|     if (qemu_log_enabled()) {
 | |
|         load_symbols(ehdr, src, load_bias);
 | |
|     }
 | |
| 
 | |
|     debuginfo_report_elf(image_name, src->fd, load_bias);
 | |
| 
 | |
|     mmap_unlock();
 | |
| 
 | |
|     close(src->fd);
 | |
|     return;
 | |
| 
 | |
|  exit_mmap:
 | |
|     error_setg_errno(&err, errno, "Error mapping file");
 | |
|     goto exit_errmsg;
 | |
|  exit_errmsg:
 | |
|     error_reportf_err(err, "%s: ", image_name);
 | |
|     exit(-1);
 | |
| }
 | |
| 
 | |
| static void load_elf_interp(const char *filename, struct image_info *info,
 | |
|                             char bprm_buf[BPRM_BUF_SIZE])
 | |
| {
 | |
|     struct elfhdr ehdr;
 | |
|     ImageSource src;
 | |
|     int fd, retval;
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     fd = open(path(filename), O_RDONLY);
 | |
|     if (fd < 0) {
 | |
|         error_setg_file_open(&err, errno, filename);
 | |
|         error_report_err(err);
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
 | |
|     if (retval < 0) {
 | |
|         error_setg_errno(&err, errno, "Error reading file header");
 | |
|         error_reportf_err(err, "%s: ", filename);
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     src.fd = fd;
 | |
|     src.cache = bprm_buf;
 | |
|     src.cache_size = retval;
 | |
| 
 | |
|     load_elf_image(filename, &src, info, &ehdr, NULL);
 | |
| }
 | |
| 
 | |
| #ifndef vdso_image_info
 | |
| #ifdef VDSO_HEADER
 | |
| #include VDSO_HEADER
 | |
| #define  vdso_image_info(flags)  &vdso_image_info
 | |
| #else
 | |
| #define  vdso_image_info(flags)  NULL
 | |
| #endif /* VDSO_HEADER */
 | |
| #endif /* vdso_image_info */
 | |
| 
 | |
| static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
 | |
| {
 | |
|     ImageSource src;
 | |
|     struct elfhdr ehdr;
 | |
|     abi_ulong load_bias, load_addr;
 | |
| 
 | |
|     src.fd = -1;
 | |
|     src.cache = vdso->image;
 | |
|     src.cache_size = vdso->image_size;
 | |
| 
 | |
|     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
 | |
|     load_addr = info->load_addr;
 | |
|     load_bias = info->load_bias;
 | |
| 
 | |
|     /*
 | |
|      * We need to relocate the VDSO image.  The one built into the kernel
 | |
|      * is built for a fixed address.  The one built for QEMU is not, since
 | |
|      * that requires close control of the guest address space.
 | |
|      * We pre-processed the image to locate all of the addresses that need
 | |
|      * to be updated.
 | |
|      */
 | |
|     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
 | |
|         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
 | |
|         *addr = tswapal(tswapal(*addr) + load_bias);
 | |
|     }
 | |
| 
 | |
|     /* Install signal trampolines, if present. */
 | |
|     if (vdso->sigreturn_ofs) {
 | |
|         default_sigreturn = load_addr + vdso->sigreturn_ofs;
 | |
|     }
 | |
|     if (vdso->rt_sigreturn_ofs) {
 | |
|         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
 | |
|     }
 | |
| 
 | |
|     /* Remove write from VDSO segment. */
 | |
|     target_mprotect(info->start_data, info->end_data - info->start_data,
 | |
|                     PROT_READ | PROT_EXEC);
 | |
| }
 | |
| 
 | |
| static int symfind(const void *s0, const void *s1)
 | |
| {
 | |
|     struct elf_sym *sym = (struct elf_sym *)s1;
 | |
|     __typeof(sym->st_value) addr = *(uint64_t *)s0;
 | |
|     int result = 0;
 | |
| 
 | |
|     if (addr < sym->st_value) {
 | |
|         result = -1;
 | |
|     } else if (addr >= sym->st_value + sym->st_size) {
 | |
|         result = 1;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
 | |
| {
 | |
| #if ELF_CLASS == ELFCLASS32
 | |
|     struct elf_sym *syms = s->disas_symtab.elf32;
 | |
