 8a83ffc2da
			
		
	
	
		8a83ffc2da
		
	
	
	
	
		
			
			The Linux kernel accesses this register early in its setup. Signed-off-by: Christopher Covington <christopher.covington@linaro.org> Signed-off-by: Alistair Francis <alistair.francis@xilinx.com> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Message-id: b30d536cb16ec57b4412172bb6dbc3f00d293e7d.1455060548.git.alistair.francis@xilinx.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			9163 lines
		
	
	
		
			322 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			9163 lines
		
	
	
		
			322 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/host-utils.h"
 | |
| #include "sysemu/arch_init.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/crc32c.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #include "arm_ldst.h"
 | |
| #include <zlib.h> /* For crc32 */
 | |
| #include "exec/semihost.h"
 | |
| #include "sysemu/kvm.h"
 | |
| 
 | |
| #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static bool get_phys_addr(CPUARMState *env, target_ulong address,
 | |
|                           int access_type, ARMMMUIdx mmu_idx,
 | |
|                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | |
|                           target_ulong *page_size, uint32_t *fsr,
 | |
|                           ARMMMUFaultInfo *fi);
 | |
| 
 | |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
 | |
|                                int access_type, ARMMMUIdx mmu_idx,
 | |
|                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
 | |
|                                target_ulong *page_size_ptr, uint32_t *fsr,
 | |
|                                ARMMMUFaultInfo *fi);
 | |
| 
 | |
| /* Definitions for the PMCCNTR and PMCR registers */
 | |
| #define PMCRD   0x8
 | |
| #define PMCRC   0x4
 | |
| #define PMCRE   0x1
 | |
| #endif
 | |
| 
 | |
| static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     int nregs;
 | |
| 
 | |
|     /* VFP data registers are always little-endian.  */
 | |
|     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | |
|     if (reg < nregs) {
 | |
|         stfq_le_p(buf, env->vfp.regs[reg]);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         /* Aliases for Q regs.  */
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
 | |
|             stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
 | |
|     case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
 | |
|     case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     int nregs;
 | |
| 
 | |
|     nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
 | |
|     if (reg < nregs) {
 | |
|         env->vfp.regs[reg] = ldfq_le_p(buf);
 | |
|         return 8;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         nregs += 16;
 | |
|         if (reg < nregs) {
 | |
|             env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
 | |
|             env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
 | |
|             return 16;
 | |
|         }
 | |
|     }
 | |
|     switch (reg - nregs) {
 | |
|     case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
 | |
|     case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
 | |
|     case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int aarch64_fpu_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0 ... 31:
 | |
|         /* 128 bit FP register */
 | |
|         stfq_le_p(buf, env->vfp.regs[reg * 2]);
 | |
|         stfq_le_p(buf + 8, env->vfp.regs[reg * 2 + 1]);
 | |
|         return 16;
 | |
|     case 32:
 | |
|         /* FPSR */
 | |
|         stl_p(buf, vfp_get_fpsr(env));
 | |
|         return 4;
 | |
|     case 33:
 | |
|         /* FPCR */
 | |
|         stl_p(buf, vfp_get_fpcr(env));
 | |
|         return 4;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int aarch64_fpu_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
 | |
| {
 | |
|     switch (reg) {
 | |
|     case 0 ... 31:
 | |
|         /* 128 bit FP register */
 | |
|         env->vfp.regs[reg * 2] = ldfq_le_p(buf);
 | |
|         env->vfp.regs[reg * 2 + 1] = ldfq_le_p(buf + 8);
 | |
|         return 16;
 | |
|     case 32:
 | |
|         /* FPSR */
 | |
|         vfp_set_fpsr(env, ldl_p(buf));
 | |
|         return 4;
 | |
|     case 33:
 | |
|         /* FPCR */
 | |
|         vfp_set_fpcr(env, ldl_p(buf));
 | |
|         return 4;
 | |
|     default:
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t raw_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     assert(ri->fieldoffset);
 | |
|     if (cpreg_field_is_64bit(ri)) {
 | |
|         return CPREG_FIELD64(env, ri);
 | |
|     } else {
 | |
|         return CPREG_FIELD32(env, ri);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                       uint64_t value)
 | |
| {
 | |
|     assert(ri->fieldoffset);
 | |
|     if (cpreg_field_is_64bit(ri)) {
 | |
|         CPREG_FIELD64(env, ri) = value;
 | |
|     } else {
 | |
|         CPREG_FIELD32(env, ri) = value;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void *raw_ptr(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return (char *)env + ri->fieldoffset;
 | |
| }
 | |
| 
 | |
| uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* Raw read of a coprocessor register (as needed for migration, etc). */
 | |
|     if (ri->type & ARM_CP_CONST) {
 | |
|         return ri->resetvalue;
 | |
|     } else if (ri->raw_readfn) {
 | |
|         return ri->raw_readfn(env, ri);
 | |
|     } else if (ri->readfn) {
 | |
|         return ri->readfn(env, ri);
 | |
|     } else {
 | |
|         return raw_read(env, ri);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void write_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t v)
 | |
| {
 | |
|     /* Raw write of a coprocessor register (as needed for migration, etc).
 | |
|      * Note that constant registers are treated as write-ignored; the
 | |
|      * caller should check for success by whether a readback gives the
 | |
|      * value written.
 | |
|      */
 | |
|     if (ri->type & ARM_CP_CONST) {
 | |
|         return;
 | |
|     } else if (ri->raw_writefn) {
 | |
|         ri->raw_writefn(env, ri, v);
 | |
|     } else if (ri->writefn) {
 | |
|         ri->writefn(env, ri, v);
 | |
|     } else {
 | |
|         raw_write(env, ri, v);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool raw_accessors_invalid(const ARMCPRegInfo *ri)
 | |
| {
 | |
|    /* Return true if the regdef would cause an assertion if you called
 | |
|     * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
 | |
|     * program bug for it not to have the NO_RAW flag).
 | |
|     * NB that returning false here doesn't necessarily mean that calling
 | |
|     * read/write_raw_cp_reg() is safe, because we can't distinguish "has
 | |
|     * read/write access functions which are safe for raw use" from "has
 | |
|     * read/write access functions which have side effects but has forgotten
 | |
|     * to provide raw access functions".
 | |
|     * The tests here line up with the conditions in read/write_raw_cp_reg()
 | |
|     * and assertions in raw_read()/raw_write().
 | |
|     */
 | |
|     if ((ri->type & ARM_CP_CONST) ||
 | |
|         ri->fieldoffset ||
 | |
|         ((ri->raw_writefn || ri->writefn) && (ri->raw_readfn || ri->readfn))) {
 | |
|         return false;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool write_cpustate_to_list(ARMCPU *cpu)
 | |
| {
 | |
|     /* Write the coprocessor state from cpu->env to the (index,value) list. */
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 | |
|         const ARMCPRegInfo *ri;
 | |
| 
 | |
|         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
|         if (!ri) {
 | |
|             ok = false;
 | |
|             continue;
 | |
|         }
 | |
|         if (ri->type & ARM_CP_NO_RAW) {
 | |
|             continue;
 | |
|         }
 | |
|         cpu->cpreg_values[i] = read_raw_cp_reg(&cpu->env, ri);
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| bool write_list_to_cpustate(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     bool ok = true;
 | |
| 
 | |
|     for (i = 0; i < cpu->cpreg_array_len; i++) {
 | |
|         uint32_t regidx = kvm_to_cpreg_id(cpu->cpreg_indexes[i]);
 | |
|         uint64_t v = cpu->cpreg_values[i];
 | |
|         const ARMCPRegInfo *ri;
 | |
| 
 | |
|         ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
|         if (!ri) {
 | |
|             ok = false;
 | |
|             continue;
 | |
|         }
 | |
|         if (ri->type & ARM_CP_NO_RAW) {
 | |
|             continue;
 | |
|         }
 | |
|         /* Write value and confirm it reads back as written
 | |
|          * (to catch read-only registers and partially read-only
 | |
|          * registers where the incoming migration value doesn't match)
 | |
|          */
 | |
|         write_raw_cp_reg(&cpu->env, ri, v);
 | |
|         if (read_raw_cp_reg(&cpu->env, ri) != v) {
 | |
|             ok = false;
 | |
|         }
 | |
|     }
 | |
|     return ok;
 | |
| }
 | |
| 
 | |
| static void add_cpreg_to_list(gpointer key, gpointer opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
|     uint64_t regidx;
 | |
|     const ARMCPRegInfo *ri;
 | |
| 
 | |
|     regidx = *(uint32_t *)key;
 | |
|     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
| 
 | |
|     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 | |
|         cpu->cpreg_indexes[cpu->cpreg_array_len] = cpreg_to_kvm_id(regidx);
 | |
|         /* The value array need not be initialized at this point */
 | |
|         cpu->cpreg_array_len++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void count_cpreg(gpointer key, gpointer opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
|     uint64_t regidx;
 | |
|     const ARMCPRegInfo *ri;
 | |
| 
 | |
|     regidx = *(uint32_t *)key;
 | |
|     ri = get_arm_cp_reginfo(cpu->cp_regs, regidx);
 | |
| 
 | |
|     if (!(ri->type & (ARM_CP_NO_RAW|ARM_CP_ALIAS))) {
 | |
|         cpu->cpreg_array_len++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static gint cpreg_key_compare(gconstpointer a, gconstpointer b)
 | |
| {
 | |
|     uint64_t aidx = cpreg_to_kvm_id(*(uint32_t *)a);
 | |
|     uint64_t bidx = cpreg_to_kvm_id(*(uint32_t *)b);
 | |
| 
 | |
|     if (aidx > bidx) {
 | |
|         return 1;
 | |
|     }
 | |
|     if (aidx < bidx) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void init_cpreg_list(ARMCPU *cpu)
 | |
| {
 | |
|     /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
 | |
|      * Note that we require cpreg_tuples[] to be sorted by key ID.
