 557d2bdcca
			
		
	
	
		557d2bdcca
		
	
	
	
	
		
			
			Next few patches will expose that functionality to the user. Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com> Reviewed-by: Daniel P. Berrangé <berrange@redhat.com> Message-Id: <20200608094030.670121-3-mlevitsk@redhat.com> Signed-off-by: Max Reitz <mreitz@redhat.com>
		
			
				
	
	
		
			1977 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1977 lines
		
	
	
		
			65 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU Crypto block device encryption LUKS format
 | |
|  *
 | |
|  * Copyright (c) 2015-2016 Red Hat, Inc.
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qemu/bswap.h"
 | |
| 
 | |
| #include "block-luks.h"
 | |
| 
 | |
| #include "crypto/hash.h"
 | |
| #include "crypto/afsplit.h"
 | |
| #include "crypto/pbkdf.h"
 | |
| #include "crypto/secret.h"
 | |
| #include "crypto/random.h"
 | |
| #include "qemu/uuid.h"
 | |
| 
 | |
| #include "qemu/coroutine.h"
 | |
| #include "qemu/bitmap.h"
 | |
| 
 | |
| /*
 | |
|  * Reference for the LUKS format implemented here is
 | |
|  *
 | |
|  *   docs/on-disk-format.pdf
 | |
|  *
 | |
|  * in 'cryptsetup' package source code
 | |
|  *
 | |
|  * This file implements the 1.2.1 specification, dated
 | |
|  * Oct 16, 2011.
 | |
|  */
 | |
| 
 | |
| typedef struct QCryptoBlockLUKS QCryptoBlockLUKS;
 | |
| typedef struct QCryptoBlockLUKSHeader QCryptoBlockLUKSHeader;
 | |
| typedef struct QCryptoBlockLUKSKeySlot QCryptoBlockLUKSKeySlot;
 | |
| 
 | |
| 
 | |
| /* The following constants are all defined by the LUKS spec */
 | |
| #define QCRYPTO_BLOCK_LUKS_VERSION 1
 | |
| 
 | |
| #define QCRYPTO_BLOCK_LUKS_MAGIC_LEN 6
 | |
| #define QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN 32
 | |
| #define QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN 32
 | |
| #define QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN 32
 | |
| #define QCRYPTO_BLOCK_LUKS_DIGEST_LEN 20
 | |
| #define QCRYPTO_BLOCK_LUKS_SALT_LEN 32
 | |
| #define QCRYPTO_BLOCK_LUKS_UUID_LEN 40
 | |
| #define QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS 8
 | |
| #define QCRYPTO_BLOCK_LUKS_STRIPES 4000
 | |
| #define QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS 1000
 | |
| #define QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS 1000
 | |
| #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET 4096
 | |
| 
 | |
| #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED 0x0000DEAD
 | |
| #define QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED 0x00AC71F3
 | |
| 
 | |
| #define QCRYPTO_BLOCK_LUKS_SECTOR_SIZE 512LL
 | |
| 
 | |
| #define QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS 2000
 | |
| #define QCRYPTO_BLOCK_LUKS_ERASE_ITERATIONS 40
 | |
| 
 | |
| static const char qcrypto_block_luks_magic[QCRYPTO_BLOCK_LUKS_MAGIC_LEN] = {
 | |
|     'L', 'U', 'K', 'S', 0xBA, 0xBE
 | |
| };
 | |
| 
 | |
| typedef struct QCryptoBlockLUKSNameMap QCryptoBlockLUKSNameMap;
 | |
| struct QCryptoBlockLUKSNameMap {
 | |
|     const char *name;
 | |
|     int id;
 | |
| };
 | |
| 
 | |
| typedef struct QCryptoBlockLUKSCipherSizeMap QCryptoBlockLUKSCipherSizeMap;
 | |
| struct QCryptoBlockLUKSCipherSizeMap {
 | |
|     uint32_t key_bytes;
 | |
|     int id;
 | |
| };
 | |
| typedef struct QCryptoBlockLUKSCipherNameMap QCryptoBlockLUKSCipherNameMap;
 | |
| struct QCryptoBlockLUKSCipherNameMap {
 | |
|     const char *name;
 | |
|     const QCryptoBlockLUKSCipherSizeMap *sizes;
 | |
| };
 | |
| 
 | |
| 
 | |
| static const QCryptoBlockLUKSCipherSizeMap
 | |
| qcrypto_block_luks_cipher_size_map_aes[] = {
 | |
|     { 16, QCRYPTO_CIPHER_ALG_AES_128 },
 | |
|     { 24, QCRYPTO_CIPHER_ALG_AES_192 },
 | |
|     { 32, QCRYPTO_CIPHER_ALG_AES_256 },
 | |
|     { 0, 0 },
 | |
| };
 | |
| 
 | |
| static const QCryptoBlockLUKSCipherSizeMap
 | |
| qcrypto_block_luks_cipher_size_map_cast5[] = {
 | |
|     { 16, QCRYPTO_CIPHER_ALG_CAST5_128 },
 | |
|     { 0, 0 },
 | |
| };
 | |
| 
 | |
| static const QCryptoBlockLUKSCipherSizeMap
 | |
| qcrypto_block_luks_cipher_size_map_serpent[] = {
 | |
|     { 16, QCRYPTO_CIPHER_ALG_SERPENT_128 },
 | |
|     { 24, QCRYPTO_CIPHER_ALG_SERPENT_192 },
 | |
|     { 32, QCRYPTO_CIPHER_ALG_SERPENT_256 },
 | |
|     { 0, 0 },
 | |
| };
 | |
| 
 | |
| static const QCryptoBlockLUKSCipherSizeMap
 | |
| qcrypto_block_luks_cipher_size_map_twofish[] = {
 | |
|     { 16, QCRYPTO_CIPHER_ALG_TWOFISH_128 },
 | |
|     { 24, QCRYPTO_CIPHER_ALG_TWOFISH_192 },
 | |
|     { 32, QCRYPTO_CIPHER_ALG_TWOFISH_256 },
 | |
|     { 0, 0 },
 | |
| };
 | |
| 
 | |
| static const QCryptoBlockLUKSCipherNameMap
 | |
| qcrypto_block_luks_cipher_name_map[] = {
 | |
|     { "aes", qcrypto_block_luks_cipher_size_map_aes },
 | |
|     { "cast5", qcrypto_block_luks_cipher_size_map_cast5 },
 | |
|     { "serpent", qcrypto_block_luks_cipher_size_map_serpent },
 | |
|     { "twofish", qcrypto_block_luks_cipher_size_map_twofish },
 | |
| };
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This struct is written to disk in big-endian format,
 | |
|  * but operated upon in native-endian format.
 | |
|  */
 | |
| struct QCryptoBlockLUKSKeySlot {
 | |
|     /* state of keyslot, enabled/disable */
 | |
|     uint32_t active;
 | |
|     /* iterations for PBKDF2 */
 | |
|     uint32_t iterations;
 | |
|     /* salt for PBKDF2 */
 | |
|     uint8_t salt[QCRYPTO_BLOCK_LUKS_SALT_LEN];
 | |
|     /* start sector of key material */
 | |
|     uint32_t key_offset_sector;
 | |
|     /* number of anti-forensic stripes */
 | |
|     uint32_t stripes;
 | |
| };
 | |
| 
 | |
| QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSKeySlot) != 48);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * This struct is written to disk in big-endian format,
 | |
|  * but operated upon in native-endian format.
 | |
|  */
 | |
| struct QCryptoBlockLUKSHeader {
 | |
|     /* 'L', 'U', 'K', 'S', '0xBA', '0xBE' */
 | |
|     char magic[QCRYPTO_BLOCK_LUKS_MAGIC_LEN];
 | |
| 
 | |
|     /* LUKS version, currently 1 */
 | |
|     uint16_t version;
 | |
| 
 | |
|     /* cipher name specification (aes, etc) */
 | |
|     char cipher_name[QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN];
 | |
| 
 | |
|     /* cipher mode specification (cbc-plain, xts-essiv:sha256, etc) */
 | |
|     char cipher_mode[QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN];
 | |
| 
 | |
|     /* hash specification (sha256, etc) */
 | |
|     char hash_spec[QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN];
 | |
| 
 | |
|     /* start offset of the volume data (in 512 byte sectors) */
 | |
|     uint32_t payload_offset_sector;
 | |
| 
 | |
|     /* Number of key bytes */
 | |
|     uint32_t master_key_len;
 | |
| 
 | |
|     /* master key checksum after PBKDF2 */
 | |
|     uint8_t master_key_digest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN];
 | |
| 
 | |
|     /* salt for master key PBKDF2 */
 | |
|     uint8_t master_key_salt[QCRYPTO_BLOCK_LUKS_SALT_LEN];
 | |
| 
 | |
|     /* iterations for master key PBKDF2 */
 | |
|     uint32_t master_key_iterations;
 | |
| 
 | |
|     /* UUID of the partition in standard ASCII representation */
 | |
|     uint8_t uuid[QCRYPTO_BLOCK_LUKS_UUID_LEN];
 | |
| 
 | |
|     /* key slots */
 | |
|     QCryptoBlockLUKSKeySlot key_slots[QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS];
 | |
| };
 | |
| 
 | |
| QEMU_BUILD_BUG_ON(sizeof(struct QCryptoBlockLUKSHeader) != 592);
 | |
| 
 | |
| 
 | |
| struct QCryptoBlockLUKS {
 | |
|     QCryptoBlockLUKSHeader header;
 | |
| 
 | |
|     /* Main encryption algorithm used for encryption*/
 | |
|     QCryptoCipherAlgorithm cipher_alg;
 | |
| 
 | |
|     /* Mode of encryption for the selected encryption algorithm */
 | |
|     QCryptoCipherMode cipher_mode;
 | |
| 
 | |
|     /* Initialization vector generation algorithm */
 | |
|     QCryptoIVGenAlgorithm ivgen_alg;
 | |
| 
 | |
|     /* Hash algorithm used for IV generation*/
 | |
|     QCryptoHashAlgorithm ivgen_hash_alg;
 | |
| 
 | |
|     /*
 | |
|      * Encryption algorithm used for IV generation.
