 fb730c8683
			
		
	
	
		fb730c8683
		
	
	
	
	
		
			
			On older kernels which don't implement MAP_FIXED_NOREPLACE the kernel may still fail to give us the address we asked for despite having already probed the map for a valid hole. Asserting isn't particularly useful to the user so let us move the check up and expand the error_report a little to give them a fighting chance of working around the problem. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Laurent Vivier <laurent@vivier.eu> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Cc: Bug 1895080 <1895080@bugs.launchpad.net> Ameliorates: ee94743034 Message-Id: <20200915134317.11110-2-alex.bennee@linaro.org>
		
			
				
	
	
		
			3839 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3839 lines
		
	
	
		
			116 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* This is the Linux kernel elf-loading code, ported into user space */
 | |
| #include "qemu/osdep.h"
 | |
| #include <sys/param.h>
 | |
| 
 | |
| #include <sys/resource.h>
 | |
| #include <sys/shm.h>
 | |
| 
 | |
| #include "qemu.h"
 | |
| #include "disas/disas.h"
 | |
| #include "qemu/path.h"
 | |
| #include "qemu/queue.h"
 | |
| #include "qemu/guest-random.h"
 | |
| #include "qemu/units.h"
 | |
| #include "qemu/selfmap.h"
 | |
| 
 | |
| #ifdef _ARCH_PPC64
 | |
| #undef ARCH_DLINFO
 | |
| #undef ELF_PLATFORM
 | |
| #undef ELF_HWCAP
 | |
| #undef ELF_HWCAP2
 | |
| #undef ELF_CLASS
 | |
| #undef ELF_DATA
 | |
| #undef ELF_ARCH
 | |
| #endif
 | |
| 
 | |
| #define ELF_OSABI   ELFOSABI_SYSV
 | |
| 
 | |
| /* from personality.h */
 | |
| 
 | |
| /*
 | |
|  * Flags for bug emulation.
 | |
|  *
 | |
|  * These occupy the top three bytes.
 | |
|  */
 | |
| enum {
 | |
|     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
 | |
|     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
 | |
|                                            descriptors (signal handling) */
 | |
|     MMAP_PAGE_ZERO =    0x0100000,
 | |
|     ADDR_COMPAT_LAYOUT = 0x0200000,
 | |
|     READ_IMPLIES_EXEC = 0x0400000,
 | |
|     ADDR_LIMIT_32BIT =  0x0800000,
 | |
|     SHORT_INODE =       0x1000000,
 | |
|     WHOLE_SECONDS =     0x2000000,
 | |
|     STICKY_TIMEOUTS =   0x4000000,
 | |
|     ADDR_LIMIT_3GB =    0x8000000,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Personality types.
 | |
|  *
 | |
|  * These go in the low byte.  Avoid using the top bit, it will
 | |
|  * conflict with error returns.
 | |
|  */
 | |
| enum {
 | |
|     PER_LINUX =         0x0000,
 | |
|     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
 | |
|     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
 | |
|     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
 | |
|     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
 | |
|     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
 | |
|     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
 | |
|     PER_BSD =           0x0006,
 | |
|     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
 | |
|     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
 | |
|     PER_LINUX32 =       0x0008,
 | |
|     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
 | |
|     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
 | |
|     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
 | |
|     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
 | |
|     PER_RISCOS =        0x000c,
 | |
|     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
 | |
|     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
 | |
|     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
 | |
|     PER_HPUX =          0x0010,
 | |
|     PER_MASK =          0x00ff,
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Return the base personality without flags.
 | |
|  */
 | |
| #define personality(pers)       (pers & PER_MASK)
 | |
| 
 | |
| int info_is_fdpic(struct image_info *info)
 | |
| {
 | |
|     return info->personality == PER_LINUX_FDPIC;
 | |
| }
 | |
| 
 | |
| /* this flag is uneffective under linux too, should be deleted */
 | |
| #ifndef MAP_DENYWRITE
 | |
| #define MAP_DENYWRITE 0
 | |
| #endif
 | |
| 
 | |
| /* should probably go in elf.h */
 | |
| #ifndef ELIBBAD
 | |
| #define ELIBBAD 80
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
| #define ELF_DATA        ELFDATA2MSB
 | |
| #else
 | |
| #define ELF_DATA        ELFDATA2LSB
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ABI_MIPSN32
 | |
| typedef abi_ullong      target_elf_greg_t;
 | |
| #define tswapreg(ptr)   tswap64(ptr)
 | |
| #else
 | |
| typedef abi_ulong       target_elf_greg_t;
 | |
| #define tswapreg(ptr)   tswapal(ptr)
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_UID16
 | |
| typedef abi_ushort      target_uid_t;
 | |
| typedef abi_ushort      target_gid_t;
 | |
| #else
 | |
| typedef abi_uint        target_uid_t;
 | |
| typedef abi_uint        target_gid_t;
 | |
| #endif
 | |
| typedef abi_int         target_pid_t;
 | |
| 
 | |
| #ifdef TARGET_I386
 | |
| 
 | |
| #define ELF_PLATFORM get_elf_platform()
 | |
| 
 | |
| static const char *get_elf_platform(void)
 | |
| {
 | |
|     static char elf_platform[] = "i386";
 | |
|     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
 | |
|     if (family > 6)
 | |
|         family = 6;
 | |
|     if (family >= 3)
 | |
|         elf_platform[1] = '0' + family;
 | |
|     return elf_platform;
 | |
| }
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     X86CPU *cpu = X86_CPU(thread_cpu);
 | |
| 
 | |
|     return cpu->env.features[FEAT_1_EDX];
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_X86_64
 | |
| #define ELF_START_MMAP 0x2aaaaab000ULL
 | |
| 
 | |
| #define ELF_CLASS      ELFCLASS64
 | |
| #define ELF_ARCH       EM_X86_64
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->rax = 0;
 | |
|     regs->rsp = infop->start_stack;
 | |
|     regs->rip = infop->entry;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    27
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /*
 | |
|  * Note that ELF_NREG should be 29 as there should be place for
 | |
|  * TRAPNO and ERR "registers" as well but linux doesn't dump
 | |
|  * those.
 | |
|  *
 | |
|  * See linux kernel: arch/x86/include/asm/elf.h
 | |
|  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 | |
| {
 | |
|     (*regs)[0] = env->regs[15];
 | |
|     (*regs)[1] = env->regs[14];
 | |
|     (*regs)[2] = env->regs[13];
 | |
|     (*regs)[3] = env->regs[12];
 | |
|     (*regs)[4] = env->regs[R_EBP];
 | |
|     (*regs)[5] = env->regs[R_EBX];
 | |
|     (*regs)[6] = env->regs[11];
 | |
|     (*regs)[7] = env->regs[10];
 | |
|     (*regs)[8] = env->regs[9];
 | |
|     (*regs)[9] = env->regs[8];
 | |
|     (*regs)[10] = env->regs[R_EAX];
 | |
|     (*regs)[11] = env->regs[R_ECX];
 | |
|     (*regs)[12] = env->regs[R_EDX];
 | |
|     (*regs)[13] = env->regs[R_ESI];
 | |
|     (*regs)[14] = env->regs[R_EDI];
 | |
|     (*regs)[15] = env->regs[R_EAX]; /* XXX */
 | |
|     (*regs)[16] = env->eip;
 | |
|     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
 | |
|     (*regs)[18] = env->eflags;
 | |
|     (*regs)[19] = env->regs[R_ESP];
 | |
|     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
 | |
|     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
 | |
|     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
 | |
|     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
 | |
|     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
 | |
|     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
 | |
|     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| /*
 | |
|  * This is used to ensure we don't load something for the wrong architecture.
 | |
|  */
 | |
| #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
 | |
| 
 | |
| /*
 | |
|  * These are used to set parameters in the core dumps.
 | |
|  */
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_386
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->esp = infop->start_stack;
 | |
|     regs->eip = infop->entry;
 | |
| 
 | |
|     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
 | |
|        starts %edx contains a pointer to a function which might be
 | |
|        registered using `atexit'.  This provides a mean for the
 | |
|        dynamic linker to call DT_FINI functions for shared libraries
 | |
|        that have been loaded before the code runs.
 | |
| 
 | |
|        A value of 0 tells we have no such handler.  */
 | |
|     regs->edx = 0;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    17
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /*
 | |
|  * Note that ELF_NREG should be 19 as there should be place for
 | |
|  * TRAPNO and ERR "registers" as well but linux doesn't dump
 | |
|  * those.
 | |
|  *
 | |
|  * See linux kernel: arch/x86/include/asm/elf.h
 | |
|  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
 | |
| {
 | |
|     (*regs)[0] = env->regs[R_EBX];
 | |
|     (*regs)[1] = env->regs[R_ECX];
 | |
|     (*regs)[2] = env->regs[R_EDX];
 | |
|     (*regs)[3] = env->regs[R_ESI];
 | |
|     (*regs)[4] = env->regs[R_EDI];
 | |
|     (*regs)[5] = env->regs[R_EBP];
 | |
|     (*regs)[6] = env->regs[R_EAX];
 | |
|     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
 | |
|     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
 | |
|     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
 | |
|     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
 | |
|     (*regs)[11] = env->regs[R_EAX]; /* XXX */
 | |
|     (*regs)[12] = env->eip;
 | |
|     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
 | |
|     (*regs)[14] = env->eflags;
 | |
|     (*regs)[15] = env->regs[R_ESP];
 | |
|     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ARM
 | |
| 
 | |
| #ifndef TARGET_AARCH64
 | |
| /* 32 bit ARM definitions */
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define ELF_ARCH        EM_ARM
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     abi_long stack = infop->start_stack;
 | |
|     memset(regs, 0, sizeof(*regs));
 | |
| 
 | |
|     regs->uregs[16] = ARM_CPU_MODE_USR;
 | |
|     if (infop->entry & 1) {
 | |
|         regs->uregs[16] |= CPSR_T;
 | |
|     }
 | |
|     regs->uregs[15] = infop->entry & 0xfffffffe;
 | |
|     regs->uregs[13] = infop->start_stack;
 | |
|     /* FIXME - what to for failure of get_user()? */
 | |
|     get_user_ual(regs->uregs[2], stack + 8); /* envp */
 | |
|     get_user_ual(regs->uregs[1], stack + 4); /* envp */
 | |
|     /* XXX: it seems that r0 is zeroed after ! */
 | |
|     regs->uregs[0] = 0;
 | |
|     /* For uClinux PIC binaries.  */
 | |
|     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
 | |
|     regs->uregs[10] = infop->start_data;
 | |
| 
 | |
|     /* Support ARM FDPIC.  */
 | |
|     if (info_is_fdpic(infop)) {
 | |
|         /* As described in the ABI document, r7 points to the loadmap info
 | |
|          * prepared by the kernel. If an interpreter is needed, r8 points
 | |
|          * to the interpreter loadmap and r9 points to the interpreter
 | |
|          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
 | |
|          * r9 points to the main program PT_DYNAMIC info.
 | |
|          */
 | |
|         regs->uregs[7] = infop->loadmap_addr;
 | |
|         if (infop->interpreter_loadmap_addr) {
 | |
|             /* Executable is dynamically loaded.  */
 | |
|             regs->uregs[8] = infop->interpreter_loadmap_addr;
 | |
|             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
 | |
|         } else {
 | |
|             regs->uregs[8] = 0;
 | |
|             regs->uregs[9] = infop->pt_dynamic_addr;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    18
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
 | |
| {
 | |
|     (*regs)[0] = tswapreg(env->regs[0]);
 | |
|     (*regs)[1] = tswapreg(env->regs[1]);
 | |
|     (*regs)[2] = tswapreg(env->regs[2]);
 | |
|     (*regs)[3] = tswapreg(env->regs[3]);
 | |
|     (*regs)[4] = tswapreg(env->regs[4]);
 | |
|     (*regs)[5] = tswapreg(env->regs[5]);
 | |
|     (*regs)[6] = tswapreg(env->regs[6]);
 | |
|     (*regs)[7] = tswapreg(env->regs[7]);
 | |
|     (*regs)[8] = tswapreg(env->regs[8]);
 | |
|     (*regs)[9] = tswapreg(env->regs[9]);
 | |
|     (*regs)[10] = tswapreg(env->regs[10]);
 | |
|     (*regs)[11] = tswapreg(env->regs[11]);
 | |
|     (*regs)[12] = tswapreg(env->regs[12]);
 | |
|     (*regs)[13] = tswapreg(env->regs[13]);
 | |
|     (*regs)[14] = tswapreg(env->regs[14]);
 | |
|     (*regs)[15] = tswapreg(env->regs[15]);
 | |
| 
 | |
|     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
 | |
|     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| enum
 | |
| {
 | |
|     ARM_HWCAP_ARM_SWP       = 1 << 0,
 | |
|     ARM_HWCAP_ARM_HALF      = 1 << 1,
 | |
|     ARM_HWCAP_ARM_THUMB     = 1 << 2,
 | |
|     ARM_HWCAP_ARM_26BIT     = 1 << 3,
 | |
|     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
 | |
|     ARM_HWCAP_ARM_FPA       = 1 << 5,
 | |
|     ARM_HWCAP_ARM_VFP       = 1 << 6,
 | |
|     ARM_HWCAP_ARM_EDSP      = 1 << 7,
 | |
|     ARM_HWCAP_ARM_JAVA      = 1 << 8,
 | |
|     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
 | |
|     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
 | |
|     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
 | |
|     ARM_HWCAP_ARM_NEON      = 1 << 12,
 | |
|     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
 | |
|     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
 | |
|     ARM_HWCAP_ARM_TLS       = 1 << 15,
 | |
|     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
 | |
|     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
 | |
|     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
 | |
|     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
 | |
|     ARM_HWCAP_ARM_LPAE      = 1 << 20,
 | |
|     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
 | |
| };
 | |
| 
 | |
| enum {
 | |
|     ARM_HWCAP2_ARM_AES      = 1 << 0,
 | |
|     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
 | |
|     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
 | |
|     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
 | |
|     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
 | |
| };
 | |
| 
 | |
| /* The commpage only exists for 32 bit kernels */
 | |
| 
 | |
| #define ARM_COMMPAGE (intptr_t)0xffff0f00u
 | |
| 
 | |
| static bool init_guest_commpage(void)
 | |
| {
 | |
|     void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
 | |
|     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
 | |
|                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
 | |
| 
 | |
|     if (addr == MAP_FAILED) {
 | |
|         perror("Allocating guest commpage");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     if (addr != want) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /* Set kernel helper versions; rest of page is 0.  */
 | |
|     __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
 | |
| 
 | |
|     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
 | |
|         perror("Protecting guest commpage");
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| #define ELF_HWCAP2 get_elf_hwcap2()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     hwcaps |= ARM_HWCAP_ARM_SWP;
 | |
|     hwcaps |= ARM_HWCAP_ARM_HALF;
 | |
|     hwcaps |= ARM_HWCAP_ARM_THUMB;
 | |
|     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
 | |
| 
 | |
|     /* probe for the extra features */
 | |
| #define GET_FEATURE(feat, hwcap) \
 | |
|     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
| #define GET_FEATURE_ID(feat, hwcap) \
 | |
|     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
|     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
 | |
|     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
 | |
|     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
 | |
|     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
 | |
|     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
 | |
|     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
 | |
|     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
 | |
|     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
 | |
|     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
 | |
|     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
 | |
| 
 | |
|     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
 | |
|         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
 | |
|         hwcaps |= ARM_HWCAP_ARM_VFPv3;
 | |
|         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
 | |
|             hwcaps |= ARM_HWCAP_ARM_VFPD32;
 | |
|         } else {
 | |
|             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
 | |
|         }
 | |
|     }
 | |
|     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| static uint32_t get_elf_hwcap2(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
 | |
|     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
 | |
|     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
 | |
|     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
 | |
|     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| #undef GET_FEATURE
 | |
| #undef GET_FEATURE_ID
 | |
| 
 | |
| #define ELF_PLATFORM get_elf_platform()
 | |
| 
 | |
| static const char *get_elf_platform(void)
 | |
| {
 | |
|     CPUARMState *env = thread_cpu->env_ptr;
 | |
| 
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
| # define END  "b"
 | |
| #else
 | |
| # define END  "l"
 | |
| #endif
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         return "v8" END;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|             return "v7m" END;
 | |
|         } else {
 | |
|             return "v7" END;
 | |
|         }
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         return "v6" END;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V5)) {
 | |
|         return "v5" END;
 | |
|     } else {
 | |
|         return "v4" END;
 | |
|     }
 | |
| 
 | |
| #undef END
 | |
| }
 | |
| 
 | |
| #else
 | |
| /* 64 bit ARM definitions */
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define ELF_ARCH        EM_AARCH64
 | |
| #define ELF_CLASS       ELFCLASS64
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
| # define ELF_PLATFORM    "aarch64_be"
 | |
| #else
 | |
| # define ELF_PLATFORM    "aarch64"
 | |
| #endif
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     abi_long stack = infop->start_stack;
 | |
|     memset(regs, 0, sizeof(*regs));
 | |
| 
 | |
|     regs->pc = infop->entry & ~0x3ULL;
 | |
|     regs->sp = stack;
 | |
| }
 | |
| 
 | |
| #define ELF_NREG    34
 | |
| typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[i] = tswapreg(env->xregs[i]);
 | |
|     }
 | |
|     (*regs)[32] = tswapreg(env->pc);
 | |
|     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| enum {
 | |
|     ARM_HWCAP_A64_FP            = 1 << 0,
 | |
|     ARM_HWCAP_A64_ASIMD         = 1 << 1,
 | |
|     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
 | |
|     ARM_HWCAP_A64_AES           = 1 << 3,
 | |
|     ARM_HWCAP_A64_PMULL         = 1 << 4,
 | |
|     ARM_HWCAP_A64_SHA1          = 1 << 5,
 | |
|     ARM_HWCAP_A64_SHA2          = 1 << 6,
 | |
|     ARM_HWCAP_A64_CRC32         = 1 << 7,
 | |
|     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
 | |
|     ARM_HWCAP_A64_FPHP          = 1 << 9,
 | |
|     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
 | |
|     ARM_HWCAP_A64_CPUID         = 1 << 11,
 | |
|     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
 | |
|     ARM_HWCAP_A64_JSCVT         = 1 << 13,
 | |
|     ARM_HWCAP_A64_FCMA          = 1 << 14,
 | |
|     ARM_HWCAP_A64_LRCPC         = 1 << 15,
 | |
|     ARM_HWCAP_A64_DCPOP         = 1 << 16,
 | |
|     ARM_HWCAP_A64_SHA3          = 1 << 17,
 | |
|     ARM_HWCAP_A64_SM3           = 1 << 18,
 | |
|     ARM_HWCAP_A64_SM4           = 1 << 19,
 | |
|     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
 | |
|     ARM_HWCAP_A64_SHA512        = 1 << 21,
 | |
|     ARM_HWCAP_A64_SVE           = 1 << 22,
 | |
|     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
 | |
|     ARM_HWCAP_A64_DIT           = 1 << 24,
 | |
|     ARM_HWCAP_A64_USCAT         = 1 << 25,
 | |
|     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
 | |
|     ARM_HWCAP_A64_FLAGM         = 1 << 27,
 | |
|     ARM_HWCAP_A64_SSBS          = 1 << 28,
 | |
|     ARM_HWCAP_A64_SB            = 1 << 29,
 | |
|     ARM_HWCAP_A64_PACA          = 1 << 30,
 | |
|     ARM_HWCAP_A64_PACG          = 1UL << 31,
 | |
| 
 | |
|     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
 | |
|     ARM_HWCAP2_A64_SVE2         = 1 << 1,
 | |
|     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
 | |
|     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
 | |
|     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
 | |
|     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
 | |