| #else
 | |
|     struct elf_sym *syms = s->disas_symtab.elf64;
 | |
| #endif
 | |
| 
 | |
|     // binary search
 | |
|     struct elf_sym *sym;
 | |
| 
 | |
|     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
 | |
|     if (sym != NULL) {
 | |
|         return s->disas_strtab + sym->st_name;
 | |
|     }
 | |
| 
 | |
|     return "";
 | |
| }
 | |
| 
 | |
| /* FIXME: This should use elf_ops.h.inc  */
 | |
| static int symcmp(const void *s0, const void *s1)
 | |
| {
 | |
|     struct elf_sym *sym0 = (struct elf_sym *)s0;
 | |
|     struct elf_sym *sym1 = (struct elf_sym *)s1;
 | |
|     return (sym0->st_value < sym1->st_value)
 | |
|         ? -1
 | |
|         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
 | |
| }
 | |
| 
 | |
| /* Best attempt to load symbols from this ELF object. */
 | |
| static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
 | |
|                          abi_ulong load_bias)
 | |
| {
 | |
|     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
 | |
|     g_autofree struct elf_shdr *shdr = NULL;
 | |
|     char *strings = NULL;
 | |
|     struct elf_sym *syms = NULL;
 | |
|     struct elf_sym *new_syms;
 | |
|     uint64_t segsz;
 | |
| 
 | |
|     shnum = hdr->e_shnum;
 | |
|     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
 | |
|                              src, NULL);
 | |
|     if (shdr == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bswap_shdr(shdr, shnum);
 | |
|     for (i = 0; i < shnum; ++i) {
 | |
|         if (shdr[i].sh_type == SHT_SYMTAB) {
 | |
|             sym_idx = i;
 | |
|             str_idx = shdr[i].sh_link;
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* There will be no symbol table if the file was stripped.  */
 | |
|     return;
 | |
| 
 | |
|  found:
 | |
|     /* Now know where the strtab and symtab are.  Snarf them.  */
 | |
| 
 | |
|     segsz = shdr[str_idx].sh_size;
 | |
|     strings = g_try_malloc(segsz);
 | |
|     if (!strings) {
 | |
|         goto give_up;
 | |
|     }
 | |
|     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     segsz = shdr[sym_idx].sh_size;
 | |
|     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
 | |
|         /*
 | |
|          * Implausibly large symbol table: give up rather than ploughing
 | |
|          * on with the number of symbols calculation overflowing.
 | |
|          */
 | |
|         goto give_up;
 | |
|     }
 | |
|     nsyms = segsz / sizeof(struct elf_sym);
 | |
|     syms = g_try_malloc(segsz);
 | |
|     if (!syms) {
 | |
|         goto give_up;
 | |
|     }
 | |
|     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < nsyms; ) {
 | |
|         bswap_sym(syms + i);
 | |
|         /* Throw away entries which we do not need.  */
 | |
|         if (syms[i].st_shndx == SHN_UNDEF
 | |
|             || syms[i].st_shndx >= SHN_LORESERVE
 | |
|             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
 | |
|             if (i < --nsyms) {
 | |
|                 syms[i] = syms[nsyms];
 | |
|             }
 | |
|         } else {
 | |
| #if defined(TARGET_ARM) || defined (TARGET_MIPS)
 | |
|             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
 | |
|             syms[i].st_value &= ~(target_ulong)1;
 | |
| #endif
 | |
|             syms[i].st_value += load_bias;
 | |
|             i++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No "useful" symbol.  */
 | |
|     if (nsyms == 0) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Attempt to free the storage associated with the local symbols
 | |
|      * that we threw away.  Whether or not this has any effect on the
 | |
|      * memory allocation depends on the malloc implementation and how
 | |
|      * many symbols we managed to discard.