 | |
|      */
 | |
|     GList *keys;
 | |
|     int arraylen;
 | |
| 
 | |
|     keys = g_hash_table_get_keys(cpu->cp_regs);
 | |
|     keys = g_list_sort(keys, cpreg_key_compare);
 | |
| 
 | |
|     cpu->cpreg_array_len = 0;
 | |
| 
 | |
|     g_list_foreach(keys, count_cpreg, cpu);
 | |
| 
 | |
|     arraylen = cpu->cpreg_array_len;
 | |
|     cpu->cpreg_indexes = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_values = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_vmstate_indexes = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_vmstate_values = g_new(uint64_t, arraylen);
 | |
|     cpu->cpreg_vmstate_array_len = cpu->cpreg_array_len;
 | |
|     cpu->cpreg_array_len = 0;
 | |
| 
 | |
|     g_list_foreach(keys, add_cpreg_to_list, cpu);
 | |
| 
 | |
|     assert(cpu->cpreg_array_len == arraylen);
 | |
| 
 | |
|     g_list_free(keys);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
 | |
|  * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
 | |
|  *
 | |
|  * access_el3_aa32ns: Used to check AArch32 register views.
 | |
|  * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
 | |
|  */
 | |
| static CPAccessResult access_el3_aa32ns(CPUARMState *env,
 | |
|                                         const ARMCPRegInfo *ri,
 | |
|                                         bool isread)
 | |
| {
 | |
|     bool secure = arm_is_secure_below_el3(env);
 | |
| 
 | |
|     assert(!arm_el_is_aa64(env, 3));
 | |
|     if (secure) {
 | |
|         return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult access_el3_aa32ns_aa64any(CPUARMState *env,
 | |
|                                                 const ARMCPRegInfo *ri,
 | |
|                                                 bool isread)
 | |
| {
 | |
|     if (!arm_el_is_aa64(env, 3)) {
 | |
|         return access_el3_aa32ns(env, ri, isread);
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Some secure-only AArch32 registers trap to EL3 if used from
 | |
|  * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
 | |
|  * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
 | |
|  * We assume that the .access field is set to PL1_RW.
 | |
|  */
 | |
| static CPAccessResult access_trap_aa32s_el1(CPUARMState *env,
 | |
|                                             const ARMCPRegInfo *ri,
 | |
|                                             bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 3) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     /* This will be EL1 NS and EL2 NS, which just UNDEF */
 | |
|     return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
| }
 | |
| 
 | |
| /* Check for traps to "powerdown debug" registers, which are controlled
 | |
|  * by MDCR.TDOSA
 | |
|  */
 | |
| static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA)
 | |
|         && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps to "debug ROM" registers, which are controlled
 | |
|  * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA)
 | |
|         && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* Check for traps to general debug registers, which are controlled
 | |
|  * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 | |
|  */
 | |
| static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA)
 | |
|         && !arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     tlb_flush(CPU(cpu), 1); /* Flush TLB as domain not tracked in TLB */
 | |
| }
 | |
| 
 | |
| static void fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     if (raw_read(env, ri) != value) {
 | |
|         /* Unlike real hardware the qemu TLB uses virtual addresses,
 | |
|          * not modified virtual addresses, so this causes a TLB flush.
 | |
|          */
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|         raw_write(env, ri, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     if (raw_read(env, ri) != value && !arm_feature(env, ARM_FEATURE_MPU)
 | |
|         && !extended_addresses_enabled(env)) {
 | |
|         /* For VMSA (when not using the LPAE long descriptor page table
 | |
|          * format) this register includes the ASID, so do a TLB flush.
 | |
|          * For PMSA it is purely a process ID and no action is needed.
 | |
|          */
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|     }
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Invalidate all (TLBIALL) */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     tlb_flush(CPU(cpu), 1);
 | |
| }
 | |
| 
 | |
| static void tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 | |
| }
 | |
| 
 | |
| static void tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Invalidate by ASID (TLBIASID) */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     tlb_flush(CPU(cpu), value == 0);
 | |
| }
 | |
| 
 | |
| static void tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     tlb_flush_page(CPU(cpu), value & TARGET_PAGE_MASK);
 | |
| }
 | |
| 
 | |
| /* IS variants of TLB operations must affect all cores */
 | |
| static void tlbiall_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush(other_cs, 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbiasid_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush(other_cs, value == 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbimva_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbimvaa_is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_page(other_cs, value & TARGET_PAGE_MASK);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo cp_reginfo[] = {
 | |
|     /* Define the secure and non-secure FCSE identifier CP registers
 | |
|      * separately because there is no secure bank in V8 (no _EL3).  This allows
 | |
|      * the secure register to be properly reset and migrated. There is also no
 | |
|      * v8 EL1 version of the register so the non-secure instance stands alone.
 | |
|      */
 | |
|     { .name = "FCSEIDR(NS)",
 | |
|       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_ns),
 | |
|       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 | |
|     { .name = "FCSEIDR(S)",
 | |
|       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.fcseidr_s),
 | |
|       .resetvalue = 0, .writefn = fcse_write, .raw_writefn = raw_write, },
 | |
|     /* Define the secure and non-secure context identifier CP registers
 | |
|      * separately because there is no secure bank in V8 (no _EL3).  This allows
 | |
|      * the secure register to be properly reset and migrated.  In the
 | |
|      * non-secure case, the 32-bit register will have reset and migration
 | |
|      * disabled during registration as it is handled by the 64-bit instance.
 | |
|      */
 | |
|     { .name = "CONTEXTIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .secure = ARM_CP_SECSTATE_NS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_el[1]),
 | |
|       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 | |
|     { .name = "CONTEXTIDR(S)", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 13, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .secure = ARM_CP_SECSTATE_S,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.contextidr_s),
 | |
|       .resetvalue = 0, .writefn = contextidr_write, .raw_writefn = raw_write, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v8_cp_reginfo[] = {
 | |
|     /* NB: Some of these registers exist in v8 but with more precise
 | |
|      * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
 | |
|      */
 | |
|     /* MMU Domain access control / MPU write buffer control */
 | |
|     { .name = "DACR",
 | |
|       .cp = 15, .opc1 = CP_ANY, .crn = 3, .crm = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .writefn = dacr_write, .raw_writefn = raw_write,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 | |
|     /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
 | |
|      * For v6 and v5, these mappings are overly broad.
 | |
|      */
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 0,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 1,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 4,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = 8,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     /* Cache maintenance ops; some of this space may be overridden later. */
 | |
|     { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | |
|       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | |
|       .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v6_cp_reginfo[] = {
 | |
|     /* Not all pre-v6 cores implemented this WFI, so this is slightly
 | |
|      * over-broad.
 | |
|      */
 | |
|     { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_WFI },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo not_v7_cp_reginfo[] = {
 | |
|     /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
 | |
|      * is UNPREDICTABLE; we choose to NOP as most implementations do).
 | |
|      */
 | |
|     { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_WFI },
 | |
|     /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
 | |
|      * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
 | |
|      * OMAPCP will override this space.
 | |
|      */
 | |
|     { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
 | |
|       .resetvalue = 0 },
 | |
|     /* v6 doesn't have the cache ID registers but Linux reads them anyway */
 | |
|     { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = 0 },
 | |
|     /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
 | |
|      * implementing it as RAZ means the "debug architecture version" bits
 | |
|      * will read as a reserved value, which should cause Linux to not try
 | |
|      * to use the debug hardware.
 | |
|      */
 | |
|     { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* MMU TLB control. Note that the wildcarding means we cover not just
 | |
|      * the unified TLB ops but also the dside/iside/inner-shareable variants.
 | |
|      */
 | |
|     { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write,
 | |
|       .type = ARM_CP_NO_RAW },
 | |
|     { .name = "PRRR", .cp = 15, .crn = 10, .crm = 2,
 | |
|       .opc1 = 0, .opc2 = 0, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "NMRR", .cp = 15, .crn = 10, .crm = 2,
 | |
|       .opc1 = 0, .opc2 = 1, .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     uint32_t mask = 0;
 | |
| 
 | |
|     /* In ARMv8 most bits of CPACR_EL1 are RES0. */
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
 | |
|          * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
 | |
|          * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_VFP)) {
 | |
|             /* VFP coprocessor: cp10 & cp11 [23:20] */
 | |
|             mask |= (1 << 31) | (1 << 30) | (0xf << 20);
 | |
| 
 | |
|             if (!arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|                 /* ASEDIS [31] bit is RAO/WI */
 | |
|                 value |= (1 << 31);
 | |
|             }
 | |
| 
 | |
|             /* VFPv3 and upwards with NEON implement 32 double precision
 | |
|              * registers (D0-D31).
 | |
|              */
 | |
|             if (!arm_feature(env, ARM_FEATURE_NEON) ||
 | |
|                     !arm_feature(env, ARM_FEATURE_VFP3)) {
 | |
|                 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
 | |
|                 value |= (1 << 30);
 | |
|             }
 | |
|         }
 | |
|         value &= mask;
 | |
|     }
 | |
|     env->cp15.cpacr_el1 = value;
 | |
| }
 | |
| 
 | |
| static CPAccessResult cpacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* Check if CPACR accesses are to be trapped to EL2 */
 | |
|         if (arm_current_el(env) == 1 &&
 | |
|             (env->cp15.cptr_el[2] & CPTR_TCPAC) && !arm_is_secure(env)) {
 | |
|             return CP_ACCESS_TRAP_EL2;
 | |
|         /* Check if CPACR accesses are to be trapped to EL3 */
 | |
|         } else if (arm_current_el(env) < 3 &&
 | |
|                    (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 | |
|             return CP_ACCESS_TRAP_EL3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult cptr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   bool isread)
 | |
| {
 | |
|     /* Check if CPTR accesses are set to trap to EL3 */
 | |
|     if (arm_current_el(env) == 2 && (env->cp15.cptr_el[3] & CPTR_TCPAC)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v6_cp_reginfo[] = {
 | |
|     /* prefetch by MVA in v6, NOP in v7 */
 | |
|     { .name = "MVA_prefetch",
 | |
|       .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     /* We need to break the TB after ISB to execute self-modifying code
 | |
|      * correctly and also to take any pending interrupts immediately.
 | |
|      * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
 | |
|      */
 | |
|     { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NO_RAW, .writefn = arm_cp_write_ignore },
 | |
|     { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP },
 | |
|     { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ifar_s),
 | |
|                              offsetof(CPUARMState, cp15.ifar_ns) },
 | |
|       .resetvalue = 0, },
 | |
|     /* Watchpoint Fault Address Register : should actually only be present
 | |
|      * for 1136, 1176, 11MPCore.
