 71e72a19ba
			
		
	
	
		71e72a19ba
		
	
	
	
	
		
			
			Signed-off-by: Juan Quintela <quintela@redhat.com> Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
		
			
				
	
	
		
			535 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			535 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Native implementation of soft float functions. Only a single status
 | |
|    context is supported */
 | |
| #include "softfloat.h"
 | |
| #include <math.h>
 | |
| #if defined(CONFIG_SOLARIS)
 | |
| #include <fenv.h>
 | |
| #endif
 | |
| 
 | |
| void set_float_rounding_mode(int val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(float_rounding_mode) = val;
 | |
| #if defined(CONFIG_BSD) && !defined(__APPLE__) ||         \
 | |
|     (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
 | |
|     fpsetround(val);
 | |
| #elif defined(__arm__)
 | |
|     /* nothing to do */
 | |
| #else
 | |
|     fesetround(val);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| void set_floatx80_rounding_precision(int val STATUS_PARAM)
 | |
| {
 | |
|     STATUS(floatx80_rounding_precision) = val;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(CONFIG_BSD) || \
 | |
|     (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
 | |
| #define lrint(d)		((int32_t)rint(d))
 | |
| #define llrint(d)		((int64_t)rint(d))
 | |
| #define lrintf(f)		((int32_t)rint(f))
 | |
| #define llrintf(f)		((int64_t)rint(f))
 | |
| #define sqrtf(f)		((float)sqrt(f))
 | |
| #define remainderf(fa, fb)	((float)remainder(fa, fb))
 | |
| #define rintf(f)		((float)rint(f))
 | |
| #if !defined(__sparc__) && \
 | |
|     (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
 | |
| extern long double rintl(long double);
 | |
| extern long double scalbnl(long double, int);
 | |
| 
 | |
| long long
 | |
| llrintl(long double x) {
 | |
| 	return ((long long) rintl(x));
 | |
| }
 | |
| 
 | |
| long
 | |
| lrintl(long double x) {
 | |
| 	return ((long) rintl(x));
 | |
| }
 | |
| 
 | |
| long double
 | |
| ldexpl(long double x, int n) {
 | |
| 	return (scalbnl(x, n));
 | |
| }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(_ARCH_PPC)
 | |
| 
 | |
| /* correct (but slow) PowerPC rint() (glibc version is incorrect) */
 | |
| static double qemu_rint(double x)
 | |
| {
 | |
|     double y = 4503599627370496.0;
 | |
|     if (fabs(x) >= y)
 | |
|         return x;
 | |
|     if (x < 0)
 | |
|         y = -y;
 | |
|     y = (x + y) - y;
 | |
|     if (y == 0.0)
 | |
|         y = copysign(y, x);
 | |
|     return y;
 | |
| }
 | |
| 
 | |
| #define rint qemu_rint
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE integer-to-floating-point conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 int32_to_float32(int v STATUS_PARAM)
 | |
| {
 | |
|     return (float32)v;
 | |
| }
 | |
| 
 | |
| float32 uint32_to_float32(unsigned int v STATUS_PARAM)
 | |
| {
 | |
|     return (float32)v;
 | |
| }
 | |
| 
 | |
| float64 int32_to_float64(int v STATUS_PARAM)
 | |
| {
 | |
|     return (float64)v;
 | |
| }
 | |
| 
 | |
| float64 uint32_to_float64(unsigned int v STATUS_PARAM)
 | |
| {
 | |
|     return (float64)v;
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| floatx80 int32_to_floatx80(int v STATUS_PARAM)
 | |
| {
 | |
|     return (floatx80)v;
 | |
| }
 | |
| #endif
 | |
| float32 int64_to_float32( int64_t v STATUS_PARAM)
 | |
| {
 | |
|     return (float32)v;
 | |
| }
 | |
| float32 uint64_to_float32( uint64_t v STATUS_PARAM)
 | |
| {
 | |
|     return (float32)v;
 | |
| }
 | |
| float64 int64_to_float64( int64_t v STATUS_PARAM)
 | |
| {
 | |
|     return (float64)v;
 | |
| }
 | |
| float64 uint64_to_float64( uint64_t v STATUS_PARAM)
 | |
| {
 | |
|     return (float64)v;
 | |
| }
 | |
| #ifdef FLOATX80
 | |
| floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
 | |
| {
 | |
|     return (floatx80)v;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* XXX: this code implements the x86 behaviour, not the IEEE one.  */
 | |
| #if HOST_LONG_BITS == 32
 | |
| static inline int long_to_int32(long a)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| #else
 | |
| static inline int long_to_int32(long a)
 | |
| {
 | |
|     if (a != (int32_t)a)
 | |
|         a = 0x80000000;