|     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
 | |
|     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
 | |
|     ARM_HWCAP2_A64_FRINT        = 1 << 8,
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP   get_elf_hwcap()
 | |
| #define ELF_HWCAP2  get_elf_hwcap2()
 | |
| 
 | |
| #define GET_FEATURE_ID(feat, hwcap) \
 | |
|     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     hwcaps |= ARM_HWCAP_A64_FP;
 | |
|     hwcaps |= ARM_HWCAP_A64_ASIMD;
 | |
|     hwcaps |= ARM_HWCAP_A64_CPUID;
 | |
| 
 | |
|     /* probe for the extra features */
 | |
| 
 | |
|     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
 | |
|     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
 | |
|     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
 | |
|     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
 | |
|     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
 | |
|     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
 | |
|     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
 | |
|     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
 | |
|     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
 | |
|     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
 | |
|     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
 | |
|     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
 | |
|     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
 | |
|     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
 | |
|     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
 | |
|     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
 | |
|     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
 | |
|     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
 | |
|     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
 | |
|     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
 | |
|     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
 | |
|     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
 | |
|     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| static uint32_t get_elf_hwcap2(void)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
|     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
 | |
|     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
 | |
|     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| #undef GET_FEATURE_ID
 | |
| 
 | |
| #endif /* not TARGET_AARCH64 */
 | |
| #endif /* TARGET_ARM */
 | |
| 
 | |
| #ifdef TARGET_SPARC
 | |
| #ifdef TARGET_SPARC64
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 | |
|                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
 | |
| #ifndef TARGET_ABI32
 | |
| #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
 | |
| #else
 | |
| #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
 | |
| #endif
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #define ELF_ARCH    EM_SPARCV9
 | |
| 
 | |
| #define STACK_BIAS              2047
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
| #ifndef TARGET_ABI32
 | |
|     regs->tstate = 0;
 | |
| #endif
 | |
|     regs->pc = infop->entry;
 | |
|     regs->npc = regs->pc + 4;
 | |
|     regs->y = 0;
 | |
| #ifdef TARGET_ABI32
 | |
|     regs->u_regs[14] = infop->start_stack - 16 * 4;
 | |
| #else
 | |
|     if (personality(infop->personality) == PER_LINUX32)
 | |
|         regs->u_regs[14] = infop->start_stack - 16 * 4;
 | |
|     else
 | |
|         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
 | |
|                     | HWCAP_SPARC_MULDIV)
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #define ELF_ARCH    EM_SPARC
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->psr = 0;
 | |
|     regs->pc = infop->entry;
 | |
|     regs->npc = regs->pc + 4;
 | |
|     regs->y = 0;
 | |
|     regs->u_regs[14] = infop->start_stack - 16 * 4;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_PPC
 | |
| 
 | |
| #define ELF_MACHINE    PPC_ELF_MACHINE
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_PPC64 )
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS64
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #define ELF_ARCH        EM_PPC
 | |
| 
 | |
| /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
 | |
|    See arch/powerpc/include/asm/cputable.h.  */
 | |
| enum {
 | |
|     QEMU_PPC_FEATURE_32 = 0x80000000,
 | |
|     QEMU_PPC_FEATURE_64 = 0x40000000,
 | |
|     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
 | |
|     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
 | |
|     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
 | |
|     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
 | |
|     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
 | |
|     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
 | |
|     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
 | |
|     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
 | |
|     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
 | |
|     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
 | |
|     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
 | |
|     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
 | |
|     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
 | |
|     QEMU_PPC_FEATURE_CELL = 0x00010000,
 | |
|     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
 | |
|     QEMU_PPC_FEATURE_SMT = 0x00004000,
 | |
|     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
 | |
|     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
 | |
|     QEMU_PPC_FEATURE_PA6T = 0x00000800,
 | |
|     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
 | |
|     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
 | |
|     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
 | |
|     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
 | |
|     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
 | |
| 
 | |
|     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
 | |
|     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
 | |
| 
 | |
|     /* Feature definitions in AT_HWCAP2.  */
 | |
|     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
 | |
|     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
 | |
|     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
 | |
|     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
 | |
|     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
 | |
|     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
 | |
|     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
 | |
|     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
 | |
|     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
 | |
|     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
 | |
|     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
 | |
|     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
 | |
|     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 | |
|     uint32_t features = 0;
 | |
| 
 | |
|     /* We don't have to be terribly complete here; the high points are
 | |
|        Altivec/FP/SPE support.  Anything else is just a bonus.  */
 | |
| #define GET_FEATURE(flag, feature)                                      \
 | |
|     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 | |
| #define GET_FEATURE2(flags, feature) \
 | |
|     do { \
 | |
|         if ((cpu->env.insns_flags2 & flags) == flags) { \
 | |
|             features |= feature; \
 | |
|         } \
 | |
|     } while (0)
 | |
|     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
 | |
|     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
 | |
|     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
 | |
|     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
 | |
|     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
 | |
|     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
 | |
|     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
 | |
|     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
 | |
|     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
 | |
|     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
 | |
|     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
 | |
|                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
 | |
|                   QEMU_PPC_FEATURE_ARCH_2_06);
 | |
| #undef GET_FEATURE
 | |
| #undef GET_FEATURE2
 | |
| 
 | |
|     return features;
 | |
| }
 | |
| 
 | |
| #define ELF_HWCAP2 get_elf_hwcap2()
 | |
| 
 | |
| static uint32_t get_elf_hwcap2(void)
 | |
| {
 | |
|     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
 | |
|     uint32_t features = 0;
 | |
| 
 | |
| #define GET_FEATURE(flag, feature)                                      \
 | |
|     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
 | |
| #define GET_FEATURE2(flag, feature)                                      \
 | |
|     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
 | |
| 
 | |
|     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
 | |
|     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
 | |
|     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
 | |
|                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
 | |
|                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
 | |
|     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
 | |
|                  QEMU_PPC_FEATURE2_DARN);
 | |
| 
 | |
| #undef GET_FEATURE
 | |
| #undef GET_FEATURE2
 | |
| 
 | |
|     return features;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The requirements here are:
 | |
|  * - keep the final alignment of sp (sp & 0xf)
 | |
|  * - make sure the 32-bit value at the first 16 byte aligned position of
 | |
|  *   AUXV is greater than 16 for glibc compatibility.
 | |
|  *   AT_IGNOREPPC is used for that.
 | |
|  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
 | |
|  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
 | |
|  */
 | |
| #define DLINFO_ARCH_ITEMS       5
 | |
| #define ARCH_DLINFO                                     \
 | |
|     do {                                                \
 | |
|         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
 | |
|         /*                                              \
 | |
|          * Handle glibc compatibility: these magic entries must \
 | |
|          * be at the lowest addresses in the final auxv.        \
 | |
|          */                                             \
 | |
|         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 | |
|         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
 | |
|         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
 | |
|         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
 | |
|         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
 | |
|     } while (0)
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
 | |
| {
 | |
|     _regs->gpr[1] = infop->start_stack;
 | |
| #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
 | |
|     if (get_ppc64_abi(infop) < 2) {
 | |
|         uint64_t val;
 | |
|         get_user_u64(val, infop->entry + 8);
 | |
|         _regs->gpr[2] = val + infop->load_bias;
 | |
|         get_user_u64(val, infop->entry);
 | |
|         infop->entry = val + infop->load_bias;
 | |
|     } else {
 | |
|         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
 | |
|     }
 | |
| #endif
 | |
|     _regs->nip = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
 | |
| #define ELF_NREG 48
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
 | |
| {
 | |
|     int i;
 | |
|     target_ulong ccr = 0;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
 | |
|         (*regs)[i] = tswapreg(env->gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[32] = tswapreg(env->nip);
 | |
|     (*regs)[33] = tswapreg(env->msr);
 | |
|     (*regs)[35] = tswapreg(env->ctr);
 | |
|     (*regs)[36] = tswapreg(env->lr);
 | |
|     (*regs)[37] = tswapreg(env->xer);
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
 | |
|         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
 | |
|     }
 | |
|     (*regs)[38] = tswapreg(ccr);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_MIPS
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #ifdef TARGET_MIPS64
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #else
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #endif
 | |
| #define ELF_ARCH    EM_MIPS
 | |
| 
 | |
| #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
 | |
| 
 | |
| #ifdef TARGET_ABI_MIPSN32
 | |
| #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
 | |
| #else
 | |
| #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
 | |
| #endif
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->cp0_status = 2 << CP0St_KSU;
 | |
|     regs->cp0_epc = infop->entry;
 | |
|     regs->regs[29] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/mips/include/asm/elf.h.  */
 | |
| #define ELF_NREG 45
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/include/asm/reg.h.  */
 | |
| enum {
 | |
| #ifdef TARGET_MIPS64
 | |
|     TARGET_EF_R0 = 0,
 | |
| #else
 | |
|     TARGET_EF_R0 = 6,
 | |
| #endif
 | |
|     TARGET_EF_R26 = TARGET_EF_R0 + 26,
 | |
|     TARGET_EF_R27 = TARGET_EF_R0 + 27,
 | |
|     TARGET_EF_LO = TARGET_EF_R0 + 32,
 | |
|     TARGET_EF_HI = TARGET_EF_R0 + 33,
 | |
|     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
 | |
|     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
 | |
|     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
 | |
|     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
 | |
| };
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < TARGET_EF_R0; i++) {
 | |
|         (*regs)[i] = 0;
 | |
|     }
 | |
|     (*regs)[TARGET_EF_R0] = 0;
 | |
| 
 | |
|     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
 | |
|         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_EF_R26] = 0;
 | |
|     (*regs)[TARGET_EF_R27] = 0;
 | |
|     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
 | |
|     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
 | |
|     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
 | |
|     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
 | |
|     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
 | |
|     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| /* See arch/mips/include/uapi/asm/hwcap.h.  */
 | |
| enum {
 | |
|     HWCAP_MIPS_R6           = (1 << 0),
 | |
|     HWCAP_MIPS_MSA          = (1 << 1),
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
 | |
|     uint32_t hwcaps = 0;
 | |
| 
 | |
| #define GET_FEATURE(flag, hwcap) \
 | |
|     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
 | |
| 
 | |
|     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
 | |
|     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
 | |
| 
 | |
| #undef GET_FEATURE
 | |
| 
 | |
|     return hwcaps;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_MIPS */
 | |
| 
 | |
| #ifdef TARGET_MICROBLAZE
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #define ELF_ARCH    EM_MICROBLAZE
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->r1 = infop->start_stack;
 | |
| 
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_NREG 38
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
 | |
| {
 | |
|     int i, pos = 0;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[pos++] = tswapreg(env->regs[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[pos++] = tswapreg(env->pc);
 | |
|     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
 | |
|     (*regs)[pos++] = 0;
 | |
|     (*regs)[pos++] = tswapreg(env->ear);
 | |
|     (*regs)[pos++] = 0;
 | |
|     (*regs)[pos++] = tswapreg(env->esr);
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_MICROBLAZE */
 | |
| 
 | |
| #ifdef TARGET_NIOS2
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS32
 | |
| #define ELF_ARCH    EM_ALTERA_NIOS2
 | |
| 
 | |
| static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->ea = infop->entry;
 | |
|     regs->sp = infop->start_stack;
 | |
|     regs->estatus = 0x3;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_NREG 49
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUNios2State *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     (*regs)[0] = -1;
 | |
|     for (i = 1; i < 8; i++)    /* r0-r7 */
 | |
|         (*regs)[i] = tswapreg(env->regs[i + 7]);
 | |
| 
 | |
|     for (i = 8; i < 16; i++)   /* r8-r15 */
 | |
|         (*regs)[i] = tswapreg(env->regs[i - 8]);
 | |
| 
 | |
|     for (i = 16; i < 24; i++)  /* r16-r23 */
 | |
|         (*regs)[i] = tswapreg(env->regs[i + 7]);
 | |
|     (*regs)[24] = -1;    /* R_ET */
 | |
|     (*regs)[25] = -1;    /* R_BT */
 | |
|     (*regs)[26] = tswapreg(env->regs[R_GP]);
 | |
|     (*regs)[27] = tswapreg(env->regs[R_SP]);
 | |
|     (*regs)[28] = tswapreg(env->regs[R_FP]);
 | |
|     (*regs)[29] = tswapreg(env->regs[R_EA]);
 | |
|     (*regs)[30] = -1;    /* R_SSTATUS */
 | |
|     (*regs)[31] = tswapreg(env->regs[R_RA]);
 | |
| 
 | |
|     (*regs)[32] = tswapreg(env->regs[R_PC]);
 | |
| 
 | |
|     (*regs)[33] = -1; /* R_STATUS */
 | |
|     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
 | |
| 
 | |
|     for (i = 35; i < 49; i++)    /* ... */
 | |
|         (*regs)[i] = -1;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_NIOS2 */
 | |
| 
 | |
| #ifdef TARGET_OPENRISC
 | |
| 
 | |
| #define ELF_START_MMAP 0x08000000
 | |
| 
 | |
| #define ELF_ARCH EM_OPENRISC
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_DATA  ELFDATA2MSB
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->gpr[1] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE 8192
 | |
| 
 | |
| /* See linux kernel arch/openrisc/include/asm/elf.h.  */
 | |
| #define ELF_NREG 34 /* gprs and pc, sr */
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUOpenRISCState *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
 | |
|     }
 | |
|     (*regs)[32] = tswapreg(env->pc);
 | |
|     (*regs)[33] = tswapreg(cpu_get_sr(env));
 | |
| }
 | |
| #define ELF_HWCAP 0
 | |
| #define ELF_PLATFORM NULL
 | |
| 
 | |
| #endif /* TARGET_OPENRISC */
 | |
| 
 | |
| #ifdef TARGET_SH4
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_ARCH  EM_SH
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     /* Check other registers XXXXX */
 | |
|     regs->pc = infop->entry;
 | |
|     regs->regs[15] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/sh/include/asm/elf.h.  */
 | |
| #define ELF_NREG 23
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
 | |
| enum {
 | |
|     TARGET_REG_PC = 16,
 | |
|     TARGET_REG_PR = 17,
 | |
|     TARGET_REG_SR = 18,
 | |
|     TARGET_REG_GBR = 19,
 | |
|     TARGET_REG_MACH = 20,
 | |
|     TARGET_REG_MACL = 21,
 | |
|     TARGET_REG_SYSCALL = 22
 | |
| };
 | |
| 
 | |
| static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                       const CPUSH4State *env)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < 16; i++) {
 | |
|         (*regs)[i] = tswapreg(env->gregs[i]);
 | |
|     }
 | |
| 
 | |
|     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
 | |
|     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
 | |
|     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
 | |
|     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
 | |
|     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
 | |
|     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
 | |
|     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE        4096
 | |
| 
 | |
| enum {
 | |
|     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
 | |
|     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
 | |
|     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
 | |
|     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
 | |
|     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
 | |
|     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
 | |
|     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
 | |
|     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
 | |
|     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
 | |
|     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
 | |
| };
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
 | |
|     uint32_t hwcap = 0;
 | |
| 
 | |
|     hwcap |= SH_CPU_HAS_FPU;
 | |
| 
 | |
|     if (cpu->env.features & SH_FEATURE_SH4A) {
 | |
|         hwcap |= SH_CPU_HAS_LLSC;
 | |
|     }
 | |
| 
 | |
|     return hwcap;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_CRIS
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #define ELF_ARCH  EM_CRIS
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->erp = infop->entry;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        8192
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_M68K
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_68K
 | |
| 
 | |
| /* ??? Does this need to do anything?