 | |
|      */
 | |
|     { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
 | |
|     { .name = "CPACR", .state = ARM_CP_STATE_BOTH, .opc0 = 3,
 | |
|       .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2, .accessfn = cpacr_access,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.cpacr_el1),
 | |
|       .resetvalue = 0, .writefn = cpacr_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static CPAccessResult pmreg_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     /* Performance monitor registers user accessibility is controlled
 | |
|      * by PMUSERENR.
 | |
|      */
 | |
|     if (arm_current_el(env) == 0 && !env->cp15.c9_pmuserenr) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| static inline bool arm_ccnt_enabled(CPUARMState *env)
 | |
| {
 | |
|     /* This does not support checking PMCCFILTR_EL0 register */
 | |
| 
 | |
|     if (!(env->cp15.c9_pmcr & PMCRE)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void pmccntr_sync(CPUARMState *env)
 | |
| {
 | |
|     uint64_t temp_ticks;
 | |
| 
 | |
|     temp_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | |
|                           ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | |
| 
 | |
|     if (env->cp15.c9_pmcr & PMCRD) {
 | |
|         /* Increment once every 64 processor clock cycles */
 | |
|         temp_ticks /= 64;
 | |
|     }
 | |
| 
 | |
|     if (arm_ccnt_enabled(env)) {
 | |
|         env->cp15.c15_ccnt = temp_ticks - env->cp15.c15_ccnt;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t value)
 | |
| {
 | |
|     pmccntr_sync(env);
 | |
| 
 | |
|     if (value & PMCRC) {
 | |
|         /* The counter has been reset */
 | |
|         env->cp15.c15_ccnt = 0;
 | |
|     }
 | |
| 
 | |
|     /* only the DP, X, D and E bits are writable */
 | |
|     env->cp15.c9_pmcr &= ~0x39;
 | |
|     env->cp15.c9_pmcr |= (value & 0x39);
 | |
| 
 | |
|     pmccntr_sync(env);
 | |
| }
 | |
| 
 | |
| static uint64_t pmccntr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint64_t total_ticks;
 | |
| 
 | |
|     if (!arm_ccnt_enabled(env)) {
 | |
|         /* Counter is disabled, do not change value */
 | |
|         return env->cp15.c15_ccnt;
 | |
|     }
 | |
| 
 | |
|     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | |
|                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | |
| 
 | |
|     if (env->cp15.c9_pmcr & PMCRD) {
 | |
|         /* Increment once every 64 processor clock cycles */
 | |
|         total_ticks /= 64;
 | |
|     }
 | |
|     return total_ticks - env->cp15.c15_ccnt;
 | |
| }
 | |
| 
 | |
| static void pmccntr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     uint64_t total_ticks;
 | |
| 
 | |
|     if (!arm_ccnt_enabled(env)) {
 | |
|         /* Counter is disabled, set the absolute value */
 | |
|         env->cp15.c15_ccnt = value;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     total_ticks = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
 | |
|                            ARM_CPU_FREQ, NANOSECONDS_PER_SECOND);
 | |
| 
 | |
|     if (env->cp15.c9_pmcr & PMCRD) {
 | |
|         /* Increment once every 64 processor clock cycles */
 | |
|         total_ticks /= 64;
 | |
|     }
 | |
|     env->cp15.c15_ccnt = total_ticks - value;
 | |
| }
 | |
| 
 | |
| static void pmccntr_write32(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     uint64_t cur_val = pmccntr_read(env, NULL);
 | |
| 
 | |
|     pmccntr_write(env, ri, deposit64(cur_val, 0, 32, value));
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void pmccntr_sync(CPUARMState *env)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void pmccfiltr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     pmccntr_sync(env);
 | |
|     env->cp15.pmccfiltr_el0 = value & 0x7E000000;
 | |
|     pmccntr_sync(env);
 | |
| }
 | |
| 
 | |
| static void pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pmcnten |= value;
 | |
| }
 | |
| 
 | |
| static void pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pmcnten &= ~value;
 | |
| }
 | |
| 
 | |
| static void pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     env->cp15.c9_pmovsr &= ~value;
 | |
| }
 | |
| 
 | |
| static void pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     env->cp15.c9_pmxevtyper = value & 0xff;
 | |
| }
 | |
| 
 | |
| static void pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     env->cp15.c9_pmuserenr = value & 1;
 | |
| }
 | |
| 
 | |
| static void pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     /* We have no event counters so only the C bit can be changed */
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pminten |= value;
 | |
| }
 | |
| 
 | |
| static void pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     value &= (1 << 31);
 | |
|     env->cp15.c9_pminten &= ~value;
 | |
| }
 | |
| 
 | |
| static void vbar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                        uint64_t value)
 | |
| {
 | |
|     /* Note that even though the AArch64 view of this register has bits
 | |
|      * [10:0] all RES0 we can only mask the bottom 5, to comply with the
 | |
|      * architectural requirements for bits which are RES0 only in some
 | |
|      * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
 | |
|      * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
 | |
|      */
 | |
|     raw_write(env, ri, value & ~0x1FULL);
 | |
| }
 | |
| 
 | |
| static void scr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     /* We only mask off bits that are RES0 both for AArch64 and AArch32.
 | |
|      * For bits that vary between AArch32/64, code needs to check the
 | |
|      * current execution mode before directly using the feature bit.
 | |
|      */
 | |
|     uint32_t valid_mask = SCR_AARCH64_MASK | SCR_AARCH32_MASK;
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         valid_mask &= ~SCR_HCE;
 | |
| 
 | |
|         /* On ARMv7, SMD (or SCD as it is called in v7) is only
 | |
|          * supported if EL2 exists. The bit is UNK/SBZP when
 | |
|          * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
 | |
|          * when EL2 is unavailable.
 | |
|          * On ARMv8, this bit is always available.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_V7) &&
 | |
|             !arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             valid_mask &= ~SCR_SMD;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear all-context RES0 bits.  */
 | |
|     value &= valid_mask;
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static uint64_t ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
 | |
|      * bank
 | |
|      */
 | |
|     uint32_t index = A32_BANKED_REG_GET(env, csselr,
 | |
|                                         ri->secure & ARM_CP_SECSTATE_S);
 | |
| 
 | |
|     return cpu->ccsidr[index];
 | |
| }
 | |
| 
 | |
| static void csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     raw_write(env, ri, value & 0xf);
 | |
| }
 | |
| 
 | |
| static uint64_t isr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     CPUState *cs = ENV_GET_CPU(env);
 | |
|     uint64_t ret = 0;
 | |
| 
 | |
|     if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
 | |
|         ret |= CPSR_I;
 | |
|     }
 | |
|     if (cs->interrupt_request & CPU_INTERRUPT_FIQ) {
 | |
|         ret |= CPSR_F;
 | |
|     }
 | |
|     /* External aborts are not possible in QEMU so A bit is always clear */
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v7_cp_reginfo[] = {
 | |
|     /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
 | |
|     { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     /* Performance monitors are implementation defined in v7,
 | |
|      * but with an ARM recommended set of registers, which we
 | |
|      * follow (although we don't actually implement any counters)
 | |
|      *
 | |
|      * Performance registers fall into three categories:
 | |
|      *  (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
 | |
|      *  (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
 | |
|      *  (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
 | |
|      * For the cases controlled by PMUSERENR we must set .access to PL0_RW
 | |
|      * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
 | |
|      */
 | |
|     { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL0_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
 | |
|       .writefn = pmcntenset_write,
 | |
|       .accessfn = pmreg_access,
 | |
|       .raw_writefn = raw_write },
 | |
|     { .name = "PMCNTENSET_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 1,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten), .resetvalue = 0,
 | |
|       .writefn = pmcntenset_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcnten),
 | |
|       .accessfn = pmreg_access,
 | |
|       .writefn = pmcntenclr_write,
 | |
|       .type = ARM_CP_ALIAS },
 | |
|     { .name = "PMCNTENCLR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 2,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
 | |
|       .writefn = pmcntenclr_write },
 | |
|     { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | |
|       .accessfn = pmreg_access,
 | |
|       .writefn = pmovsr_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     { .name = "PMOVSCLR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 3,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
 | |
|       .writefn = pmovsr_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     /* Unimplemented so WI. */
 | |
|     { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_W, .accessfn = pmreg_access, .type = ARM_CP_NOP },
 | |
|     /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
 | |
|      * We choose to RAZ/WI.
 | |
|      */
 | |
|     { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
 | |
|       .accessfn = pmreg_access },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_RW, .resetvalue = 0, .type = ARM_CP_IO,
 | |
|       .readfn = pmccntr_read, .writefn = pmccntr_write32,
 | |
|       .accessfn = pmreg_access },
 | |
|     { .name = "PMCCNTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 13, .opc2 = 0,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_IO,
 | |
|       .readfn = pmccntr_read, .writefn = pmccntr_write, },
 | |
| #endif
 | |
|     { .name = "PMCCFILTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 15, .opc2 = 7,
 | |
|       .writefn = pmccfiltr_write,
 | |
|       .access = PL0_RW, .accessfn = pmreg_access,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmccfiltr_el0),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
 | |
|       .accessfn = pmreg_access, .writefn = pmxevtyper_write,
 | |
|       .raw_writefn = raw_write },
 | |
|     /* Unimplemented, RAZ/WI. */
 | |
|     { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0,
 | |
|       .accessfn = pmreg_access },
 | |
|     { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R | PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmuserenr_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMUSERENR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 14, .opc2 = 0,
 | |
|       .access = PL0_R | PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmuserenr_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = pmintenset_write, .raw_writefn = raw_write },
 | |
|     { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .writefn = pmintenclr_write, },
 | |
|     { .name = "PMINTENCLR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 9, .crm = 14, .opc2 = 2,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
 | |
|       .writefn = pmintenclr_write },
 | |
|     { .name = "VBAR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 12, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .writefn = vbar_write,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.vbar_s),
 | |
|                              offsetof(CPUARMState, cp15.vbar_ns) },
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CCSIDR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
 | |
|       .access = PL1_R, .readfn = ccsidr_read, .type = ARM_CP_NO_RAW },
 | |
|     { .name = "CSSELR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .writefn = csselr_write, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.csselr_s),
 | |
|                              offsetof(CPUARMState, cp15.csselr_ns) } },
 | |
|     /* Auxiliary ID register: this actually has an IMPDEF value but for now
 | |
|      * just RAZ for all cores:
 | |
|      */
 | |
|     { .name = "AIDR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 1, .crn = 0, .crm = 0, .opc2 = 7,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* Auxiliary fault status registers: these also are IMPDEF, and we
 | |
|      * choose to RAZ/WI for all cores.
