 74c21bd074
			
		
	
	
		74c21bd074
		
	
	
	
	
		
			
			Clean up includes so that osdep.h is included first and headers which it implies are not included manually. This commit was created with scripts/clean-includes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Daniel P. Berrange <berrange@redhat.com> Message-id: 1449505425-32022-3-git-send-email-peter.maydell@linaro.org
		
			
				
	
	
		
			928 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			928 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM implementation of KVM hooks, 64 bit specific code
 | |
|  *
 | |
|  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
 | |
|  * Copyright Alex Bennée 2014, Linaro
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| #include <sys/ptrace.h>
 | |
| 
 | |
| #include <linux/elf.h>
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "hw/arm/arm.h"
 | |
| 
 | |
| static bool have_guest_debug;
 | |
| 
 | |
| /*
 | |
|  * Although the ARM implementation of hardware assisted debugging
 | |
|  * allows for different breakpoints per-core, the current GDB
 | |
|  * interface treats them as a global pool of registers (which seems to
 | |
|  * be the case for x86, ppc and s390). As a result we store one copy
 | |
|  * of registers which is used for all active cores.
 | |
|  *
 | |
|  * Write access is serialised by virtue of the GDB protocol which
 | |
|  * updates things. Read access (i.e. when the values are copied to the
 | |
|  * vCPU) is also gated by GDB's run control.
 | |
|  *
 | |
|  * This is not unreasonable as most of the time debugging kernels you
 | |
|  * never know which core will eventually execute your function.
 | |
|  */
 | |
| 
 | |
| typedef struct {
 | |
|     uint64_t bcr;
 | |
|     uint64_t bvr;
 | |
| } HWBreakpoint;
 | |
| 
 | |
| /* The watchpoint registers can cover more area than the requested
 | |
|  * watchpoint so we need to store the additional information
 | |
|  * somewhere. We also need to supply a CPUWatchpoint to the GDB stub
 | |
|  * when the watchpoint is hit.
 | |
|  */
 | |
| typedef struct {
 | |
|     uint64_t wcr;
 | |
|     uint64_t wvr;
 | |
|     CPUWatchpoint details;
 | |
| } HWWatchpoint;
 | |
| 
 | |
| /* Maximum and current break/watch point counts */
 | |
| int max_hw_bps, max_hw_wps;
 | |
| GArray *hw_breakpoints, *hw_watchpoints;
 | |
| 
 | |
| #define cur_hw_wps      (hw_watchpoints->len)
 | |
| #define cur_hw_bps      (hw_breakpoints->len)
 | |
| #define get_hw_bp(i)    (&g_array_index(hw_breakpoints, HWBreakpoint, i))
 | |
| #define get_hw_wp(i)    (&g_array_index(hw_watchpoints, HWWatchpoint, i))
 | |
| 
 | |
| /**
 | |
|  * kvm_arm_init_debug() - check for guest debug capabilities
 | |
|  * @cs: CPUState
 | |
|  *
 | |
|  * kvm_check_extension returns the number of debug registers we have
 | |
|  * or 0 if we have none.
 | |
|  *
 | |
|  */
 | |
| static void kvm_arm_init_debug(CPUState *cs)
 | |
| {
 | |
|     have_guest_debug = kvm_check_extension(cs->kvm_state,
 | |
|                                            KVM_CAP_SET_GUEST_DEBUG);
 | |
| 
 | |
|     max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
 | |
|     hw_watchpoints = g_array_sized_new(true, true,
 | |
|                                        sizeof(HWWatchpoint), max_hw_wps);
 | |
| 
 | |
|     max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
 | |
|     hw_breakpoints = g_array_sized_new(true, true,
 | |
|                                        sizeof(HWBreakpoint), max_hw_bps);
 | |
|     return;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * insert_hw_breakpoint()
 | |
|  * @addr: address of breakpoint
 | |
|  *
 | |
|  * See ARM ARM D2.9.1 for details but here we are only going to create
 | |
|  * simple un-linked breakpoints (i.e. we don't chain breakpoints
 | |
|  * together to match address and context or vmid). The hardware is
 | |
|  * capable of fancier matching but that will require exposing that
 | |
|  * fanciness to GDB's interface
 | |
|  *
 | |
|  * D7.3.2 DBGBCR<n>_EL1, Debug Breakpoint Control Registers
 | |
|  *
 | |
|  *  31  24 23  20 19   16 15 14  13  12   9 8   5 4    3 2   1  0
 | |
|  * +------+------+-------+-----+----+------+-----+------+-----+---+
 | |
|  * | RES0 |  BT  |  LBN  | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
 | |
|  * +------+------+-------+-----+----+------+-----+------+-----+---+
 | |