 | |
|     return a;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int float32_to_int32( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return long_to_int32(lrintf(a));
 | |
| }
 | |
| int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return (int)a;
 | |
| }
 | |
| int64_t float32_to_int64( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return llrintf(a);
 | |
| }
 | |
| 
 | |
| int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return (int64_t)a;
 | |
| }
 | |
| 
 | |
| float64 float32_to_float64( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| #ifdef FLOATX80
 | |
| floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned int float32_to_uint32( float32 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = llrintf(a);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = (int64_t)a;
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_round_to_int( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return rintf(a);
 | |
| }
 | |
| 
 | |
| float32 float32_rem( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return remainderf(a, b);
 | |
| }
 | |
| 
 | |
| float32 float32_sqrt( float32 a STATUS_PARAM)
 | |
| {
 | |
|     return sqrtf(a);
 | |
| }
 | |
| int float32_compare( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     if (a < b) {
 | |
|         return float_relation_less;
 | |
|     } else if (a == b) {
 | |
|         return float_relation_equal;
 | |
|     } else if (a > b) {
 | |
|         return float_relation_greater;
 | |
|     } else {
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| }
 | |
| int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
 | |
| {
 | |
|     if (isless(a, b)) {
 | |
|         return float_relation_less;
 | |
|     } else if (a == b) {
 | |
|         return float_relation_equal;
 | |
|     } else if (isgreater(a, b)) {
 | |
|         return float_relation_greater;
 | |
|     } else {
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| }
 | |
| int float32_is_signaling_nan( float32 a1)
 | |
| {
 | |
|     float32u u;
 | |
|     uint32_t a;
 | |
|     u.f = a1;
 | |
|     a = u.i;
 | |
|     return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
 | |
| }
 | |
| 
 | |
| int float32_is_nan( float32 a1 )
 | |
| {
 | |
|     float32u u;
 | |
|     uint64_t a;
 | |
|     u.f = a1;
 | |
|     a = u.i;
 | |
|     return ( 0xFF800000 < ( a<<1 ) );
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int float64_to_int32( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return long_to_int32(lrint(a));
 | |
| }
 | |
| int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return (int)a;
 | |
| }
 | |
| int64_t float64_to_int64( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return llrint(a);
 | |
| }
 | |
| int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return (int64_t)a;
 | |
| }
 | |
| float32 float64_to_float32( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| #ifdef FLOATX80
 | |
| floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float64_to_float128( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| unsigned int float64_to_uint32( float64 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = llrint(a);
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
|     unsigned int res;
 | |
| 
 | |
|     v = (int64_t)a;
 | |
|     if (v < 0) {
 | |
|         res = 0;
 | |
|     } else if (v > 0xffffffff) {
 | |
|         res = 0xffffffff;
 | |
|     } else {
 | |
|         res = v;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
| 
 | |
|     v = llrint(a + (float64)INT64_MIN);
 | |
| 
 | |
|     return v - INT64_MIN;
 | |
| }
 | |
| uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
 | |
| {
 | |
|     int64_t v;
 | |
| 
 | |
|     v = (int64_t)(a + (float64)INT64_MIN);
 | |
| 
 | |
|     return v - INT64_MIN;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if defined(__sun__) && \
 | |
|     (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
 | |
| static inline float64 trunc(float64 x)
 | |
| {
 | |
|     return x < 0 ? -floor(-x) : floor(x);
 | |
| }
 | |
| #endif
 | |
| float64 float64_trunc_to_int( float64 a STATUS_PARAM )
 | |
| {
 | |
|     return trunc(a);
 | |
| }
 | |
| 
 | |