 | |
|      */
 | |
|     { .name = "AFSR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* MAIR can just read-as-written because we don't implement caches
 | |
|      * and so don't need to care about memory attributes.
 | |
|      */
 | |
|     { .name = "MAIR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[1]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "MAIR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[3]),
 | |
|       .resetvalue = 0 },
 | |
|     /* For non-long-descriptor page tables these are PRRR and NMRR;
 | |
|      * regardless they still act as reads-as-written for QEMU.
 | |
|      */
 | |
|      /* MAIR0/1 are defined separately from their 64-bit counterpart which
 | |
|       * allows them to assign the correct fieldoffset based on the endianness
 | |
|       * handled in the field definitions.
 | |
|       */
 | |
|     { .name = "MAIR0", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 0, .access = PL1_RW,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair0_s),
 | |
|                              offsetof(CPUARMState, cp15.mair0_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "MAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 0, .crn = 10, .crm = 2, .opc2 = 1, .access = PL1_RW,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.mair1_s),
 | |
|                              offsetof(CPUARMState, cp15.mair1_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "ISR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_R, .readfn = isr_read },
 | |
|     /* 32 bit ITLB invalidates */
 | |
|     { .name = "ITLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
 | |
|     { .name = "ITLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | |
|     { .name = "ITLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 5, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
 | |
|     /* 32 bit DTLB invalidates */
 | |
|     { .name = "DTLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
 | |
|     { .name = "DTLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | |
|     { .name = "DTLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 6, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
 | |
|     /* 32 bit TLB invalidates */
 | |
|     { .name = "TLBIALL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_write },
 | |
|     { .name = "TLBIMVA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | |
|     { .name = "TLBIASID", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiasid_write },
 | |
|     { .name = "TLBIMVAA", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo v7mp_cp_reginfo[] = {
 | |
|     /* 32 bit TLB invalidates, Inner Shareable */
 | |
|     { .name = "TLBIALLIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbiall_is_write },
 | |
|     { .name = "TLBIMVAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
 | |
|     { .name = "TLBIASIDIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W,
 | |
|       .writefn = tlbiasid_is_write },
 | |
|     { .name = "TLBIMVAAIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W,
 | |
|       .writefn = tlbimvaa_is_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void teecr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     value &= 1;
 | |
|     env->teecr = value;
 | |
| }
 | |
| 
 | |
| static CPAccessResult teehbr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 0 && (env->teecr & 1)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo t2ee_cp_reginfo[] = {
 | |
|     { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = teecr_write },
 | |
|     { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
 | |
|       .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
 | |
|       .accessfn = teehbr_access, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo v6k_cp_reginfo[] = {
 | |
|     { .name = "TPIDR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 2, .crn = 13, .crm = 0,
 | |
|       .access = PL0_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[0]), .resetvalue = 0 },
 | |
|     { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL0_RW,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrurw_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.tpidrurw_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "TPIDRRO_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 3, .crn = 13, .crm = 0,
 | |
|       .access = PL0_R|PL1_W,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidrro_el[0]),
 | |
|       .resetvalue = 0},
 | |
|     { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R|PL1_W,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidruro_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.tpidruro_ns) },
 | |
|       .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "TPIDR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .opc2 = 4, .crn = 13, .crm = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[1]), .resetvalue = 0 },
 | |
|     { .name = "TPIDRPRW", .opc1 = 0, .cp = 15, .crn = 13, .crm = 0, .opc2 = 4,
 | |
|       .access = PL1_RW,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tpidrprw_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.tpidrprw_ns) },
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| static CPAccessResult gt_cntfrq_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
 | |
|      * Writable only at the highest implemented exception level.
 | |
|      */
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     switch (el) {
 | |
|     case 0:
 | |
|         if (!extract32(env->cp15.c14_cntkctl, 0, 2)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         if (!isread && ri->state == ARM_CP_STATE_AA32 &&
 | |
|             arm_is_secure_below_el3(env)) {
 | |
|             /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
 | |
|             return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|     case 3:
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (!isread && el < arm_highest_el(env)) {
 | |
|         return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|     }
 | |
| 
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_counter_access(CPUARMState *env, int timeridx,
 | |
|                                         bool isread)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
| 
 | |
|     /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
 | |
|     if (cur_el == 0 &&
 | |
|         !extract32(env->cp15.c14_cntkctl, timeridx, 1)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
 | |
|         !extract32(env->cp15.cnthctl_el2, 0, 1)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_timer_access(CPUARMState *env, int timeridx,
 | |
|                                       bool isread)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
| 
 | |
|     /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
 | |
|      * EL0[PV]TEN is zero.
 | |
|      */
 | |
|     if (cur_el == 0 &&
 | |
|         !extract32(env->cp15.c14_cntkctl, 9 - timeridx, 1)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         timeridx == GTIMER_PHYS && !secure && cur_el < 2 &&
 | |
|         !extract32(env->cp15.cnthctl_el2, 1, 1)) {
 | |
|         return CP_ACCESS_TRAP_EL2;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_pct_access(CPUARMState *env,
 | |
|                                     const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     return gt_counter_access(env, GTIMER_PHYS, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_vct_access(CPUARMState *env,
 | |
|                                     const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     return gt_counter_access(env, GTIMER_VIRT, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_ptimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     return gt_timer_access(env, GTIMER_PHYS, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_vtimer_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     return gt_timer_access(env, GTIMER_VIRT, isread);
 | |
| }
 | |
| 
 | |
| static CPAccessResult gt_stimer_access(CPUARMState *env,
 | |
|                                        const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     /* The AArch64 register view of the secure physical timer is
 | |
|      * always accessible from EL3, and configurably accessible from
 | |
|      * Secure EL1.
 | |
|      */
 | |
|     switch (arm_current_el(env)) {
 | |
|     case 1:
 | |
|         if (!arm_is_secure(env)) {
 | |
|             return CP_ACCESS_TRAP;
 | |
|         }
 | |
|         if (!(env->cp15.scr_el3 & SCR_ST)) {
 | |
|             return CP_ACCESS_TRAP_EL3;
 | |
|         }
 | |
|         return CP_ACCESS_OK;
 | |
|     case 0:
 | |
|     case 2:
 | |
|         return CP_ACCESS_TRAP;
 | |
|     case 3:
 | |
|         return CP_ACCESS_OK;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t gt_get_countervalue(CPUARMState *env)
 | |
| {
 | |
|     return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / GTIMER_SCALE;
 | |
| }
 | |
| 
 | |
| static void gt_recalc_timer(ARMCPU *cpu, int timeridx)
 | |
| {
 | |
|     ARMGenericTimer *gt = &cpu->env.cp15.c14_timer[timeridx];
 | |
| 
 | |
|     if (gt->ctl & 1) {
 | |
|         /* Timer enabled: calculate and set current ISTATUS, irq, and
 | |
|          * reset timer to when ISTATUS next has to change
 | |
|          */
 | |
|         uint64_t offset = timeridx == GTIMER_VIRT ?
 | |
|                                       cpu->env.cp15.cntvoff_el2 : 0;
 | |
|         uint64_t count = gt_get_countervalue(&cpu->env);
 | |
|         /* Note that this must be unsigned 64 bit arithmetic: */
 | |
|         int istatus = count - offset >= gt->cval;
 | |
|         uint64_t nexttick;
 | |
| 
 | |
|         gt->ctl = deposit32(gt->ctl, 2, 1, istatus);
 | |
|         qemu_set_irq(cpu->gt_timer_outputs[timeridx],
 | |
|                      (istatus && !(gt->ctl & 2)));
 | |
|         if (istatus) {
 | |
|             /* Next transition is when count rolls back over to zero */
 | |
|             nexttick = UINT64_MAX;
 | |
|         } else {
 | |
|             /* Next transition is when we hit cval */
 | |
|             nexttick = gt->cval + offset;
 | |
|         }
 | |
|         /* Note that the desired next expiry time might be beyond the
 | |
|          * signed-64-bit range of a QEMUTimer -- in this case we just
 | |
|          * set the timer for as far in the future as possible. When the
 | |
|          * timer expires we will reset the timer for any remaining period.