 | |
|      * Usually the same as main encryption algorithm
 | |
|      */
 | |
|     QCryptoCipherAlgorithm ivgen_cipher_alg;
 | |
| 
 | |
|     /* Hash algorithm used in pbkdf2 function */
 | |
|     QCryptoHashAlgorithm hash_alg;
 | |
| 
 | |
|     /* Name of the secret that was used to open the image */
 | |
|     char *secret;
 | |
| };
 | |
| 
 | |
| 
 | |
| static int qcrypto_block_luks_cipher_name_lookup(const char *name,
 | |
|                                                  QCryptoCipherMode mode,
 | |
|                                                  uint32_t key_bytes,
 | |
|                                                  Error **errp)
 | |
| {
 | |
|     const QCryptoBlockLUKSCipherNameMap *map =
 | |
|         qcrypto_block_luks_cipher_name_map;
 | |
|     size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map);
 | |
|     size_t i, j;
 | |
| 
 | |
|     if (mode == QCRYPTO_CIPHER_MODE_XTS) {
 | |
|         key_bytes /= 2;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < maplen; i++) {
 | |
|         if (!g_str_equal(map[i].name, name)) {
 | |
|             continue;
 | |
|         }
 | |
|         for (j = 0; j < map[i].sizes[j].key_bytes; j++) {
 | |
|             if (map[i].sizes[j].key_bytes == key_bytes) {
 | |
|                 return map[i].sizes[j].id;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     error_setg(errp, "Algorithm %s with key size %d bytes not supported",
 | |
|                name, key_bytes);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static const char *
 | |
| qcrypto_block_luks_cipher_alg_lookup(QCryptoCipherAlgorithm alg,
 | |
|                                      Error **errp)
 | |
| {
 | |
|     const QCryptoBlockLUKSCipherNameMap *map =
 | |
|         qcrypto_block_luks_cipher_name_map;
 | |
|     size_t maplen = G_N_ELEMENTS(qcrypto_block_luks_cipher_name_map);
 | |
|     size_t i, j;
 | |
|     for (i = 0; i < maplen; i++) {
 | |
|         for (j = 0; j < map[i].sizes[j].key_bytes; j++) {
 | |
|             if (map[i].sizes[j].id == alg) {
 | |
|                 return map[i].name;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     error_setg(errp, "Algorithm '%s' not supported",
 | |
|                QCryptoCipherAlgorithm_str(alg));
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| /* XXX replace with qapi_enum_parse() in future, when we can
 | |
|  * make that function emit a more friendly error message */
 | |
| static int qcrypto_block_luks_name_lookup(const char *name,
 | |
|                                           const QEnumLookup *map,
 | |
|                                           const char *type,
 | |
|                                           Error **errp)
 | |
| {
 | |
|     int ret = qapi_enum_parse(map, name, -1, NULL);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         error_setg(errp, "%s %s not supported", type, name);
 | |
|         return 0;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| #define qcrypto_block_luks_cipher_mode_lookup(name, errp)               \
 | |
|     qcrypto_block_luks_name_lookup(name,                                \
 | |
|                                    &QCryptoCipherMode_lookup,           \
 | |
|                                    "Cipher mode",                       \
 | |
|                                    errp)
 | |
| 
 | |
| #define qcrypto_block_luks_hash_name_lookup(name, errp)                 \
 | |
|     qcrypto_block_luks_name_lookup(name,                                \
 | |
|                                    &QCryptoHashAlgorithm_lookup,        \
 | |
|                                    "Hash algorithm",                    \
 | |
|                                    errp)
 | |
| 
 | |
| #define qcrypto_block_luks_ivgen_name_lookup(name, errp)                \
 | |
|     qcrypto_block_luks_name_lookup(name,                                \
 | |
|                                    &QCryptoIVGenAlgorithm_lookup,       \
 | |
|                                    "IV generator",                      \
 | |
|                                    errp)
 | |
| 
 | |
| 
 | |
| static bool
 | |
| qcrypto_block_luks_has_format(const uint8_t *buf,
 | |
|                               size_t buf_size)
 | |
| {
 | |
|     const QCryptoBlockLUKSHeader *luks_header = (const void *)buf;
 | |
| 
 | |
|     if (buf_size >= offsetof(QCryptoBlockLUKSHeader, cipher_name) &&
 | |
|         memcmp(luks_header->magic, qcrypto_block_luks_magic,
 | |
|                QCRYPTO_BLOCK_LUKS_MAGIC_LEN) == 0 &&
 | |
|         be16_to_cpu(luks_header->version) == QCRYPTO_BLOCK_LUKS_VERSION) {
 | |
|         return true;
 | |
|     } else {
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  * Deal with a quirk of dm-crypt usage of ESSIV.
 | |
|  *
 | |
|  * When calculating ESSIV IVs, the cipher length used by ESSIV
 | |
|  * may be different from the cipher length used for the block
 | |
|  * encryption, becauses dm-crypt uses the hash digest length
 | |
|  * as the key size. ie, if you have AES 128 as the block cipher
 | |
|  * and SHA 256 as ESSIV hash, then ESSIV will use AES 256 as
 | |
|  * the cipher since that gets a key length matching the digest
 | |
|  * size, not AES 128 with truncated digest as might be imagined
 | |
|  */
 | |
| static QCryptoCipherAlgorithm
 | |
| qcrypto_block_luks_essiv_cipher(QCryptoCipherAlgorithm cipher,
 | |
|                                 QCryptoHashAlgorithm hash,
 | |
|                                 Error **errp)
 | |
| {
 | |
|     size_t digestlen = qcrypto_hash_digest_len(hash);
 | |
|     size_t keylen = qcrypto_cipher_get_key_len(cipher);
 | |
|     if (digestlen == keylen) {
 | |
|         return cipher;
 | |
|     }
 | |
| 
 | |
|     switch (cipher) {
 | |
|     case QCRYPTO_CIPHER_ALG_AES_128:
 | |
|     case QCRYPTO_CIPHER_ALG_AES_192:
 | |
|     case QCRYPTO_CIPHER_ALG_AES_256:
 | |
|         if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                 QCRYPTO_CIPHER_ALG_AES_128)) {
 | |
|             return QCRYPTO_CIPHER_ALG_AES_128;
 | |
|         } else if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                        QCRYPTO_CIPHER_ALG_AES_192)) {
 | |
|             return QCRYPTO_CIPHER_ALG_AES_192;
 | |
|         } else if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                        QCRYPTO_CIPHER_ALG_AES_256)) {
 | |
|             return QCRYPTO_CIPHER_ALG_AES_256;
 | |
|         } else {
 | |
|             error_setg(errp, "No AES cipher with key size %zu available",
 | |
|                        digestlen);
 | |
|             return 0;
 | |
|         }
 | |
|         break;
 | |
|     case QCRYPTO_CIPHER_ALG_SERPENT_128:
 | |
|     case QCRYPTO_CIPHER_ALG_SERPENT_192:
 | |
|     case QCRYPTO_CIPHER_ALG_SERPENT_256:
 | |
|         if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                 QCRYPTO_CIPHER_ALG_SERPENT_128)) {
 | |
|             return QCRYPTO_CIPHER_ALG_SERPENT_128;
 | |
|         } else if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                        QCRYPTO_CIPHER_ALG_SERPENT_192)) {
 | |
|             return QCRYPTO_CIPHER_ALG_SERPENT_192;
 | |
|         } else if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                        QCRYPTO_CIPHER_ALG_SERPENT_256)) {
 | |
|             return QCRYPTO_CIPHER_ALG_SERPENT_256;
 | |
|         } else {
 | |
|             error_setg(errp, "No Serpent cipher with key size %zu available",
 | |
|                        digestlen);
 | |
|             return 0;
 | |
|         }
 | |
|         break;
 | |
|     case QCRYPTO_CIPHER_ALG_TWOFISH_128:
 | |
|     case QCRYPTO_CIPHER_ALG_TWOFISH_192:
 | |
|     case QCRYPTO_CIPHER_ALG_TWOFISH_256:
 | |
|         if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                 QCRYPTO_CIPHER_ALG_TWOFISH_128)) {
 | |
|             return QCRYPTO_CIPHER_ALG_TWOFISH_128;
 | |
|         } else if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                        QCRYPTO_CIPHER_ALG_TWOFISH_192)) {
 | |
|             return QCRYPTO_CIPHER_ALG_TWOFISH_192;
 | |
|         } else if (digestlen == qcrypto_cipher_get_key_len(
 | |
|                        QCRYPTO_CIPHER_ALG_TWOFISH_256)) {
 | |
|             return QCRYPTO_CIPHER_ALG_TWOFISH_256;
 | |
|         } else {
 | |
|             error_setg(errp, "No Twofish cipher with key size %zu available",
 | |
|                        digestlen);
 | |
|             return 0;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         error_setg(errp, "Cipher %s not supported with essiv",
 | |
|                    QCryptoCipherAlgorithm_str(cipher));
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns number of sectors needed to store the key material
 | |
|  * given number of anti forensic stripes
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_splitkeylen_sectors(const QCryptoBlockLUKS *luks,
 | |
|                                        unsigned int header_sectors,
 | |
|                                        unsigned int stripes)
 | |
| {
 | |
|     /*
 | |
|      * This calculation doesn't match that shown in the spec,
 | |
|      * but instead follows the cryptsetup implementation.