 | |
|    #define ELF_PLAT_INIT(_r) */
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->usp = infop->start_stack;
 | |
|     regs->sr = 0;
 | |
|     regs->pc = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/m68k/include/asm/elf.h.  */
 | |
| #define ELF_NREG 20
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
 | |
| {
 | |
|     (*regs)[0] = tswapreg(env->dregs[1]);
 | |
|     (*regs)[1] = tswapreg(env->dregs[2]);
 | |
|     (*regs)[2] = tswapreg(env->dregs[3]);
 | |
|     (*regs)[3] = tswapreg(env->dregs[4]);
 | |
|     (*regs)[4] = tswapreg(env->dregs[5]);
 | |
|     (*regs)[5] = tswapreg(env->dregs[6]);
 | |
|     (*regs)[6] = tswapreg(env->dregs[7]);
 | |
|     (*regs)[7] = tswapreg(env->aregs[0]);
 | |
|     (*regs)[8] = tswapreg(env->aregs[1]);
 | |
|     (*regs)[9] = tswapreg(env->aregs[2]);
 | |
|     (*regs)[10] = tswapreg(env->aregs[3]);
 | |
|     (*regs)[11] = tswapreg(env->aregs[4]);
 | |
|     (*regs)[12] = tswapreg(env->aregs[5]);
 | |
|     (*regs)[13] = tswapreg(env->aregs[6]);
 | |
|     (*regs)[14] = tswapreg(env->dregs[0]);
 | |
|     (*regs)[15] = tswapreg(env->aregs[7]);
 | |
|     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
 | |
|     (*regs)[17] = tswapreg(env->sr);
 | |
|     (*regs)[18] = tswapreg(env->pc);
 | |
|     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       8192
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ALPHA
 | |
| 
 | |
| #define ELF_START_MMAP (0x30000000000ULL)
 | |
| 
 | |
| #define ELF_CLASS      ELFCLASS64
 | |
| #define ELF_ARCH       EM_ALPHA
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->ps = 8;
 | |
|     regs->usp = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        8192
 | |
| 
 | |
| #endif /* TARGET_ALPHA */
 | |
| 
 | |
| #ifdef TARGET_S390X
 | |
| 
 | |
| #define ELF_START_MMAP (0x20000000000ULL)
 | |
| 
 | |
| #define ELF_CLASS	ELFCLASS64
 | |
| #define ELF_DATA	ELFDATA2MSB
 | |
| #define ELF_ARCH	EM_S390
 | |
| 
 | |
| #include "elf.h"
 | |
| 
 | |
| #define ELF_HWCAP get_elf_hwcap()
 | |
| 
 | |
| #define GET_FEATURE(_feat, _hwcap) \
 | |
|     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
 | |
| 
 | |
| static uint32_t get_elf_hwcap(void)
 | |
| {
 | |
|     /*
 | |
|      * Let's assume we always have esan3 and zarch.
 | |
|      * 31-bit processes can use 64-bit registers (high gprs).
 | |
|      */
 | |
|     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
 | |
| 
 | |
|     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
 | |
|     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
 | |
|     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
 | |
|     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
 | |
|     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
 | |
|         s390_has_feat(S390_FEAT_ETF3_ENH)) {
 | |
|         hwcap |= HWCAP_S390_ETF3EH;
 | |
|     }
 | |
|     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
 | |
| 
 | |
|     return hwcap;
 | |
| }
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     regs->psw.addr = infop->entry;
 | |
|     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
 | |
|     regs->gprs[15] = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_S390X */
 | |
| 
 | |
| #ifdef TARGET_TILEGX
 | |
| 
 | |
| /* 42 bits real used address, a half for user mode */
 | |
| #define ELF_START_MMAP (0x00000020000000000ULL)
 | |
| 
 | |
| #define elf_check_arch(x) ((x) == EM_TILEGX)
 | |
| 
 | |
| #define ELF_CLASS   ELFCLASS64
 | |
| #define ELF_DATA    ELFDATA2LSB
 | |
| #define ELF_ARCH    EM_TILEGX
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->pc = infop->entry;
 | |
|     regs->sp = infop->start_stack;
 | |
| 
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
 | |
| 
 | |
| #endif /* TARGET_TILEGX */
 | |
| 
 | |
| #ifdef TARGET_RISCV
 | |
| 
 | |
| #define ELF_START_MMAP 0x80000000
 | |
| #define ELF_ARCH  EM_RISCV
 | |
| 
 | |
| #ifdef TARGET_RISCV32
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #else
 | |
| #define ELF_CLASS ELFCLASS64
 | |
| #endif
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->sepc = infop->entry;
 | |
|     regs->sp = infop->start_stack;
 | |
| }
 | |
| 
 | |
| #define ELF_EXEC_PAGESIZE 4096
 | |
| 
 | |
| #endif /* TARGET_RISCV */
 | |
| 
 | |
| #ifdef TARGET_HPPA
 | |
| 
 | |
| #define ELF_START_MMAP  0x80000000
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_PARISC
 | |
| #define ELF_PLATFORM    "PARISC"
 | |
| #define STACK_GROWS_DOWN 0
 | |
| #define STACK_ALIGNMENT  64
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->iaoq[0] = infop->entry;
 | |
|     regs->iaoq[1] = infop->entry + 4;
 | |
|     regs->gr[23] = 0;
 | |
|     regs->gr[24] = infop->arg_start;
 | |
|     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
 | |
|     /* The top-of-stack contains a linkage buffer.  */
 | |
|     regs->gr[30] = infop->start_stack + 64;
 | |
|     regs->gr[31] = infop->entry;
 | |
| }
 | |
| 
 | |
| #endif /* TARGET_HPPA */
 | |
| 
 | |
| #ifdef TARGET_XTENSA
 | |
| 
 | |
| #define ELF_START_MMAP 0x20000000
 | |
| 
 | |
| #define ELF_CLASS       ELFCLASS32
 | |
| #define ELF_ARCH        EM_XTENSA
 | |
| 
 | |
| static inline void init_thread(struct target_pt_regs *regs,
 | |
|                                struct image_info *infop)
 | |
| {
 | |
|     regs->windowbase = 0;
 | |
|     regs->windowstart = 1;
 | |
|     regs->areg[1] = infop->start_stack;
 | |
|     regs->pc = infop->entry;
 | |
| }
 | |
| 
 | |
| /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
 | |
| #define ELF_NREG 128
 | |
| typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
| 
 | |
| enum {
 | |
|     TARGET_REG_PC,
 | |
|     TARGET_REG_PS,
 | |
|     TARGET_REG_LBEG,
 | |
|     TARGET_REG_LEND,
 | |
|     TARGET_REG_LCOUNT,
 | |
|     TARGET_REG_SAR,
 | |
|     TARGET_REG_WINDOWSTART,
 | |
|     TARGET_REG_WINDOWBASE,
 | |
|     TARGET_REG_THREADPTR,
 | |
|     TARGET_REG_AR0 = 64,
 | |
| };
 | |
| 
 | |
| static void elf_core_copy_regs(target_elf_gregset_t *regs,
 | |
|                                const CPUXtensaState *env)
 | |
| {
 | |
|     unsigned i;
 | |
| 
 | |
|     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
 | |
|     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
 | |
|     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
 | |
|     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
 | |
|     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
 | |
|     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
 | |
|     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
 | |
|     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
 | |
|     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
 | |
|     xtensa_sync_phys_from_window((CPUXtensaState *)env);
 | |
|     for (i = 0; i < env->config->nareg; ++i) {
 | |
|         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define USE_ELF_CORE_DUMP
 | |
| #define ELF_EXEC_PAGESIZE       4096
 | |
| 
 | |
| #endif /* TARGET_XTENSA */
 | |
| 
 | |
| #ifndef ELF_PLATFORM
 | |
| #define ELF_PLATFORM (NULL)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_MACHINE
 | |
| #define ELF_MACHINE ELF_ARCH
 | |
| #endif
 | |
| 
 | |
| #ifndef elf_check_arch
 | |
| #define elf_check_arch(x) ((x) == ELF_ARCH)
 | |
| #endif
 | |
| 
 | |
| #ifndef elf_check_abi
 | |
| #define elf_check_abi(x) (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef ELF_HWCAP
 | |
| #define ELF_HWCAP 0
 | |
| #endif
 | |
| 
 | |
| #ifndef STACK_GROWS_DOWN
 | |
| #define STACK_GROWS_DOWN 1
 | |
| #endif
 | |
| 
 | |
| #ifndef STACK_ALIGNMENT
 | |
| #define STACK_ALIGNMENT 16
 | |
| #endif
 | |
| 
 | |
| #ifdef TARGET_ABI32
 | |
| #undef ELF_CLASS
 | |
| #define ELF_CLASS ELFCLASS32
 | |
| #undef bswaptls
 | |
| #define bswaptls(ptr) bswap32s(ptr)
 | |
| #endif
 | |
| 
 | |
| #include "elf.h"
 | |
| 
 | |
| struct exec
 | |
| {
 | |
|     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
 | |
|     unsigned int a_text;   /* length of text, in bytes */
 | |
|     unsigned int a_data;   /* length of data, in bytes */
 | |
|     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
 | |
|     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
 | |
|     unsigned int a_entry;  /* start address */
 | |
|     unsigned int a_trsize; /* length of relocation info for text, in bytes */
 | |
|     unsigned int a_drsize; /* length of relocation info for data, in bytes */
 | |
| };
 | |
| 
 | |
| 
 | |
| #define N_MAGIC(exec) ((exec).a_info & 0xffff)
 | |
| #define OMAGIC 0407
 | |
| #define NMAGIC 0410
 | |
| #define ZMAGIC 0413
 | |
| #define QMAGIC 0314
 | |
| 
 | |
| /* Necessary parameters */
 | |
| #define TARGET_ELF_EXEC_PAGESIZE \
 | |
|         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
 | |
|          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
 | |
| #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
 | |
| #define TARGET_ELF_PAGESTART(_v) ((_v) & \
 | |
|                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
 | |
| #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
 | |
| 
 | |
| #define DLINFO_ITEMS 16
 | |
| 
 | |
| static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
 | |
| {
 | |
|     memcpy(to, from, n);
 | |
| }
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| static void bswap_ehdr(struct elfhdr *ehdr)
 | |
| {
 | |
|     bswap16s(&ehdr->e_type);            /* Object file type */
 | |
|     bswap16s(&ehdr->e_machine);         /* Architecture */
 | |
|     bswap32s(&ehdr->e_version);         /* Object file version */
 | |
|     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
 | |
|     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
 | |
|     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
 | |
|     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
 | |
|     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
 | |
|     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
 | |
|     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
 | |
|     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
 | |
|     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
 | |
|     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
 | |
| }
 | |
| 
 | |
| static void bswap_phdr(struct elf_phdr *phdr, int phnum)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < phnum; ++i, ++phdr) {
 | |
|         bswap32s(&phdr->p_type);        /* Segment type */
 | |
|         bswap32s(&phdr->p_flags);       /* Segment flags */
 | |
|         bswaptls(&phdr->p_offset);      /* Segment file offset */
 | |
|         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
 | |
|         bswaptls(&phdr->p_paddr);       /* Segment physical address */
 | |
|         bswaptls(&phdr->p_filesz);      /* Segment size in file */
 | |
|         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
 | |
|         bswaptls(&phdr->p_align);       /* Segment alignment */
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bswap_shdr(struct elf_shdr *shdr, int shnum)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < shnum; ++i, ++shdr) {
 | |
|         bswap32s(&shdr->sh_name);
 | |
|         bswap32s(&shdr->sh_type);
 | |
|         bswaptls(&shdr->sh_flags);
 | |
|         bswaptls(&shdr->sh_addr);
 | |
|         bswaptls(&shdr->sh_offset);
 | |
|         bswaptls(&shdr->sh_size);
 | |
|         bswap32s(&shdr->sh_link);
 | |
|         bswap32s(&shdr->sh_info);
 | |
|         bswaptls(&shdr->sh_addralign);
 | |
|         bswaptls(&shdr->sh_entsize);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void bswap_sym(struct elf_sym *sym)
 | |
| {
 | |
|     bswap32s(&sym->st_name);
 | |
|     bswaptls(&sym->st_value);
 | |
|     bswaptls(&sym->st_size);
 | |
|     bswap16s(&sym->st_shndx);
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_MIPS
 | |
| static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
 | |
| {
 | |
|     bswap16s(&abiflags->version);
 | |
|     bswap32s(&abiflags->ases);
 | |
|     bswap32s(&abiflags->isa_ext);
 | |
|     bswap32s(&abiflags->flags1);
 | |
|     bswap32s(&abiflags->flags2);
 | |
| }
 | |
| #endif
 | |
| #else
 | |
| static inline void bswap_ehdr(struct elfhdr *ehdr) { }
 | |
| static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
 | |
| static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
 | |
| static inline void bswap_sym(struct elf_sym *sym) { }
 | |
| #ifdef TARGET_MIPS
 | |
| static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
| static int elf_core_dump(int, const CPUArchState *);
 | |
| #endif /* USE_ELF_CORE_DUMP */
 | |
| static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
 | |
| 
 | |
| /* Verify the portions of EHDR within E_IDENT for the target.