 | |
|      */
 | |
|     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
 | |
|     if (new_syms == NULL) {
 | |
|         goto give_up;
 | |
|     }
 | |
|     syms = new_syms;
 | |
| 
 | |
|     qsort(syms, nsyms, sizeof(*syms), symcmp);
 | |
| 
 | |
|     {
 | |
|         struct syminfo *s = g_new(struct syminfo, 1);
 | |
| 
 | |
|         s->disas_strtab = strings;
 | |
|         s->disas_num_syms = nsyms;
 | |
| #if ELF_CLASS == ELFCLASS32
 | |
|         s->disas_symtab.elf32 = syms;
 | |
| #else
 | |
|         s->disas_symtab.elf64 = syms;
 | |
| #endif
 | |
|         s->lookup_symbol = lookup_symbolxx;
 | |
|         s->next = syminfos;
 | |
|         syminfos = s;
 | |
|     }
 | |
|     return;
 | |
| 
 | |
|  give_up:
 | |
|     g_free(strings);
 | |
|     g_free(syms);
 | |
| }
 | |
| 
 | |
| uint32_t get_elf_eflags(int fd)
 | |
| {
 | |
|     struct elfhdr ehdr;
 | |
|     off_t offset;
 | |
|     int ret;
 | |
| 
 | |
|     /* Read ELF header */
 | |
|     offset = lseek(fd, 0, SEEK_SET);
 | |
|     if (offset == (off_t) -1) {
 | |
|         return 0;
 | |
|     }
 | |
|     ret = read(fd, &ehdr, sizeof(ehdr));
 | |
|     if (ret < sizeof(ehdr)) {
 | |
|         return 0;
 | |
|     }
 | |
|     offset = lseek(fd, offset, SEEK_SET);
 | |
|     if (offset == (off_t) -1) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check ELF signature */
 | |
|     if (!elf_check_ident(&ehdr)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* check header */
 | |
|     bswap_ehdr(&ehdr);
 | |
|     if (!elf_check_ehdr(&ehdr)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* return architecture id */
 | |
|     return ehdr.e_flags;
 | |
| }
 | |
| 
 | |
| int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
 | |
| {
 | |
|     /*
 | |
|      * We need a copy of the elf header for passing to create_elf_tables.
 | |
|      * We will have overwritten the original when we re-use bprm->buf
 | |
|      * while loading the interpreter.  Allocate the storage for this now
 | |
|      * and let elf_load_image do any swapping that may be required.
 | |
|      */
 | |
|     struct elfhdr ehdr;
 | |
|     struct image_info interp_info, vdso_info;
 | |
|     char *elf_interpreter = NULL;
 | |
|     char *scratch;
 | |
| 
 | |
|     memset(&interp_info, 0, sizeof(interp_info));
 | |
| #ifdef TARGET_MIPS
 | |
|     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
 | |
| #endif
 | |
| 
 | |
|     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
 | |
| 
 | |
|     /* Do this so that we can load the interpreter, if need be.  We will
 | |
|        change some of these later */
 | |
|     bprm->p = setup_arg_pages(bprm, info);
 | |
| 
 | |
|     scratch = g_new0(char, TARGET_PAGE_SIZE);
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->file_string = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->env_strings = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->arg_strings = bprm->p;
 | |
|     } else {
 | |
|         info->arg_strings = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->env_strings = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->file_string = bprm->p;
 | |
|         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|     }
 | |
| 
 | |
|     g_free(scratch);
 | |
| 
 | |
|     if (!bprm->p) {
 | |
|         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     if (elf_interpreter) {
 | |
|         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
 | |
| 
 | |
|         /*
 | |
|          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
 | |
|          * with the mappings the interpreter can be loaded above but
 | |
|          * near the main executable, which can leave very little room
 | |
|          * for the heap.
 | |
|          * If the current brk has less than 16MB, use the end of the
 | |
|          * interpreter.
 | |
|          */
 | |
|         if (interp_info.brk > info->brk &&
 | |
|             interp_info.load_bias - info->brk < 16 * MiB)  {
 | |
|             info->brk = interp_info.brk;
 | |
|         }
 | |
| 
 | |
|         /* If the program interpreter is one of these two, then assume
 | |
|            an iBCS2 image.  Otherwise assume a native linux image.  */
 | |
| 
 | |
|         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
 | |
|             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
 | |
|             info->personality = PER_SVR4;
 | |
| 
 | |
|             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | |
|                and some applications "depend" upon this behavior.  Since
 | |
|                we do not have the power to recompile these, we emulate
 | |
|                the SVr4 behavior.  Sigh.  */
 | |
|             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
 | |
|                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
 | |
|                         -1, 0);
 | |
|         }
 | |
| #ifdef TARGET_MIPS
 | |
|         info->interp_fp_abi = interp_info.fp_abi;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Load a vdso if available, which will amongst other things contain the
 | |
|      * signal trampolines.  Otherwise, allocate a separate page for them.