|  *
 | |
|  * BT: Breakpoint type (0 = unlinked address match)
 | |
|  * LBN: Linked BP number (0 = unused)
 | |
|  * SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
 | |
|  * BAS: Byte Address Select (RES1 for AArch64)
 | |
|  * E: Enable bit
 | |
|  */
 | |
| static int insert_hw_breakpoint(target_ulong addr)
 | |
| {
 | |
|     HWBreakpoint brk = {
 | |
|         .bcr = 0x1,                             /* BCR E=1, enable */
 | |
|         .bvr = addr
 | |
|     };
 | |
| 
 | |
|     if (cur_hw_bps >= max_hw_bps) {
 | |
|         return -ENOBUFS;
 | |
|     }
 | |
| 
 | |
|     brk.bcr = deposit32(brk.bcr, 1, 2, 0x3);   /* PMC = 11 */
 | |
|     brk.bcr = deposit32(brk.bcr, 5, 4, 0xf);   /* BAS = RES1 */
 | |
| 
 | |
|     g_array_append_val(hw_breakpoints, brk);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * delete_hw_breakpoint()
 | |
|  * @pc: address of breakpoint
 | |
|  *
 | |
|  * Delete a breakpoint and shuffle any above down
 | |
|  */
 | |
| 
 | |
| static int delete_hw_breakpoint(target_ulong pc)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < hw_breakpoints->len; i++) {
 | |
|         HWBreakpoint *brk = get_hw_bp(i);
 | |
|         if (brk->bvr == pc) {
 | |
|             g_array_remove_index(hw_breakpoints, i);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * insert_hw_watchpoint()
 | |
|  * @addr: address of watch point
 | |
|  * @len: size of area
 | |
|  * @type: type of watch point
 | |
|  *
 | |
|  * See ARM ARM D2.10. As with the breakpoints we can do some advanced
 | |
|  * stuff if we want to. The watch points can be linked with the break
 | |
|  * points above to make them context aware. However for simplicity
 | |
|  * currently we only deal with simple read/write watch points.
 | |
|  *
 | |
|  * D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
 | |
|  *
 | |
|  *  31  29 28   24 23  21  20  19 16 15 14  13   12  5 4   3 2   1  0
 | |
|  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 | |
|  * | RES0 |  MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
 | |
|  * +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
 | |
|  *
 | |
|  * MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
 | |
|  * WT: 0 - unlinked, 1 - linked (not currently used)
 | |
|  * LBN: Linked BP number (not currently used)
 | |
|  * SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
 | |
|  * BAS: Byte Address Select
 | |
|  * LSC: Load/Store control (01: load, 10: store, 11: both)
 | |
|  * E: Enable
 | |
|  *
 | |
|  * The bottom 2 bits of the value register are masked. Therefore to
 | |
|  * break on any sizes smaller than an unaligned word you need to set
 | |
|  * MASK=0, BAS=bit per byte in question. For larger regions (^2) you
 | |
|  * need to ensure you mask the address as required and set BAS=0xff
 | |
|  */
 | |
| 
 | |
| static int insert_hw_watchpoint(target_ulong addr,
 | |
|                                 target_ulong len, int type)
 | |
| {
 | |
|     HWWatchpoint wp = {
 | |
|         .wcr = 1, /* E=1, enable */
 | |
|         .wvr = addr & (~0x7ULL),
 | |
|         .details = { .vaddr = addr, .len = len }
 | |
|     };
 | |
| 
 | |
|     if (cur_hw_wps >= max_hw_wps) {
 | |
|         return -ENOBUFS;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
 | |
|      * valid whether EL3 is implemented or not
 | |
|      */
 | |
|     wp.wcr = deposit32(wp.wcr, 1, 2, 3);
 | |
| 
 | |
|     switch (type) {
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|         wp.wcr = deposit32(wp.wcr, 3, 2, 1);
 | |
|         wp.details.flags = BP_MEM_READ;
 | |
|         break;
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|         wp.wcr = deposit32(wp.wcr, 3, 2, 2);
 | |
|         wp.details.flags = BP_MEM_WRITE;
 | |
|         break;
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         wp.wcr = deposit32(wp.wcr, 3, 2, 3);
 | |
|         wp.details.flags = BP_MEM_ACCESS;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|         break;
 | |
|     }
 | |
|     if (len <= 8) {
 | |
|         /* we align the address and set the bits in BAS */
 | |
|         int off = addr & 0x7;
 | |
|         int bas = (1 << len) - 1;
 | |
| 
 | |
|         wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
 | |
|     } else {
 | |
|         /* For ranges above 8 bytes we need to be a power of 2 */
 | |
|         if (is_power_of_2(len)) {