 | |
|      */
 | |
| 
 | |
|     size_t splitkeylen = luks->header.master_key_len * stripes;
 | |
| 
 | |
|     /* First align the key material size to block size*/
 | |
|     size_t splitkeylen_sectors =
 | |
|         DIV_ROUND_UP(splitkeylen, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE);
 | |
| 
 | |
|     /* Then also align the key material size to the size of the header */
 | |
|     return ROUND_UP(splitkeylen_sectors, header_sectors);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stores the main LUKS header, taking care of endianess
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_store_header(QCryptoBlock *block,
 | |
|                                 QCryptoBlockWriteFunc writefunc,
 | |
|                                 void *opaque,
 | |
|                                 Error **errp)
 | |
| {
 | |
|     const QCryptoBlockLUKS *luks = block->opaque;
 | |
|     Error *local_err = NULL;
 | |
|     size_t i;
 | |
|     g_autofree QCryptoBlockLUKSHeader *hdr_copy = NULL;
 | |
| 
 | |
|     /* Create a copy of the header */
 | |
|     hdr_copy = g_new0(QCryptoBlockLUKSHeader, 1);
 | |
|     memcpy(hdr_copy, &luks->header, sizeof(QCryptoBlockLUKSHeader));
 | |
| 
 | |
|     /*
 | |
|      * Everything on disk uses Big Endian (tm), so flip header fields
 | |
|      * before writing them
 | |
|      */
 | |
|     cpu_to_be16s(&hdr_copy->version);
 | |
|     cpu_to_be32s(&hdr_copy->payload_offset_sector);
 | |
|     cpu_to_be32s(&hdr_copy->master_key_len);
 | |
|     cpu_to_be32s(&hdr_copy->master_key_iterations);
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         cpu_to_be32s(&hdr_copy->key_slots[i].active);
 | |
|         cpu_to_be32s(&hdr_copy->key_slots[i].iterations);
 | |
|         cpu_to_be32s(&hdr_copy->key_slots[i].key_offset_sector);
 | |
|         cpu_to_be32s(&hdr_copy->key_slots[i].stripes);
 | |
|     }
 | |
| 
 | |
|     /* Write out the partition header and key slot headers */
 | |
|     writefunc(block, 0, (const uint8_t *)hdr_copy, sizeof(*hdr_copy),
 | |
|               opaque, &local_err);
 | |
| 
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Loads the main LUKS header,and byteswaps it to native endianess
 | |
|  * And run basic sanity checks on it
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_load_header(QCryptoBlock *block,
 | |
|                                 QCryptoBlockReadFunc readfunc,
 | |
|                                 void *opaque,
 | |
|                                 Error **errp)
 | |
| {
 | |
|     ssize_t rv;
 | |
|     size_t i;
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
| 
 | |
|     /*
 | |
|      * Read the entire LUKS header, minus the key material from
 | |
|      * the underlying device
 | |
|      */
 | |
|     rv = readfunc(block, 0,
 | |
|                   (uint8_t *)&luks->header,
 | |
|                   sizeof(luks->header),
 | |
|                   opaque,
 | |
|                   errp);
 | |
|     if (rv < 0) {
 | |
|         return rv;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The header is always stored in big-endian format, so
 | |
|      * convert everything to native
 | |
|      */
 | |
|     be16_to_cpus(&luks->header.version);
 | |
|     be32_to_cpus(&luks->header.payload_offset_sector);
 | |
|     be32_to_cpus(&luks->header.master_key_len);
 | |
|     be32_to_cpus(&luks->header.master_key_iterations);
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         be32_to_cpus(&luks->header.key_slots[i].active);
 | |
|         be32_to_cpus(&luks->header.key_slots[i].iterations);
 | |
|         be32_to_cpus(&luks->header.key_slots[i].key_offset_sector);
 | |
|         be32_to_cpus(&luks->header.key_slots[i].stripes);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Does basic sanity checks on the LUKS header
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_check_header(const QCryptoBlockLUKS *luks, Error **errp)
 | |
| {
 | |
|     size_t i, j;
 | |
| 
 | |
|     unsigned int header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET /
 | |
|         QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
 | |
| 
 | |
|     if (memcmp(luks->header.magic, qcrypto_block_luks_magic,
 | |
|                QCRYPTO_BLOCK_LUKS_MAGIC_LEN) != 0) {
 | |
|         error_setg(errp, "Volume is not in LUKS format");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (luks->header.version != QCRYPTO_BLOCK_LUKS_VERSION) {
 | |
|         error_setg(errp, "LUKS version %" PRIu32 " is not supported",
 | |
|                    luks->header.version);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Check all keyslots for corruption  */
 | |
|     for (i = 0 ; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; i++) {
 | |
| 
 | |
|         const QCryptoBlockLUKSKeySlot *slot1 = &luks->header.key_slots[i];
 | |
|         unsigned int start1 = slot1->key_offset_sector;
 | |
|         unsigned int len1 =
 | |
|             qcrypto_block_luks_splitkeylen_sectors(luks,
 | |
|                                                    header_sectors,
 | |
|                                                    slot1->stripes);
 | |
| 
 | |
|         if (slot1->stripes == 0) {
 | |
|             error_setg(errp, "Keyslot %zu is corrupted (stripes == 0)", i);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED &&
 | |
|             slot1->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) {
 | |
|             error_setg(errp,
 | |
|                        "Keyslot %zu state (active/disable) is corrupted", i);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (start1 + len1 > luks->header.payload_offset_sector) {
 | |
|             error_setg(errp,
 | |
|                        "Keyslot %zu is overlapping with the encrypted payload",
 | |
|                        i);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         for (j = i + 1 ; j < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS ; j++) {
 | |
|             const QCryptoBlockLUKSKeySlot *slot2 = &luks->header.key_slots[j];
 | |
|             unsigned int start2 = slot2->key_offset_sector;
 | |
|             unsigned int len2 =
 | |
|                 qcrypto_block_luks_splitkeylen_sectors(luks,
 | |
|                                                        header_sectors,
 | |
|                                                        slot2->stripes);
 | |
| 
 | |
|             if (start1 + len1 > start2 && start2 + len2 > start1) {
 | |
|                 error_setg(errp,
 | |
|                            "Keyslots %zu and %zu are overlapping in the header",
 | |
|                            i, j);
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Parses the crypto parameters that are stored in the LUKS header
 | |
|  */
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_parse_header(QCryptoBlockLUKS *luks, Error **errp)
 | |
| {
 | |
|     g_autofree char *cipher_mode = g_strdup(luks->header.cipher_mode);
 | |
|     char *ivgen_name, *ivhash_name;
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     /*
 | |
|      * The cipher_mode header contains a string that we have
 | |
|      * to further parse, of the format
 | |
|      *
 | |
|      *    <cipher-mode>-<iv-generator>[:<iv-hash>]
 | |
|      *
 | |
|      * eg  cbc-essiv:sha256, cbc-plain64
 | |
|      */
 | |
|     ivgen_name = strchr(cipher_mode, '-');
 | |
|     if (!ivgen_name) {
 | |
|         error_setg(errp, "Unexpected cipher mode string format %s",
 | |
|                    luks->header.cipher_mode);
 | |
|         return -1;
 | |
|     }
 | |
|     *ivgen_name = '\0';
 | |
|     ivgen_name++;
 | |
| 
 | |
|     ivhash_name = strchr(ivgen_name, ':');
 | |
|     if (!ivhash_name) {
 | |
|         luks->ivgen_hash_alg = 0;
 | |
|     } else {
 | |
|         *ivhash_name = '\0';
 | |
|         ivhash_name++;
 | |
| 
 | |
|         luks->ivgen_hash_alg = qcrypto_block_luks_hash_name_lookup(ivhash_name,
 | |
|                                                                    &local_err);
 | |
|         if (local_err) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     luks->cipher_mode = qcrypto_block_luks_cipher_mode_lookup(cipher_mode,
 | |
|                                                               &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     luks->cipher_alg =
 | |
|             qcrypto_block_luks_cipher_name_lookup(luks->header.cipher_name,
 | |
|                                                   luks->cipher_mode,
 | |
|                                                   luks->header.master_key_len,
 | |
|                                                   &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     luks->hash_alg =
 | |
|             qcrypto_block_luks_hash_name_lookup(luks->header.hash_spec,
 | |
|                                                 &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     luks->ivgen_alg = qcrypto_block_luks_ivgen_name_lookup(ivgen_name,
 | |
|                                                            &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (luks->ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
 | |
|         if (!ivhash_name) {
 | |
|             error_setg(errp, "Missing IV generator hash specification");
 | |
|             return -1;
 | |
|         }
 | |
|         luks->ivgen_cipher_alg =
 | |
|                 qcrypto_block_luks_essiv_cipher(luks->cipher_alg,
 | |
|                                                 luks->ivgen_hash_alg,
 | |
|                                                 &local_err);
 | |
|         if (local_err) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return -1;
 | |
|         }
 | |
|     } else {
 | |
| 
 | |
|         /*
 | |
|          * Note we parsed the ivhash_name earlier in the cipher_mode
 | |
|          * spec string even with plain/plain64 ivgens, but we
 | |
|          * will ignore it, since it is irrelevant for these ivgens.