 | |
|      */
 | |
|     const VdsoImageInfo *vdso = vdso_image_info(info->elf_flags);
 | |
|     if (vdso) {
 | |
|         load_elf_vdso(&vdso_info, vdso);
 | |
|         info->vdso = vdso_info.load_bias;
 | |
|     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
 | |
|         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
 | |
|                                           PROT_READ | PROT_WRITE,
 | |
|                                           MAP_PRIVATE | MAP_ANON, -1, 0);
 | |
|         if (tramp_page == -1) {
 | |
|             return -errno;
 | |
|         }
 | |
| 
 | |
|         setup_sigtramp(tramp_page);
 | |
|         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
 | |
|     }
 | |
| 
 | |
|     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
 | |
|                                 elf_interpreter ? &interp_info : NULL,
 | |
|                                 vdso ? &vdso_info : NULL);
 | |
|     info->start_stack = bprm->p;
 | |
| 
 | |
|     /* If we have an interpreter, set that as the program's entry point.
 | |
|        Copy the load_bias as well, to help PPC64 interpret the entry
 | |
|        point as a function descriptor.  Do this after creating elf tables
 | |
|        so that we copy the original program entry point into the AUXV.  */
 | |
|     if (elf_interpreter) {
 | |
|         info->load_bias = interp_info.load_bias;
 | |
|         info->entry = interp_info.entry;
 | |
|         g_free(elf_interpreter);
 | |
|     }
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
|     bprm->core_dump = &elf_core_dump;
 | |
| #endif
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
| 
 | |
| /*
 | |
|  * Definitions to generate Intel SVR4-like core files.
 | |
|  * These mostly have the same names as the SVR4 types with "target_elf_"
 | |
|  * tacked on the front to prevent clashes with linux definitions,
 | |
|  * and the typedef forms have been avoided.  This is mostly like
 | |
|  * the SVR4 structure, but more Linuxy, with things that Linux does
 | |
|  * not support and which gdb doesn't really use excluded.
 | |
|  *
 | |
|  * Fields we don't dump (their contents is zero) in linux-user qemu
 | |
|  * are marked with XXX.
 | |
|  *
 | |
|  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
 | |
|  *
 | |
|  * Porting ELF coredump for target is (quite) simple process.  First you
 | |
|  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
 | |
|  * the target resides):
 | |
|  *
 | |
|  * #define USE_ELF_CORE_DUMP
 | |
|  *
 | |
|  * Next you define type of register set used for dumping.  ELF specification
 | |
|  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
 | |
|  *
 | |
|  * typedef <target_regtype> target_elf_greg_t;
 | |
|  * #define ELF_NREG <number of registers>
 | |
|  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
|  *
 | |
|  * Last step is to implement target specific function that copies registers
 | |
|  * from given cpu into just specified register set.  Prototype is:
 | |
|  *
 | |
|  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
 | |
|  *                                const CPUArchState *env);
 | |
|  *
 | |
|  * Parameters:
 | |
|  *     regs - copy register values into here (allocated and zeroed by caller)
 | |
|  *     env - copy registers from here
 | |
|  *
 | |
|  * Example for ARM target is provided in this file.
 | |
|  */
 | |
| 
 | |
| struct target_elf_siginfo {
 | |
|     abi_int    si_signo; /* signal number */
 | |
|     abi_int    si_code;  /* extra code */
 | |
|     abi_int    si_errno; /* errno */
 | |
| };
 | |
| 
 | |
| struct target_elf_prstatus {
 | |
|     struct target_elf_siginfo pr_info;      /* Info associated with signal */
 | |
|     abi_short          pr_cursig;    /* Current signal */
 | |
|     abi_ulong          pr_sigpend;   /* XXX */
 | |
|     abi_ulong          pr_sighold;   /* XXX */
 | |
|     target_pid_t       pr_pid;
 | |
|     target_pid_t       pr_ppid;
 | |
|     target_pid_t       pr_pgrp;
 | |
|     target_pid_t       pr_sid;
 | |
|     struct target_timeval pr_utime;  /* XXX User time */
 | |
|     struct target_timeval pr_stime;  /* XXX System time */
 | |
|     struct target_timeval pr_cutime; /* XXX Cumulative user time */
 | |
|     struct target_timeval pr_cstime; /* XXX Cumulative system time */
 | |
|     target_elf_gregset_t      pr_reg;       /* GP registers */
 | |
|     abi_int            pr_fpvalid;   /* XXX */
 | |
| };
 | |
| 
 | |
| #define ELF_PRARGSZ     (80) /* Number of chars for args */
 | |
| 
 | |
| struct target_elf_prpsinfo {
 | |
|     char         pr_state;       /* numeric process state */
 | |
|     char         pr_sname;       /* char for pr_state */
 | |
|     char         pr_zomb;        /* zombie */
 | |
|     char         pr_nice;        /* nice val */
 | |
|     abi_ulong    pr_flag;        /* flags */
 | |
|     target_uid_t pr_uid;
 | |
|     target_gid_t pr_gid;
 | |
|     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
