 80c4750ba8
			
		
	
	
		80c4750ba8
		
	
	
	
	
		
			
			This will let us simplify the code that initializes CPU class methods, when we move cpu_exec_*() to a separate struct. Signed-off-by: Eduardo Habkost <ehabkost@redhat.com> Signed-off-by: Claudio Fontana <cfontana@suse.de> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Message-Id: <20201212155530.23098-11-cfontana@suse.de> Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
		
			
				
	
	
		
			824 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			824 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  emulator main execution loop
 | |
|  *
 | |
|  *  Copyright (c) 2003-2005 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/qemu-print.h"
 | |
| #include "cpu.h"
 | |
| #include "trace.h"
 | |
| #include "disas/disas.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "tcg/tcg.h"
 | |
| #include "qemu/atomic.h"
 | |
| #include "sysemu/qtest.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/rcu.h"
 | |
| #include "exec/tb-hash.h"
 | |
| #include "exec/tb-lookup.h"
 | |
| #include "exec/log.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
 | |
| #include "hw/i386/apic.h"
 | |
| #endif
 | |
| #include "sysemu/cpus.h"
 | |
| #include "exec/cpu-all.h"
 | |
| #include "sysemu/cpu-timers.h"
 | |
| #include "sysemu/replay.h"
 | |
| 
 | |
| /* -icount align implementation. */
 | |
| 
 | |
| typedef struct SyncClocks {
 | |
|     int64_t diff_clk;
 | |
|     int64_t last_cpu_icount;
 | |
|     int64_t realtime_clock;
 | |
| } SyncClocks;
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* Allow the guest to have a max 3ms advance.
 | |
|  * The difference between the 2 clocks could therefore
 | |
|  * oscillate around 0.
 | |
|  */
 | |
| #define VM_CLOCK_ADVANCE 3000000
 | |
| #define THRESHOLD_REDUCE 1.5
 | |
| #define MAX_DELAY_PRINT_RATE 2000000000LL
 | |
| #define MAX_NB_PRINTS 100
 | |
| 
 | |
| static int64_t max_delay;
 | |
| static int64_t max_advance;
 | |
| 
 | |
| static void align_clocks(SyncClocks *sc, CPUState *cpu)
 | |
| {
 | |
|     int64_t cpu_icount;
 | |
| 
 | |
|     if (!icount_align_option) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
 | |
|     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
 | |
|     sc->last_cpu_icount = cpu_icount;
 | |
| 
 | |
|     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
 | |
| #ifndef _WIN32
 | |
|         struct timespec sleep_delay, rem_delay;
 | |
|         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
 | |
|         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
 | |
|         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
 | |
|             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
 | |
|         } else {
 | |
|             sc->diff_clk = 0;
 | |
|         }
 | |
| #else
 | |
|         Sleep(sc->diff_clk / SCALE_MS);
 | |
|         sc->diff_clk = 0;
 | |
| #endif
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void print_delay(const SyncClocks *sc)
 | |
| {
 | |
|     static float threshold_delay;
 | |
|     static int64_t last_realtime_clock;
 | |
|     static int nb_prints;
 | |
| 
 | |
|     if (icount_align_option &&
 | |
|         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
 | |
|         nb_prints < MAX_NB_PRINTS) {
 | |
|         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
 | |
|             (-sc->diff_clk / (float)1000000000LL <
 | |
|              (threshold_delay - THRESHOLD_REDUCE))) {
 | |
|             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
 | |
|             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
 | |
|                         threshold_delay - 1,
 | |
|                         threshold_delay);
 | |
|             nb_prints++;
 | |
|             last_realtime_clock = sc->realtime_clock;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void init_delay_params(SyncClocks *sc, CPUState *cpu)