 | |
|    This can be performed before bswapping the entire header.  */
 | |
| static bool elf_check_ident(struct elfhdr *ehdr)
 | |
| {
 | |
|     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
 | |
|             && ehdr->e_ident[EI_MAG1] == ELFMAG1
 | |
|             && ehdr->e_ident[EI_MAG2] == ELFMAG2
 | |
|             && ehdr->e_ident[EI_MAG3] == ELFMAG3
 | |
|             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
 | |
|             && ehdr->e_ident[EI_DATA] == ELF_DATA
 | |
|             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
 | |
| }
 | |
| 
 | |
| /* Verify the portions of EHDR outside of E_IDENT for the target.
 | |
|    This has to wait until after bswapping the header.  */
 | |
| static bool elf_check_ehdr(struct elfhdr *ehdr)
 | |
| {
 | |
|     return (elf_check_arch(ehdr->e_machine)
 | |
|             && elf_check_abi(ehdr->e_flags)
 | |
|             && ehdr->e_ehsize == sizeof(struct elfhdr)
 | |
|             && ehdr->e_phentsize == sizeof(struct elf_phdr)
 | |
|             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * 'copy_elf_strings()' copies argument/envelope strings from user
 | |
|  * memory to free pages in kernel mem. These are in a format ready
 | |
|  * to be put directly into the top of new user memory.
 | |
|  *
 | |
|  */
 | |
| static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
 | |
|                                   abi_ulong p, abi_ulong stack_limit)
 | |
| {
 | |
|     char *tmp;
 | |
|     int len, i;
 | |
|     abi_ulong top = p;
 | |
| 
 | |
|     if (!p) {
 | |
|         return 0;       /* bullet-proofing */
 | |
|     }
 | |
| 
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
 | |
|         for (i = argc - 1; i >= 0; --i) {
 | |
|             tmp = argv[i];
 | |
|             if (!tmp) {
 | |
|                 fprintf(stderr, "VFS: argc is wrong");
 | |
|                 exit(-1);
 | |
|             }
 | |
|             len = strlen(tmp) + 1;
 | |
|             tmp += len;
 | |
| 
 | |
|             if (len > (p - stack_limit)) {
 | |
|                 return 0;
 | |
|             }
 | |
|             while (len) {
 | |
|                 int bytes_to_copy = (len > offset) ? offset : len;
 | |
|                 tmp -= bytes_to_copy;
 | |
|                 p -= bytes_to_copy;
 | |
|                 offset -= bytes_to_copy;
 | |
|                 len -= bytes_to_copy;
 | |
| 
 | |
|                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
 | |
| 
 | |
|                 if (offset == 0) {
 | |
|                     memcpy_to_target(p, scratch, top - p);
 | |
|                     top = p;
 | |
|                     offset = TARGET_PAGE_SIZE;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (p != top) {
 | |
|             memcpy_to_target(p, scratch + offset, top - p);
 | |
|         }
 | |
|     } else {
 | |
|         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
 | |
|         for (i = 0; i < argc; ++i) {
 | |
|             tmp = argv[i];
 | |
|             if (!tmp) {
 | |
|                 fprintf(stderr, "VFS: argc is wrong");
 | |
|                 exit(-1);
 | |
|             }
 | |
|             len = strlen(tmp) + 1;
 | |
|             if (len > (stack_limit - p)) {
 | |
|                 return 0;
 | |
|             }
 | |
|             while (len) {
 | |
|                 int bytes_to_copy = (len > remaining) ? remaining : len;
 | |
| 
 | |
|                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
 | |
| 
 | |
|                 tmp += bytes_to_copy;
 | |
|                 remaining -= bytes_to_copy;
 | |
|                 p += bytes_to_copy;
 | |
|                 len -= bytes_to_copy;
 | |
| 
 | |
|                 if (remaining == 0) {
 | |
|                     memcpy_to_target(top, scratch, p - top);
 | |
|                     top = p;
 | |
|                     remaining = TARGET_PAGE_SIZE;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         if (p != top) {
 | |
|             memcpy_to_target(top, scratch, p - top);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
 | |
|  * argument/environment space. Newer kernels (>2.6.33) allow more,
 | |
|  * dependent on stack size, but guarantee at least 32 pages for
 | |
|  * backwards compatibility.
 | |
|  */
 | |
| #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
 | |
| 
 | |
| static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
 | |
|                                  struct image_info *info)
 | |
| {
 | |
|     abi_ulong size, error, guard;
 | |
| 
 | |
|     size = guest_stack_size;
 | |
|     if (size < STACK_LOWER_LIMIT) {
 | |
|         size = STACK_LOWER_LIMIT;
 | |
|     }
 | |
|     guard = TARGET_PAGE_SIZE;
 | |
|     if (guard < qemu_real_host_page_size) {
 | |
|         guard = qemu_real_host_page_size;
 | |
|     }
 | |
| 
 | |
|     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
 | |
|                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|     if (error == -1) {
 | |
|         perror("mmap stack");
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     /* We reserve one extra page at the top of the stack as guard.  */
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         target_mprotect(error, guard, PROT_NONE);
 | |
|         info->stack_limit = error + guard;
 | |
|         return info->stack_limit + size - sizeof(void *);
 | |
|     } else {
 | |
|         target_mprotect(error + size, guard, PROT_NONE);
 | |
|         info->stack_limit = error + size;
 | |
|         return error;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Map and zero the bss.  We need to explicitly zero any fractional pages
 | |
|    after the data section (i.e. bss).  */
 | |
| static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
 | |
| {
 | |
|     uintptr_t host_start, host_map_start, host_end;
 | |
| 
 | |
|     last_bss = TARGET_PAGE_ALIGN(last_bss);
 | |
| 
 | |
|     /* ??? There is confusion between qemu_real_host_page_size and
 | |
|        qemu_host_page_size here and elsewhere in target_mmap, which
 | |
|        may lead to the end of the data section mapping from the file
 | |
|        not being mapped.  At least there was an explicit test and
 | |
|        comment for that here, suggesting that "the file size must
 | |
|        be known".  The comment probably pre-dates the introduction
 | |
|        of the fstat system call in target_mmap which does in fact
 | |
|        find out the size.  What isn't clear is if the workaround
 | |
|        here is still actually needed.  For now, continue with it,
 | |
|        but merge it with the "normal" mmap that would allocate the bss.  */
 | |
| 
 | |
|     host_start = (uintptr_t) g2h(elf_bss);
 | |
|     host_end = (uintptr_t) g2h(last_bss);
 | |
|     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
 | |
| 
 | |
|     if (host_map_start < host_end) {
 | |
|         void *p = mmap((void *)host_map_start, host_end - host_map_start,
 | |
|                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|         if (p == MAP_FAILED) {
 | |
|             perror("cannot mmap brk");
 | |
|             exit(-1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Ensure that the bss page(s) are valid */
 | |
|     if ((page_get_flags(last_bss-1) & prot) != prot) {
 | |
|         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
 | |
|     }
 | |
| 
 | |
|     if (host_start < host_map_start) {
 | |
|         memset((void *)host_start, 0, host_map_start - host_start);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef TARGET_ARM
 | |
| static int elf_is_fdpic(struct elfhdr *exec)
 | |
| {
 | |
|     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
 | |
| }
 | |
| #else
 | |
| /* Default implementation, always false.  */
 | |
| static int elf_is_fdpic(struct elfhdr *exec)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
 | |
| {
 | |
|     uint16_t n;
 | |
|     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
 | |
| 
 | |
|     /* elf32_fdpic_loadseg */
 | |
|     n = info->nsegs;
 | |
|     while (n--) {
 | |
|         sp -= 12;
 | |
|         put_user_u32(loadsegs[n].addr, sp+0);
 | |
|         put_user_u32(loadsegs[n].p_vaddr, sp+4);
 | |
|         put_user_u32(loadsegs[n].p_memsz, sp+8);
 | |
|     }
 | |
| 
 | |
|     /* elf32_fdpic_loadmap */
 | |
|     sp -= 4;
 | |
|     put_user_u16(0, sp+0); /* version */
 | |
|     put_user_u16(info->nsegs, sp+2); /* nsegs */
 | |
| 
 | |
|     info->personality = PER_LINUX_FDPIC;
 | |
|     info->loadmap_addr = sp;
 | |
| 
 | |
|     return sp;
 | |
| }
 | |
| 
 | |
| static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
 | |
|                                    struct elfhdr *exec,
 | |
|                                    struct image_info *info,
 | |
|                                    struct image_info *interp_info)
 | |
| {
 | |
|     abi_ulong sp;
 | |
|     abi_ulong u_argc, u_argv, u_envp, u_auxv;
 | |
|     int size;
 | |
|     int i;
 | |
|     abi_ulong u_rand_bytes;
 | |
|     uint8_t k_rand_bytes[16];
 | |
|     abi_ulong u_platform;
 | |
|     const char *k_platform;
 | |
|     const int n = sizeof(elf_addr_t);
 | |
| 
 | |
|     sp = p;
 | |
| 
 | |
|     /* Needs to be before we load the env/argc/... */
 | |
|     if (elf_is_fdpic(exec)) {
 | |
|         /* Need 4 byte alignment for these structs */
 | |
|         sp &= ~3;
 | |
|         sp = loader_build_fdpic_loadmap(info, sp);
 | |
|         info->other_info = interp_info;
 | |
|         if (interp_info) {
 | |
|             interp_info->other_info = info;
 | |
|             sp = loader_build_fdpic_loadmap(interp_info, sp);
 | |
|             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
 | |
|             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
 | |
|         } else {
 | |
|             info->interpreter_loadmap_addr = 0;
 | |
|             info->interpreter_pt_dynamic_addr = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     u_platform = 0;
 | |
|     k_platform = ELF_PLATFORM;
 | |
|     if (k_platform) {
 | |
|         size_t len = strlen(k_platform) + 1;
 | |
|         if (STACK_GROWS_DOWN) {
 | |
|             sp -= (len + n - 1) & ~(n - 1);
 | |
|             u_platform = sp;
 | |
|             /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|             memcpy_to_target(sp, k_platform, len);
 | |
|         } else {
 | |
|             memcpy_to_target(sp, k_platform, len);
 | |
|             u_platform = sp;
 | |
|             sp += len + 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Provide 16 byte alignment for the PRNG, and basic alignment for
 | |
|      * the argv and envp pointers.
 | |
|      */
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         sp = QEMU_ALIGN_DOWN(sp, 16);
 | |
|     } else {
 | |
|         sp = QEMU_ALIGN_UP(sp, 16);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Generate 16 random bytes for userspace PRNG seeding.
 | |
|      */
 | |
|     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         sp -= 16;
 | |
|         u_rand_bytes = sp;
 | |
|         /* FIXME - check return value of memcpy_to_target() for failure */
 | |
|         memcpy_to_target(sp, k_rand_bytes, 16);
 | |
|     } else {
 | |
|         memcpy_to_target(sp, k_rand_bytes, 16);
 | |
|         u_rand_bytes = sp;
 | |
|         sp += 16;
 | |
|     }
 | |
| 
 | |
|     size = (DLINFO_ITEMS + 1) * 2;
 | |
|     if (k_platform)
 | |
|         size += 2;
 | |
| #ifdef DLINFO_ARCH_ITEMS
 | |
|     size += DLINFO_ARCH_ITEMS * 2;
 | |
| #endif
 | |
| #ifdef ELF_HWCAP2
 | |
|     size += 2;
 | |
| #endif
 | |
|     info->auxv_len = size * n;
 | |
| 
 | |
|     size += envc + argc + 2;
 | |
|     size += 1;  /* argc itself */
 | |
|     size *= n;
 | |
| 
 | |
|     /* Allocate space and finalize stack alignment for entry now.  */
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
 | |
|         sp = u_argc;
 | |
|     } else {
 | |
|         u_argc = sp;
 | |
|         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
 | |
|     }
 | |
| 
 | |
|     u_argv = u_argc + n;
 | |
|     u_envp = u_argv + (argc + 1) * n;
 | |
|     u_auxv = u_envp + (envc + 1) * n;
 | |
|     info->saved_auxv = u_auxv;
 | |
|     info->arg_start = u_argv;
 | |
|     info->arg_end = u_argv + argc * n;
 | |
| 
 | |
|     /* This is correct because Linux defines
 | |
|      * elf_addr_t as Elf32_Off / Elf64_Off
 | |
|      */
 | |
| #define NEW_AUX_ENT(id, val) do {               \
 | |
|         put_user_ual(id, u_auxv);  u_auxv += n; \
 | |
|         put_user_ual(val, u_auxv); u_auxv += n; \
 | |
|     } while(0)
 | |
| 
 | |
| #ifdef ARCH_DLINFO
 | |
|     /*
 | |
|      * ARCH_DLINFO must come first so platform specific code can enforce
 | |
|      * special alignment requirements on the AUXV if necessary (eg. PPC).
 | |
|      */
 | |
|     ARCH_DLINFO;
 | |
| #endif
 | |
|     /* There must be exactly DLINFO_ITEMS entries here, or the assert
 | |
|      * on info->auxv_len will trigger.
 | |
|      */
 | |
|     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
 | |
|     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
 | |
|     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
 | |
|     if ((info->alignment & ~qemu_host_page_mask) != 0) {
 | |
|         /* Target doesn't support host page size alignment */
 | |
|         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
 | |
|     } else {
 | |
|         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
 | |
|                                                qemu_host_page_size)));
 | |
|     }
 | |
|     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
 | |
|     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
 | |
|     NEW_AUX_ENT(AT_ENTRY, info->entry);
 | |
|     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
 | |
|     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
 | |
|     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
 | |
|     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
 | |
|     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
 | |
|     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
 | |
|     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
 | |
|     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
 | |
|     NEW_AUX_ENT(AT_EXECFN, info->file_string);
 | |
| 
 | |
| #ifdef ELF_HWCAP2
 | |
|     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
 | |
| #endif
 | |
| 
 | |
|     if (u_platform) {
 | |
|         NEW_AUX_ENT(AT_PLATFORM, u_platform);
 | |
|     }
 | |
|     NEW_AUX_ENT (AT_NULL, 0);
 | |
| #undef NEW_AUX_ENT
 | |
| 
 | |
|     /* Check that our initial calculation of the auxv length matches how much
 | |
|      * we actually put into it.
 | |
|      */
 | |
|     assert(info->auxv_len == u_auxv - info->saved_auxv);
 | |
| 
 | |
|     put_user_ual(argc, u_argc);
 | |
| 
 | |
|     p = info->arg_strings;
 | |
|     for (i = 0; i < argc; ++i) {
 | |
|         put_user_ual(p, u_argv);
 | |
|         u_argv += n;
 | |
|         p += target_strlen(p) + 1;
 | |
|     }
 | |
|     put_user_ual(0, u_argv);
 | |
| 
 | |
|     p = info->env_strings;
 | |
|     for (i = 0; i < envc; ++i) {
 | |
|         put_user_ual(p, u_envp);
 | |
|         u_envp += n;
 | |
|         p += target_strlen(p) + 1;
 | |
|     }
 | |
|     put_user_ual(0, u_envp);
 | |
| 
 | |
|     return sp;
 | |
| }
 | |
| 
 | |
| #ifndef ARM_COMMPAGE
 | |
| #define ARM_COMMPAGE 0
 | |
| #define init_guest_commpage() true
 | |
| #endif
 | |
| 
 | |
| static void pgb_fail_in_use(const char *image_name)
 | |
| {
 | |
|     error_report("%s: requires virtual address space that is in use "
 | |
|                  "(omit the -B option or choose a different value)",
 | |
|                  image_name);
 | |
|     exit(EXIT_FAILURE);
 | |
| }
 | |
| 
 | |
| static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
 | |
|                                 abi_ulong guest_hiaddr, long align)
 | |
| {
 | |
|     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
 | |
|     void *addr, *test;
 | |
| 
 | |
|     if (!QEMU_IS_ALIGNED(guest_base, align)) {
 | |
|         fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
 | |
|                 "host minimum alignment (0x%lx)\n",
 | |
|                 guest_base, align);
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     /* Sanity check the guest binary. */
 | |
|     if (reserved_va) {
 | |
|         if (guest_hiaddr > reserved_va) {
 | |
|             error_report("%s: requires more than reserved virtual "
 | |
|                          "address space (0x%" PRIx64 " > 0x%lx)",
 | |
|                          image_name, (uint64_t)guest_hiaddr, reserved_va);
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
|     } else {
 | |
| #if HOST_LONG_BITS < TARGET_ABI_BITS
 | |
|         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
 | |
|             error_report("%s: requires more virtual address space "
 | |
|                          "than the host can provide (0x%" PRIx64 ")",
 | |
|                          image_name, (uint64_t)guest_hiaddr - guest_base);
 | |
|             exit(EXIT_FAILURE);
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Expand the allocation to the entire reserved_va.