 | |
|     /* Lots missing */
 | |
|     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
 | |
|     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
 | |
| };
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| static void bswap_prstatus(struct target_elf_prstatus *prstatus)
 | |
| {
 | |
|     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
 | |
|     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
 | |
|     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
 | |
|     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
 | |
|     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
 | |
|     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
 | |
|     prstatus->pr_pid = tswap32(prstatus->pr_pid);
 | |
|     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
 | |
|     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
 | |
|     prstatus->pr_sid = tswap32(prstatus->pr_sid);
 | |
|     /* cpu times are not filled, so we skip them */
 | |
|     /* regs should be in correct format already */
 | |
|     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
 | |
| }
 | |
| 
 | |
| static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
 | |
| {
 | |
|     psinfo->pr_flag = tswapal(psinfo->pr_flag);
 | |
|     psinfo->pr_uid = tswap16(psinfo->pr_uid);
 | |
|     psinfo->pr_gid = tswap16(psinfo->pr_gid);
 | |
|     psinfo->pr_pid = tswap32(psinfo->pr_pid);
 | |
|     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
 | |
|     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
 | |
|     psinfo->pr_sid = tswap32(psinfo->pr_sid);
 | |
| }
 | |
| 
 | |
| static void bswap_note(struct elf_note *en)
 | |
| {
 | |
|     bswap32s(&en->n_namesz);
 | |
|     bswap32s(&en->n_descsz);
 | |
|     bswap32s(&en->n_type);
 | |
| }
 | |
| #else
 | |
| static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
 | |
| static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
 | |
| static inline void bswap_note(struct elf_note *en) { }
 | |
| #endif /* BSWAP_NEEDED */
 | |
| 
 | |
| /*
 | |
|  * Calculate file (dump) size of given memory region.
 | |
|  */
 | |
| static size_t vma_dump_size(target_ulong start, target_ulong end,
 | |
|                             unsigned long flags)
 | |
| {
 | |
|     /* The area must be readable. */
 | |
|     if (!(flags & PAGE_READ)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Usually we don't dump executable pages as they contain
 | |
|      * non-writable code that debugger can read directly from
 | |
|      * target library etc. If there is no elf header, we dump it.
 | |
|      */
 | |
|     if (!(flags & PAGE_WRITE_ORG) &&
 | |
|         (flags & PAGE_EXEC) &&
 | |
|         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return end - start;
 | |
| }
 | |
| 
 | |
| static size_t size_note(const char *name, size_t datasz)
 | |
| {
 | |
|     size_t namesz = strlen(name) + 1;
 | |
| 
 | |
|     namesz = ROUND_UP(namesz, 4);
 | |
|     datasz = ROUND_UP(datasz, 4);
 | |
| 
 | |
|     return sizeof(struct elf_note) + namesz + datasz;
 | |
| }
 | |
| 
 | |
| static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
 | |
| {
 | |
|     void *ptr = *pptr;
 | |
|     struct elf_note *n = ptr;
 | |
|     size_t namesz = strlen(name) + 1;
 | |
| 
 | |
|     n->n_namesz = namesz;
 | |
|     n->n_descsz = datasz;
 | |
|     n->n_type = type;
 | |
|     bswap_note(n);
 | |
| 
 | |
|     ptr += sizeof(*n);
 | |
|     memcpy(ptr, name, namesz);
 | |
| 
 | |
|     namesz = ROUND_UP(namesz, 4);
 | |
|     datasz = ROUND_UP(datasz, 4);
 | |
| 
 | |
|     *pptr = ptr + namesz + datasz;
 | |
|     return ptr + namesz;
 | |
| }
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
 | |
|                             uint32_t flags)
 | |
| {
 | |
|     memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
| 
 | |
|     elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
|     elf->e_ident[EI_DATA] = ELF_DATA;
 | |
|     elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
|     elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 
 | |
|     elf->e_type = ET_CORE;
 | |
|     elf->e_machine = machine;
 | |
|     elf->e_version = EV_CURRENT;
 | |
|     elf->e_phoff = sizeof(struct elfhdr);
 | |
|     elf->e_flags = flags;
 | |
|     elf->e_ehsize = sizeof(struct elfhdr);
 | |
|     elf->e_phentsize = sizeof(struct elf_phdr);
 | |
|     elf->e_phnum = segs;
 | |
| 
 | |
|     bswap_ehdr(elf);
 | |
| }
 | |
| 
 | |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
 | |
| {
 | |
|     phdr->p_type = PT_NOTE;
 | |
|     phdr->p_offset = offset;
 | |
|     phdr->p_filesz = sz;
 | |
| 
 | |
|     bswap_phdr(phdr, 1);
 | |
| }
 | |
| 
 | |
| static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
 | |
| {
 | |
|     /*
 | |
|      * Because note memory is only aligned to 4, and target_elf_prstatus
 | |
|      * may well have higher alignment requirements, fill locally and
 | |
|      * memcpy to the destination afterward.