 | |
|          * This is for compat with dm-crypt which will silently
 | |
|          * ignore hash names with these ivgens rather than report
 | |
|          * an error about the invalid usage
 | |
|          */
 | |
|         luks->ivgen_cipher_alg = luks->cipher_alg;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a key slot,  user password, and the master key,
 | |
|  * will store the encrypted master key there, and update the
 | |
|  * in-memory header. User must then write the in-memory header
 | |
|  *
 | |
|  * Returns:
 | |
|  *    0 if the keyslot was written successfully
 | |
|  *      with the provided password
 | |
|  *   -1 if a fatal error occurred while storing the key
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_store_key(QCryptoBlock *block,
 | |
|                              unsigned int slot_idx,
 | |
|                              const char *password,
 | |
|                              uint8_t *masterkey,
 | |
|                              uint64_t iter_time,
 | |
|                              QCryptoBlockWriteFunc writefunc,
 | |
|                              void *opaque,
 | |
|                              Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     QCryptoBlockLUKSKeySlot *slot;
 | |
|     g_autofree uint8_t *splitkey = NULL;
 | |
|     size_t splitkeylen;
 | |
|     g_autofree uint8_t *slotkey = NULL;
 | |
|     g_autoptr(QCryptoCipher) cipher = NULL;
 | |
|     g_autoptr(QCryptoIVGen) ivgen = NULL;
 | |
|     Error *local_err = NULL;
 | |
|     uint64_t iters;
 | |
|     int ret = -1;
 | |
| 
 | |
|     assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
 | |
|     slot = &luks->header.key_slots[slot_idx];
 | |
|     if (qcrypto_random_bytes(slot->salt,
 | |
|                              QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                              errp) < 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     splitkeylen = luks->header.master_key_len * slot->stripes;
 | |
| 
 | |
|     /*
 | |
|      * Determine how many iterations are required to
 | |
|      * hash the user password while consuming 1 second of compute
 | |
|      * time
 | |
|      */
 | |
|     iters = qcrypto_pbkdf2_count_iters(luks->hash_alg,
 | |
|                                        (uint8_t *)password, strlen(password),
 | |
|                                        slot->salt,
 | |
|                                        QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                                        luks->header.master_key_len,
 | |
|                                        &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     if (iters > (ULLONG_MAX / iter_time)) {
 | |
|         error_setg_errno(errp, ERANGE,
 | |
|                          "PBKDF iterations %llu too large to scale",
 | |
|                          (unsigned long long)iters);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* iter_time was in millis, but count_iters reported for secs */
 | |
|     iters = iters * iter_time / 1000;
 | |
| 
 | |
|     if (iters > UINT32_MAX) {
 | |
|         error_setg_errno(errp, ERANGE,
 | |
|                          "PBKDF iterations %llu larger than %u",
 | |
|                          (unsigned long long)iters, UINT32_MAX);
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     slot->iterations =
 | |
|         MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_SLOT_KEY_ITERS);
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Generate a key that we'll use to encrypt the master
 | |
|      * key, from the user's password
 | |
|      */
 | |
|     slotkey = g_new0(uint8_t, luks->header.master_key_len);
 | |
|     if (qcrypto_pbkdf2(luks->hash_alg,
 | |
|                        (uint8_t *)password, strlen(password),
 | |
|                        slot->salt,
 | |
|                        QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                        slot->iterations,
 | |
|                        slotkey, luks->header.master_key_len,
 | |
|                        errp) < 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * Setup the encryption objects needed to encrypt the
 | |
|      * master key material
 | |
|      */
 | |
|     cipher = qcrypto_cipher_new(luks->cipher_alg,
 | |
|                                 luks->cipher_mode,
 | |
|                                 slotkey, luks->header.master_key_len,
 | |
|                                 errp);
 | |
|     if (!cipher) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     ivgen = qcrypto_ivgen_new(luks->ivgen_alg,
 | |
|                               luks->ivgen_cipher_alg,
 | |
|                               luks->ivgen_hash_alg,
 | |
|                               slotkey, luks->header.master_key_len,
 | |
|                               errp);
 | |
|     if (!ivgen) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Before storing the master key, we need to vastly
 | |
|      * increase its size, as protection against forensic
 | |
|      * disk data recovery
 | |
|      */
 | |
|     splitkey = g_new0(uint8_t, splitkeylen);
 | |
| 
 | |
|     if (qcrypto_afsplit_encode(luks->hash_alg,
 | |
|                                luks->header.master_key_len,
 | |
|                                slot->stripes,
 | |
|                                masterkey,
 | |
|                                splitkey,
 | |
|                                errp) < 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now we encrypt the split master key with the key generated
 | |
|      * from the user's password, before storing it
 | |
|      */
 | |
|     if (qcrypto_block_cipher_encrypt_helper(cipher, block->niv, ivgen,
 | |
|                                             QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                                             0,
 | |
|                                             splitkey,
 | |
|                                             splitkeylen,
 | |
|                                             errp) < 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     /* Write out the slot's master key material. */
 | |
|     if (writefunc(block,
 | |
|                   slot->key_offset_sector *
 | |
|                   QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                   splitkey, splitkeylen,
 | |
|                   opaque,
 | |
|                   errp) != splitkeylen) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED;
 | |
| 
 | |
|     if (qcrypto_block_luks_store_header(block,  writefunc, opaque, errp) < 0) {
 | |
|         goto cleanup;
 | |
|     }
 | |
| 
 | |
|     ret = 0;
 | |
| 
 | |
| cleanup:
 | |
|     if (slotkey) {
 | |
|         memset(slotkey, 0, luks->header.master_key_len);
 | |
|     }
 | |
|     if (splitkey) {
 | |
|         memset(splitkey, 0, splitkeylen);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Given a key slot, and user password, this will attempt to unlock
 | |
|  * the master encryption key from the key slot.
 | |
|  *
 | |
|  * Returns:
 | |
|  *    0 if the key slot is disabled, or key could not be decrypted
 | |
|  *      with the provided password
 | |
|  *    1 if the key slot is enabled, and key decrypted successfully
 | |
|  *      with the provided password
 | |
|  *   -1 if a fatal error occurred loading the key
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_load_key(QCryptoBlock *block,
 | |
|                             size_t slot_idx,
 | |
|                             const char *password,
 | |
|                             uint8_t *masterkey,
 | |
|                             QCryptoBlockReadFunc readfunc,
 | |
|                             void *opaque,
 | |
|                             Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     const QCryptoBlockLUKSKeySlot *slot;
 | |
|     g_autofree uint8_t *splitkey = NULL;
 | |
|     size_t splitkeylen;
 | |
|     g_autofree uint8_t *possiblekey = NULL;
 | |
|     ssize_t rv;
 | |
|     g_autoptr(QCryptoCipher) cipher = NULL;
 | |
|     uint8_t keydigest[QCRYPTO_BLOCK_LUKS_DIGEST_LEN];
 | |
|     g_autoptr(QCryptoIVGen) ivgen = NULL;
 | |
|     size_t niv;
 | |
| 
 | |
|     assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
 | |
|     slot = &luks->header.key_slots[slot_idx];
 | |
|     if (slot->active != QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     splitkeylen = luks->header.master_key_len * slot->stripes;
 | |
|     splitkey = g_new0(uint8_t, splitkeylen);
 | |
|     possiblekey = g_new0(uint8_t, luks->header.master_key_len);
 | |
| 
 | |
|     /*
 | |
|      * The user password is used to generate a (possible)
 | |
|      * decryption key. This may or may not successfully
 | |
|      * decrypt the master key - we just blindly assume
 | |
|      * the key is correct and validate the results of
 | |
|      * decryption later.
 | |
|      */
 | |
|     if (qcrypto_pbkdf2(luks->hash_alg,
 | |
|                        (const uint8_t *)password, strlen(password),
 | |
|                        slot->salt, QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                        slot->iterations,
 | |
|                        possiblekey, luks->header.master_key_len,
 | |
|                        errp) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * We need to read the master key material from the
 | |
|      * LUKS key material header. What we're reading is
 | |
|      * not the raw master key, but rather the data after
 | |
|      * it has been passed through AFSplit and the result
 | |
|      * then encrypted.
 | |
|      */
 | |
|     rv = readfunc(block,
 | |
|                   slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                   splitkey, splitkeylen,
 | |
|                   opaque,
 | |
|                   errp);
 | |
|     if (rv < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Setup the cipher/ivgen that we'll use to try to decrypt
 | |
|      * the split master key material */
 | |
|     cipher = qcrypto_cipher_new(luks->cipher_alg,
 | |
|                                 luks->cipher_mode,
 | |
|                                 possiblekey,
 | |
|                                 luks->header.master_key_len,
 | |
|                                 errp);
 | |
|     if (!cipher) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     niv = qcrypto_cipher_get_iv_len(luks->cipher_alg,
 | |
|                                     luks->cipher_mode);
 | |
| 
 | |
|     ivgen = qcrypto_ivgen_new(luks->ivgen_alg,
 | |
|                               luks->ivgen_cipher_alg,
 | |
|                               luks->ivgen_hash_alg,
 | |
|                               possiblekey,
 | |
|                               luks->header.master_key_len,
 | |
|                               errp);
 | |
|     if (!ivgen) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * The master key needs to be decrypted in the same
 | |
|      * way that the block device payload will be decrypted
 | |
|      * later. In particular we'll be using the IV generator
 | |
|      * to reset the encryption cipher every time the master
 | |
|      * key crosses a sector boundary.