 | |
|      * Exclude the mmap_min_addr hole.
 | |
|      */
 | |
|     if (reserved_va) {
 | |
|         guest_loaddr = (guest_base >= mmap_min_addr ? 0
 | |
|                         : mmap_min_addr - guest_base);
 | |
|         guest_hiaddr = reserved_va;
 | |
|     }
 | |
| 
 | |
|     /* Reserve the address space for the binary, or reserved_va. */
 | |
|     test = g2h(guest_loaddr);
 | |
|     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
 | |
|     if (test != addr) {
 | |
|         pgb_fail_in_use(image_name);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * pgd_find_hole_fallback: potential mmap address
 | |
|  * @guest_size: size of available space
 | |
|  * @brk: location of break
 | |
|  * @align: memory alignment
 | |
|  *
 | |
|  * This is a fallback method for finding a hole in the host address
 | |
|  * space if we don't have the benefit of being able to access
 | |
|  * /proc/self/map. It can potentially take a very long time as we can
 | |
|  * only dumbly iterate up the host address space seeing if the
 | |
|  * allocation would work.
 | |
|  */
 | |
| static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
 | |
|                                         long align, uintptr_t offset)
 | |
| {
 | |
|     uintptr_t base;
 | |
| 
 | |
|     /* Start (aligned) at the bottom and work our way up */
 | |
|     base = ROUND_UP(mmap_min_addr, align);
 | |
| 
 | |
|     while (true) {
 | |
|         uintptr_t align_start, end;
 | |
|         align_start = ROUND_UP(base, align);
 | |
|         end = align_start + guest_size + offset;
 | |
| 
 | |
|         /* if brk is anywhere in the range give ourselves some room to grow. */
 | |
|         if (align_start <= brk && brk < end) {
 | |
|             base = brk + (16 * MiB);
 | |
|             continue;
 | |
|         } else if (align_start + guest_size < align_start) {
 | |
|             /* we have run out of space */
 | |
|             return -1;
 | |
|         } else {
 | |
|             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
 | |
|                 MAP_FIXED_NOREPLACE;
 | |
|             void * mmap_start = mmap((void *) align_start, guest_size,
 | |
|                                      PROT_NONE, flags, -1, 0);
 | |
|             if (mmap_start != MAP_FAILED) {
 | |
|                 munmap((void *) align_start, guest_size);
 | |
|                 if (MAP_FIXED_NOREPLACE || mmap_start == (void *) align_start) {
 | |
|                     return (uintptr_t) mmap_start + offset;
 | |
|                 }
 | |
|             }
 | |
|             base += qemu_host_page_size;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return value for guest_base, or -1 if no hole found. */
 | |
| static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
 | |
|                                long align, uintptr_t offset)
 | |
| {
 | |
|     GSList *maps, *iter;
 | |
|     uintptr_t this_start, this_end, next_start, brk;
 | |
|     intptr_t ret = -1;
 | |
| 
 | |
|     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
 | |
| 
 | |
|     maps = read_self_maps();
 | |
| 
 | |
|     /* Read brk after we've read the maps, which will malloc. */
 | |
|     brk = (uintptr_t)sbrk(0);
 | |
| 
 | |
|     if (!maps) {
 | |
|         return pgd_find_hole_fallback(guest_size, brk, align, offset);
 | |
|     }
 | |
| 
 | |
|     /* The first hole is before the first map entry. */
 | |
|     this_start = mmap_min_addr;
 | |
| 
 | |
|     for (iter = maps; iter;
 | |
|          this_start = next_start, iter = g_slist_next(iter)) {
 | |
|         uintptr_t align_start, hole_size;
 | |
| 
 | |
|         this_end = ((MapInfo *)iter->data)->start;
 | |
|         next_start = ((MapInfo *)iter->data)->end;
 | |
|         align_start = ROUND_UP(this_start + offset, align);
 | |
| 
 | |
|         /* Skip holes that are too small. */
 | |
|         if (align_start >= this_end) {
 | |
|             continue;
 | |
|         }
 | |
|         hole_size = this_end - align_start;
 | |
|         if (hole_size < guest_size) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* If this hole contains brk, give ourselves some room to grow. */
 | |
|         if (this_start <= brk && brk < this_end) {
 | |
|             hole_size -= guest_size;
 | |
|             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
 | |
|                 align_start += 1 * GiB;
 | |
|             } else if (hole_size >= 16 * MiB) {
 | |
|                 align_start += 16 * MiB;
 | |
|             } else {
 | |
|                 align_start = (this_end - guest_size) & -align;
 | |
|                 if (align_start < this_start) {
 | |
|                     continue;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Record the lowest successful match. */
 | |
|         if (ret < 0) {
 | |
|             ret = align_start - guest_loaddr;
 | |
|         }
 | |
|         /* If this hole contains the identity map, select it. */
 | |
|         if (align_start <= guest_loaddr &&
 | |
|             guest_loaddr + guest_size <= this_end) {
 | |
|             ret = 0;
 | |
|         }
 | |
|         /* If this hole ends above the identity map, stop looking. */
 | |
|         if (this_end >= guest_loaddr) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     free_self_maps(maps);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
 | |
|                        abi_ulong orig_hiaddr, long align)
 | |
| {
 | |
|     uintptr_t loaddr = orig_loaddr;
 | |
|     uintptr_t hiaddr = orig_hiaddr;
 | |
|     uintptr_t offset = 0;
 | |
|     uintptr_t addr;
 | |
| 
 | |
|     if (hiaddr != orig_hiaddr) {
 | |
|         error_report("%s: requires virtual address space that the "
 | |
|                      "host cannot provide (0x%" PRIx64 ")",
 | |
|                      image_name, (uint64_t)orig_hiaddr);
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     loaddr &= -align;
 | |
|     if (ARM_COMMPAGE) {
 | |
|         /*
 | |
|          * Extend the allocation to include the commpage.
 | |
|          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
 | |
|          * need to ensure there is space bellow the guest_base so we
 | |
|          * can map the commpage in the place needed when the address
 | |
|          * arithmetic wraps around.
 | |
|          */
 | |
|         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
 | |
|             hiaddr = (uintptr_t) 4 << 30;
 | |
|         } else {
 | |
|             offset = -(ARM_COMMPAGE & -align);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
 | |
|     if (addr == -1) {
 | |
|         /*
 | |
|          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
 | |
|          * that can satisfy both.  But as the normal arm32 link base address
 | |
|          * is ~32k, and we extend down to include the commpage, making the
 | |
|          * overhead only ~96k, this is unlikely.
 | |
|          */
 | |
|         error_report("%s: Unable to allocate %#zx bytes of "
 | |
|                      "virtual address space", image_name,
 | |
|                      (size_t)(hiaddr - loaddr));
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     guest_base = addr;
 | |
| }
 | |
| 
 | |
| static void pgb_dynamic(const char *image_name, long align)
 | |
| {
 | |
|     /*
 | |
|      * The executable is dynamic and does not require a fixed address.
 | |
|      * All we need is a commpage that satisfies align.
 | |
|      * If we do not need a commpage, leave guest_base == 0.
 | |
|      */
 | |
|     if (ARM_COMMPAGE) {
 | |
|         uintptr_t addr, commpage;
 | |
| 
 | |
|         /* 64-bit hosts should have used reserved_va. */
 | |
|         assert(sizeof(uintptr_t) == 4);
 | |
| 
 | |
|         /*
 | |
|          * By putting the commpage at the first hole, that puts guest_base
 | |
|          * just above that, and maximises the positive guest addresses.
 | |
|          */
 | |
|         commpage = ARM_COMMPAGE & -align;
 | |
|         addr = pgb_find_hole(commpage, -commpage, align, 0);
 | |
|         assert(addr != -1);
 | |
|         guest_base = addr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
 | |
|                             abi_ulong guest_hiaddr, long align)
 | |
| {
 | |
|     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
 | |
|     void *addr, *test;
 | |
| 
 | |
|     if (guest_hiaddr > reserved_va) {
 | |
|         error_report("%s: requires more than reserved virtual "
 | |
|                      "address space (0x%" PRIx64 " > 0x%lx)",
 | |
|                      image_name, (uint64_t)guest_hiaddr, reserved_va);
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| 
 | |
|     /* Widen the "image" to the entire reserved address space. */
 | |
|     pgb_static(image_name, 0, reserved_va, align);
 | |
| 
 | |
|     /* osdep.h defines this as 0 if it's missing */
 | |
|     flags |= MAP_FIXED_NOREPLACE;
 | |
| 
 | |
|     /* Reserve the memory on the host. */
 | |
|     assert(guest_base != 0);
 | |
|     test = g2h(0);
 | |
|     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
 | |
|     if (addr == MAP_FAILED || addr != test) {
 | |
|         error_report("Unable to reserve 0x%lx bytes of virtual address "
 | |
|                      "space at %p (%s) for use as guest address space (check your"
 | |
|                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
 | |
|                      "using -R option)", reserved_va, test, strerror(errno));
 | |
|         exit(EXIT_FAILURE);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
 | |
|                       abi_ulong guest_hiaddr)
 | |
| {
 | |
|     /* In order to use host shmat, we must be able to honor SHMLBA.  */
 | |
|     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
 | |
| 
 | |
|     if (have_guest_base) {
 | |
|         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
 | |
|     } else if (reserved_va) {
 | |
|         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
 | |
|     } else if (guest_loaddr) {
 | |
|         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
 | |
|     } else {
 | |
|         pgb_dynamic(image_name, align);
 | |
|     }
 | |
| 
 | |
|     /* Reserve and initialize the commpage. */
 | |
|     if (!init_guest_commpage()) {
 | |
|         /*
 | |
|          * With have_guest_base, the user has selected the address and
 | |
|          * we are trying to work with that.  Otherwise, we have selected
 | |
|          * free space and init_guest_commpage must succeeded.
 | |
|          */
 | |
|         assert(have_guest_base);
 | |
|         pgb_fail_in_use(image_name);
 | |
|     }
 | |
| 
 | |
|     assert(QEMU_IS_ALIGNED(guest_base, align));
 | |
|     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
 | |
|                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
 | |
| }
 | |
| 
 | |
| /* Load an ELF image into the address space.
 | |
| 
 | |
|    IMAGE_NAME is the filename of the image, to use in error messages.
 | |
|    IMAGE_FD is the open file descriptor for the image.
 | |
| 
 | |
|    BPRM_BUF is a copy of the beginning of the file; this of course
 | |
|    contains the elf file header at offset 0.  It is assumed that this
 | |
|    buffer is sufficiently aligned to present no problems to the host
 | |
|    in accessing data at aligned offsets within the buffer.
 | |
| 
 | |
|    On return: INFO values will be filled in, as necessary or available.  */
 | |
| 
 | |
| static void load_elf_image(const char *image_name, int image_fd,
 | |
|                            struct image_info *info, char **pinterp_name,
 | |
|                            char bprm_buf[BPRM_BUF_SIZE])
 | |
| {
 | |
|     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
 | |
|     struct elf_phdr *phdr;
 | |
|     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
 | |
|     int i, retval;
 | |
|     const char *errmsg;
 | |
| 
 | |
|     /* First of all, some simple consistency checks */
 | |
|     errmsg = "Invalid ELF image for this architecture";
 | |
|     if (!elf_check_ident(ehdr)) {
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|     bswap_ehdr(ehdr);
 | |
|     if (!elf_check_ehdr(ehdr)) {
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
| 
 | |
|     i = ehdr->e_phnum * sizeof(struct elf_phdr);
 | |
|     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
 | |
|         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
 | |
|     } else {
 | |
|         phdr = (struct elf_phdr *) alloca(i);
 | |
|         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
 | |
|         if (retval != i) {
 | |
|             goto exit_read;
 | |
|         }
 | |
|     }
 | |
|     bswap_phdr(phdr, ehdr->e_phnum);
 | |
| 
 | |
|     info->nsegs = 0;
 | |
|     info->pt_dynamic_addr = 0;
 | |
| 
 | |
|     mmap_lock();
 | |
| 
 | |
|     /* Find the maximum size of the image and allocate an appropriate
 | |
|        amount of memory to handle that.  */
 | |
|     loaddr = -1, hiaddr = 0;
 | |
|     info->alignment = 0;
 | |
|     for (i = 0; i < ehdr->e_phnum; ++i) {
 | |
|         if (phdr[i].p_type == PT_LOAD) {
 | |
|             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
 | |
|             if (a < loaddr) {
 | |
|                 loaddr = a;
 | |
|             }
 | |
|             a = phdr[i].p_vaddr + phdr[i].p_memsz;
 | |
|             if (a > hiaddr) {
 | |
|                 hiaddr = a;
 | |
|             }
 | |
|             ++info->nsegs;
 | |
|             info->alignment |= phdr[i].p_align;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (pinterp_name != NULL) {
 | |
|         /*
 | |
|          * This is the main executable.
 | |
|          *
 | |
|          * Reserve extra space for brk.
 | |
|          * We hold on to this space while placing the interpreter
 | |
|          * and the stack, lest they be placed immediately after
 | |
|          * the data segment and block allocation from the brk.
 | |
|          *
 | |
|          * 16MB is chosen as "large enough" without being so large
 | |
|          * as to allow the result to not fit with a 32-bit guest on
 | |
|          * a 32-bit host.
 | |
|          */
 | |
|         info->reserve_brk = 16 * MiB;
 | |
|         hiaddr += info->reserve_brk;
 | |
| 
 | |
|         if (ehdr->e_type == ET_EXEC) {
 | |
|             /*
 | |
|              * Make sure that the low address does not conflict with
 | |
|              * MMAP_MIN_ADDR or the QEMU application itself.
 | |
|              */
 | |
|             probe_guest_base(image_name, loaddr, hiaddr);
 | |
|         } else {
 | |
|             /*
 | |
|              * The binary is dynamic, but we still need to
 | |
|              * select guest_base.  In this case we pass a size.
 | |
|              */
 | |
|             probe_guest_base(image_name, 0, hiaddr - loaddr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Reserve address space for all of this.
 | |
|      *
 | |
|      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
 | |
|      * exactly the address range that is required.
 | |
|      *
 | |
|      * Otherwise this is ET_DYN, and we are searching for a location
 | |
|      * that can hold the memory space required.  If the image is
 | |
|      * pre-linked, LOADDR will be non-zero, and the kernel should
 | |
|      * honor that address if it happens to be free.
 | |
|      *
 | |
|      * In both cases, we will overwrite pages in this range with mappings
 | |
|      * from the executable.