 | |
|      */
 | |
|     struct target_elf_prstatus prstatus = {
 | |
|         .pr_info.si_signo = signr,
 | |
|         .pr_cursig = signr,
 | |
|         .pr_pid = get_task_state(cpu)->ts_tid,
 | |
|         .pr_ppid = getppid(),
 | |
|         .pr_pgrp = getpgrp(),
 | |
|         .pr_sid = getsid(0),
 | |
|     };
 | |
| 
 | |
|     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
 | |
|     bswap_prstatus(&prstatus);
 | |
|     memcpy(data, &prstatus, sizeof(prstatus));
 | |
| }
 | |
| 
 | |
| static void fill_prpsinfo_note(void *data, const TaskState *ts)
 | |
| {
 | |
|     /*
 | |
|      * Because note memory is only aligned to 4, and target_elf_prpsinfo
 | |
|      * may well have higher alignment requirements, fill locally and
 | |
|      * memcpy to the destination afterward.
 | |
|      */
 | |
|     struct target_elf_prpsinfo psinfo = {
 | |
|         .pr_pid = getpid(),
 | |
|         .pr_ppid = getppid(),
 | |
|         .pr_pgrp = getpgrp(),
 | |
|         .pr_sid = getsid(0),
 | |
|         .pr_uid = getuid(),
 | |
|         .pr_gid = getgid(),
 | |
|     };
 | |
|     char *base_filename;
 | |
|     size_t len;
 | |
| 
 | |
|     len = ts->info->env_strings - ts->info->arg_strings;
 | |
|     len = MIN(len, ELF_PRARGSZ);
 | |
|     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
 | |
|     for (size_t i = 0; i < len; i++) {
 | |
|         if (psinfo.pr_psargs[i] == 0) {
 | |
|             psinfo.pr_psargs[i] = ' ';
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     base_filename = g_path_get_basename(ts->bprm->filename);
 | |
|     /*
 | |
|      * Using strncpy here is fine: at max-length,
 | |
|      * this field is not NUL-terminated.
 | |
|      */
 | |
|     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
 | |
|     g_free(base_filename);
 | |
| 
 | |
|     bswap_psinfo(&psinfo);
 | |
|     memcpy(data, &psinfo, sizeof(psinfo));
 | |
| }
 | |
| 
 | |
| static void fill_auxv_note(void *data, const TaskState *ts)
 | |
| {
 | |
|     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs name of coredump file.  We have following convention
 | |
|  * for the name:
 | |
|  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
 | |
|  *
 | |
|  * Returns the filename
 | |
|  */
 | |
| static char *core_dump_filename(const TaskState *ts)
 | |
| {
 | |
|     g_autoptr(GDateTime) now = g_date_time_new_now_local();
 | |
|     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
 | |
|     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
 | |
| 
 | |
|     return g_strdup_printf("qemu_%s_%s_%d.core",
 | |
|                            base_filename, nowstr, (int)getpid());
 | |
| }
 | |
| 
 | |
| static int dump_write(int fd, const void *ptr, size_t size)
 | |
| {
 | |
|     const char *bufp = (const char *)ptr;
 | |
|     ssize_t bytes_written, bytes_left;
 | |
| 
 | |
|     bytes_written = 0;
 | |
|     bytes_left = size;
 | |
| 
 | |
|     /*
 | |
|      * In normal conditions, single write(2) should do but
 | |
|      * in case of socket etc. this mechanism is more portable.