 | |
|          */
 | |
|         if (nexttick > INT64_MAX / GTIMER_SCALE) {
 | |
|             nexttick = INT64_MAX / GTIMER_SCALE;
 | |
|         }
 | |
|         timer_mod(cpu->gt_timer[timeridx], nexttick);
 | |
|     } else {
 | |
|         /* Timer disabled: ISTATUS and timer output always clear */
 | |
|         gt->ctl &= ~4;
 | |
|         qemu_set_irq(cpu->gt_timer_outputs[timeridx], 0);
 | |
|         timer_del(cpu->gt_timer[timeridx]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            int timeridx)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     timer_del(cpu->gt_timer[timeridx]);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_get_countervalue(env);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_cnt_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_get_countervalue(env) - env->cp15.cntvoff_el2;
 | |
| }
 | |
| 
 | |
| static void gt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           int timeridx,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     env->cp15.c14_timer[timeridx].cval = value;
 | |
|     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              int timeridx)
 | |
| {
 | |
|     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
 | |
| 
 | |
|     return (uint32_t)(env->cp15.c14_timer[timeridx].cval -
 | |
|                       (gt_get_countervalue(env) - offset));
 | |
| }
 | |
| 
 | |
| static void gt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                           int timeridx,
 | |
|                           uint64_t value)
 | |
| {
 | |
|     uint64_t offset = timeridx == GTIMER_VIRT ? env->cp15.cntvoff_el2 : 0;
 | |
| 
 | |
|     env->cp15.c14_timer[timeridx].cval = gt_get_countervalue(env) - offset +
 | |
|                                          sextract64(value, 0, 32);
 | |
|     gt_recalc_timer(arm_env_get_cpu(env), timeridx);
 | |
| }
 | |
| 
 | |
| static void gt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          int timeridx,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     uint32_t oldval = env->cp15.c14_timer[timeridx].ctl;
 | |
| 
 | |
|     env->cp15.c14_timer[timeridx].ctl = deposit64(oldval, 0, 2, value);
 | |
|     if ((oldval ^ value) & 1) {
 | |
|         /* Enable toggled */
 | |
|         gt_recalc_timer(cpu, timeridx);
 | |
|     } else if ((oldval ^ value) & 2) {
 | |
|         /* IMASK toggled: don't need to recalculate,
 | |
|          * just set the interrupt line based on ISTATUS
 | |
|          */
 | |
|         qemu_set_irq(cpu->gt_timer_outputs[timeridx],
 | |
|                      (oldval & 4) && !(value & 2));
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gt_phys_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_PHYS);
 | |
| }
 | |
| 
 | |
| static void gt_phys_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_PHYS, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_phys_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_PHYS);
 | |
| }
 | |
| 
 | |
| static void gt_phys_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_PHYS, value);
 | |
| }
 | |
| 
 | |
| static void gt_phys_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_PHYS, value);
 | |
| }
 | |
| 
 | |
| static void gt_virt_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| static void gt_virt_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_VIRT, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_virt_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| static void gt_virt_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_VIRT, value);
 | |
| }
 | |
| 
 | |
| static void gt_virt_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_VIRT, value);
 | |
| }
 | |
| 
 | |
| static void gt_cntvoff_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     gt_recalc_timer(cpu, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_HYP);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_HYP, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_hyp_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_HYP);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_HYP, value);
 | |
| }
 | |
| 
 | |
| static void gt_hyp_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_HYP, value);
 | |
| }
 | |
| 
 | |
| static void gt_sec_timer_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     gt_timer_reset(env, ri, GTIMER_SEC);
 | |
| }
 | |
| 
 | |
| static void gt_sec_cval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_cval_write(env, ri, GTIMER_SEC, value);
 | |
| }
 | |
| 
 | |
| static uint64_t gt_sec_tval_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return gt_tval_read(env, ri, GTIMER_SEC);
 | |
| }
 | |
| 
 | |
| static void gt_sec_tval_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_tval_write(env, ri, GTIMER_SEC, value);
 | |
| }
 | |
| 
 | |
| static void gt_sec_ctl_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     gt_ctl_write(env, ri, GTIMER_SEC, value);
 | |
| }
 | |
| 
 | |
| void arm_gt_ptimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_PHYS);
 | |
| }
 | |
| 
 | |
| void arm_gt_vtimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_VIRT);
 | |
| }
 | |
| 
 | |
| void arm_gt_htimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_HYP);
 | |
| }
 | |
| 
 | |
| void arm_gt_stimer_cb(void *opaque)
 | |
| {
 | |
|     ARMCPU *cpu = opaque;
 | |
| 
 | |
|     gt_recalc_timer(cpu, GTIMER_SEC);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | |
|     /* Note that CNTFRQ is purely reads-as-written for the benefit
 | |
|      * of software; writing it doesn't actually change the timer frequency.
 | |
|      * Our reset value matches the fixed frequency we implement the timer at.
 | |
|      */
 | |
|     { .name = "CNTFRQ", .cp = 15, .crn = 14, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.c14_cntfrq),
 | |
|     },
 | |
|     { .name = "CNTFRQ_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW | PL0_R, .accessfn = gt_cntfrq_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntfrq),
 | |
|       .resetvalue = (1000 * 1000 * 1000) / GTIMER_SCALE,
 | |
|     },
 | |
|     /* overall control: mostly access permissions */
 | |
|     { .name = "CNTKCTL", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 14, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_cntkctl),
 | |
|       .resetvalue = 0,
 | |
|     },
 | |
|     /* per-timer control */
 | |
|     { .name = "CNTP_CTL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState,
 | |
|                                    cp15.c14_timer[GTIMER_PHYS].ctl),
 | |
|       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CTL(S)",
 | |
|       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 1,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState,
 | |
|                                    cp15.c14_timer[GTIMER_SEC].ctl),
 | |
|       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CTL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = gt_phys_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CTL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 1,
 | |
|       .type = ARM_CP_IO | ARM_CP_ALIAS, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState,
 | |
|                                    cp15.c14_timer[GTIMER_VIRT].ctl),
 | |
|       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CTL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = gt_virt_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     /* TimerValue views: a 32 bit downcounting view of the underlying state */
 | |
|     { .name = "CNTP_TVAL", .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
 | |
|     },
 | |
|     { .name = "CNTP_TVAL(S)",
 | |
|       .cp = 15, .crn = 14, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .readfn = gt_sec_tval_read, .writefn = gt_sec_tval_write,
 | |
|     },
 | |
|     { .name = "CNTP_TVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_ptimer_access, .resetfn = gt_phys_timer_reset,
 | |
|       .readfn = gt_phys_tval_read, .writefn = gt_phys_tval_write,
 | |
|     },
 | |
|     { .name = "CNTV_TVAL", .cp = 15, .crn = 14, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
 | |
|     },
 | |
|     { .name = "CNTV_TVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW | PL0_R,
 | |
|       .accessfn = gt_vtimer_access, .resetfn = gt_virt_timer_reset,
 | |
|       .readfn = gt_virt_tval_read, .writefn = gt_virt_tval_write,
 | |
|     },
 | |
|     /* The counter itself */
 | |
|     { .name = "CNTPCT", .cp = 15, .crm = 14, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_pct_access,
 | |
|       .readfn = gt_cnt_read, .resetfn = arm_cp_reset_ignore,
 | |
|     },
 | |
|     { .name = "CNTPCT_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 1,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_pct_access, .readfn = gt_cnt_read,
 | |
|     },
 | |
|     { .name = "CNTVCT", .cp = 15, .crm = 14, .opc1 = 1,
 | |
|       .access = PL0_R, .type = ARM_CP_64BIT | ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_vct_access,
 | |
|       .readfn = gt_virt_cnt_read, .resetfn = arm_cp_reset_ignore,
 | |
|     },
 | |
|     { .name = "CNTVCT_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 0, .opc2 = 2,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW | ARM_CP_IO,
 | |
|       .accessfn = gt_vct_access, .readfn = gt_virt_cnt_read,
 | |
|     },
 | |
|     /* Comparison value, indicating when the timer goes off */
 | |
|     { .name = "CNTP_CVAL", .cp = 15, .crm = 14, .opc1 = 2,
 | |
|       .secure = ARM_CP_SECSTATE_NS,
 | |
|       .access = PL1_RW | PL0_R,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CVAL(S)", .cp = 15, .crm = 14, .opc1 = 2,
 | |
|       .secure = ARM_CP_SECSTATE_S,
 | |
|       .access = PL1_RW | PL0_R,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
 | |
|       .accessfn = gt_ptimer_access,
 | |
|       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTP_CVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .access = PL1_RW | PL0_R,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_PHYS].cval),
 | |
|       .resetvalue = 0, .accessfn = gt_ptimer_access,
 | |
|       .writefn = gt_phys_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CVAL", .cp = 15, .crm = 14, .opc1 = 3,
 | |
|       .access = PL1_RW | PL0_R,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | |
|       .accessfn = gt_vtimer_access,
 | |
|       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTV_CVAL_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .crn = 14, .crm = 3, .opc2 = 2,
 | |
|       .access = PL1_RW | PL0_R,
 | |
|       .type = ARM_CP_IO,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_VIRT].cval),
 | |
|       .resetvalue = 0, .accessfn = gt_vtimer_access,
 | |
|       .writefn = gt_virt_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     /* Secure timer -- this is actually restricted to only EL3
 | |
|      * and configurably Secure-EL1 via the accessfn.
 | |
|      */
 | |
|     { .name = "CNTPS_TVAL_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW | ARM_CP_IO, .access = PL1_RW,
 | |
|       .accessfn = gt_stimer_access,
 | |
|       .readfn = gt_sec_tval_read,
 | |
|       .writefn = gt_sec_tval_write,
 | |
|       .resetfn = gt_sec_timer_reset,
 | |
|     },
 | |
|     { .name = "CNTPS_CTL_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .type = ARM_CP_IO, .access = PL1_RW,
 | |
|       .accessfn = gt_stimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = gt_sec_ctl_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     { .name = "CNTPS_CVAL_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 7, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .type = ARM_CP_IO, .access = PL1_RW,
 | |
|       .accessfn = gt_stimer_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_SEC].cval),
 | |
|       .writefn = gt_sec_cval_write, .raw_writefn = raw_write,
 | |
|     },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #else
 | |
| /* In user-mode none of the generic timer registers are accessible,
 | |
|  * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
 | |
|  * so instead just don't register any of them.
 | |
|  */
 | |
| static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| static void par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         raw_write(env, ri, value);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         raw_write(env, ri, value & 0xfffff6ff);
 | |
|     } else {
 | |
|         raw_write(env, ri, value & 0xfffff1ff);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* get_phys_addr() isn't present for user-mode-only targets */
 | |
| 
 | |
| static CPAccessResult ats_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  bool isread)
 | |
| {
 | |
|     if (ri->opc2 & 4) {
 | |
|         /* The ATS12NSO* operations must trap to EL3 if executed in
 | |
|          * Secure EL1 (which can only happen if EL3 is AArch64).
 | |
|          * They are simply UNDEF if executed from NS EL1.
 | |
|          * They function normally from EL2 or EL3.
 | |
|          */
 | |
|         if (arm_current_el(env) == 1) {
 | |
|             if (arm_is_secure_below_el3(env)) {
 | |
|                 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3;
 | |
|             }
 | |
|             return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|         }
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t do_ats_write(CPUARMState *env, uint64_t value,
 | |
|                              int access_type, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     uint32_t fsr;
 | |
|     bool ret;
 | |
|     uint64_t par64;
 | |
|     MemTxAttrs attrs = {};
 | |
|     ARMMMUFaultInfo fi = {};
 | |
| 
 | |
|     ret = get_phys_addr(env, value, access_type, mmu_idx,
 | |
|                         &phys_addr, &attrs, &prot, &page_size, &fsr, &fi);
 | |
|     if (extended_addresses_enabled(env)) {
 | |
|         /* fsr is a DFSR/IFSR value for the long descriptor
 | |
|          * translation table format, but with WnR always clear.