 | |
| {
 | |
|     if (!icount_align_option) {
 | |
|         return;
 | |
|     }
 | |
|     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
 | |
|     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
 | |
|     sc->last_cpu_icount
 | |
|         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
 | |
|     if (sc->diff_clk < max_delay) {
 | |
|         max_delay = sc->diff_clk;
 | |
|     }
 | |
|     if (sc->diff_clk > max_advance) {
 | |
|         max_advance = sc->diff_clk;
 | |
|     }
 | |
| 
 | |
|     /* Print every 2s max if the guest is late. We limit the number
 | |
|        of printed messages to NB_PRINT_MAX(currently 100) */
 | |
|     print_delay(sc);
 | |
| }
 | |
| #else
 | |
| static void align_clocks(SyncClocks *sc, const CPUState *cpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
 | |
| {
 | |
| }
 | |
| #endif /* CONFIG USER ONLY */
 | |
| 
 | |
| /* Execute a TB, and fix up the CPU state afterwards if necessary */
 | |
| static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     uintptr_t ret;
 | |
|     TranslationBlock *last_tb;
 | |
|     int tb_exit;
 | |
|     uint8_t *tb_ptr = itb->tc.ptr;
 | |
| 
 | |
|     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
 | |
|                            "Trace %d: %p ["
 | |
|                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
 | |
|                            cpu->cpu_index, itb->tc.ptr,
 | |
|                            itb->cs_base, itb->pc, itb->flags,
 | |
|                            lookup_symbol(itb->pc));
 | |
| 
 | |
| #if defined(DEBUG_DISAS)
 | |
|     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
 | |
|         && qemu_log_in_addr_range(itb->pc)) {
 | |
|         FILE *logfile = qemu_log_lock();
 | |
|         int flags = 0;
 | |
|         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
 | |
|             flags |= CPU_DUMP_FPU;
 | |
|         }
 | |
| #if defined(TARGET_I386)
 | |
|         flags |= CPU_DUMP_CCOP;
 | |
| #endif
 | |
|         log_cpu_state(cpu, flags);
 | |
|         qemu_log_unlock(logfile);
 | |
|     }
 | |
| #endif /* DEBUG_DISAS */
 | |
| 
 | |
|     ret = tcg_qemu_tb_exec(env, tb_ptr);
 | |
|     cpu->can_do_io = 1;
 | |
|     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
 | |
|     tb_exit = ret & TB_EXIT_MASK;
 | |
|     trace_exec_tb_exit(last_tb, tb_exit);
 | |
| 
 | |
|     if (tb_exit > TB_EXIT_IDX1) {
 | |
|         /* We didn't start executing this TB (eg because the instruction
 | |
|          * counter hit zero); we must restore the guest PC to the address
 | |
|          * of the start of the TB.
 | |
|          */
 | |
|         CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
 | |
|                                "Stopped execution of TB chain before %p ["
 | |
|                                TARGET_FMT_lx "] %s\n",
 | |
|                                last_tb->tc.ptr, last_tb->pc,
 | |
|                                lookup_symbol(last_tb->pc));
 | |
|         if (cc->synchronize_from_tb) {
 | |
|             cc->synchronize_from_tb(cpu, last_tb);
 | |
|         } else {
 | |
|             assert(cc->set_pc);
 | |
|             cc->set_pc(cpu, last_tb->pc);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* Execute the code without caching the generated code. An interpreter
 | |
|    could be used if available. */
 | |
| static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
 | |
|                              TranslationBlock *orig_tb, bool ignore_icount)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     uint32_t cflags = curr_cflags() | CF_NOCACHE;
 | |
| 
 | |
|     if (ignore_icount) {
 | |
|         cflags &= ~CF_USE_ICOUNT;
 | |
|     }
 | |
| 
 | |
|     /* Should never happen.