 | |
|             int bits = ctz64(len);
 | |
| 
 | |
|             wp.wvr &= ~((1 << bits) - 1);
 | |
|             wp.wcr = deposit32(wp.wcr, 24, 4, bits);
 | |
|             wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
 | |
|         } else {
 | |
|             return -ENOBUFS;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     g_array_append_val(hw_watchpoints, wp);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static bool check_watchpoint_in_range(int i, target_ulong addr)
 | |
| {
 | |
|     HWWatchpoint *wp = get_hw_wp(i);
 | |
|     uint64_t addr_top, addr_bottom = wp->wvr;
 | |
|     int bas = extract32(wp->wcr, 5, 8);
 | |
|     int mask = extract32(wp->wcr, 24, 4);
 | |
| 
 | |
|     if (mask) {
 | |
|         addr_top = addr_bottom + (1 << mask);
 | |
|     } else {
 | |
|         /* BAS must be contiguous but can offset against the base
 | |
|          * address in DBGWVR */
 | |
|         addr_bottom = addr_bottom + ctz32(bas);
 | |
|         addr_top = addr_bottom + clo32(bas);
 | |
|     }
 | |
| 
 | |
|     if (addr >= addr_bottom && addr <= addr_top) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * delete_hw_watchpoint()
 | |
|  * @addr: address of breakpoint
 | |
|  *
 | |
|  * Delete a breakpoint and shuffle any above down
 | |
|  */
 | |
| 
 | |
| static int delete_hw_watchpoint(target_ulong addr,
 | |
|                                 target_ulong len, int type)
 | |
| {
 | |
|     int i;
 | |
|     for (i = 0; i < cur_hw_wps; i++) {
 | |
|         if (check_watchpoint_in_range(i, addr)) {
 | |
|             g_array_remove_index(hw_watchpoints, i);
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
|     return -ENOENT;
 | |
| }
 | |
| 
 | |
| 
 | |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         return insert_hw_breakpoint(addr);
 | |
|         break;
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         return insert_hw_watchpoint(addr, len, type);
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr,
 | |
|                                   target_ulong len, int type)
 | |
| {
 | |
|     switch (type) {
 | |
|     case GDB_BREAKPOINT_HW:
 | |
|         return delete_hw_breakpoint(addr);
 | |
|         break;
 | |
|     case GDB_WATCHPOINT_READ:
 | |
|     case GDB_WATCHPOINT_WRITE:
 | |
|     case GDB_WATCHPOINT_ACCESS:
 | |
|         return delete_hw_watchpoint(addr, len, type);
 | |
|     default:
 | |
|         return -ENOSYS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| 
 | |
| void kvm_arch_remove_all_hw_breakpoints(void)
 | |
| {
 | |
|     if (cur_hw_wps > 0) {
 | |
|         g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
 | |
|     }
 | |
|     if (cur_hw_bps > 0) {
 | |
|         g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
 | |
| {
 | |
|     int i;
 | |
|     memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
 | |
| 
 | |
|     for (i = 0; i < max_hw_wps; i++) {
 | |
|         HWWatchpoint *wp = get_hw_wp(i);
 | |
|         ptr->dbg_wcr[i] = wp->wcr;
 | |
|         ptr->dbg_wvr[i] = wp->wvr;
 | |
|     }
 | |
|     for (i = 0; i < max_hw_bps; i++) {
 | |
|         HWBreakpoint *bp = get_hw_bp(i);
 | |
|         ptr->dbg_bcr[i] = bp->bcr;
 | |
|         ptr->dbg_bvr[i] = bp->bvr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool kvm_arm_hw_debug_active(CPUState *cs)
 | |
| {
 | |
|     return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
 | |
| }
 | |
| 
 | |
| static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < cur_hw_bps; i++) {
 | |
|         HWBreakpoint *bp = get_hw_bp(i);
 | |
|         if (bp->bvr == pc) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < cur_hw_wps; i++) {
 | |
|         if (check_watchpoint_in_range(i, addr)) {
 | |
|             return &get_hw_wp(i)->details;
 | |
|         }
 | |
|     }
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline void set_feature(uint64_t *features, int feature)
 | |
| {
 | |
|     *features |= 1ULL << feature;
 | |
| }
 | |
| 
 | |
| bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 | |
| {
 | |
|     /* Identify the feature bits corresponding to the host CPU, and
 | |
|      * fill out the ARMHostCPUClass fields accordingly. To do this
 | |
|      * we have to create a scratch VM, create a single CPU inside it,
 | |
|      * and then query that CPU for the relevant ID registers.