 | |
|          * Convert it to a 64-bit PAR.
 | |
|          */
 | |
|         par64 = (1 << 11); /* LPAE bit always set */
 | |
|         if (!ret) {
 | |
|             par64 |= phys_addr & ~0xfffULL;
 | |
|             if (!attrs.secure) {
 | |
|                 par64 |= (1 << 9); /* NS */
 | |
|             }
 | |
|             /* We don't set the ATTR or SH fields in the PAR. */
 | |
|         } else {
 | |
|             par64 |= 1; /* F */
 | |
|             par64 |= (fsr & 0x3f) << 1; /* FS */
 | |
|             /* Note that S2WLK and FSTAGE are always zero, because we don't
 | |
|              * implement virtualization and therefore there can't be a stage 2
 | |
|              * fault.
 | |
|              */
 | |
|         }
 | |
|     } else {
 | |
|         /* fsr is a DFSR/IFSR value for the short descriptor
 | |
|          * translation table format (with WnR always clear).
 | |
|          * Convert it to a 32-bit PAR.
 | |
|          */
 | |
|         if (!ret) {
 | |
|             /* We do not set any attribute bits in the PAR */
 | |
|             if (page_size == (1 << 24)
 | |
|                 && arm_feature(env, ARM_FEATURE_V7)) {
 | |
|                 par64 = (phys_addr & 0xff000000) | (1 << 1);
 | |
|             } else {
 | |
|                 par64 = phys_addr & 0xfffff000;
 | |
|             }
 | |
|             if (!attrs.secure) {
 | |
|                 par64 |= (1 << 9); /* NS */
 | |
|             }
 | |
|         } else {
 | |
|             par64 = ((fsr & (1 << 10)) >> 5) | ((fsr & (1 << 12)) >> 6) |
 | |
|                     ((fsr & 0xf) << 1) | 1;
 | |
|         }
 | |
|     }
 | |
|     return par64;
 | |
| }
 | |
| 
 | |
| static void ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     int access_type = ri->opc2 & 1;
 | |
|     uint64_t par64;
 | |
|     ARMMMUIdx mmu_idx;
 | |
|     int el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure_below_el3(env);
 | |
| 
 | |
|     switch (ri->opc2 & 6) {
 | |
|     case 0:
 | |
|         /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
 | |
|         switch (el) {
 | |
|         case 3:
 | |
|             mmu_idx = ARMMMUIdx_S1E3;
 | |
|             break;
 | |
|         case 2:
 | |
|             mmu_idx = ARMMMUIdx_S1NSE1;
 | |
|             break;
 | |
|         case 1:
 | |
|             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
 | |
|         switch (el) {
 | |
|         case 3:
 | |
|             mmu_idx = ARMMMUIdx_S1SE0;
 | |
|             break;
 | |
|         case 2:
 | |
|             mmu_idx = ARMMMUIdx_S1NSE0;
 | |
|             break;
 | |
|         case 1:
 | |
|             mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     case 4:
 | |
|         /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
 | |
|         mmu_idx = ARMMMUIdx_S12NSE1;
 | |
|         break;
 | |
|     case 6:
 | |
|         /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
 | |
|         mmu_idx = ARMMMUIdx_S12NSE0;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     par64 = do_ats_write(env, value, access_type, mmu_idx);
 | |
| 
 | |
|     A32_BANKED_CURRENT_REG_SET(env, par, par64);
 | |
| }
 | |
| 
 | |
| static void ats1h_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     int access_type = ri->opc2 & 1;
 | |
|     uint64_t par64;
 | |
| 
 | |
|     par64 = do_ats_write(env, value, access_type, ARMMMUIdx_S2NS);
 | |
| 
 | |
|     A32_BANKED_CURRENT_REG_SET(env, par, par64);
 | |
| }
 | |
| 
 | |
| static CPAccessResult at_s1e2_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 3 && !(env->cp15.scr_el3 & SCR_NS)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void ats_write64(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     int access_type = ri->opc2 & 1;
 | |
|     ARMMMUIdx mmu_idx;
 | |
|     int secure = arm_is_secure_below_el3(env);
 | |
| 
 | |
|     switch (ri->opc2 & 6) {
 | |
|     case 0:
 | |
|         switch (ri->opc1) {
 | |
|         case 0: /* AT S1E1R, AT S1E1W */
 | |
|             mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S1NSE1;
 | |
|             break;
 | |
|         case 4: /* AT S1E2R, AT S1E2W */
 | |
|             mmu_idx = ARMMMUIdx_S1E2;
 | |
|             break;
 | |
|         case 6: /* AT S1E3R, AT S1E3W */
 | |
|             mmu_idx = ARMMMUIdx_S1E3;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|         break;
 | |
|     case 2: /* AT S1E0R, AT S1E0W */
 | |
|         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S1NSE0;
 | |
|         break;
 | |
|     case 4: /* AT S12E1R, AT S12E1W */
 | |
|         mmu_idx = secure ? ARMMMUIdx_S1SE1 : ARMMMUIdx_S12NSE1;
 | |
|         break;
 | |
|     case 6: /* AT S12E0R, AT S12E0W */
 | |
|         mmu_idx = secure ? ARMMMUIdx_S1SE0 : ARMMMUIdx_S12NSE0;
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     env->cp15.par_el[1] = do_ats_write(env, value, access_type, mmu_idx);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static const ARMCPRegInfo vapa_cp_reginfo[] = {
 | |
|     { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.par_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.par_ns) },
 | |
|       .writefn = par_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* This underdecoding is safe because the reginfo is NO_RAW. */
 | |
|     { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
 | |
|       .access = PL1_W, .accessfn = ats_access,
 | |
|       .writefn = ats_write, .type = ARM_CP_NO_RAW },
 | |
| #endif
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Return basic MPU access permission bits.  */
 | |
| static uint32_t simple_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val >> i) & mask;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Pad basic MPU access permission bits to extended format.  */
 | |
| static uint32_t extended_mpu_ap_bits(uint32_t val)
 | |
| {
 | |
|     uint32_t ret;
 | |
|     uint32_t mask;
 | |
|     int i;
 | |
|     ret = 0;
 | |
|     mask = 3;
 | |
|     for (i = 0; i < 16; i += 2) {
 | |
|         ret |= (val & mask) << i;
 | |
|         mask <<= 2;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     env->cp15.pmsav5_data_ap = extended_mpu_ap_bits(value);
 | |
| }
 | |
| 
 | |
| static uint64_t pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return simple_mpu_ap_bits(env->cp15.pmsav5_data_ap);
 | |
| }
 | |
| 
 | |
| static void pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     env->cp15.pmsav5_insn_ap = extended_mpu_ap_bits(value);
 | |
| }
 | |
| 
 | |
| static uint64_t pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return simple_mpu_ap_bits(env->cp15.pmsav5_insn_ap);
 | |
| }
 | |
| 
 | |
| static uint64_t pmsav7_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | |
| 
 | |
|     if (!u32p) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     u32p += env->cp15.c6_rgnr;
 | |
|     return *u32p;
 | |
| }
 | |
| 
 | |
| static void pmsav7_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | |
| 
 | |
|     if (!u32p) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     u32p += env->cp15.c6_rgnr;
 | |
|     tlb_flush(CPU(cpu), 1); /* Mappings may have changed - purge! */
 | |
|     *u32p = value;
 | |
| }
 | |
| 
 | |
| static void pmsav7_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     uint32_t *u32p = *(uint32_t **)raw_ptr(env, ri);
 | |
| 
 | |
|     if (!u32p) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     memset(u32p, 0, sizeof(*u32p) * cpu->pmsav7_dregion);
 | |
| }
 | |
| 
 | |
| static void pmsav7_rgnr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     uint32_t nrgs = cpu->pmsav7_dregion;
 | |
| 
 | |
|     if (value >= nrgs) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "PMSAv7 RGNR write >= # supported regions, %" PRIu32
 | |
|                       " > %" PRIu32 "\n", (uint32_t)value, nrgs);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo pmsav7_cp_reginfo[] = {
 | |
|     { .name = "DRBAR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.drbar),
 | |
|       .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
 | |
|     { .name = "DRSR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 2,
 | |
|       .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.drsr),
 | |
|       .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
 | |
|     { .name = "DRACR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 1, .opc2 = 4,
 | |
|       .access = PL1_RW, .type = ARM_CP_NO_RAW,
 | |
|       .fieldoffset = offsetof(CPUARMState, pmsav7.dracr),
 | |
|       .readfn = pmsav7_read, .writefn = pmsav7_write, .resetfn = pmsav7_reset },
 | |
|     { .name = "RGNR", .cp = 15, .crn = 6, .opc1 = 0, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_rgnr),
 | |
|       .writefn = pmsav7_rgnr_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
 | |
|     { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
 | |
|       .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
 | |
|     { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
 | |
|       .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
 | |
|     { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_data_ap),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.pmsav5_insn_ap),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
 | |
|     { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
 | |
|     /* Protection region base and size registers */
 | |
|     { .name = "946_PRBS0", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[0]) },
 | |
|     { .name = "946_PRBS1", .cp = 15, .crn = 6, .crm = 1, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[1]) },
 | |
|     { .name = "946_PRBS2", .cp = 15, .crn = 6, .crm = 2, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[2]) },
 | |
|     { .name = "946_PRBS3", .cp = 15, .crn = 6, .crm = 3, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[3]) },
 | |
|     { .name = "946_PRBS4", .cp = 15, .crn = 6, .crm = 4, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[4]) },
 | |
|     { .name = "946_PRBS5", .cp = 15, .crn = 6, .crm = 5, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[5]) },
 | |
|     { .name = "946_PRBS6", .cp = 15, .crn = 6, .crm = 6, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[6]) },
 | |
|     { .name = "946_PRBS7", .cp = 15, .crn = 6, .crm = 7, .opc1 = 0,
 | |
|       .opc2 = CP_ANY, .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c6_region[7]) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void vmsa_ttbcr_raw_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
|     int maskshift = extract32(value, 0, 3);
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_LPAE) && (value & TTBCR_EAE)) {
 | |
|             /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
 | |
|              * using Long-desciptor translation table format */
 | |
|             value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
 | |
|         } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             /* In an implementation that includes the Security Extensions
 | |
|              * TTBCR has additional fields PD0 [4] and PD1 [5] for
 | |
|              * Short-descriptor translation table format.