 | |
|        We only end up here when an existing TB is too long.  */
 | |
|     cflags |= MIN(max_cycles, CF_COUNT_MASK);
 | |
| 
 | |
|     mmap_lock();
 | |
|     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
 | |
|                      orig_tb->flags, cflags);
 | |
|     tb->orig_tb = orig_tb;
 | |
|     mmap_unlock();
 | |
| 
 | |
|     /* execute the generated code */
 | |
|     trace_exec_tb_nocache(tb, tb->pc);
 | |
|     cpu_tb_exec(cpu, tb);
 | |
| 
 | |
|     mmap_lock();
 | |
|     tb_phys_invalidate(tb, -1);
 | |
|     mmap_unlock();
 | |
|     tcg_tb_remove(tb);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void cpu_exec_enter(CPUState *cpu)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     if (cc->cpu_exec_enter) {
 | |
|         cc->cpu_exec_enter(cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void cpu_exec_exit(CPUState *cpu)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     if (cc->cpu_exec_exit) {
 | |
|         cc->cpu_exec_exit(cpu);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_exec_step_atomic(CPUState *cpu)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     target_ulong cs_base, pc;
 | |
|     uint32_t flags;
 | |
|     uint32_t cflags = 1;
 | |
|     uint32_t cf_mask = cflags & CF_HASH_MASK;
 | |
| 
 | |
|     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
 | |
|         start_exclusive();
 | |
| 
 | |
|         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
 | |
|         if (tb == NULL) {
 | |
|             mmap_lock();
 | |
|             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| 
 | |
|         /* Since we got here, we know that parallel_cpus must be true.  */
 | |
|         parallel_cpus = false;
 | |
|         cpu_exec_enter(cpu);
 | |
|         /* execute the generated code */
 | |
|         trace_exec_tb(tb, pc);
 | |
|         cpu_tb_exec(cpu, tb);
 | |
|         cpu_exec_exit(cpu);
 | |
|     } else {
 | |
|         /*
 | |
|          * The mmap_lock is dropped by tb_gen_code if it runs out of
 | |
|          * memory.
 | |
|          */
 | |
| #ifndef CONFIG_SOFTMMU
 | |
|         tcg_debug_assert(!have_mmap_lock());
 | |
| #endif
 | |
|         if (qemu_mutex_iothread_locked()) {
 | |
|             qemu_mutex_unlock_iothread();
 | |
|         }
 | |
|         assert_no_pages_locked();
 | |
|         qemu_plugin_disable_mem_helpers(cpu);
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * As we start the exclusive region before codegen we must still
 | |
|      * be in the region if we longjump out of either the codegen or
 | |
|      * the execution.
 | |
|      */
 | |
|     g_assert(cpu_in_exclusive_context(cpu));
 | |
|     parallel_cpus = true;
 | |
|     end_exclusive();
 | |
| }
 | |
| 
 | |
| struct tb_desc {
 | |
|     target_ulong pc;
 | |
|     target_ulong cs_base;
 | |
|     CPUArchState *env;
 | |
|     tb_page_addr_t phys_page1;
 | |
|     uint32_t flags;
 | |
|     uint32_t cf_mask;
 | |
|     uint32_t trace_vcpu_dstate;
 | |
| };
 | |
| 
 | |
| static bool tb_lookup_cmp(const void *p, const void *d)
 | |
| {
 | |
|     const TranslationBlock *tb = p;
 | |
|     const struct tb_desc *desc = d;
 | |
| 
 | |
|     if (tb->pc == desc->pc &&
 | |
|         tb->page_addr[0] == desc->phys_page1 &&
 | |
|         tb->cs_base == desc->cs_base &&
 | |
|         tb->flags == desc->flags &&
 | |
|         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
 | |
|         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
 | |
|         /* check next page if needed */
 | |
|         if (tb->page_addr[1] == -1) {
 | |
|             return true;
 | |
|         } else {
 | |
|             tb_page_addr_t phys_page2;
 | |
|             target_ulong virt_page2;
 | |
| 
 | |
|             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
 | |
|             phys_page2 = get_page_addr_code(desc->env, virt_page2);