 | |
|      */
 | |
|     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
 | |
|                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
 | |
|                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
 | |
|                             -1, 0);
 | |
|     if (load_addr == -1) {
 | |
|         goto exit_perror;
 | |
|     }
 | |
|     load_bias = load_addr - loaddr;
 | |
| 
 | |
|     if (elf_is_fdpic(ehdr)) {
 | |
|         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
 | |
|             g_malloc(sizeof(*loadsegs) * info->nsegs);
 | |
| 
 | |
|         for (i = 0; i < ehdr->e_phnum; ++i) {
 | |
|             switch (phdr[i].p_type) {
 | |
|             case PT_DYNAMIC:
 | |
|                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
 | |
|                 break;
 | |
|             case PT_LOAD:
 | |
|                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
 | |
|                 loadsegs->p_vaddr = phdr[i].p_vaddr;
 | |
|                 loadsegs->p_memsz = phdr[i].p_memsz;
 | |
|                 ++loadsegs;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     info->load_bias = load_bias;
 | |
|     info->code_offset = load_bias;
 | |
|     info->data_offset = load_bias;
 | |
|     info->load_addr = load_addr;
 | |
|     info->entry = ehdr->e_entry + load_bias;
 | |
|     info->start_code = -1;
 | |
|     info->end_code = 0;
 | |
|     info->start_data = -1;
 | |
|     info->end_data = 0;
 | |
|     info->brk = 0;
 | |
|     info->elf_flags = ehdr->e_flags;
 | |
| 
 | |
|     for (i = 0; i < ehdr->e_phnum; i++) {
 | |
|         struct elf_phdr *eppnt = phdr + i;
 | |
|         if (eppnt->p_type == PT_LOAD) {
 | |
|             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
 | |
|             int elf_prot = 0;
 | |
| 
 | |
|             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
 | |
|             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
 | |
|             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
 | |
| 
 | |
|             vaddr = load_bias + eppnt->p_vaddr;
 | |
|             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
 | |
|             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
 | |
|             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
 | |
| 
 | |
|             /*
 | |
|              * Some segments may be completely empty without any backing file
 | |
|              * segment, in that case just let zero_bss allocate an empty buffer
 | |
|              * for it.
 | |
|              */
 | |
|             if (eppnt->p_filesz != 0) {
 | |
|                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
 | |
|                                     MAP_PRIVATE | MAP_FIXED,
 | |
|                                     image_fd, eppnt->p_offset - vaddr_po);
 | |
| 
 | |
|                 if (error == -1) {
 | |
|                     goto exit_perror;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             vaddr_ef = vaddr + eppnt->p_filesz;
 | |
|             vaddr_em = vaddr + eppnt->p_memsz;
 | |
| 
 | |
|             /* If the load segment requests extra zeros (e.g. bss), map it.  */
 | |
|             if (vaddr_ef < vaddr_em) {
 | |
|                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
 | |
|             }
 | |
| 
 | |
|             /* Find the full program boundaries.  */
 | |
|             if (elf_prot & PROT_EXEC) {
 | |
|                 if (vaddr < info->start_code) {
 | |
|                     info->start_code = vaddr;
 | |
|                 }
 | |
|                 if (vaddr_ef > info->end_code) {
 | |
|                     info->end_code = vaddr_ef;
 | |
|                 }
 | |
|             }
 | |
|             if (elf_prot & PROT_WRITE) {
 | |
|                 if (vaddr < info->start_data) {
 | |
|                     info->start_data = vaddr;
 | |
|                 }
 | |
|                 if (vaddr_ef > info->end_data) {
 | |
|                     info->end_data = vaddr_ef;
 | |
|                 }
 | |
|             }
 | |
|             if (vaddr_em > info->brk) {
 | |
|                 info->brk = vaddr_em;
 | |
|             }
 | |
|         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
 | |
|             char *interp_name;
 | |
| 
 | |
|             if (*pinterp_name) {
 | |
|                 errmsg = "Multiple PT_INTERP entries";
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             interp_name = malloc(eppnt->p_filesz);
 | |
|             if (!interp_name) {
 | |
|                 goto exit_perror;
 | |
|             }
 | |
| 
 | |
|             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
 | |
|                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
 | |
|                        eppnt->p_filesz);
 | |
|             } else {
 | |
|                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
 | |
|                                eppnt->p_offset);
 | |
|                 if (retval != eppnt->p_filesz) {
 | |
|                     goto exit_perror;
 | |
|                 }
 | |
|             }
 | |
|             if (interp_name[eppnt->p_filesz - 1] != 0) {
 | |
|                 errmsg = "Invalid PT_INTERP entry";
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             *pinterp_name = interp_name;
 | |
| #ifdef TARGET_MIPS
 | |
|         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
 | |
|             Mips_elf_abiflags_v0 abiflags;
 | |
|             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
 | |
|                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
 | |
|                 goto exit_errmsg;
 | |
|             }
 | |
|             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
 | |
|                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
 | |
|                        sizeof(Mips_elf_abiflags_v0));
 | |
|             } else {
 | |
|                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
 | |
|                                eppnt->p_offset);
 | |
|                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
 | |
|                     goto exit_perror;
 | |
|                 }
 | |
|             }
 | |
|             bswap_mips_abiflags(&abiflags);
 | |
|             info->fp_abi = abiflags.fp_abi;
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (info->end_data == 0) {
 | |
|         info->start_data = info->end_code;
 | |
|         info->end_data = info->end_code;
 | |
|     }
 | |
| 
 | |
|     if (qemu_log_enabled()) {
 | |
|         load_symbols(ehdr, image_fd, load_bias);
 | |
|     }
 | |
| 
 | |
|     mmap_unlock();
 | |
| 
 | |
|     close(image_fd);
 | |
|     return;
 | |
| 
 | |
|  exit_read:
 | |
|     if (retval >= 0) {
 | |
|         errmsg = "Incomplete read of file header";
 | |
|         goto exit_errmsg;
 | |
|     }
 | |
|  exit_perror:
 | |
|     errmsg = strerror(errno);
 | |
|  exit_errmsg:
 | |
|     fprintf(stderr, "%s: %s\n", image_name, errmsg);
 | |
|     exit(-1);
 | |
| }
 | |
| 
 | |
| static void load_elf_interp(const char *filename, struct image_info *info,
 | |
|                             char bprm_buf[BPRM_BUF_SIZE])
 | |
| {
 | |
|     int fd, retval;
 | |
| 
 | |
|     fd = open(path(filename), O_RDONLY);
 | |
|     if (fd < 0) {
 | |
|         goto exit_perror;
 | |
|     }
 | |
| 
 | |
|     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
 | |
|     if (retval < 0) {
 | |
|         goto exit_perror;
 | |
|     }
 | |
|     if (retval < BPRM_BUF_SIZE) {
 | |
|         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
 | |
|     }
 | |
| 
 | |
|     load_elf_image(filename, fd, info, NULL, bprm_buf);
 | |
|     return;
 | |
| 
 | |
|  exit_perror:
 | |
|     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
 | |
|     exit(-1);
 | |
| }
 | |
| 
 | |
| static int symfind(const void *s0, const void *s1)
 | |
| {
 | |
|     target_ulong addr = *(target_ulong *)s0;
 | |
|     struct elf_sym *sym = (struct elf_sym *)s1;
 | |
|     int result = 0;
 | |
|     if (addr < sym->st_value) {
 | |
|         result = -1;
 | |
|     } else if (addr >= sym->st_value + sym->st_size) {
 | |
|         result = 1;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
 | |
| {
 | |
| #if ELF_CLASS == ELFCLASS32
 | |
|     struct elf_sym *syms = s->disas_symtab.elf32;
 | |
| #else
 | |
|     struct elf_sym *syms = s->disas_symtab.elf64;
 | |
| #endif
 | |
| 
 | |
|     // binary search
 | |
|     struct elf_sym *sym;
 | |
| 
 | |
|     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
 | |
|     if (sym != NULL) {
 | |
|         return s->disas_strtab + sym->st_name;
 | |
|     }
 | |
| 
 | |
|     return "";
 | |
| }
 | |
| 
 | |
| /* FIXME: This should use elf_ops.h  */
 | |
| static int symcmp(const void *s0, const void *s1)
 | |
| {
 | |
|     struct elf_sym *sym0 = (struct elf_sym *)s0;
 | |
|     struct elf_sym *sym1 = (struct elf_sym *)s1;
 | |
|     return (sym0->st_value < sym1->st_value)
 | |
|         ? -1
 | |
|         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
 | |
| }
 | |
| 
 | |
| /* Best attempt to load symbols from this ELF object. */
 | |
| static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
 | |
| {
 | |
|     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
 | |
|     uint64_t segsz;
 | |
|     struct elf_shdr *shdr;
 | |
|     char *strings = NULL;
 | |
|     struct syminfo *s = NULL;
 | |
|     struct elf_sym *new_syms, *syms = NULL;
 | |
| 
 | |
|     shnum = hdr->e_shnum;
 | |
|     i = shnum * sizeof(struct elf_shdr);
 | |
|     shdr = (struct elf_shdr *)alloca(i);
 | |
|     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bswap_shdr(shdr, shnum);
 | |
|     for (i = 0; i < shnum; ++i) {
 | |
|         if (shdr[i].sh_type == SHT_SYMTAB) {
 | |
|             sym_idx = i;
 | |
|             str_idx = shdr[i].sh_link;
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* There will be no symbol table if the file was stripped.  */
 | |
|     return;
 | |
| 
 | |
|  found:
 | |
|     /* Now know where the strtab and symtab are.  Snarf them.  */
 | |
|     s = g_try_new(struct syminfo, 1);
 | |
|     if (!s) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     segsz = shdr[str_idx].sh_size;
 | |
|     s->disas_strtab = strings = g_try_malloc(segsz);
 | |
|     if (!strings ||
 | |
|         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     segsz = shdr[sym_idx].sh_size;
 | |
|     syms = g_try_malloc(segsz);
 | |
|     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
 | |
|         /* Implausibly large symbol table: give up rather than ploughing
 | |
|          * on with the number of symbols calculation overflowing
 | |
|          */
 | |
|         goto give_up;
 | |
|     }
 | |
|     nsyms = segsz / sizeof(struct elf_sym);
 | |
|     for (i = 0; i < nsyms; ) {
 | |
|         bswap_sym(syms + i);
 | |
|         /* Throw away entries which we do not need.  */
 | |
|         if (syms[i].st_shndx == SHN_UNDEF
 | |
|             || syms[i].st_shndx >= SHN_LORESERVE
 | |
|             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
 | |
|             if (i < --nsyms) {
 | |
|                 syms[i] = syms[nsyms];
 | |
|             }
 | |
|         } else {
 | |
| #if defined(TARGET_ARM) || defined (TARGET_MIPS)
 | |
|             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
 | |
|             syms[i].st_value &= ~(target_ulong)1;
 | |
| #endif
 | |
|             syms[i].st_value += load_bias;
 | |
|             i++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* No "useful" symbol.  */
 | |
|     if (nsyms == 0) {
 | |
|         goto give_up;
 | |
|     }
 | |
| 
 | |
|     /* Attempt to free the storage associated with the local symbols
 | |
|        that we threw away.  Whether or not this has any effect on the
 | |
|        memory allocation depends on the malloc implementation and how
 | |
|        many symbols we managed to discard.  */
 | |
|     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
 | |
|     if (new_syms == NULL) {
 | |
|         goto give_up;
 | |
|     }
 | |
|     syms = new_syms;
 | |
| 
 | |
|     qsort(syms, nsyms, sizeof(*syms), symcmp);
 | |
| 
 | |
|     s->disas_num_syms = nsyms;
 | |
| #if ELF_CLASS == ELFCLASS32
 | |
|     s->disas_symtab.elf32 = syms;
 | |
| #else
 | |
|     s->disas_symtab.elf64 = syms;
 | |
| #endif
 | |
|     s->lookup_symbol = lookup_symbolxx;
 | |
|     s->next = syminfos;
 | |
|     syminfos = s;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| give_up:
 | |
|     g_free(s);
 | |
|     g_free(strings);
 | |
|     g_free(syms);
 | |
| }
 | |
| 
 | |
| uint32_t get_elf_eflags(int fd)
 | |
| {
 | |
|     struct elfhdr ehdr;
 | |
|     off_t offset;
 | |
|     int ret;
 | |
| 
 | |
|     /* Read ELF header */
 | |
|     offset = lseek(fd, 0, SEEK_SET);
 | |
|     if (offset == (off_t) -1) {
 | |
|         return 0;
 | |
|     }
 | |
|     ret = read(fd, &ehdr, sizeof(ehdr));
 | |
|     if (ret < sizeof(ehdr)) {
 | |
|         return 0;
 | |
|     }
 | |
|     offset = lseek(fd, offset, SEEK_SET);
 | |
|     if (offset == (off_t) -1) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* Check ELF signature */
 | |
|     if (!elf_check_ident(&ehdr)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* check header */
 | |
|     bswap_ehdr(&ehdr);
 | |
|     if (!elf_check_ehdr(&ehdr)) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* return architecture id */
 | |
|     return ehdr.e_flags;
 | |
| }
 | |
| 
 | |
| int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
 | |
| {
 | |
|     struct image_info interp_info;
 | |
|     struct elfhdr elf_ex;
 | |
|     char *elf_interpreter = NULL;
 | |
|     char *scratch;
 | |
| 
 | |
|     memset(&interp_info, 0, sizeof(interp_info));
 | |
| #ifdef TARGET_MIPS
 | |
|     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
 | |
| #endif
 | |
| 
 | |
|     info->start_mmap = (abi_ulong)ELF_START_MMAP;
 | |
| 
 | |
|     load_elf_image(bprm->filename, bprm->fd, info,
 | |
|                    &elf_interpreter, bprm->buf);
 | |
| 
 | |
|     /* ??? We need a copy of the elf header for passing to create_elf_tables.
 | |
|        If we do nothing, we'll have overwritten this when we re-use bprm->buf
 | |
|        when we load the interpreter.  */
 | |
|     elf_ex = *(struct elfhdr *)bprm->buf;
 | |
| 
 | |
|     /* Do this so that we can load the interpreter, if need be.  We will
 | |
|        change some of these later */
 | |
|     bprm->p = setup_arg_pages(bprm, info);
 | |
| 
 | |
|     scratch = g_new0(char, TARGET_PAGE_SIZE);
 | |
|     if (STACK_GROWS_DOWN) {
 | |
|         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->file_string = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->env_strings = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->arg_strings = bprm->p;
 | |
|     } else {
 | |
|         info->arg_strings = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->env_strings = bprm->p;
 | |
|         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|         info->file_string = bprm->p;
 | |
|         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
 | |
|                                    bprm->p, info->stack_limit);
 | |
|     }
 | |
| 
 | |
|     g_free(scratch);
 | |
| 
 | |
|     if (!bprm->p) {
 | |
|         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
 | |
|         exit(-1);
 | |
|     }
 | |
| 
 | |
|     if (elf_interpreter) {
 | |
|         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
 | |
| 
 | |
|         /* If the program interpreter is one of these two, then assume
 | |
|            an iBCS2 image.  Otherwise assume a native linux image.  */
 | |
| 
 | |
|         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
 | |
|             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
 | |
|             info->personality = PER_SVR4;
 | |
| 
 | |
|             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
 | |
|                and some applications "depend" upon this behavior.  Since
 | |
|                we do not have the power to recompile these, we emulate
 | |
|                the SVr4 behavior.  Sigh.  */
 | |
|             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
 | |
|                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
 | |
|         }
 | |
| #ifdef TARGET_MIPS
 | |
|         info->interp_fp_abi = interp_info.fp_abi;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
 | |
|                                 info, (elf_interpreter ? &interp_info : NULL));
 | |
|     info->start_stack = bprm->p;
 | |
| 
 | |
|     /* If we have an interpreter, set that as the program's entry point.
 | |
|        Copy the load_bias as well, to help PPC64 interpret the entry
 | |
|        point as a function descriptor.  Do this after creating elf tables
 | |
|        so that we copy the original program entry point into the AUXV.  */
 | |
|     if (elf_interpreter) {
 | |
|         info->load_bias = interp_info.load_bias;
 | |
|         info->entry = interp_info.entry;
 | |
|         free(elf_interpreter);
 | |
|     }
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
|     bprm->core_dump = &elf_core_dump;
 | |
| #endif
 | |
| 
 | |
|     /*
 | |
|      * If we reserved extra space for brk, release it now.
 | |
|      * The implementation of do_brk in syscalls.c expects to be able
 | |
|      * to mmap pages in this space.
 | |
|      */
 | |
|     if (info->reserve_brk) {
 | |
|         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
 | |
|         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
 | |
|         target_munmap(start_brk, end_brk - start_brk);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #ifdef USE_ELF_CORE_DUMP
 | |
| /*
 | |
|  * Definitions to generate Intel SVR4-like core files.
 | |
|  * These mostly have the same names as the SVR4 types with "target_elf_"
 | |
|  * tacked on the front to prevent clashes with linux definitions,
 | |
|  * and the typedef forms have been avoided.  This is mostly like
 | |
|  * the SVR4 structure, but more Linuxy, with things that Linux does
 | |
|  * not support and which gdb doesn't really use excluded.