 | |
|      * For AArch64 we currently don't care about ID registers at
 | |
|      * all; we just want to know the CPU type.
 | |
|      */
 | |
|     int fdarray[3];
 | |
|     uint64_t features = 0;
 | |
|     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 | |
|      * we know these will only support creating one kind of guest CPU,
 | |
|      * which is its preferred CPU type. Fortunately these old kernels
 | |
|      * support only a very limited number of CPUs.
 | |
|      */
 | |
|     static const uint32_t cpus_to_try[] = {
 | |
|         KVM_ARM_TARGET_AEM_V8,
 | |
|         KVM_ARM_TARGET_FOUNDATION_V8,
 | |
|         KVM_ARM_TARGET_CORTEX_A57,
 | |
|         QEMU_KVM_ARM_TARGET_NONE
 | |
|     };
 | |
|     struct kvm_vcpu_init init;
 | |
| 
 | |
|     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ahcc->target = init.target;
 | |
|     ahcc->dtb_compatible = "arm,arm-v8";
 | |
| 
 | |
|     kvm_arm_destroy_scratch_host_vcpu(fdarray);
 | |
| 
 | |
|    /* We can assume any KVM supporting CPU is at least a v8
 | |
|      * with VFPv4+Neon; this in turn implies most of the other
 | |
|      * feature bits.
 | |
|      */
 | |
|     set_feature(&features, ARM_FEATURE_V8);
 | |
|     set_feature(&features, ARM_FEATURE_VFP4);
 | |
|     set_feature(&features, ARM_FEATURE_NEON);
 | |
|     set_feature(&features, ARM_FEATURE_AARCH64);
 | |
| 
 | |
|     ahcc->features = features;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cs)
 | |
| {
 | |
|     int ret;
 | |
|     uint64_t mpidr;
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 | |
|         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 | |
|         fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /* Determine init features for this CPU */
 | |
|     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 | |
|     if (cpu->start_powered_off) {
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 | |
|     }
 | |
|     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 | |
|         cpu->psci_version = 2;
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 | |
|     }
 | |
|     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 | |
|     }
 | |
| 
 | |
|     /* Do KVM_ARM_VCPU_INIT ioctl */
 | |
|     ret = kvm_arm_vcpu_init(cs);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 | |
|      * Currently KVM has its own idea about MPIDR assignment, so we
 | |
|      * override our defaults with what we get from KVM.
 | |
|      */
 | |
|     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 | |
| 
 | |
|     kvm_arm_init_debug(cs);
 | |
| 
 | |
|     return kvm_arm_init_cpreg_list(cpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 | |
| {
 | |
|     /* Return true if the regidx is a register we should synchronize
 | |
|      * via the cpreg_tuples array (ie is not a core reg we sync by
 | |
|      * hand in kvm_arch_get/put_registers())
 | |
|      */
 | |
|     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 | |
|     case KVM_REG_ARM_CORE:
 | |
|         return false;
 | |
|     default:
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct CPRegStateLevel {
 | |
|     uint64_t regidx;
 | |
|     int level;
 | |
| } CPRegStateLevel;
 | |
| 
 | |
| /* All system registers not listed in the following table are assumed to be
 | |
|  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 | |
|  * often, you must add it to this table with a state of either
 | |
|  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 | |
|  */
 | |
| static const CPRegStateLevel non_runtime_cpregs[] = {
 | |
|     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 | |
| };
 | |
| 
 | |
| int kvm_arm_cpreg_level(uint64_t regidx)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 | |
|         const CPRegStateLevel *l = &non_runtime_cpregs[i];
 | |
|         if (l->regidx == regidx) {
 | |
|             return l->level;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return KVM_PUT_RUNTIME_STATE;
 | |
| }
 | |
| 
 | |
| #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *cs, int level)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     uint32_t fpr;
 | |
|     uint64_t val;
 | |
|     int i;
 | |
|     int ret;
 | |
|     unsigned int el;
 | |
| 
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 | |
|      * AArch64 registers before pushing them out to 64-bit KVM.