 | |
|             if (tb->page_addr[1] == phys_page2) {
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
 | |
|                                    target_ulong cs_base, uint32_t flags,
 | |
|                                    uint32_t cf_mask)
 | |
| {
 | |
|     tb_page_addr_t phys_pc;
 | |
|     struct tb_desc desc;
 | |
|     uint32_t h;
 | |
| 
 | |
|     desc.env = (CPUArchState *)cpu->env_ptr;
 | |
|     desc.cs_base = cs_base;
 | |
|     desc.flags = flags;
 | |
|     desc.cf_mask = cf_mask;
 | |
|     desc.trace_vcpu_dstate = *cpu->trace_dstate;
 | |
|     desc.pc = pc;
 | |
|     phys_pc = get_page_addr_code(desc.env, pc);
 | |
|     if (phys_pc == -1) {
 | |
|         return NULL;
 | |
|     }
 | |
|     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
 | |
|     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
 | |
|     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
 | |
| }
 | |
| 
 | |
| void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
 | |
| {
 | |
|     if (TCG_TARGET_HAS_direct_jump) {
 | |
|         uintptr_t offset = tb->jmp_target_arg[n];
 | |
|         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
 | |
|         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
 | |
|     } else {
 | |
|         tb->jmp_target_arg[n] = addr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tb_add_jump(TranslationBlock *tb, int n,
 | |
|                                TranslationBlock *tb_next)
 | |
| {
 | |
|     uintptr_t old;
 | |
| 
 | |
|     assert(n < ARRAY_SIZE(tb->jmp_list_next));
 | |
|     qemu_spin_lock(&tb_next->jmp_lock);
 | |
| 
 | |
|     /* make sure the destination TB is valid */
 | |
|     if (tb_next->cflags & CF_INVALID) {
 | |
|         goto out_unlock_next;
 | |
|     }
 | |
|     /* Atomically claim the jump destination slot only if it was NULL */
 | |
|     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
 | |
|                           (uintptr_t)tb_next);
 | |
|     if (old) {
 | |
|         goto out_unlock_next;
 | |
|     }
 | |
| 
 | |
|     /* patch the native jump address */
 | |
|     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
 | |
| 
 | |
|     /* add in TB jmp list */
 | |
|     tb->jmp_list_next[n] = tb_next->jmp_list_head;
 | |
|     tb_next->jmp_list_head = (uintptr_t)tb | n;
 | |
| 
 | |
|     qemu_spin_unlock(&tb_next->jmp_lock);
 | |
| 
 | |
|     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
 | |
|                            "Linking TBs %p [" TARGET_FMT_lx
 | |
|                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
 | |
|                            tb->tc.ptr, tb->pc, n,
 | |
|                            tb_next->tc.ptr, tb_next->pc);
 | |
|     return;
 | |
| 
 | |
|  out_unlock_next:
 | |
|     qemu_spin_unlock(&tb_next->jmp_lock);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| static inline TranslationBlock *tb_find(CPUState *cpu,
 | |
|                                         TranslationBlock *last_tb,
 | |
|                                         int tb_exit, uint32_t cf_mask)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     target_ulong cs_base, pc;
 | |
|     uint32_t flags;
 | |
| 
 | |
|     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
 | |
|     if (tb == NULL) {
 | |
|         mmap_lock();
 | |
|         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
 | |
|         mmap_unlock();
 | |
|         /* We add the TB in the virtual pc hash table for the fast lookup */
 | |
|         qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
 | |
|     }
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* We don't take care of direct jumps when address mapping changes in
 | |
|      * system emulation. So it's not safe to make a direct jump to a TB
 | |
|      * spanning two pages because the mapping for the second page can change.