 | |
|      */
 | |
|     if (qcrypto_block_cipher_decrypt_helper(cipher,
 | |
|                                             niv,
 | |
|                                             ivgen,
 | |
|                                             QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                                             0,
 | |
|                                             splitkey,
 | |
|                                             splitkeylen,
 | |
|                                             errp) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Now we've decrypted the split master key, join
 | |
|      * it back together to get the actual master key.
 | |
|      */
 | |
|     if (qcrypto_afsplit_decode(luks->hash_alg,
 | |
|                                luks->header.master_key_len,
 | |
|                                slot->stripes,
 | |
|                                splitkey,
 | |
|                                masterkey,
 | |
|                                errp) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /*
 | |
|      * We still don't know that the masterkey we got is valid,
 | |
|      * because we just blindly assumed the user's password
 | |
|      * was correct. This is where we now verify it. We are
 | |
|      * creating a hash of the master key using PBKDF and
 | |
|      * then comparing that to the hash stored in the key slot
 | |
|      * header
 | |
|      */
 | |
|     if (qcrypto_pbkdf2(luks->hash_alg,
 | |
|                        masterkey,
 | |
|                        luks->header.master_key_len,
 | |
|                        luks->header.master_key_salt,
 | |
|                        QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                        luks->header.master_key_iterations,
 | |
|                        keydigest,
 | |
|                        G_N_ELEMENTS(keydigest),
 | |
|                        errp) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (memcmp(keydigest, luks->header.master_key_digest,
 | |
|                QCRYPTO_BLOCK_LUKS_DIGEST_LEN) == 0) {
 | |
|         /* Success, we got the right master key */
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     /* Fail, user's password was not valid for this key slot,
 | |
|      * tell caller to try another slot */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Given a user password, this will iterate over all key
 | |
|  * slots and try to unlock each active key slot using the
 | |
|  * password until it successfully obtains a master key.
 | |
|  *
 | |
|  * Returns 0 if a key was loaded, -1 if no keys could be loaded
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_find_key(QCryptoBlock *block,
 | |
|                             const char *password,
 | |
|                             uint8_t *masterkey,
 | |
|                             QCryptoBlockReadFunc readfunc,
 | |
|                             void *opaque,
 | |
|                             Error **errp)
 | |
| {
 | |
|     size_t i;
 | |
|     int rv;
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         rv = qcrypto_block_luks_load_key(block,
 | |
|                                          i,
 | |
|                                          password,
 | |
|                                          masterkey,
 | |
|                                          readfunc,
 | |
|                                          opaque,
 | |
|                                          errp);
 | |
|         if (rv < 0) {
 | |
|             goto error;
 | |
|         }
 | |
|         if (rv == 1) {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     error_setg(errp, "Invalid password, cannot unlock any keyslot");
 | |
|  error:
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if a slot i is marked as active
 | |
|  * (contains encrypted copy of the master key)
 | |
|  */
 | |
| static bool
 | |
| qcrypto_block_luks_slot_active(const QCryptoBlockLUKS *luks,
 | |
|                                unsigned int slot_idx)
 | |
| {
 | |
|     uint32_t val;
 | |
| 
 | |
|     assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
 | |
|     val = luks->header.key_slots[slot_idx].active;
 | |
|     return val == QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the number of slots that are marked as active
 | |
|  * (slots that contain encrypted copy of the master key)
 | |
|  */
 | |
| static unsigned int
 | |
| qcrypto_block_luks_count_active_slots(const QCryptoBlockLUKS *luks)
 | |
| {
 | |
|     size_t i = 0;
 | |
|     unsigned int ret = 0;
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         if (qcrypto_block_luks_slot_active(luks, i)) {
 | |
|             ret++;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Finds first key slot which is not active
 | |
|  * Returns the key slot index, or -1 if it doesn't exist
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_find_free_keyslot(const QCryptoBlockLUKS *luks)
 | |
| {
 | |
|     size_t i;
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         if (!qcrypto_block_luks_slot_active(luks, i)) {
 | |
|             return i;
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Erases an keyslot given its index
 | |
|  * Returns:
 | |
|  *    0 if the keyslot was erased successfully
 | |
|  *   -1 if a error occurred while erasing the keyslot
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| qcrypto_block_luks_erase_key(QCryptoBlock *block,
 | |
|                              unsigned int slot_idx,
 | |
|                              QCryptoBlockWriteFunc writefunc,
 | |
|                              void *opaque,
 | |
|                              Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     QCryptoBlockLUKSKeySlot *slot;
 | |
|     g_autofree uint8_t *garbagesplitkey = NULL;
 | |
|     size_t splitkeylen;
 | |
|     size_t i;
 | |
|     Error *local_err = NULL;
 | |
|     int ret;
 | |
| 
 | |
|     assert(slot_idx < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
 | |
|     slot = &luks->header.key_slots[slot_idx];
 | |
| 
 | |
|     splitkeylen = luks->header.master_key_len * slot->stripes;
 | |
|     assert(splitkeylen > 0);
 | |
| 
 | |
|     garbagesplitkey = g_new0(uint8_t, splitkeylen);
 | |
| 
 | |
|     /* Reset the key slot header */
 | |
|     memset(slot->salt, 0, QCRYPTO_BLOCK_LUKS_SALT_LEN);
 | |
|     slot->iterations = 0;
 | |
|     slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED;
 | |
| 
 | |
|     ret = qcrypto_block_luks_store_header(block, writefunc,
 | |
|                                           opaque, &local_err);
 | |
| 
 | |
|     if (ret < 0) {
 | |
|         error_propagate(errp, local_err);
 | |
|     }
 | |
|     /*
 | |
|      * Now try to erase the key material, even if the header
 | |
|      * update failed
 | |
|      */
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_ERASE_ITERATIONS; i++) {
 | |
|         if (qcrypto_random_bytes(garbagesplitkey,
 | |
|                                  splitkeylen, &local_err) < 0) {
 | |
|             /*
 | |
|              * If we failed to get the random data, still write
 | |
|              * at least zeros to the key slot at least once
 | |
|              */
 | |
|             error_propagate(errp, local_err);
 | |
| 
 | |
|             if (i > 0) {
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         if (writefunc(block,
 | |
|                       slot->key_offset_sector * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                       garbagesplitkey,
 | |
|                       splitkeylen,
 | |
|                       opaque,
 | |
|                       &local_err) != splitkeylen) {
 | |
|             error_propagate(errp, local_err);
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_open(QCryptoBlock *block,
 | |
|                         QCryptoBlockOpenOptions *options,
 | |
|                         const char *optprefix,
 | |
|                         QCryptoBlockReadFunc readfunc,
 | |
|                         void *opaque,
 | |
|                         unsigned int flags,
 | |
|                         size_t n_threads,
 | |
|                         Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = NULL;
 | |
|     g_autofree uint8_t *masterkey = NULL;
 | |
|     g_autofree char *password = NULL;
 | |
| 
 | |
|     if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) {
 | |
|         if (!options->u.luks.key_secret) {
 | |
|             error_setg(errp, "Parameter '%skey-secret' is required for cipher",
 | |
|                        optprefix ? optprefix : "");
 | |
|             return -1;
 | |
|         }
 | |
|         password = qcrypto_secret_lookup_as_utf8(
 | |
|             options->u.luks.key_secret, errp);
 | |
|         if (!password) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     luks = g_new0(QCryptoBlockLUKS, 1);
 | |
|     block->opaque = luks;
 | |
|     luks->secret = g_strdup(options->u.luks.key_secret);
 | |
| 
 | |
|     if (qcrypto_block_luks_load_header(block, readfunc, opaque, errp) < 0) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if (qcrypto_block_luks_check_header(luks, errp) < 0) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if (qcrypto_block_luks_parse_header(luks, errp) < 0) {
 | |
|         goto fail;
 | |
|     }
 | |
| 
 | |
|     if (!(flags & QCRYPTO_BLOCK_OPEN_NO_IO)) {
 | |
|         /* Try to find which key slot our password is valid for
 | |
|          * and unlock the master key from that slot.