 | |
|      */
 | |
|     if (!is_a64(env)) {
 | |
|         aarch64_sync_32_to_64(env);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(regs.regs[i]);
 | |
|         reg.addr = (uintptr_t) &env->xregs[i];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 | |
|      * QEMU side we keep the current SP in xregs[31] as well.
 | |
|      */
 | |
|     aarch64_save_sp(env, 1);
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.sp);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[0];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(sp_el1);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 | |
|     if (is_a64(env)) {
 | |
|         val = pstate_read(env);
 | |
|     } else {
 | |
|         val = cpsr_read(env);
 | |
|     }
 | |
|     reg.id = AARCH64_CORE_REG(regs.pstate);
 | |
|     reg.addr = (uintptr_t) &val;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pc);
 | |
|     reg.addr = (uintptr_t) &env->pc;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(elr_el1);
 | |
|     reg.addr = (uintptr_t) &env->elr_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Saved Program State Registers
 | |
|      *
 | |
|      * Before we restore from the banked_spsr[] array we need to
 | |
|      * ensure that any modifications to env->spsr are correctly
 | |
|      * reflected in the banks.
 | |
|      */
 | |
|     el = arm_current_el(env);
 | |
|     if (el > 0 && !is_a64(env)) {
 | |
|         i = bank_number(env->uncached_cpsr & CPSR_M);
 | |
|         env->banked_spsr[i] = env->spsr;
 | |
|     }
 | |
| 
 | |
|     /* KVM 0-4 map to QEMU banks 1-5 */
 | |
|     for (i = 0; i < KVM_NR_SPSR; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(spsr[i]);
 | |
|         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Advanced SIMD and FP registers
 | |
|      * We map Qn = regs[2n+1]:regs[2n]
 | |
|      */
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         int rd = i << 1;
 | |
|         uint64_t fp_val[2];
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|         fp_val[0] = env->vfp.regs[rd + 1];
 | |
|         fp_val[1] = env->vfp.regs[rd];
 | |
| #else
 | |
|         fp_val[1] = env->vfp.regs[rd + 1];
 | |
|         fp_val[0] = env->vfp.regs[rd];
 | |
| #endif
 | |
|         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 | |
|         reg.addr = (uintptr_t)(&fp_val);
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.addr = (uintptr_t)(&fpr);
 | |
|     fpr = vfp_get_fpsr(env);
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     fpr = vfp_get_fpcr(env);
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (!write_list_to_kvmstate(cpu, level)) {
 | |
|         return EINVAL;
 | |
|     }
 | |
| 
 | |
|     kvm_arm_sync_mpstate_to_kvm(cpu);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *cs)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     uint64_t val;
 | |
|     uint32_t fpr;
 | |
|     unsigned int el;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(regs.regs[i]);
 | |
|         reg.addr = (uintptr_t) &env->xregs[i];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.sp);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[0];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(sp_el1);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pstate);
 | |
|     reg.addr = (uintptr_t) &val;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     env->aarch64 = ((val & PSTATE_nRW) == 0);
 | |
|     if (is_a64(env)) {
 | |
|         pstate_write(env, val);
 | |
|     } else {
 | |
|         env->uncached_cpsr = val & CPSR_M;
 | |
|         cpsr_write(env, val, 0xffffffff);
 | |
|     }
 | |
| 
 | |
|     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 | |
|      * QEMU side we keep the current SP in xregs[31] as well.
 | |
|      */
 | |
|     aarch64_restore_sp(env, 1);
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pc);
 | |
|     reg.addr = (uintptr_t) &env->pc;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 | |
|      * incoming AArch64 regs received from 64-bit KVM.
 | |
|      * We must perform this after all of the registers have been acquired from
 | |
|      * the kernel.