 | |
|  *
 | |
|  * Fields we don't dump (their contents is zero) in linux-user qemu
 | |
|  * are marked with XXX.
 | |
|  *
 | |
|  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
 | |
|  *
 | |
|  * Porting ELF coredump for target is (quite) simple process.  First you
 | |
|  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
 | |
|  * the target resides):
 | |
|  *
 | |
|  * #define USE_ELF_CORE_DUMP
 | |
|  *
 | |
|  * Next you define type of register set used for dumping.  ELF specification
 | |
|  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
 | |
|  *
 | |
|  * typedef <target_regtype> target_elf_greg_t;
 | |
|  * #define ELF_NREG <number of registers>
 | |
|  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
 | |
|  *
 | |
|  * Last step is to implement target specific function that copies registers
 | |
|  * from given cpu into just specified register set.  Prototype is:
 | |
|  *
 | |
|  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
 | |
|  *                                const CPUArchState *env);
 | |
|  *
 | |
|  * Parameters:
 | |
|  *     regs - copy register values into here (allocated and zeroed by caller)
 | |
|  *     env - copy registers from here
 | |
|  *
 | |
|  * Example for ARM target is provided in this file.
 | |
|  */
 | |
| 
 | |
| /* An ELF note in memory */
 | |
| struct memelfnote {
 | |
|     const char *name;
 | |
|     size_t     namesz;
 | |
|     size_t     namesz_rounded;
 | |
|     int        type;
 | |
|     size_t     datasz;
 | |
|     size_t     datasz_rounded;
 | |
|     void       *data;
 | |
|     size_t     notesz;
 | |
| };
 | |
| 
 | |
| struct target_elf_siginfo {
 | |
|     abi_int    si_signo; /* signal number */
 | |
|     abi_int    si_code;  /* extra code */
 | |
|     abi_int    si_errno; /* errno */
 | |
| };
 | |
| 
 | |
| struct target_elf_prstatus {
 | |
|     struct target_elf_siginfo pr_info;      /* Info associated with signal */
 | |
|     abi_short          pr_cursig;    /* Current signal */
 | |
|     abi_ulong          pr_sigpend;   /* XXX */
 | |
|     abi_ulong          pr_sighold;   /* XXX */
 | |
|     target_pid_t       pr_pid;
 | |
|     target_pid_t       pr_ppid;
 | |
|     target_pid_t       pr_pgrp;
 | |
|     target_pid_t       pr_sid;
 | |
|     struct target_timeval pr_utime;  /* XXX User time */
 | |
|     struct target_timeval pr_stime;  /* XXX System time */
 | |
|     struct target_timeval pr_cutime; /* XXX Cumulative user time */
 | |
|     struct target_timeval pr_cstime; /* XXX Cumulative system time */
 | |
|     target_elf_gregset_t      pr_reg;       /* GP registers */
 | |
|     abi_int            pr_fpvalid;   /* XXX */
 | |
| };
 | |
| 
 | |
| #define ELF_PRARGSZ     (80) /* Number of chars for args */
 | |
| 
 | |
| struct target_elf_prpsinfo {
 | |
|     char         pr_state;       /* numeric process state */
 | |
|     char         pr_sname;       /* char for pr_state */
 | |
|     char         pr_zomb;        /* zombie */
 | |
|     char         pr_nice;        /* nice val */
 | |
|     abi_ulong    pr_flag;        /* flags */
 | |
|     target_uid_t pr_uid;
 | |
|     target_gid_t pr_gid;
 | |
|     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
 | |
|     /* Lots missing */
 | |
|     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
 | |
|     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
 | |
| };
 | |
| 
 | |
| /* Here is the structure in which status of each thread is captured. */
 | |
| struct elf_thread_status {
 | |
|     QTAILQ_ENTRY(elf_thread_status)  ets_link;
 | |
|     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
 | |
| #if 0
 | |
|     elf_fpregset_t fpu;             /* NT_PRFPREG */
 | |
|     struct task_struct *thread;
 | |
|     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
 | |
| #endif
 | |
|     struct memelfnote notes[1];
 | |
|     int num_notes;
 | |
| };
 | |
| 
 | |
| struct elf_note_info {
 | |
|     struct memelfnote   *notes;
 | |
|     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
 | |
|     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
 | |
| 
 | |
|     QTAILQ_HEAD(, elf_thread_status) thread_list;
 | |
| #if 0
 | |
|     /*
 | |
|      * Current version of ELF coredump doesn't support
 | |
|      * dumping fp regs etc.
 | |
|      */
 | |
|     elf_fpregset_t *fpu;
 | |
|     elf_fpxregset_t *xfpu;
 | |
|     int thread_status_size;
 | |
| #endif
 | |
|     int notes_size;
 | |
|     int numnote;
 | |
| };
 | |
| 
 | |
| struct vm_area_struct {
 | |
|     target_ulong   vma_start;  /* start vaddr of memory region */
 | |
|     target_ulong   vma_end;    /* end vaddr of memory region */
 | |
|     abi_ulong      vma_flags;  /* protection etc. flags for the region */
 | |
|     QTAILQ_ENTRY(vm_area_struct) vma_link;
 | |
| };
 | |
| 
 | |
| struct mm_struct {
 | |
|     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
 | |
|     int mm_count;           /* number of mappings */
 | |
| };
 | |
| 
 | |
| static struct mm_struct *vma_init(void);
 | |
| static void vma_delete(struct mm_struct *);
 | |
| static int vma_add_mapping(struct mm_struct *, target_ulong,
 | |
|                            target_ulong, abi_ulong);
 | |
| static int vma_get_mapping_count(const struct mm_struct *);
 | |
| static struct vm_area_struct *vma_first(const struct mm_struct *);
 | |
| static struct vm_area_struct *vma_next(struct vm_area_struct *);
 | |
| static abi_ulong vma_dump_size(const struct vm_area_struct *);
 | |
| static int vma_walker(void *priv, target_ulong start, target_ulong end,
 | |
|                       unsigned long flags);
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
 | |
| static void fill_note(struct memelfnote *, const char *, int,
 | |
|                       unsigned int, void *);
 | |
| static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
 | |
| static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
 | |
| static void fill_auxv_note(struct memelfnote *, const TaskState *);
 | |
| static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
 | |
| static size_t note_size(const struct memelfnote *);
 | |
| static void free_note_info(struct elf_note_info *);
 | |
| static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
 | |
| static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
 | |
| static int core_dump_filename(const TaskState *, char *, size_t);
 | |
| 
 | |
| static int dump_write(int, const void *, size_t);
 | |
| static int write_note(struct memelfnote *, int);
 | |
| static int write_note_info(struct elf_note_info *, int);
 | |
| 
 | |
| #ifdef BSWAP_NEEDED
 | |
| static void bswap_prstatus(struct target_elf_prstatus *prstatus)
 | |
| {
 | |
|     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
 | |
|     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
 | |
|     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
 | |
|     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
 | |
|     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
 | |
|     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
 | |
|     prstatus->pr_pid = tswap32(prstatus->pr_pid);
 | |
|     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
 | |
|     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
 | |
|     prstatus->pr_sid = tswap32(prstatus->pr_sid);
 | |
|     /* cpu times are not filled, so we skip them */
 | |
|     /* regs should be in correct format already */
 | |
|     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
 | |
| }
 | |
| 
 | |
| static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
 | |
| {
 | |
|     psinfo->pr_flag = tswapal(psinfo->pr_flag);
 | |
|     psinfo->pr_uid = tswap16(psinfo->pr_uid);
 | |
|     psinfo->pr_gid = tswap16(psinfo->pr_gid);
 | |
|     psinfo->pr_pid = tswap32(psinfo->pr_pid);
 | |
|     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
 | |
|     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
 | |
|     psinfo->pr_sid = tswap32(psinfo->pr_sid);
 | |
| }
 | |
| 
 | |
| static void bswap_note(struct elf_note *en)
 | |
| {
 | |
|     bswap32s(&en->n_namesz);
 | |
|     bswap32s(&en->n_descsz);
 | |
|     bswap32s(&en->n_type);
 | |
| }
 | |
| #else
 | |
| static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
 | |
| static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
 | |
| static inline void bswap_note(struct elf_note *en) { }
 | |
| #endif /* BSWAP_NEEDED */
 | |
| 
 | |
| /*
 | |
|  * Minimal support for linux memory regions.  These are needed
 | |
|  * when we are finding out what memory exactly belongs to
 | |
|  * emulated process.  No locks needed here, as long as
 | |
|  * thread that received the signal is stopped.
 | |
|  */
 | |
| 
 | |
| static struct mm_struct *vma_init(void)
 | |
| {
 | |
|     struct mm_struct *mm;
 | |
| 
 | |
|     if ((mm = g_malloc(sizeof (*mm))) == NULL)
 | |
|         return (NULL);
 | |
| 
 | |
|     mm->mm_count = 0;
 | |
|     QTAILQ_INIT(&mm->mm_mmap);
 | |
| 
 | |
|     return (mm);
 | |
| }
 | |
| 
 | |
| static void vma_delete(struct mm_struct *mm)
 | |
| {
 | |
|     struct vm_area_struct *vma;
 | |
| 
 | |
|     while ((vma = vma_first(mm)) != NULL) {
 | |
|         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
 | |
|         g_free(vma);
 | |
|     }
 | |
|     g_free(mm);
 | |
| }
 | |
| 
 | |
| static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
 | |
|                            target_ulong end, abi_ulong flags)
 | |
| {
 | |
|     struct vm_area_struct *vma;
 | |
| 
 | |
|     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
 | |
|         return (-1);
 | |
| 
 | |
|     vma->vma_start = start;
 | |
|     vma->vma_end = end;
 | |
|     vma->vma_flags = flags;
 | |
| 
 | |
|     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
 | |
|     mm->mm_count++;
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct *vma_first(const struct mm_struct *mm)
 | |
| {
 | |
|     return (QTAILQ_FIRST(&mm->mm_mmap));
 | |
| }
 | |
| 
 | |
| static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
 | |
| {
 | |
|     return (QTAILQ_NEXT(vma, vma_link));
 | |
| }
 | |
| 
 | |
| static int vma_get_mapping_count(const struct mm_struct *mm)
 | |
| {
 | |
|     return (mm->mm_count);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calculate file (dump) size of given memory region.
 | |
|  */
 | |
| static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
 | |
| {
 | |
|     /* if we cannot even read the first page, skip it */
 | |
|     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
 | |
|         return (0);
 | |
| 
 | |
|     /*
 | |
|      * Usually we don't dump executable pages as they contain
 | |
|      * non-writable code that debugger can read directly from
 | |
|      * target library etc.  However, thread stacks are marked
 | |
|      * also executable so we read in first page of given region
 | |
|      * and check whether it contains elf header.  If there is
 | |
|      * no elf header, we dump it.
 | |
|      */
 | |
|     if (vma->vma_flags & PROT_EXEC) {
 | |
|         char page[TARGET_PAGE_SIZE];
 | |
| 
 | |
|         copy_from_user(page, vma->vma_start, sizeof (page));
 | |
|         if ((page[EI_MAG0] == ELFMAG0) &&
 | |
|             (page[EI_MAG1] == ELFMAG1) &&
 | |
|             (page[EI_MAG2] == ELFMAG2) &&
 | |
|             (page[EI_MAG3] == ELFMAG3)) {
 | |
|             /*
 | |
|              * Mappings are possibly from ELF binary.  Don't dump
 | |
|              * them.
 | |
|              */
 | |
|             return (0);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return (vma->vma_end - vma->vma_start);
 | |
| }
 | |
| 
 | |
| static int vma_walker(void *priv, target_ulong start, target_ulong end,
 | |
|                       unsigned long flags)
 | |
| {
 | |
|     struct mm_struct *mm = (struct mm_struct *)priv;
 | |
| 
 | |
|     vma_add_mapping(mm, start, end, flags);
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void fill_note(struct memelfnote *note, const char *name, int type,
 | |
|                       unsigned int sz, void *data)
 | |
| {
 | |
|     unsigned int namesz;
 | |
| 
 | |
|     namesz = strlen(name) + 1;
 | |
|     note->name = name;
 | |
|     note->namesz = namesz;
 | |
|     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
 | |
|     note->type = type;
 | |
|     note->datasz = sz;
 | |
|     note->datasz_rounded = roundup(sz, sizeof (int32_t));
 | |
| 
 | |
|     note->data = data;
 | |
| 
 | |
|     /*
 | |
|      * We calculate rounded up note size here as specified by
 | |
|      * ELF document.
 | |
|      */
 | |
|     note->notesz = sizeof (struct elf_note) +
 | |
|         note->namesz_rounded + note->datasz_rounded;
 | |
| }
 | |
| 
 | |
| static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
 | |
|                             uint32_t flags)
 | |
| {
 | |
|     (void) memset(elf, 0, sizeof(*elf));
 | |
| 
 | |
|     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
 | |
|     elf->e_ident[EI_CLASS] = ELF_CLASS;
 | |
|     elf->e_ident[EI_DATA] = ELF_DATA;
 | |
|     elf->e_ident[EI_VERSION] = EV_CURRENT;
 | |
|     elf->e_ident[EI_OSABI] = ELF_OSABI;
 | |
| 
 | |
|     elf->e_type = ET_CORE;
 | |
|     elf->e_machine = machine;
 | |
|     elf->e_version = EV_CURRENT;
 | |
|     elf->e_phoff = sizeof(struct elfhdr);
 | |
|     elf->e_flags = flags;
 | |
|     elf->e_ehsize = sizeof(struct elfhdr);
 | |
|     elf->e_phentsize = sizeof(struct elf_phdr);
 | |
|     elf->e_phnum = segs;
 | |
| 
 | |
|     bswap_ehdr(elf);
 | |
| }
 | |
| 
 | |
| static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
 | |
| {
 | |
|     phdr->p_type = PT_NOTE;
 | |
|     phdr->p_offset = offset;
 | |
|     phdr->p_vaddr = 0;
 | |
|     phdr->p_paddr = 0;
 | |
|     phdr->p_filesz = sz;
 | |
|     phdr->p_memsz = 0;
 | |
|     phdr->p_flags = 0;
 | |
|     phdr->p_align = 0;
 | |
| 
 | |
|     bswap_phdr(phdr, 1);
 | |
| }
 | |
| 
 | |
| static size_t note_size(const struct memelfnote *note)
 | |
| {
 | |
|     return (note->notesz);
 | |
| }
 | |
| 
 | |
| static void fill_prstatus(struct target_elf_prstatus *prstatus,
 | |
|                           const TaskState *ts, int signr)
 | |
| {
 | |
|     (void) memset(prstatus, 0, sizeof (*prstatus));
 | |
|     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
 | |
|     prstatus->pr_pid = ts->ts_tid;
 | |
|     prstatus->pr_ppid = getppid();
 | |
|     prstatus->pr_pgrp = getpgrp();
 | |
|     prstatus->pr_sid = getsid(0);
 | |
| 
 | |
|     bswap_prstatus(prstatus);
 | |
| }
 | |
| 
 | |
| static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
 | |
| {
 | |
|     char *base_filename;
 | |
|     unsigned int i, len;
 | |
| 
 | |
|     (void) memset(psinfo, 0, sizeof (*psinfo));
 | |
| 
 | |
|     len = ts->info->arg_end - ts->info->arg_start;
 | |
|     if (len >= ELF_PRARGSZ)
 | |
|         len = ELF_PRARGSZ - 1;
 | |
|     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
 | |
|         return -EFAULT;
 | |
|     for (i = 0; i < len; i++)
 | |
|         if (psinfo->pr_psargs[i] == 0)
 | |
|             psinfo->pr_psargs[i] = ' ';
 | |
|     psinfo->pr_psargs[len] = 0;
 | |
| 
 | |
|     psinfo->pr_pid = getpid();
 | |
|     psinfo->pr_ppid = getppid();
 | |
|     psinfo->pr_pgrp = getpgrp();
 | |
|     psinfo->pr_sid = getsid(0);
 | |
|     psinfo->pr_uid = getuid();
 | |
|     psinfo->pr_gid = getgid();
 | |
| 
 | |
|     base_filename = g_path_get_basename(ts->bprm->filename);
 | |
|     /*
 | |
|      * Using strncpy here is fine: at max-length,
 | |
|      * this field is not NUL-terminated.