 | |
|      */
 | |
|     if (tb->page_addr[1] != -1) {
 | |
|         last_tb = NULL;
 | |
|     }
 | |
| #endif
 | |
|     /* See if we can patch the calling TB. */
 | |
|     if (last_tb) {
 | |
|         tb_add_jump(last_tb, tb_exit, tb);
 | |
|     }
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| static inline bool cpu_handle_halt(CPUState *cpu)
 | |
| {
 | |
|     if (cpu->halted) {
 | |
| #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
 | |
|         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
 | |
|             X86CPU *x86_cpu = X86_CPU(cpu);
 | |
|             qemu_mutex_lock_iothread();
 | |
|             apic_poll_irq(x86_cpu->apic_state);
 | |
|             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
 | |
|             qemu_mutex_unlock_iothread();
 | |
|         }
 | |
| #endif
 | |
|         if (!cpu_has_work(cpu)) {
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         cpu->halted = 0;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline void cpu_handle_debug_exception(CPUState *cpu)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|     CPUWatchpoint *wp;
 | |
| 
 | |
|     if (!cpu->watchpoint_hit) {
 | |
|         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
 | |
|             wp->flags &= ~BP_WATCHPOINT_HIT;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cc->debug_excp_handler(cpu);
 | |
| }
 | |
| 
 | |
| static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
 | |
| {
 | |
|     if (cpu->exception_index < 0) {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         if (replay_has_exception()
 | |
|             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
 | |
|             /* try to cause an exception pending in the log */
 | |
|             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
 | |
|         }
 | |
| #endif
 | |
|         if (cpu->exception_index < 0) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (cpu->exception_index >= EXCP_INTERRUPT) {
 | |
|         /* exit request from the cpu execution loop */
 | |
|         *ret = cpu->exception_index;
 | |
|         if (*ret == EXCP_DEBUG) {
 | |
|             cpu_handle_debug_exception(cpu);
 | |
|         }
 | |
|         cpu->exception_index = -1;
 | |
|         return true;
 | |
|     } else {
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|         /* if user mode only, we simulate a fake exception
 | |
|            which will be handled outside the cpu execution
 | |
|            loop */
 | |
| #if defined(TARGET_I386)
 | |
|         CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|         cc->do_interrupt(cpu);
 | |
| #endif
 | |
|         *ret = cpu->exception_index;
 | |
|         cpu->exception_index = -1;
 | |
|         return true;
 | |
| #else
 | |
|         if (replay_exception()) {
 | |
|             CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|             qemu_mutex_lock_iothread();
 | |
|             cc->do_interrupt(cpu);
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             cpu->exception_index = -1;
 | |
| 
 | |
|             if (unlikely(cpu->singlestep_enabled)) {
 | |
|                 /*
 | |
|                  * After processing the exception, ensure an EXCP_DEBUG is
 | |
|                  * raised when single-stepping so that GDB doesn't miss the
 | |
|                  * next instruction.
 | |
|                  */
 | |
|                 *ret = EXCP_DEBUG;
 | |
|                 cpu_handle_debug_exception(cpu);
 | |
|                 return true;
 | |
|             }
 | |
|         } else if (!replay_has_interrupt()) {
 | |
|             /* give a chance to iothread in replay mode */
 | |
|             *ret = EXCP_INTERRUPT;
 | |
|             return true;
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
 | |
|  * "real" interrupt event later. It does not need to be recorded for
 | |
|  * replay purposes.
 | |
|  */
 | |
| static inline bool need_replay_interrupt(int interrupt_request)
 | |
| {
 | |
| #if defined(TARGET_I386)
 | |
|     return !(interrupt_request & CPU_INTERRUPT_POLL);
 | |
| #else
 | |
|     return true;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline bool cpu_handle_interrupt(CPUState *cpu,
 | |
|                                         TranslationBlock **last_tb)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     /* Clear the interrupt flag now since we're processing
 | |
|      * cpu->interrupt_request and cpu->exit_request.
 | |
|      * Ensure zeroing happens before reading cpu->exit_request or
 | |
|      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
 | |
|      */
 | |
|     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
 | |
| 
 | |
|     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
 | |
|         int interrupt_request;
 | |
|         qemu_mutex_lock_iothread();
 | |
|         interrupt_request = cpu->interrupt_request;
 | |
|         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
 | |
|             /* Mask out external interrupts for this step. */
 | |
|             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
 | |
|         }
 | |
|         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
 | |
|             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
 | |
|             cpu->exception_index = EXCP_DEBUG;
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             return true;
 | |
|         }
 | |
|         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
 | |
|             /* Do nothing */
 | |
|         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
 | |
|             replay_interrupt();
 | |
|             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
 | |
|             cpu->halted = 1;
 | |
|             cpu->exception_index = EXCP_HLT;
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             return true;
 | |
|         }
 | |
| #if defined(TARGET_I386)
 | |
|         else if (interrupt_request & CPU_INTERRUPT_INIT) {
 | |
|             X86CPU *x86_cpu = X86_CPU(cpu);
 | |
|             CPUArchState *env = &x86_cpu->env;
 | |
|             replay_interrupt();
 | |
|             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
 | |
|             do_cpu_init(x86_cpu);
 | |
|             cpu->exception_index = EXCP_HALTED;
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             return true;
 | |
|         }
 | |
| #else
 | |
|         else if (interrupt_request & CPU_INTERRUPT_RESET) {
 | |
|             replay_interrupt();
 | |
|             cpu_reset(cpu);
 | |
|             qemu_mutex_unlock_iothread();
 | |
|             return true;
 | |
|         }
 | |
| #endif
 | |
|         /* The target hook has 3 exit conditions:
 | |
|            False when the interrupt isn't processed,
 | |
|            True when it is, and we should restart on a new TB,
 | |
|            and via longjmp via cpu_loop_exit.  */
 | |
|         else {
 | |
|             if (cc->cpu_exec_interrupt &&
 | |
|                 cc->cpu_exec_interrupt(cpu, interrupt_request)) {
 | |
|                 if (need_replay_interrupt(interrupt_request)) {
 | |
|                     replay_interrupt();
 | |
|                 }
 | |
|                 /*
 | |
|                  * After processing the interrupt, ensure an EXCP_DEBUG is
 | |
|                  * raised when single-stepping so that GDB doesn't miss the
 | |
|                  * next instruction.