 | |
|      */
 | |
|     if (!is_a64(env)) {
 | |
|         aarch64_sync_64_to_32(env);
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(elr_el1);
 | |
|     reg.addr = (uintptr_t) &env->elr_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Fetch the SPSR registers
 | |
|      *
 | |
|      * KVM SPSRs 0-4 map to QEMU banks 1-5
 | |
|      */
 | |
|     for (i = 0; i < KVM_NR_SPSR; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(spsr[i]);
 | |
|         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     el = arm_current_el(env);
 | |
|     if (el > 0 && !is_a64(env)) {
 | |
|         i = bank_number(env->uncached_cpsr & CPSR_M);
 | |
|         env->spsr = env->banked_spsr[i];
 | |
|     }
 | |
| 
 | |
|     /* Advanced SIMD and FP registers
 | |
|      * We map Qn = regs[2n+1]:regs[2n]
 | |
|      */
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         uint64_t fp_val[2];
 | |
|         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 | |
|         reg.addr = (uintptr_t)(&fp_val);
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         } else {
 | |
|             int rd = i << 1;
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|             env->vfp.regs[rd + 1] = fp_val[0];
 | |
|             env->vfp.regs[rd] = fp_val[1];
 | |
| #else
 | |
|             env->vfp.regs[rd + 1] = fp_val[1];
 | |
|             env->vfp.regs[rd] = fp_val[0];
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.addr = (uintptr_t)(&fpr);
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     vfp_set_fpsr(env, fpr);
 | |
| 
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     vfp_set_fpcr(env, fpr);
 | |
| 
 | |
|     if (!write_kvmstate_to_list(cpu)) {
 | |
|         return EINVAL;
 | |
|     }
 | |
|     /* Note that it's OK to have registers which aren't in CPUState,
 | |
|      * so we can ignore a failure return here.
 | |
|      */
 | |
|     write_list_to_cpustate(cpu);
 | |
| 
 | |
|     kvm_arm_sync_mpstate_to_qemu(cpu);
 | |
| 
 | |
|     /* TODO: other registers */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* C6.6.29 BRK instruction */
 | |
| static const uint32_t brk_insn = 0xd4200000;
 | |
| 
 | |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     if (have_guest_debug) {
 | |
|         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
 | |
|             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         return 0;
 | |
|     } else {
 | |
|         error_report("guest debug not supported on this kernel");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
 | |
| {
 | |
|     static uint32_t brk;
 | |
| 
 | |
|     if (have_guest_debug) {
 | |
|         if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
 | |
|             brk != brk_insn ||
 | |
|             cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
 | |
|             return -EINVAL;
 | |
|         }
 | |
|         return 0;
 | |
|     } else {
 | |
|         error_report("guest debug not supported on this kernel");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
 | |
|  *
 | |
|  * To minimise translating between kernel and user-space the kernel
 | |
|  * ABI just provides user-space with the full exception syndrome
 | |
|  * register value to be decoded in QEMU.
 | |
|  */
 | |
| 
 | |
| bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
 | |
| {
 | |
|     int hsr_ec = debug_exit->hsr >> ARM_EL_EC_SHIFT;
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUClass *cc = CPU_GET_CLASS(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* Ensure PC is synchronised */
 | |
|     kvm_cpu_synchronize_state(cs);
 | |
| 
 | |
|     switch (hsr_ec) {
 | |
|     case EC_SOFTWARESTEP:
 | |
|         if (cs->singlestep_enabled) {
 | |
|             return true;
 | |
|         } else {
 | |
|             /*
 | |
|              * The kernel should have suppressed the guest's ability to
 | |
|              * single step at this point so something has gone wrong.
 | |
|              */
 | |
|             error_report("%s: guest single-step while debugging unsupported"
 | |
|                          " (%"PRIx64", %"PRIx32")\n",
 | |
|                          __func__, env->pc, debug_exit->hsr);
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case EC_AA64_BKPT:
 | |
|         if (kvm_find_sw_breakpoint(cs, env->pc)) {
 | |
|             return true;
 | |
|         }
 | |
|         break;
 | |
|     case EC_BREAKPOINT:
 | |
|         if (find_hw_breakpoint(cs, env->pc)) {
 | |
|             return true;
 | |
|         }
 | |
|         break;
 | |
|     case EC_WATCHPOINT:
 | |
|     {
 | |
|         CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
 | |
|         if (wp) {
 | |
|             cs->watchpoint_hit = wp;
 | |
|             return true;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")\n",
 | |
|                      __func__, debug_exit->hsr, env->pc);
 | |
|     }
 | |
| 
 | |
|     /* If we are not handling the debug exception it must belong to
 | |
|      * the guest. Let's re-use the existing TCG interrupt code to set
 | |
|      * everything up properly.
 | |
|      */
 | |
|     cs->exception_index = EXCP_BKPT;
 | |
|     env->exception.syndrome = debug_exit->hsr;
 | |
|     env->exception.vaddress = debug_exit->far;
 | |
|     cc->do_interrupt(cs);
 | |
| 
 | |
|     return false;
 | |
| }
 |