 | |
|          */
 | |
| 
 | |
|         masterkey = g_new0(uint8_t, luks->header.master_key_len);
 | |
| 
 | |
|         if (qcrypto_block_luks_find_key(block,
 | |
|                                         password,
 | |
|                                         masterkey,
 | |
|                                         readfunc, opaque,
 | |
|                                         errp) < 0) {
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         /* We have a valid master key now, so can setup the
 | |
|          * block device payload decryption objects
 | |
|          */
 | |
|         block->kdfhash = luks->hash_alg;
 | |
|         block->niv = qcrypto_cipher_get_iv_len(luks->cipher_alg,
 | |
|                                                luks->cipher_mode);
 | |
| 
 | |
|         block->ivgen = qcrypto_ivgen_new(luks->ivgen_alg,
 | |
|                                          luks->ivgen_cipher_alg,
 | |
|                                          luks->ivgen_hash_alg,
 | |
|                                          masterkey,
 | |
|                                          luks->header.master_key_len,
 | |
|                                          errp);
 | |
|         if (!block->ivgen) {
 | |
|             goto fail;
 | |
|         }
 | |
| 
 | |
|         if (qcrypto_block_init_cipher(block,
 | |
|                                       luks->cipher_alg,
 | |
|                                       luks->cipher_mode,
 | |
|                                       masterkey,
 | |
|                                       luks->header.master_key_len,
 | |
|                                       n_threads,
 | |
|                                       errp) < 0) {
 | |
|             goto fail;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
 | |
|     block->payload_offset = luks->header.payload_offset_sector *
 | |
|         block->sector_size;
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
|  fail:
 | |
|     qcrypto_block_free_cipher(block);
 | |
|     qcrypto_ivgen_free(block->ivgen);
 | |
|     g_free(luks->secret);
 | |
|     g_free(luks);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| qcrypto_block_luks_uuid_gen(uint8_t *uuidstr)
 | |
| {
 | |
|     QemuUUID uuid;
 | |
|     qemu_uuid_generate(&uuid);
 | |
|     qemu_uuid_unparse(&uuid, (char *)uuidstr);
 | |
| }
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_create(QCryptoBlock *block,
 | |
|                           QCryptoBlockCreateOptions *options,
 | |
|                           const char *optprefix,
 | |
|                           QCryptoBlockInitFunc initfunc,
 | |
|                           QCryptoBlockWriteFunc writefunc,
 | |
|                           void *opaque,
 | |
|                           Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks;
 | |
|     QCryptoBlockCreateOptionsLUKS luks_opts;
 | |
|     Error *local_err = NULL;
 | |
|     g_autofree uint8_t *masterkey = NULL;
 | |
|     size_t header_sectors;
 | |
|     size_t split_key_sectors;
 | |
|     size_t i;
 | |
|     g_autofree char *password = NULL;
 | |
|     const char *cipher_alg;
 | |
|     const char *cipher_mode;
 | |
|     const char *ivgen_alg;
 | |
|     const char *ivgen_hash_alg = NULL;
 | |
|     const char *hash_alg;
 | |
|     g_autofree char *cipher_mode_spec = NULL;
 | |
|     uint64_t iters;
 | |
| 
 | |
|     memcpy(&luks_opts, &options->u.luks, sizeof(luks_opts));
 | |
|     if (!luks_opts.has_iter_time) {
 | |
|         luks_opts.iter_time = QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS;
 | |
|     }
 | |
|     if (!luks_opts.has_cipher_alg) {
 | |
|         luks_opts.cipher_alg = QCRYPTO_CIPHER_ALG_AES_256;
 | |
|     }
 | |
|     if (!luks_opts.has_cipher_mode) {
 | |
|         luks_opts.cipher_mode = QCRYPTO_CIPHER_MODE_XTS;
 | |
|     }
 | |
|     if (!luks_opts.has_ivgen_alg) {
 | |
|         luks_opts.ivgen_alg = QCRYPTO_IVGEN_ALG_PLAIN64;
 | |
|     }
 | |
|     if (!luks_opts.has_hash_alg) {
 | |
|         luks_opts.hash_alg = QCRYPTO_HASH_ALG_SHA256;
 | |
|     }
 | |
|     if (luks_opts.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
 | |
|         if (!luks_opts.has_ivgen_hash_alg) {
 | |
|             luks_opts.ivgen_hash_alg = QCRYPTO_HASH_ALG_SHA256;
 | |
|             luks_opts.has_ivgen_hash_alg = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     luks = g_new0(QCryptoBlockLUKS, 1);
 | |
|     block->opaque = luks;
 | |
| 
 | |
|     luks->cipher_alg = luks_opts.cipher_alg;
 | |
|     luks->cipher_mode = luks_opts.cipher_mode;
 | |
|     luks->ivgen_alg = luks_opts.ivgen_alg;
 | |
|     luks->ivgen_hash_alg = luks_opts.ivgen_hash_alg;
 | |
|     luks->hash_alg = luks_opts.hash_alg;
 | |
| 
 | |
| 
 | |
|     /* Note we're allowing ivgen_hash_alg to be set even for
 | |
|      * non-essiv iv generators that don't need a hash. It will
 | |
|      * be silently ignored, for compatibility with dm-crypt */
 | |
| 
 | |
|     if (!options->u.luks.key_secret) {
 | |
|         error_setg(errp, "Parameter '%skey-secret' is required for cipher",
 | |
|                    optprefix ? optprefix : "");
 | |
|         goto error;
 | |
|     }
 | |
|     luks->secret = g_strdup(options->u.luks.key_secret);
 | |
| 
 | |
|     password = qcrypto_secret_lookup_as_utf8(luks_opts.key_secret, errp);
 | |
|     if (!password) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     memcpy(luks->header.magic, qcrypto_block_luks_magic,
 | |
|            QCRYPTO_BLOCK_LUKS_MAGIC_LEN);
 | |
| 
 | |
|     /* We populate the header in native endianness initially and
 | |
|      * then convert everything to big endian just before writing
 | |
|      * it out to disk
 | |
|      */
 | |
|     luks->header.version = QCRYPTO_BLOCK_LUKS_VERSION;
 | |
|     qcrypto_block_luks_uuid_gen(luks->header.uuid);
 | |
| 
 | |
|     cipher_alg = qcrypto_block_luks_cipher_alg_lookup(luks_opts.cipher_alg,
 | |
|                                                       errp);
 | |
|     if (!cipher_alg) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     cipher_mode = QCryptoCipherMode_str(luks_opts.cipher_mode);
 | |
|     ivgen_alg = QCryptoIVGenAlgorithm_str(luks_opts.ivgen_alg);
 | |
|     if (luks_opts.has_ivgen_hash_alg) {
 | |
|         ivgen_hash_alg = QCryptoHashAlgorithm_str(luks_opts.ivgen_hash_alg);
 | |
|         cipher_mode_spec = g_strdup_printf("%s-%s:%s", cipher_mode, ivgen_alg,
 | |
|                                            ivgen_hash_alg);
 | |
|     } else {
 | |
|         cipher_mode_spec = g_strdup_printf("%s-%s", cipher_mode, ivgen_alg);
 | |
|     }
 | |
|     hash_alg = QCryptoHashAlgorithm_str(luks_opts.hash_alg);
 | |
| 
 | |
| 
 | |
|     if (strlen(cipher_alg) >= QCRYPTO_BLOCK_LUKS_CIPHER_NAME_LEN) {
 | |
|         error_setg(errp, "Cipher name '%s' is too long for LUKS header",
 | |
|                    cipher_alg);
 | |
|         goto error;
 | |
|     }
 | |
|     if (strlen(cipher_mode_spec) >= QCRYPTO_BLOCK_LUKS_CIPHER_MODE_LEN) {
 | |
|         error_setg(errp, "Cipher mode '%s' is too long for LUKS header",
 | |
|                    cipher_mode_spec);
 | |
|         goto error;
 | |
|     }
 | |
|     if (strlen(hash_alg) >= QCRYPTO_BLOCK_LUKS_HASH_SPEC_LEN) {
 | |
|         error_setg(errp, "Hash name '%s' is too long for LUKS header",
 | |
|                    hash_alg);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (luks_opts.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
 | |
|         luks->ivgen_cipher_alg =
 | |
|                 qcrypto_block_luks_essiv_cipher(luks_opts.cipher_alg,
 | |
|                                                 luks_opts.ivgen_hash_alg,
 | |
|                                                 &local_err);
 | |
|         if (local_err) {
 | |
|             error_propagate(errp, local_err);
 | |
|             goto error;
 | |
|         }
 | |
|     } else {
 | |
|         luks->ivgen_cipher_alg = luks_opts.cipher_alg;
 | |
|     }
 | |
| 
 | |
|     strcpy(luks->header.cipher_name, cipher_alg);
 | |
|     strcpy(luks->header.cipher_mode, cipher_mode_spec);
 | |
|     strcpy(luks->header.hash_spec, hash_alg);
 | |
| 
 | |
|     luks->header.master_key_len =
 | |
|         qcrypto_cipher_get_key_len(luks_opts.cipher_alg);
 | |
| 
 | |
|     if (luks_opts.cipher_mode == QCRYPTO_CIPHER_MODE_XTS) {
 | |
|         luks->header.master_key_len *= 2;
 | |
|     }
 | |
| 
 | |
|     /* Generate the salt used for hashing the master key
 | |
|      * with PBKDF later
 | |
|      */
 | |
|     if (qcrypto_random_bytes(luks->header.master_key_salt,
 | |
|                              QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                              errp) < 0) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* Generate random master key */
 | |
|     masterkey = g_new0(uint8_t, luks->header.master_key_len);
 | |
|     if (qcrypto_random_bytes(masterkey,
 | |
|                              luks->header.master_key_len, errp) < 0) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Setup the block device payload encryption objects */
 | |
|     if (qcrypto_block_init_cipher(block, luks_opts.cipher_alg,
 | |
|                                   luks_opts.cipher_mode, masterkey,
 | |
|                                   luks->header.master_key_len, 1, errp) < 0) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     block->kdfhash = luks_opts.hash_alg;
 | |
|     block->niv = qcrypto_cipher_get_iv_len(luks_opts.cipher_alg,
 | |
|                                            luks_opts.cipher_mode);
 | |
|     block->ivgen = qcrypto_ivgen_new(luks_opts.ivgen_alg,
 | |
|                                      luks->ivgen_cipher_alg,
 | |
|                                      luks_opts.ivgen_hash_alg,
 | |
|                                      masterkey, luks->header.master_key_len,
 | |
|                                      errp);
 | |
| 
 | |
|     if (!block->ivgen) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* Determine how many iterations we need to hash the master
 | |
|      * key, in order to have 1 second of compute time used
 | |
|      */
 | |
|     iters = qcrypto_pbkdf2_count_iters(luks_opts.hash_alg,