 | |
|                  */
 | |
|                 cpu->exception_index =
 | |
|                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
 | |
|                 *last_tb = NULL;
 | |
|             }
 | |
|             /* The target hook may have updated the 'cpu->interrupt_request';
 | |
|              * reload the 'interrupt_request' value */
 | |
|             interrupt_request = cpu->interrupt_request;
 | |
|         }
 | |
|         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
 | |
|             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
 | |
|             /* ensure that no TB jump will be modified as
 | |
|                the program flow was changed */
 | |
|             *last_tb = NULL;
 | |
|         }
 | |
| 
 | |
|         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
| 
 | |
|     /* Finally, check if we need to exit to the main loop.  */
 | |
|     if (unlikely(qatomic_read(&cpu->exit_request))
 | |
|         || (icount_enabled()
 | |
|             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
 | |
|         qatomic_set(&cpu->exit_request, 0);
 | |
|         if (cpu->exception_index == -1) {
 | |
|             cpu->exception_index = EXCP_INTERRUPT;
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
 | |
|                                     TranslationBlock **last_tb, int *tb_exit)
 | |
| {
 | |
|     uintptr_t ret;
 | |
|     int32_t insns_left;
 | |
| 
 | |
|     trace_exec_tb(tb, tb->pc);
 | |
|     ret = cpu_tb_exec(cpu, tb);
 | |
|     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
 | |
|     *tb_exit = ret & TB_EXIT_MASK;
 | |
|     if (*tb_exit != TB_EXIT_REQUESTED) {
 | |
|         *last_tb = tb;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     *last_tb = NULL;
 | |
|     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
 | |
|     if (insns_left < 0) {
 | |
|         /* Something asked us to stop executing chained TBs; just
 | |
|          * continue round the main loop. Whatever requested the exit
 | |
|          * will also have set something else (eg exit_request or
 | |
|          * interrupt_request) which will be handled by
 | |
|          * cpu_handle_interrupt.  cpu_handle_interrupt will also
 | |
|          * clear cpu->icount_decr.u16.high.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Instruction counter expired.  */
 | |
|     assert(icount_enabled());
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* Ensure global icount has gone forward */
 | |
|     icount_update(cpu);
 | |
|     /* Refill decrementer and continue execution.  */
 | |
|     insns_left = MIN(0xffff, cpu->icount_budget);
 | |
|     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
 | |
|     cpu->icount_extra = cpu->icount_budget - insns_left;
 | |
|     if (!cpu->icount_extra && insns_left < tb->icount) {
 | |
|         /* Execute any remaining instructions, then let the main loop
 | |
|          * handle the next event.