 | |
|              */
 | |
|             value &= TTBCR_PD1 | TTBCR_PD0 | TTBCR_N;
 | |
|         } else {
 | |
|             value &= TTBCR_N;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Update the masks corresponding to the TCR bank being written
 | |
|      * Note that we always calculate mask and base_mask, but
 | |
|      * they are only used for short-descriptor tables (ie if EAE is 0);
 | |
|      * for long-descriptor tables the TCR fields are used differently
 | |
|      * and the mask and base_mask values are meaningless.
 | |
|      */
 | |
|     tcr->raw_tcr = value;
 | |
|     tcr->mask = ~(((uint32_t)0xffffffffu) >> maskshift);
 | |
|     tcr->base_mask = ~((uint32_t)0x3fffu >> maskshift);
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                              uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         /* With LPAE the TTBCR could result in a change of ASID
 | |
|          * via the TTBCR.A1 bit, so do a TLB flush.
 | |
|          */
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|     }
 | |
|     vmsa_ttbcr_raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
| 
 | |
|     /* Reset both the TCR as well as the masks corresponding to the bank of
 | |
|      * the TCR being reset.
 | |
|      */
 | |
|     tcr->raw_tcr = 0;
 | |
|     tcr->mask = 0;
 | |
|     tcr->base_mask = 0xffffc000u;
 | |
| }
 | |
| 
 | |
| static void vmsa_tcr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     TCR *tcr = raw_ptr(env, ri);
 | |
| 
 | |
|     /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
 | |
|     tlb_flush(CPU(cpu), 1);
 | |
|     tcr->raw_tcr = value;
 | |
| }
 | |
| 
 | |
| static void vmsa_ttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     /* 64 bit accesses to the TTBRs can change the ASID and so we
 | |
|      * must flush the TLB.
 | |
|      */
 | |
|     if (cpreg_field_is_64bit(ri)) {
 | |
|         ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|     }
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static void vttbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     /* Accesses to VTTBR may change the VMID so we must flush the TLB.  */
 | |
|     if (raw_read(env, ri) != value) {
 | |
|         tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
 | |
|                             ARMMMUIdx_S2NS, -1);
 | |
|         raw_write(env, ri, value);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo vmsa_pmsa_cp_reginfo[] = {
 | |
|     { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dfsr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.dfsr_ns) }, },
 | |
|     { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.ifsr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.ifsr_ns) } },
 | |
|     { .name = "DFAR", .cp = 15, .opc1 = 0, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.dfar_s),
 | |
|                              offsetof(CPUARMState, cp15.dfar_ns) } },
 | |
|     { .name = "FAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[1]),
 | |
|       .resetvalue = 0, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo vmsa_cp_reginfo[] = {
 | |
|     { .name = "ESR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .crn = 5, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.esr_el[1]), .resetvalue = 0, },
 | |
|     { .name = "TTBR0_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr0_ns) } },
 | |
|     { .name = "TTBR1_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 2, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr1_ns) } },
 | |
|     { .name = "TCR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .writefn = vmsa_tcr_el1_write,
 | |
|       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[1]) },
 | |
|     { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|       .access = PL1_RW, .type = ARM_CP_ALIAS, .writefn = vmsa_ttbcr_write,
 | |
|       .raw_writefn = vmsa_ttbcr_raw_write,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.tcr_el[3]),
 | |
|                              offsetoflow32(CPUARMState, cp15.tcr_el[1])} },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                 uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_ticonfig = value & 0xe7;
 | |
|     /* The OS_TYPE bit in this register changes the reported CPUID! */
 | |
|     env->cp15.c0_cpuid = (value & (1 << 5)) ?
 | |
|         ARM_CPUID_TI915T : ARM_CPUID_TI925T;
 | |
| }
 | |
| 
 | |
| static void omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                 uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_threadid = value & 0xffff;
 | |
| }
 | |
| 
 | |
| static void omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                            uint64_t value)
 | |
| {
 | |
|     /* Wait-for-interrupt (deprecated) */
 | |
|     cpu_interrupt(CPU(arm_env_get_cpu(env)), CPU_INTERRUPT_HALT);
 | |
| }
 | |
| 
 | |
| static void omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     /* On OMAP there are registers indicating the max/min index of dcache lines
 | |
|      * containing a dirty line; cache flush operations have to reset these.
 | |
|      */
 | |
|     env->cp15.c15_i_max = 0x000;
 | |
|     env->cp15.c15_i_min = 0xff0;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo omap_cp_reginfo[] = {
 | |
|     { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
 | |
|       .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.esr_el[1]),
 | |
|       .resetvalue = 0, },
 | |
|     { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
 | |
|       .writefn = omap_ticonfig_write },
 | |
|     { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
 | |
|     { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0xff0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
 | |
|     { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
 | |
|       .writefn = omap_threadid_write },
 | |
|     { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
 | |
|       .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
 | |
|     /* TODO: Peripheral port remap register:
 | |
|      * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
 | |
|      * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
 | |
|      * when MMU is off.
 | |
|      */
 | |
|     { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
 | |
|       .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
 | |
|       .type = ARM_CP_OVERRIDE | ARM_CP_NO_RAW,
 | |
|       .writefn = omap_cachemaint_write },
 | |
|     { .name = "C9", .cp = 15, .crn = 9,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
 | |
|       .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                               uint64_t value)
 | |
| {
 | |
|     env->cp15.c15_cpar = value & 0x3fff;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo xscale_cp_reginfo[] = {
 | |
|     { .name = "XSCALE_CPAR",
 | |
|       .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
 | |
|       .writefn = xscale_cpar_write, },
 | |
|     { .name = "XSCALE_AUXCR",
 | |
|       .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
 | |
|       .resetvalue = 0, },
 | |
|     /* XScale specific cache-lockdown: since we have no cache we NOP these
 | |
|      * and hope the guest does not really rely on cache behaviour.
 | |
|      */
 | |
|     { .name = "XSCALE_LOCK_ICACHE_LINE",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "XSCALE_UNLOCK_ICACHE",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 1, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "XSCALE_DCACHE_LOCK",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_NOP },
 | |
|     { .name = "XSCALE_UNLOCK_DCACHE",
 | |
|       .cp = 15, .opc1 = 0, .crn = 9, .crm = 2, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
 | |
|     /* RAZ/WI the whole crn=15 space, when we don't have a more specific
 | |
|      * implementation of this implementation-defined space.
 | |
|      * Ideally this should eventually disappear in favour of actually
 | |
|      * implementing the correct behaviour for all cores.
 | |
|      */
 | |
|     { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW,
 | |
|       .type = ARM_CP_CONST | ARM_CP_NO_RAW | ARM_CP_OVERRIDE,
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
 | |
|     /* Cache status: RAZ because we have no cache so it's always clean */
 | |
|     { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
 | |
|       .access = PL1_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
 | |
|     /* We never have a a block transfer operation in progress */
 | |
|     { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = 0 },
 | |
|     /* The cache ops themselves: these all NOP for QEMU */
 | |
|     { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
 | |
|     /* The cache test-and-clean instructions always return (1 << 30)
 | |
|      * to indicate that there are no dirty cache lines.
 | |
|      */
 | |
|     { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = (1 << 30) },
 | |
|     { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_NO_RAW,
 | |
|       .resetvalue = (1 << 30) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo strongarm_cp_reginfo[] = {
 | |
|     /* Ignore ReadBuffer accesses */
 | |
|     { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
 | |
|       .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .type = ARM_CP_CONST | ARM_CP_OVERRIDE | ARM_CP_NO_RAW },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static uint64_t midr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
 | |
|         return env->cp15.vpidr_el2;
 | |
|     }
 | |
|     return raw_read(env, ri);
 | |
| }
 | |
| 
 | |
| static uint64_t mpidr_read_val(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(arm_env_get_cpu(env));
 | |
|     uint64_t mpidr = cpu->mp_affinity;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V7MP)) {
 | |
|         mpidr |= (1U << 31);
 | |
|         /* Cores which are uniprocessor (non-coherent)
 | |
|          * but still implement the MP extensions set
 | |
|          * bit 30. (For instance, Cortex-R5).
 | |
|          */
 | |
|         if (cpu->mp_is_up) {
 | |
|             mpidr |= (1u << 30);
 | |
|         }
 | |
|     }
 | |
|     return mpidr;
 | |
| }
 | |
| 
 | |
| static uint64_t mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) && !secure && cur_el == 1) {
 | |
|         return env->cp15.vmpidr_el2;
 | |
|     }
 | |
|     return mpidr_read_val(env);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo mpidr_cp_reginfo[] = {
 | |
|     { .name = "MPIDR", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
 | |
|       .access = PL1_R, .readfn = mpidr_read, .type = ARM_CP_NO_RAW },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo lpae_cp_reginfo[] = {
 | |
|     /* NOP AMAIR0/1 */
 | |
|     { .name = "AMAIR0", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
 | |
|     { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT, .resetvalue = 0,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.par_s),
 | |
|                              offsetof(CPUARMState, cp15.par_ns)} },
 | |
|     { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr0_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr0_ns) },
 | |
|       .writefn = vmsa_ttbr_write, },
 | |
|     { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
 | |
|       .access = PL1_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .bank_fieldoffsets = { offsetof(CPUARMState, cp15.ttbr1_s),
 | |
|                              offsetof(CPUARMState, cp15.ttbr1_ns) },
 | |
|       .writefn = vmsa_ttbr_write, },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static uint64_t aa64_fpcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return vfp_get_fpcr(env);
 | |
| }
 | |
| 
 | |
| static void aa64_fpcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     vfp_set_fpcr(env, value);
 | |
| }
 | |
| 
 | |
| static uint64_t aa64_fpsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return vfp_get_fpsr(env);
 | |
| }
 | |
| 
 | |
| static void aa64_fpsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     vfp_set_fpsr(env, value);
 | |
| }
 | |
| 
 | |
| static CPAccessResult aa64_daif_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                        bool isread)
 | |
| {
 | |
|     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void aa64_daif_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                             uint64_t value)
 | |
| {
 | |
|     env->daif = value & PSTATE_DAIF;
 | |
| }
 | |
| 
 | |
| static CPAccessResult aa64_cacheop_access(CPUARMState *env,
 | |
|                                           const ARMCPRegInfo *ri,
 | |
|                                           bool isread)
 | |
| {
 | |
|     /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
 | |
|      * SCTLR_EL1.UCI is set.