 | |
|                                        masterkey, luks->header.master_key_len,
 | |
|                                        luks->header.master_key_salt,
 | |
|                                        QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                                        QCRYPTO_BLOCK_LUKS_DIGEST_LEN,
 | |
|                                        &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     if (iters > (ULLONG_MAX / luks_opts.iter_time)) {
 | |
|         error_setg_errno(errp, ERANGE,
 | |
|                          "PBKDF iterations %llu too large to scale",
 | |
|                          (unsigned long long)iters);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* iter_time was in millis, but count_iters reported for secs */
 | |
|     iters = iters * luks_opts.iter_time / 1000;
 | |
| 
 | |
|     /* Why /= 8 ?  That matches cryptsetup, but there's no
 | |
|      * explanation why they chose /= 8... Probably so that
 | |
|      * if all 8 keyslots are active we only spend 1 second
 | |
|      * in total time to check all keys */
 | |
|     iters /= 8;
 | |
|     if (iters > UINT32_MAX) {
 | |
|         error_setg_errno(errp, ERANGE,
 | |
|                          "PBKDF iterations %llu larger than %u",
 | |
|                          (unsigned long long)iters, UINT32_MAX);
 | |
|         goto error;
 | |
|     }
 | |
|     iters = MAX(iters, QCRYPTO_BLOCK_LUKS_MIN_MASTER_KEY_ITERS);
 | |
|     luks->header.master_key_iterations = iters;
 | |
| 
 | |
|     /* Hash the master key, saving the result in the LUKS
 | |
|      * header. This hash is used when opening the encrypted
 | |
|      * device to verify that the user password unlocked a
 | |
|      * valid master key
 | |
|      */
 | |
|     if (qcrypto_pbkdf2(luks_opts.hash_alg,
 | |
|                        masterkey, luks->header.master_key_len,
 | |
|                        luks->header.master_key_salt,
 | |
|                        QCRYPTO_BLOCK_LUKS_SALT_LEN,
 | |
|                        luks->header.master_key_iterations,
 | |
|                        luks->header.master_key_digest,
 | |
|                        QCRYPTO_BLOCK_LUKS_DIGEST_LEN,
 | |
|                        errp) < 0) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     /* start with the sector that follows the header*/
 | |
|     header_sectors = QCRYPTO_BLOCK_LUKS_KEY_SLOT_OFFSET /
 | |
|         QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
 | |
| 
 | |
|     split_key_sectors =
 | |
|         qcrypto_block_luks_splitkeylen_sectors(luks,
 | |
|                                                header_sectors,
 | |
|                                                QCRYPTO_BLOCK_LUKS_STRIPES);
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         QCryptoBlockLUKSKeySlot *slot = &luks->header.key_slots[i];
 | |
|         slot->active = QCRYPTO_BLOCK_LUKS_KEY_SLOT_DISABLED;
 | |
| 
 | |
|         slot->key_offset_sector = header_sectors + i * split_key_sectors;
 | |
|         slot->stripes = QCRYPTO_BLOCK_LUKS_STRIPES;
 | |
|     }
 | |
| 
 | |
|     /* The total size of the LUKS headers is the partition header + key
 | |
|      * slot headers, rounded up to the nearest sector, combined with
 | |
|      * the size of each master key material region, also rounded up
 | |
|      * to the nearest sector */
 | |
|     luks->header.payload_offset_sector = header_sectors +
 | |
|             QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS * split_key_sectors;
 | |
| 
 | |
|     block->sector_size = QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
 | |
|     block->payload_offset = luks->header.payload_offset_sector *
 | |
|         block->sector_size;
 | |
| 
 | |
|     /* Reserve header space to match payload offset */
 | |
|     initfunc(block, block->payload_offset, opaque, &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
| 
 | |
|     /* populate the slot 0 with the password encrypted master key*/
 | |
|     /* This will also store the header */
 | |
|     if (qcrypto_block_luks_store_key(block,
 | |
|                                      0,
 | |
|                                      password,
 | |
|                                      masterkey,
 | |
|                                      luks_opts.iter_time,
 | |
|                                      writefunc,
 | |
|                                      opaque,
 | |
|                                      errp) < 0) {
 | |
|         goto error;
 | |
|     }
 | |
| 
 | |
|     memset(masterkey, 0, luks->header.master_key_len);
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
|  error:
 | |
|     if (masterkey) {
 | |
|         memset(masterkey, 0, luks->header.master_key_len);
 | |
|     }
 | |
| 
 | |
|     qcrypto_block_free_cipher(block);
 | |
|     qcrypto_ivgen_free(block->ivgen);
 | |
| 
 | |
|     g_free(luks->secret);
 | |
|     g_free(luks);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_amend_add_keyslot(QCryptoBlock *block,
 | |
|                                      QCryptoBlockReadFunc readfunc,
 | |
|                                      QCryptoBlockWriteFunc writefunc,
 | |
|                                      void *opaque,
 | |
|                                      QCryptoBlockAmendOptionsLUKS *opts_luks,
 | |
|                                      bool force,
 | |
|                                      Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     uint64_t iter_time = opts_luks->has_iter_time ?
 | |
|                          opts_luks->iter_time :
 | |
|                          QCRYPTO_BLOCK_LUKS_DEFAULT_ITER_TIME_MS;
 | |
|     int keyslot;
 | |
|     g_autofree char *old_password = NULL;
 | |
|     g_autofree char *new_password = NULL;
 | |
|     g_autofree uint8_t *master_key = NULL;
 | |
| 
 | |
|     char *secret = opts_luks->has_secret ? opts_luks->secret : luks->secret;
 | |
| 
 | |
|     if (!opts_luks->has_new_secret) {
 | |
|         error_setg(errp, "'new-secret' is required to activate a keyslot");
 | |
|         return -1;
 | |
|     }
 | |
|     if (opts_luks->has_old_secret) {
 | |
|         error_setg(errp,
 | |
|                    "'old-secret' must not be given when activating keyslots");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (opts_luks->has_keyslot) {
 | |
|         keyslot = opts_luks->keyslot;
 | |
|         if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) {
 | |
|             error_setg(errp,
 | |
|                        "Invalid keyslot %u specified, must be between 0 and %u",
 | |
|                        keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1);
 | |
|             return -1;
 | |
|         }
 | |
|     } else {
 | |
|         keyslot = qcrypto_block_luks_find_free_keyslot(luks);
 | |
|         if (keyslot == -1) {
 | |
|             error_setg(errp,
 | |
|                        "Can't add a keyslot - all keyslots are in use");
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!force && qcrypto_block_luks_slot_active(luks, keyslot)) {
 | |
|         error_setg(errp,
 | |
|                    "Refusing to overwrite active keyslot %i - "
 | |
|                    "please erase it first",
 | |
|                    keyslot);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Locate the password that will be used to retrieve the master key */
 | |
|     old_password = qcrypto_secret_lookup_as_utf8(secret, errp);
 | |
|     if (!old_password) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Retrieve the master key */
 | |
|     master_key = g_new0(uint8_t, luks->header.master_key_len);
 | |
| 
 | |
|     if (qcrypto_block_luks_find_key(block, old_password, master_key,
 | |
|                                     readfunc, opaque, errp) < 0) {
 | |
|         error_append_hint(errp, "Failed to retrieve the master key");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Locate the new password*/
 | |
|     new_password = qcrypto_secret_lookup_as_utf8(opts_luks->new_secret, errp);
 | |
|     if (!new_password) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Now set the new keyslots */
 | |
|     if (qcrypto_block_luks_store_key(block, keyslot, new_password, master_key,
 | |
|                                      iter_time, writefunc, opaque, errp)) {
 | |
|         error_append_hint(errp, "Failed to write to keyslot %i", keyslot);
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_amend_erase_keyslots(QCryptoBlock *block,
 | |
|                                         QCryptoBlockReadFunc readfunc,
 | |
|                                         QCryptoBlockWriteFunc writefunc,
 | |
|                                         void *opaque,
 | |
|                                         QCryptoBlockAmendOptionsLUKS *opts_luks,
 | |
|                                         bool force,
 | |
|                                         Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     g_autofree uint8_t *tmpkey = NULL;
 | |
|     g_autofree char *old_password = NULL;
 | |
| 
 | |
|     if (opts_luks->has_new_secret) {
 | |
|         error_setg(errp,
 | |
|                    "'new-secret' must not be given when erasing keyslots");
 | |
|         return -1;
 | |
|     }
 | |
|     if (opts_luks->has_iter_time) {
 | |
|         error_setg(errp,
 | |
|                    "'iter-time' must not be given when erasing keyslots");
 | |
|         return -1;
 | |
|     }
 | |
|     if (opts_luks->has_secret) {
 | |
|         error_setg(errp,
 | |
|                    "'secret' must not be given when erasing keyslots");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Load the old password if given */
 | |
|     if (opts_luks->has_old_secret) {
 | |
|         old_password = qcrypto_secret_lookup_as_utf8(opts_luks->old_secret,
 | |
|                                                      errp);
 | |
|         if (!old_password) {
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Allocate a temporary key buffer that we will need when
 | |
|          * checking if slot matches the given old password
 | |
|          */
 | |
|         tmpkey = g_new0(uint8_t, luks->header.master_key_len);
 | |
|     }
 | |
| 
 | |