 | |
|      */
 | |
|     do {
 | |
|         bytes_written = write(fd, bufp, bytes_left);
 | |
|         if (bytes_written < 0) {
 | |
|             if (errno == EINTR)
 | |
|                 continue;
 | |
|             return (-1);
 | |
|         } else if (bytes_written == 0) { /* eof */
 | |
|             return (-1);
 | |
|         }
 | |
|         bufp += bytes_written;
 | |
|         bytes_left -= bytes_written;
 | |
|     } while (bytes_left > 0);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
 | |
|                                       target_ulong end, unsigned long flags)
 | |
| {
 | |
|     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
 | |
|         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
 | |
| 
 | |
|         while (1) {
 | |
|             page_unprotect(start, 0);
 | |
|             if (end - start <= step) {
 | |
|                 break;
 | |
|             }
 | |
|             start += step;
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     unsigned count;
 | |
|     size_t size;
 | |
| } CountAndSizeRegions;
 | |
| 
 | |
| static int wmr_count_and_size_regions(void *opaque, target_ulong start,
 | |
|                                       target_ulong end, unsigned long flags)
 | |
| {
 | |
|     CountAndSizeRegions *css = opaque;
 | |
| 
 | |
|     css->count++;
 | |
|     css->size += vma_dump_size(start, end, flags);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     struct elf_phdr *phdr;
 | |
|     off_t offset;
 | |
| } FillRegionPhdr;
 | |
| 
 | |
| static int wmr_fill_region_phdr(void *opaque, target_ulong start,
 | |
|                                 target_ulong end, unsigned long flags)
 | |
| {
 | |
|     FillRegionPhdr *d = opaque;
 | |
|     struct elf_phdr *phdr = d->phdr;
 | |
| 
 | |
|     phdr->p_type = PT_LOAD;
 | |
|     phdr->p_vaddr = start;
 | |
|     phdr->p_paddr = 0;
 | |
|     phdr->p_filesz = vma_dump_size(start, end, flags);
 | |
|     phdr->p_offset = d->offset;
 | |
|     d->offset += phdr->p_filesz;
 | |
|     phdr->p_memsz = end - start;
 | |
|     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
 | |
|                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
 | |
|                   | (flags & PAGE_EXEC ? PF_X : 0);
 | |
|     phdr->p_align = ELF_EXEC_PAGESIZE;
 | |
| 
 | |
|     bswap_phdr(phdr, 1);
 | |
|     d->phdr = phdr + 1;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int wmr_write_region(void *opaque, target_ulong start,
 | |
|                             target_ulong end, unsigned long flags)
 | |
| {
 | |
|     int fd = *(int *)opaque;
 | |
|     size_t size = vma_dump_size(start, end, flags);
 | |
| 
 | |
|     if (!size) {
 | |
|         return 0;
 | |
|     }
 | |
|     return dump_write(fd, g2h_untagged(start), size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out ELF coredump.
 | |
|  *
 | |
|  * See documentation of ELF object file format in:
 | |
|  * http://www.caldera.com/developers/devspecs/gabi41.pdf
 | |
|  *
 | |
|  * Coredump format in linux is following:
 | |
|  *
 | |
|  * 0   +----------------------+         \
 | |
|  *     | ELF header           | ET_CORE  |
 | |
|  *     +----------------------+          |
 | |
|  *     | ELF program headers  |          |--- headers
 | |
|  *     | - NOTE section       |          |
 | |
|  *     | - PT_LOAD sections   |          |
 | |
|  *     +----------------------+         /
 | |
|  *     | NOTEs:               |
 | |
|  *     | - NT_PRSTATUS        |
 | |
|  *     | - NT_PRSINFO         |
 | |
|  *     | - NT_AUXV            |
 | |
|  *     +----------------------+ <-- aligned to target page
 | |
|  *     | Process memory dump  |
 | |
|  *     :                      :
 | |
|  *     .                      .
 | |
|  *     :                      :
 | |
|  *     |                      |
 | |
|  *     +----------------------+
 | |
|  *
 | |
|  * NT_PRSTATUS -> struct elf_prstatus (per thread)
 | |
|  * NT_PRSINFO  -> struct elf_prpsinfo
 | |
|  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
 | |
|  *
 | |
|  * Format follows System V format as close as possible.  Current
 | |
|  * version limitations are as follows:
 | |
|  *     - no floating point registers are dumped
 | |
|  *
 | |
|  * Function returns 0 in case of success, negative errno otherwise.
 | |
|  *
 | |
|  * TODO: make this work also during runtime: it should be
 | |
|  * possible to force coredump from running process and then
 | |
|  * continue processing.  For example qemu could set up SIGUSR2
 | |
|  * handler (provided that target process haven't registered
 | |
|  * handler for that) that does the dump when signal is received.