 | |
|      */
 | |
|     (void) strncpy(psinfo->pr_fname, base_filename,
 | |
|                    sizeof(psinfo->pr_fname));
 | |
| 
 | |
|     g_free(base_filename);
 | |
|     bswap_psinfo(psinfo);
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
 | |
| {
 | |
|     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
 | |
|     elf_addr_t orig_auxv = auxv;
 | |
|     void *ptr;
 | |
|     int len = ts->info->auxv_len;
 | |
| 
 | |
|     /*
 | |
|      * Auxiliary vector is stored in target process stack.  It contains
 | |
|      * {type, value} pairs that we need to dump into note.  This is not
 | |
|      * strictly necessary but we do it here for sake of completeness.
 | |
|      */
 | |
| 
 | |
|     /* read in whole auxv vector and copy it to memelfnote */
 | |
|     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
 | |
|     if (ptr != NULL) {
 | |
|         fill_note(note, "CORE", NT_AUXV, len, ptr);
 | |
|         unlock_user(ptr, auxv, len);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Constructs name of coredump file.  We have following convention
 | |
|  * for the name:
 | |
|  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
 | |
|  *
 | |
|  * Returns 0 in case of success, -1 otherwise (errno is set).
 | |
|  */
 | |
| static int core_dump_filename(const TaskState *ts, char *buf,
 | |
|                               size_t bufsize)
 | |
| {
 | |
|     char timestamp[64];
 | |
|     char *base_filename = NULL;
 | |
|     struct timeval tv;
 | |
|     struct tm tm;
 | |
| 
 | |
|     assert(bufsize >= PATH_MAX);
 | |
| 
 | |
|     if (gettimeofday(&tv, NULL) < 0) {
 | |
|         (void) fprintf(stderr, "unable to get current timestamp: %s",
 | |
|                        strerror(errno));
 | |
|         return (-1);
 | |
|     }
 | |
| 
 | |
|     base_filename = g_path_get_basename(ts->bprm->filename);
 | |
|     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
 | |
|                     localtime_r(&tv.tv_sec, &tm));
 | |
|     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
 | |
|                     base_filename, timestamp, (int)getpid());
 | |
|     g_free(base_filename);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static int dump_write(int fd, const void *ptr, size_t size)
 | |
| {
 | |
|     const char *bufp = (const char *)ptr;
 | |
|     ssize_t bytes_written, bytes_left;
 | |
|     struct rlimit dumpsize;
 | |
|     off_t pos;
 | |
| 
 | |
|     bytes_written = 0;
 | |
|     getrlimit(RLIMIT_CORE, &dumpsize);
 | |
|     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
 | |
|         if (errno == ESPIPE) { /* not a seekable stream */
 | |
|             bytes_left = size;
 | |
|         } else {
 | |
|             return pos;
 | |
|         }
 | |
|     } else {
 | |
|         if (dumpsize.rlim_cur <= pos) {
 | |
|             return -1;
 | |
|         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
 | |
|             bytes_left = size;
 | |
|         } else {
 | |
|             size_t limit_left=dumpsize.rlim_cur - pos;
 | |
|             bytes_left = limit_left >= size ? size : limit_left ;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * In normal conditions, single write(2) should do but
 | |
|      * in case of socket etc. this mechanism is more portable.
 | |
|      */
 | |
|     do {
 | |
|         bytes_written = write(fd, bufp, bytes_left);
 | |
|         if (bytes_written < 0) {
 | |
|             if (errno == EINTR)
 | |
|                 continue;
 | |
|             return (-1);
 | |
|         } else if (bytes_written == 0) { /* eof */
 | |
|             return (-1);
 | |
|         }
 | |
|         bufp += bytes_written;
 | |
|         bytes_left -= bytes_written;
 | |
|     } while (bytes_left > 0);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static int write_note(struct memelfnote *men, int fd)
 | |
| {
 | |
|     struct elf_note en;
 | |
| 
 | |
|     en.n_namesz = men->namesz;
 | |
|     en.n_type = men->type;
 | |
|     en.n_descsz = men->datasz;
 | |
| 
 | |
|     bswap_note(&en);
 | |
| 
 | |
|     if (dump_write(fd, &en, sizeof(en)) != 0)
 | |
|         return (-1);
 | |
|     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
 | |
|         return (-1);
 | |
|     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
 | |
|         return (-1);
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
 | |
| {
 | |
|     CPUState *cpu = env_cpu((CPUArchState *)env);
 | |
|     TaskState *ts = (TaskState *)cpu->opaque;
 | |
|     struct elf_thread_status *ets;
 | |
| 
 | |
|     ets = g_malloc0(sizeof (*ets));
 | |
|     ets->num_notes = 1; /* only prstatus is dumped */
 | |
|     fill_prstatus(&ets->prstatus, ts, 0);
 | |
|     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
 | |
|     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
 | |
|               &ets->prstatus);
 | |
| 
 | |
|     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
 | |
| 
 | |
|     info->notes_size += note_size(&ets->notes[0]);
 | |
| }
 | |
| 
 | |
| static void init_note_info(struct elf_note_info *info)
 | |
| {
 | |
|     /* Initialize the elf_note_info structure so that it is at
 | |
|      * least safe to call free_note_info() on it. Must be
 | |
|      * called before calling fill_note_info().
 | |
|      */
 | |
|     memset(info, 0, sizeof (*info));
 | |
|     QTAILQ_INIT(&info->thread_list);
 | |
| }
 | |
| 
 | |
| static int fill_note_info(struct elf_note_info *info,
 | |
|                           long signr, const CPUArchState *env)
 | |
| {
 | |
| #define NUMNOTES 3
 | |
|     CPUState *cpu = env_cpu((CPUArchState *)env);
 | |
|     TaskState *ts = (TaskState *)cpu->opaque;
 | |
|     int i;
 | |
| 
 | |
|     info->notes = g_new0(struct memelfnote, NUMNOTES);
 | |
|     if (info->notes == NULL)
 | |
|         return (-ENOMEM);
 | |
|     info->prstatus = g_malloc0(sizeof (*info->prstatus));
 | |
|     if (info->prstatus == NULL)
 | |
|         return (-ENOMEM);
 | |
|     info->psinfo = g_malloc0(sizeof (*info->psinfo));
 | |
|     if (info->prstatus == NULL)
 | |
|         return (-ENOMEM);
 | |
| 
 | |
|     /*
 | |
|      * First fill in status (and registers) of current thread
 | |
|      * including process info & aux vector.
 | |
|      */
 | |
|     fill_prstatus(info->prstatus, ts, signr);
 | |
|     elf_core_copy_regs(&info->prstatus->pr_reg, env);
 | |
|     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
 | |
|               sizeof (*info->prstatus), info->prstatus);
 | |
|     fill_psinfo(info->psinfo, ts);
 | |
|     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
 | |
|               sizeof (*info->psinfo), info->psinfo);
 | |
|     fill_auxv_note(&info->notes[2], ts);
 | |
|     info->numnote = 3;
 | |
| 
 | |
|     info->notes_size = 0;
 | |
|     for (i = 0; i < info->numnote; i++)
 | |
|         info->notes_size += note_size(&info->notes[i]);
 | |
| 
 | |
|     /* read and fill status of all threads */
 | |
|     cpu_list_lock();
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu == thread_cpu) {
 | |
|             continue;
 | |
|         }
 | |
|         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
 | |
|     }
 | |
|     cpu_list_unlock();
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| static void free_note_info(struct elf_note_info *info)
 | |
| {
 | |
|     struct elf_thread_status *ets;
 | |
| 
 | |
|     while (!QTAILQ_EMPTY(&info->thread_list)) {
 | |
|         ets = QTAILQ_FIRST(&info->thread_list);
 | |
|         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
 | |
|         g_free(ets);
 | |
|     }
 | |
| 
 | |
|     g_free(info->prstatus);
 | |
|     g_free(info->psinfo);
 | |
|     g_free(info->notes);
 | |
| }
 | |
| 
 | |
| static int write_note_info(struct elf_note_info *info, int fd)
 | |
| {
 | |
|     struct elf_thread_status *ets;
 | |
|     int i, error = 0;
 | |
| 
 | |
|     /* write prstatus, psinfo and auxv for current thread */
 | |
|     for (i = 0; i < info->numnote; i++)
 | |
|         if ((error = write_note(&info->notes[i], fd)) != 0)
 | |
|             return (error);
 | |
| 
 | |
|     /* write prstatus for each thread */
 | |
|     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
 | |
|         if ((error = write_note(&ets->notes[0], fd)) != 0)
 | |
|             return (error);
 | |
|     }
 | |
| 
 | |
|     return (0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write out ELF coredump.
 | |
|  *
 | |
|  * See documentation of ELF object file format in:
 | |
|  * http://www.caldera.com/developers/devspecs/gabi41.pdf
 | |
|  *
 | |
|  * Coredump format in linux is following:
 | |
|  *
 | |
|  * 0   +----------------------+         \
 | |
|  *     | ELF header           | ET_CORE  |
 | |
|  *     +----------------------+          |
 | |
|  *     | ELF program headers  |          |--- headers
 | |
|  *     | - NOTE section       |          |
 | |
|  *     | - PT_LOAD sections   |          |
 | |
|  *     +----------------------+         /
 | |
|  *     | NOTEs:               |
 | |
|  *     | - NT_PRSTATUS        |
 | |
|  *     | - NT_PRSINFO         |
 | |
|  *     | - NT_AUXV            |
 | |
|  *     +----------------------+ <-- aligned to target page
 | |
|  *     | Process memory dump  |
 | |
|  *     :                      :
 | |
|  *     .                      .
 | |
|  *     :                      :
 | |
|  *     |                      |
 | |
|  *     +----------------------+
 | |
|  *
 | |
|  * NT_PRSTATUS -> struct elf_prstatus (per thread)
 | |
|  * NT_PRSINFO  -> struct elf_prpsinfo
 | |
|  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
 | |
|  *
 | |
|  * Format follows System V format as close as possible.  Current
 | |
|  * version limitations are as follows:
 | |
|  *     - no floating point registers are dumped
 | |
|  *
 | |
|  * Function returns 0 in case of success, negative errno otherwise.
 | |
|  *
 | |
|  * TODO: make this work also during runtime: it should be
 | |
|  * possible to force coredump from running process and then
 | |
|  * continue processing.  For example qemu could set up SIGUSR2
 | |
|  * handler (provided that target process haven't registered
 | |
|  * handler for that) that does the dump when signal is received.
 | |
|  */
 | |
| static int elf_core_dump(int signr, const CPUArchState *env)
 | |
| {
 | |
|     const CPUState *cpu = env_cpu((CPUArchState *)env);
 | |
|     const TaskState *ts = (const TaskState *)cpu->opaque;
 | |
|     struct vm_area_struct *vma = NULL;
 | |
|     char corefile[PATH_MAX];
 | |
|     struct elf_note_info info;
 | |
|     struct elfhdr elf;
 | |
|     struct elf_phdr phdr;
 | |
|     struct rlimit dumpsize;
 | |
|     struct mm_struct *mm = NULL;
 | |
|     off_t offset = 0, data_offset = 0;
 | |
|     int segs = 0;
 | |
|     int fd = -1;
 | |
| 
 | |
|     init_note_info(&info);
 | |
| 
 | |
|     errno = 0;
 | |
|     getrlimit(RLIMIT_CORE, &dumpsize);
 | |
|     if (dumpsize.rlim_cur == 0)
 | |
|         return 0;
 | |
| 
 | |
|     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
 | |
|         return (-errno);
 | |
| 
 | |
|     if ((fd = open(corefile, O_WRONLY | O_CREAT,
 | |
|                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
 | |
|         return (-errno);
 | |
| 
 | |
|     /*
 | |
|      * Walk through target process memory mappings and
 | |
|      * set up structure containing this information.  After
 | |
|      * this point vma_xxx functions can be used.
 | |
|      */
 | |
|     if ((mm = vma_init()) == NULL)
 | |
|         goto out;
 | |
| 
 | |
|     walk_memory_regions(mm, vma_walker);
 | |
|     segs = vma_get_mapping_count(mm);
 | |
| 
 | |
|     /*
 | |
|      * Construct valid coredump ELF header.  We also
 | |
|      * add one more segment for notes.
 | |
|      */
 | |
|     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
 | |
|     if (dump_write(fd, &elf, sizeof (elf)) != 0)
 | |
|         goto out;
 | |
| 
 | |
|     /* fill in the in-memory version of notes */
 | |
|     if (fill_note_info(&info, signr, env) < 0)
 | |
|         goto out;
 | |
| 
 | |
|     offset += sizeof (elf);                             /* elf header */
 | |
|     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
 | |
| 
 | |
|     /* write out notes program header */
 | |
|     fill_elf_note_phdr(&phdr, info.notes_size, offset);
 | |
| 
 | |
|     offset += info.notes_size;
 | |
|     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
 | |
|         goto out;
 | |
| 
 | |
|     /*
 | |
|      * ELF specification wants data to start at page boundary so
 | |
|      * we align it here.
 | |
|      */
 | |
|     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
 | |
| 
 | |
|     /*
 | |
|      * Write program headers for memory regions mapped in
 | |
|      * the target process.
 | |
|      */
 | |
|     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
 | |
|         (void) memset(&phdr, 0, sizeof (phdr));
 | |
| 
 | |
|         phdr.p_type = PT_LOAD;
 | |
|         phdr.p_offset = offset;
 | |
|         phdr.p_vaddr = vma->vma_start;
 | |
|         phdr.p_paddr = 0;
 | |
|         phdr.p_filesz = vma_dump_size(vma);
 | |
|         offset += phdr.p_filesz;
 | |
|         phdr.p_memsz = vma->vma_end - vma->vma_start;
 | |
|         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
 | |
|         if (vma->vma_flags & PROT_WRITE)
 | |
|             phdr.p_flags |= PF_W;
 | |
|         if (vma->vma_flags & PROT_EXEC)
 | |
|             phdr.p_flags |= PF_X;
 | |
|         phdr.p_align = ELF_EXEC_PAGESIZE;
 | |
| 
 | |
|         bswap_phdr(&phdr, 1);
 | |
|         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Next we write notes just after program headers.  No
 | |
|      * alignment needed here.
 | |
|      */
 | |
|     if (write_note_info(&info, fd) < 0)
 | |
|         goto out;
 | |
| 
 | |
|     /* align data to page boundary */
 | |
|     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
 | |
|         goto out;
 | |
| 
 | |
|     /*
 | |
|      * Finally we can dump process memory into corefile as well.
 | |
|      */
 | |
|     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
 | |
|         abi_ulong addr;
 | |
|         abi_ulong end;
 | |
| 
 | |
|         end = vma->vma_start + vma_dump_size(vma);
 | |
| 
 | |
|         for (addr = vma->vma_start; addr < end;
 | |
|              addr += TARGET_PAGE_SIZE) {
 | |
|             char page[TARGET_PAGE_SIZE];
 | |
|             int error;
 | |
| 
 | |
|             /*
 | |
|              *  Read in page from target process memory and
 | |
|              *  write it to coredump file.
 | |
|              */
 | |
|             error = copy_from_user(page, addr, sizeof (page));
 | |
|             if (error != 0) {
 | |
|                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
 | |
|                                addr);
 | |
|                 errno = -error;
 | |
|                 goto out;
 | |
|             }
 | |
|             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
 | |
|                 goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|  out:
 | |
|     free_note_info(&info);
 | |
|     if (mm != NULL)
 | |
|         vma_delete(mm);
 | |
|     (void) close(fd);
 | |
| 
 | |
|     if (errno != 0)
 | |
|         return (-errno);
 | |
|     return (0);
 | |
| }
 | |
| #endif /* USE_ELF_CORE_DUMP */
 | |
| 
 | |
| void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
 | |
| {
 | |
|     init_thread(regs, infop);
 | |
| }
 |