 | |
|          */
 | |
|         if (insns_left > 0) {
 | |
|             cpu_exec_nocache(cpu, insns_left, tb, false);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* main execution loop */
 | |
| 
 | |
| int cpu_exec(CPUState *cpu)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|     int ret;
 | |
|     SyncClocks sc = { 0 };
 | |
| 
 | |
|     /* replay_interrupt may need current_cpu */
 | |
|     current_cpu = cpu;
 | |
| 
 | |
|     if (cpu_handle_halt(cpu)) {
 | |
|         return EXCP_HALTED;
 | |
|     }
 | |
| 
 | |
|     rcu_read_lock();
 | |
| 
 | |
|     cpu_exec_enter(cpu);
 | |
| 
 | |
|     /* Calculate difference between guest clock and host clock.
 | |
|      * This delay includes the delay of the last cycle, so
 | |
|      * what we have to do is sleep until it is 0. As for the
 | |
|      * advance/delay we gain here, we try to fix it next time.
 | |
|      */
 | |
|     init_delay_params(&sc, cpu);
 | |
| 
 | |
|     /* prepare setjmp context for exception handling */
 | |
|     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
 | |
| #if defined(__clang__)
 | |
|         /* Some compilers wrongly smash all local variables after
 | |
|          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
 | |
|          * Reload essential local variables here for those compilers.
 | |
|          * Newer versions of gcc would complain about this code (-Wclobbered). */
 | |
|         cpu = current_cpu;
 | |
|         cc = CPU_GET_CLASS(cpu);
 | |
| #else /* buggy compiler */
 | |
|         /* Assert that the compiler does not smash local variables. */
 | |
|         g_assert(cpu == current_cpu);
 | |
|         g_assert(cc == CPU_GET_CLASS(cpu));
 | |
| #endif /* buggy compiler */
 | |
| #ifndef CONFIG_SOFTMMU
 | |
|         tcg_debug_assert(!have_mmap_lock());
 | |
| #endif
 | |
|         if (qemu_mutex_iothread_locked()) {
 | |
|             qemu_mutex_unlock_iothread();
 | |
|         }
 | |
|         qemu_plugin_disable_mem_helpers(cpu);
 | |
| 
 | |
|         assert_no_pages_locked();
 | |
|     }
 | |
| 
 | |
|     /* if an exception is pending, we execute it here */
 | |
|     while (!cpu_handle_exception(cpu, &ret)) {
 | |
|         TranslationBlock *last_tb = NULL;
 | |
|         int tb_exit = 0;
 | |
| 
 | |
|         while (!cpu_handle_interrupt(cpu, &last_tb)) {
 | |
|             uint32_t cflags = cpu->cflags_next_tb;
 | |
|             TranslationBlock *tb;
 | |
| 
 | |
|             /* When requested, use an exact setting for cflags for the next
 | |
|                execution.  This is used for icount, precise smc, and stop-
 | |
|                after-access watchpoints.  Since this request should never
 | |
|                have CF_INVALID set, -1 is a convenient invalid value that
 | |
|                does not require tcg headers for cpu_common_reset.  */
 | |
|             if (cflags == -1) {
 | |
|                 cflags = curr_cflags();
 | |
|             } else {
 | |
|                 cpu->cflags_next_tb = -1;
 | |
|             }
 | |
| 
 | |
|             tb = tb_find(cpu, last_tb, tb_exit, cflags);
 | |
|             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
 | |
|             /* Try to align the host and virtual clocks
 | |
|                if the guest is in advance */
 | |
|             align_clocks(&sc, cpu);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     cpu_exec_exit(cpu);
 | |
|     rcu_read_unlock();
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| void dump_drift_info(void)
 | |
| {
 | |
|     if (!icount_enabled()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qemu_printf("Host - Guest clock  %"PRIi64" ms\n",
 | |
|                 (cpu_get_clock() - icount_get()) / SCALE_MS);
 | |
|     if (icount_align_option) {
 | |
|         qemu_printf("Max guest delay     %"PRIi64" ms\n",
 | |
|                     -max_delay / SCALE_MS);
 | |
|         qemu_printf("Max guest advance   %"PRIi64" ms\n",
 | |
|                     max_advance / SCALE_MS);
 | |
|     } else {
 | |
|         qemu_printf("Max guest delay     NA\n");
 | |
|         qemu_printf("Max guest advance   NA\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_USER_ONLY */
 |