 | |
|  */
 | |
| static int elf_core_dump(int signr, const CPUArchState *env)
 | |
| {
 | |
|     const CPUState *cpu = env_cpu_const(env);
 | |
|     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
 | |
|     struct rlimit dumpsize;
 | |
|     CountAndSizeRegions css;
 | |
|     off_t offset, note_offset, data_offset;
 | |
|     size_t note_size;
 | |
|     int cpus, ret;
 | |
|     int fd = -1;
 | |
|     CPUState *cpu_iter;
 | |
| 
 | |
|     if (prctl(PR_GET_DUMPABLE) == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     cpu_list_lock();
 | |
|     mmap_lock();
 | |
| 
 | |
|     /* By unprotecting, we merge vmas that might be split. */
 | |
|     walk_memory_regions(NULL, wmr_page_unprotect_regions);
 | |
| 
 | |
|     /*
 | |
|      * Walk through target process memory mappings and
 | |
|      * set up structure containing this information.
 | |
|      */
 | |
|     memset(&css, 0, sizeof(css));
 | |
|     walk_memory_regions(&css, wmr_count_and_size_regions);
 | |
| 
 | |
|     cpus = 0;
 | |
|     CPU_FOREACH(cpu_iter) {
 | |
|         cpus++;
 | |
|     }
 | |
| 
 | |
|     offset = sizeof(struct elfhdr);
 | |
|     offset += (css.count + 1) * sizeof(struct elf_phdr);
 | |
|     note_offset = offset;
 | |
| 
 | |
|     offset += size_note("CORE", ts->info->auxv_len);
 | |
|     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
 | |
|     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
 | |
|     note_size = offset - note_offset;
 | |
|     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
 | |
| 
 | |
|     /* Do not dump if the corefile size exceeds the limit. */
 | |
|     if (dumpsize.rlim_cur != RLIM_INFINITY
 | |
|         && dumpsize.rlim_cur < data_offset + css.size) {
 | |
|         errno = 0;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         g_autofree char *corefile = core_dump_filename(ts);
 | |
|         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
 | |
|                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
 | |
|     }
 | |
|     if (fd < 0) {
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * There is a fair amount of alignment padding within the notes
 | |
|      * as well as preceeding the process memory.  Allocate a zeroed
 | |
|      * block to hold it all.  Write all of the headers directly into
 | |
|      * this buffer and then write it out as a block.
 | |
|      */
 | |
|     {
 | |
|         g_autofree void *header = g_malloc0(data_offset);
 | |
|         FillRegionPhdr frp;
 | |
|         void *hptr, *dptr;
 | |
| 
 | |
|         /* Create elf file header. */
 | |
|         hptr = header;
 | |
|         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
 | |
|         hptr += sizeof(struct elfhdr);
 | |
| 
 | |
|         /* Create elf program headers. */
 | |
|         fill_elf_note_phdr(hptr, note_size, note_offset);
 | |
|         hptr += sizeof(struct elf_phdr);
 | |
| 
 | |
|         frp.phdr = hptr;
 | |
|         frp.offset = data_offset;
 | |
|         walk_memory_regions(&frp, wmr_fill_region_phdr);
 | |
|         hptr = frp.phdr;
 | |
| 
 | |
|         /* Create the notes. */
 | |
|         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
 | |
|         fill_auxv_note(dptr, ts);
 | |
| 
 | |
|         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
 | |
|                          sizeof(struct target_elf_prpsinfo));
 | |
|         fill_prpsinfo_note(dptr, ts);
 | |
| 
 | |
|         CPU_FOREACH(cpu_iter) {
 | |
|             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
 | |
|                              sizeof(struct target_elf_prstatus));
 | |
|             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
 | |
|         }
 | |
| 
 | |
|         if (dump_write(fd, header, data_offset) < 0) {
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Finally write process memory into the corefile as well.
 | |
|      */
 | |
|     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
 | |
|         goto out;
 | |
|     }
 | |
|     errno = 0;
 | |
| 
 | |
|  out:
 | |
|     ret = -errno;
 | |
|     mmap_unlock();
 | |
|     cpu_list_unlock();
 | |
|     if (fd >= 0) {
 | |
|         close(fd);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| #endif /* USE_ELF_CORE_DUMP */
 | |
| 
 | |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     init_thread(regs, infop);
 | |
| }
 |