| float64 float64_round_to_int( float64 a STATUS_PARAM )
 | |
| {
 | |
| #if defined(__arm__)
 | |
|     switch(STATUS(float_rounding_mode)) {
 | |
|     default:
 | |
|     case float_round_nearest_even:
 | |
|         asm("rndd %0, %1" : "=f" (a) : "f"(a));
 | |
|         break;
 | |
|     case float_round_down:
 | |
|         asm("rnddm %0, %1" : "=f" (a) : "f"(a));
 | |
|         break;
 | |
|     case float_round_up:
 | |
|         asm("rnddp %0, %1" : "=f" (a) : "f"(a));
 | |
|         break;
 | |
|     case float_round_to_zero:
 | |
|         asm("rnddz %0, %1" : "=f" (a) : "f"(a));
 | |
|         break;
 | |
|     }
 | |
| #else
 | |
|     return rint(a);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| float64 float64_rem( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return remainder(a, b);
 | |
| }
 | |
| 
 | |
| float64 float64_sqrt( float64 a STATUS_PARAM)
 | |
| {
 | |
|     return sqrt(a);
 | |
| }
 | |
| int float64_compare( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     if (a < b) {
 | |
|         return float_relation_less;
 | |
|     } else if (a == b) {
 | |
|         return float_relation_equal;
 | |
|     } else if (a > b) {
 | |
|         return float_relation_greater;
 | |
|     } else {
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| }
 | |
| int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
 | |
| {
 | |
|     if (isless(a, b)) {
 | |
|         return float_relation_less;
 | |
|     } else if (a == b) {
 | |
|         return float_relation_equal;
 | |
|     } else if (isgreater(a, b)) {
 | |
|         return float_relation_greater;
 | |
|     } else {
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| }
 | |
| int float64_is_signaling_nan( float64 a1)
 | |
| {
 | |
|     float64u u;
 | |
|     uint64_t a;
 | |
|     u.f = a1;
 | |
|     a = u.i;
 | |
|     return
 | |
|            ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
 | |
|         && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| int float64_is_nan( float64 a1 )
 | |
| {
 | |
|     float64u u;
 | |
|     uint64_t a;
 | |
|     u.f = a1;
 | |
|     a = u.i;
 | |
| 
 | |
|     return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int floatx80_to_int32( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return long_to_int32(lrintl(a));
 | |
| }
 | |
| int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return (int)a;
 | |
| }
 | |
| int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return llrintl(a);
 | |
| }
 | |
| int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return (int64_t)a;
 | |
| }
 | |
| float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return rintl(a);
 | |
| }
 | |
| floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return remainderl(a, b);
 | |
| }
 | |
| floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
 | |
| {
 | |
|     return sqrtl(a);
 | |
| }
 | |
| int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     if (a < b) {
 | |
|         return float_relation_less;
 | |
|     } else if (a == b) {
 | |
|         return float_relation_equal;
 | |
|     } else if (a > b) {
 | |
|         return float_relation_greater;
 | |
|     } else {
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| }
 | |
| int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
 | |
| {
 | |
|     if (isless(a, b)) {
 | |
|         return float_relation_less;
 | |
|     } else if (a == b) {
 | |
|         return float_relation_equal;
 | |
|     } else if (isgreater(a, b)) {
 | |
|         return float_relation_greater;
 | |
|     } else {
 | |
|         return float_relation_unordered;
 | |
|     }
 | |
| }
 | |
| int floatx80_is_signaling_nan( floatx80 a1)
 | |
| {
 | |
|     floatx80u u;
 | |
|     uint64_t aLow;
 | |
|     u.f = a1;
 | |
| 
 | |
|     aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
 | |
|     return
 | |
|            ( ( u.i.high & 0x7FFF ) == 0x7FFF )
 | |
|         && (bits64) ( aLow<<1 )
 | |
|         && ( u.i.low == aLow );
 | |
| }
 | |
| 
 | |
| int floatx80_is_nan( floatx80 a1 )
 | |
| {
 | |
|     floatx80u u;
 | |
|     u.f = a1;
 | |
|     return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
 | |
| }
 | |
| 
 | |
| #endif
 |