|     /* Erase an explicitly given keyslot */
 | |
|     if (opts_luks->has_keyslot) {
 | |
|         int keyslot = opts_luks->keyslot;
 | |
| 
 | |
|         if (keyslot < 0 || keyslot >= QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS) {
 | |
|             error_setg(errp,
 | |
|                        "Invalid keyslot %i specified, must be between 0 and %i",
 | |
|                        keyslot, QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS - 1);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (opts_luks->has_old_secret) {
 | |
|             int rv = qcrypto_block_luks_load_key(block,
 | |
|                                                  keyslot,
 | |
|                                                  old_password,
 | |
|                                                  tmpkey,
 | |
|                                                  readfunc,
 | |
|                                                  opaque,
 | |
|                                                  errp);
 | |
|             if (rv == -1) {
 | |
|                 return -1;
 | |
|             } else if (rv == 0) {
 | |
|                 error_setg(errp,
 | |
|                            "Given keyslot %i doesn't contain the given "
 | |
|                            "old password for erase operation",
 | |
|                            keyslot);
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (!force && !qcrypto_block_luks_slot_active(luks, keyslot)) {
 | |
|             error_setg(errp,
 | |
|                        "Given keyslot %i is already erased (inactive) ",
 | |
|                        keyslot);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (!force && qcrypto_block_luks_count_active_slots(luks) == 1) {
 | |
|             error_setg(errp,
 | |
|                        "Attempt to erase the only active keyslot %i "
 | |
|                        "which will erase all the data in the image "
 | |
|                        "irreversibly - refusing operation",
 | |
|                        keyslot);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (qcrypto_block_luks_erase_key(block, keyslot,
 | |
|                                          writefunc, opaque, errp)) {
 | |
|             error_append_hint(errp, "Failed to erase keyslot %i", keyslot);
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|     /* Erase all keyslots that match the given old password */
 | |
|     } else if (opts_luks->has_old_secret) {
 | |
| 
 | |
|         unsigned long slots_to_erase_bitmap = 0;
 | |
|         size_t i;
 | |
|         int slot_count;
 | |
| 
 | |
|         assert(QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS <=
 | |
|                sizeof(slots_to_erase_bitmap) * 8);
 | |
| 
 | |
|         for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|             int rv = qcrypto_block_luks_load_key(block,
 | |
|                                                  i,
 | |
|                                                  old_password,
 | |
|                                                  tmpkey,
 | |
|                                                  readfunc,
 | |
|                                                  opaque,
 | |
|                                                  errp);
 | |
|             if (rv == -1) {
 | |
|                 return -1;
 | |
|             } else if (rv == 1) {
 | |
|                 bitmap_set(&slots_to_erase_bitmap, i, 1);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         slot_count = bitmap_count_one(&slots_to_erase_bitmap,
 | |
|                                       QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS);
 | |
|         if (slot_count == 0) {
 | |
|             error_setg(errp,
 | |
|                        "No keyslots match given (old) password for erase operation");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if (!force &&
 | |
|             slot_count == qcrypto_block_luks_count_active_slots(luks)) {
 | |
|             error_setg(errp,
 | |
|                        "All the active keyslots match the (old) password that "
 | |
|                        "was given and erasing them will erase all the data in "
 | |
|                        "the image irreversibly - refusing operation");
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         /* Now apply the update */
 | |
|         for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|             if (!test_bit(i, &slots_to_erase_bitmap)) {
 | |
|                 continue;
 | |
|             }
 | |
|             if (qcrypto_block_luks_erase_key(block, i, writefunc,
 | |
|                 opaque, errp)) {
 | |
|                 error_append_hint(errp, "Failed to erase keyslot %zu", i);
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         error_setg(errp,
 | |
|                    "To erase keyslot(s), either explicit keyslot index "
 | |
|                    "or the password currently contained in them must be given");
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_amend_options(QCryptoBlock *block,
 | |
|                                  QCryptoBlockReadFunc readfunc,
 | |
|                                  QCryptoBlockWriteFunc writefunc,
 | |
|                                  void *opaque,
 | |
|                                  QCryptoBlockAmendOptions *options,
 | |
|                                  bool force,
 | |
|                                  Error **errp)
 | |
| {
 | |
|     QCryptoBlockAmendOptionsLUKS *opts_luks = &options->u.luks;
 | |
| 
 | |
|     switch (opts_luks->state) {
 | |
|     case Q_CRYPTO_BLOCKLUKS_KEYSLOT_STATE_ACTIVE:
 | |
|         return qcrypto_block_luks_amend_add_keyslot(block, readfunc,
 | |
|                                                     writefunc, opaque,
 | |
|                                                     opts_luks, force, errp);
 | |
|     case Q_CRYPTO_BLOCKLUKS_KEYSLOT_STATE_INACTIVE:
 | |
|         return qcrypto_block_luks_amend_erase_keyslots(block, readfunc,
 | |
|                                                        writefunc, opaque,
 | |
|                                                        opts_luks, force, errp);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int qcrypto_block_luks_get_info(QCryptoBlock *block,
 | |
|                                        QCryptoBlockInfo *info,
 | |
|                                        Error **errp)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     QCryptoBlockInfoLUKSSlot *slot;
 | |
|     QCryptoBlockInfoLUKSSlotList *slots = NULL, **prev = &info->u.luks.slots;
 | |
|     size_t i;
 | |
| 
 | |
|     info->u.luks.cipher_alg = luks->cipher_alg;
 | |
|     info->u.luks.cipher_mode = luks->cipher_mode;
 | |
|     info->u.luks.ivgen_alg = luks->ivgen_alg;
 | |
|     if (info->u.luks.ivgen_alg == QCRYPTO_IVGEN_ALG_ESSIV) {
 | |
|         info->u.luks.has_ivgen_hash_alg = true;
 | |
|         info->u.luks.ivgen_hash_alg = luks->ivgen_hash_alg;
 | |
|     }
 | |
|     info->u.luks.hash_alg = luks->hash_alg;
 | |
|     info->u.luks.payload_offset = block->payload_offset;
 | |
|     info->u.luks.master_key_iters = luks->header.master_key_iterations;
 | |
|     info->u.luks.uuid = g_strndup((const char *)luks->header.uuid,
 | |
|                                   sizeof(luks->header.uuid));
 | |
| 
 | |
|     for (i = 0; i < QCRYPTO_BLOCK_LUKS_NUM_KEY_SLOTS; i++) {
 | |
|         slots = g_new0(QCryptoBlockInfoLUKSSlotList, 1);
 | |
|         *prev = slots;
 | |
| 
 | |
|         slots->value = slot = g_new0(QCryptoBlockInfoLUKSSlot, 1);
 | |
|         slot->active = luks->header.key_slots[i].active ==
 | |
|             QCRYPTO_BLOCK_LUKS_KEY_SLOT_ENABLED;
 | |
|         slot->key_offset = luks->header.key_slots[i].key_offset_sector
 | |
|              * QCRYPTO_BLOCK_LUKS_SECTOR_SIZE;
 | |
|         if (slot->active) {
 | |
|             slot->has_iters = true;
 | |
|             slot->iters = luks->header.key_slots[i].iterations;
 | |
|             slot->has_stripes = true;
 | |
|             slot->stripes = luks->header.key_slots[i].stripes;
 | |
|         }
 | |
| 
 | |
|         prev = &slots->next;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void qcrypto_block_luks_cleanup(QCryptoBlock *block)
 | |
| {
 | |
|     QCryptoBlockLUKS *luks = block->opaque;
 | |
|     if (luks) {
 | |
|         g_free(luks->secret);
 | |
|         g_free(luks);
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_decrypt(QCryptoBlock *block,
 | |
|                            uint64_t offset,
 | |
|                            uint8_t *buf,
 | |
|                            size_t len,
 | |
|                            Error **errp)
 | |
| {
 | |
|     assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
 | |
|     assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
 | |
|     return qcrypto_block_decrypt_helper(block,
 | |
|                                         QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                                         offset, buf, len, errp);
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| qcrypto_block_luks_encrypt(QCryptoBlock *block,
 | |
|                            uint64_t offset,
 | |
|                            uint8_t *buf,
 | |
|                            size_t len,
 | |
|                            Error **errp)
 | |
| {
 | |
|     assert(QEMU_IS_ALIGNED(offset, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
 | |
|     assert(QEMU_IS_ALIGNED(len, QCRYPTO_BLOCK_LUKS_SECTOR_SIZE));
 | |
|     return qcrypto_block_encrypt_helper(block,
 | |
|                                         QCRYPTO_BLOCK_LUKS_SECTOR_SIZE,
 | |
|                                         offset, buf, len, errp);
 | |
| }
 | |
| 
 | |
| 
 | |
| const QCryptoBlockDriver qcrypto_block_driver_luks = {
 | |
|     .open = qcrypto_block_luks_open,
 | |
|     .create = qcrypto_block_luks_create,
 | |
|     .amend = qcrypto_block_luks_amend_options,
 | |
|     .get_info = qcrypto_block_luks_get_info,
 | |
|     .cleanup = qcrypto_block_luks_cleanup,
 | |
|     .decrypt = qcrypto_block_luks_decrypt,
 | |
|     .encrypt = qcrypto_block_luks_encrypt,
 | |
|     .has_format = qcrypto_block_luks_has_format,
 | |
| };
 |