 | |
|      */
 | |
|     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCI)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
 | |
|  * Page D4-1736 (DDI0487A.b)
 | |
|  */
 | |
| 
 | |
| static void tlbi_aa64_vmalle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
 | |
|     } else {
 | |
|         tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vmalle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                       uint64_t value)
 | |
| {
 | |
|     bool sec = arm_is_secure_below_el3(env);
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         if (sec) {
 | |
|             tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
 | |
|         } else {
 | |
|             tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
 | |
|                                 ARMMMUIdx_S12NSE0, -1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     /* Note that the 'ALL' scope must invalidate both stage 1 and
 | |
|      * stage 2 translations, whereas most other scopes only invalidate
 | |
|      * stage 1 translations.
 | |
|      */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0,
 | |
|                                 ARMMMUIdx_S2NS, -1);
 | |
|         } else {
 | |
|             tlb_flush_by_mmuidx(cs, ARMMMUIdx_S12NSE1, ARMMMUIdx_S12NSE0, -1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E2, -1);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                   uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     tlb_flush_by_mmuidx(cs, ARMMMUIdx_S1E3, -1);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     /* Note that the 'ALL' scope must invalidate both stage 1 and
 | |
|      * stage 2 translations, whereas most other scopes only invalidate
 | |
|      * stage 1 translations.
 | |
|      */
 | |
|     bool sec = arm_is_secure_below_el3(env);
 | |
|     bool has_el2 = arm_feature(env, ARM_FEATURE_EL2);
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         if (sec) {
 | |
|             tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1SE1, ARMMMUIdx_S1SE0, -1);
 | |
|         } else if (has_el2) {
 | |
|             tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
 | |
|                                 ARMMMUIdx_S12NSE0, ARMMMUIdx_S2NS, -1);
 | |
|         } else {
 | |
|             tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S12NSE1,
 | |
|                                 ARMMMUIdx_S12NSE0, -1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E2, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_alle3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_by_mmuidx(other_cs, ARMMMUIdx_S1E3, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* Invalidate by VA, EL1&0 (AArch64 version).
 | |
|      * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
 | |
|      * since we don't support flush-for-specific-ASID-only or
 | |
|      * flush-last-level-only.
 | |
|      */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1SE1,
 | |
|                                  ARMMMUIdx_S1SE0, -1);
 | |
|     } else {
 | |
|         tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S12NSE1,
 | |
|                                  ARMMMUIdx_S12NSE0, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae2_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* Invalidate by VA, EL2
 | |
|      * Currently handles both VAE2 and VALE2, since we don't support
 | |
|      * flush-last-level-only.
 | |
|      */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E2, -1);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae3_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                  uint64_t value)
 | |
| {
 | |
|     /* Invalidate by VA, EL3
 | |
|      * Currently handles both VAE3 and VALE3, since we don't support
 | |
|      * flush-last-level-only.
 | |
|      */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S1E3, -1);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    uint64_t value)
 | |
| {
 | |
|     bool sec = arm_is_secure_below_el3(env);
 | |
|     CPUState *other_cs;
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         if (sec) {
 | |
|             tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1SE1,
 | |
|                                      ARMMMUIdx_S1SE0, -1);
 | |
|         } else {
 | |
|             tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S12NSE1,
 | |
|                                      ARMMMUIdx_S12NSE0, -1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae2is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E2, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_vae3is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
|     uint64_t pageaddr = sextract64(value << 12, 0, 56);
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S1E3, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_ipas2e1_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     uint64_t value)
 | |
| {
 | |
|     /* Invalidate by IPA. This has to invalidate any structures that
 | |
|      * contain only stage 2 translation information, but does not need
 | |
|      * to apply to structures that contain combined stage 1 and stage 2
 | |
|      * translation information.
 | |
|      * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
 | |
|      */
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     uint64_t pageaddr;
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pageaddr = sextract64(value << 12, 0, 48);
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx(cs, pageaddr, ARMMMUIdx_S2NS, -1);
 | |
| }
 | |
| 
 | |
| static void tlbi_aa64_ipas2e1is_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                       uint64_t value)
 | |
| {
 | |
|     CPUState *other_cs;
 | |
|     uint64_t pageaddr;
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2) || !(env->cp15.scr_el3 & SCR_NS)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     pageaddr = sextract64(value << 12, 0, 48);
 | |
| 
 | |
|     CPU_FOREACH(other_cs) {
 | |
|         tlb_flush_page_by_mmuidx(other_cs, pageaddr, ARMMMUIdx_S2NS, -1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static CPAccessResult aa64_zva_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                       bool isread)
 | |
| {
 | |
|     /* We don't implement EL2, so the only control on DC ZVA is the
 | |
|      * bit in the SCTLR which can prohibit access for EL0.
 | |
|      */
 | |
|     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_DZE)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t aa64_dczid_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int dzp_bit = 1 << 4;
 | |
| 
 | |
|     /* DZP indicates whether DC ZVA access is allowed */
 | |
|     if (aa64_zva_access(env, NULL, false) == CP_ACCESS_OK) {
 | |
|         dzp_bit = 0;
 | |
|     }
 | |
|     return cpu->dcz_blocksize | dzp_bit;
 | |
| }
 | |
| 
 | |
| static CPAccessResult sp_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                     bool isread)
 | |
| {
 | |
|     if (!(env->pstate & PSTATE_SP)) {
 | |
|         /* Access to SP_EL0 is undefined if it's being used as
 | |
|          * the stack pointer.
 | |
|          */
 | |
|         return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static uint64_t spsel_read(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return env->pstate & PSTATE_SP;
 | |
| }
 | |
| 
 | |
| static void spsel_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t val)
 | |
| {
 | |
|     update_spsel(env, val);
 | |
| }
 | |
| 
 | |
| static void sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     if (raw_read(env, ri) == value) {
 | |
|         /* Skip the TLB flush if nothing actually changed; Linux likes
 | |
|          * to do a lot of pointless SCTLR writes.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     /* ??? Lots of these bits are not implemented.  */
 | |
|     /* This may enable/disable the MMU, so do a TLB flush.  */
 | |
|     tlb_flush(CPU(cpu), 1);
 | |
| }
 | |
| 
 | |
| static CPAccessResult fpexc32_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     if ((env->cp15.cptr_el[2] & CPTR_TFP) && arm_current_el(env) == 2) {
 | |
|         return CP_ACCESS_TRAP_FP_EL2;
 | |
|     }
 | |
|     if (env->cp15.cptr_el[3] & CPTR_TFP) {
 | |
|         return CP_ACCESS_TRAP_FP_EL3;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo v8_cp_reginfo[] = {
 | |
|     /* Minimal set of EL0-visible registers. This will need to be expanded
 | |
|      * significantly for system emulation of AArch64 CPUs.
 | |
|      */
 | |
|     { .name = "NZCV", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 2,
 | |
|       .access = PL0_RW, .type = ARM_CP_NZCV },
 | |
|     { .name = "DAIF", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 2,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .access = PL0_RW, .accessfn = aa64_daif_access,
 | |
|       .fieldoffset = offsetof(CPUARMState, daif),
 | |
|       .writefn = aa64_daif_write, .resetfn = arm_cp_reset_ignore },
 | |
|     { .name = "FPCR", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 0, .crn = 4, .crm = 4,
 | |
|       .access = PL0_RW, .readfn = aa64_fpcr_read, .writefn = aa64_fpcr_write },
 | |
|     { .name = "FPSR", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 4, .crm = 4,
 | |
|       .access = PL0_RW, .readfn = aa64_fpsr_read, .writefn = aa64_fpsr_write },
 | |
|     { .name = "DCZID_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 3, .opc2 = 7, .crn = 0, .crm = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_NO_RAW,
 | |
|       .readfn = aa64_dczid_read },
 | |
|     { .name = "DC_ZVA", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 4, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_DC_ZVA,
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|       /* Avoid overhead of an access check that always passes in user-mode */
 | |
|       .accessfn = aa64_zva_access,
 | |
| #endif
 | |
|     },
 | |
|     { .name = "CURRENTEL", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .opc2 = 2, .crn = 4, .crm = 2,
 | |
|       .access = PL1_R, .type = ARM_CP_CURRENTEL },
 | |
|     /* Cache ops: all NOPs since we don't emulate caches */
 | |
|     { .name = "IC_IALLUIS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "IC_IALLU", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "IC_IVAU", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 5, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_access },
 | |
|     { .name = "DC_IVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DC_ISW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DC_CVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 10, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_access },
 | |
|     { .name = "DC_CSW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     { .name = "DC_CVAU", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 11, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_access },
 | |
|     { .name = "DC_CIVAC", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 3, .crn = 7, .crm = 14, .opc2 = 1,
 | |
|       .access = PL0_W, .type = ARM_CP_NOP,
 | |
|       .accessfn = aa64_cacheop_access },
 | |
|     { .name = "DC_CISW", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NOP },
 | |
|     /* TLBI operations */
 | |
|     { .name = "TLBI_VMALLE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1is_write },
 | |
|     { .name = "TLBI_VAE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_ASIDE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1is_write },
 | |
|     { .name = "TLBI_VAAE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 3,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_VALE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_VAALE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1is_write },
 | |
|     { .name = "TLBI_VMALLE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1_write },
 | |
|     { .name = "TLBI_VAE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_ASIDE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vmalle1_write },
 | |
|     { .name = "TLBI_VAAE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 3,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_VALE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_VAALE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae1_write },
 | |
|     { .name = "TLBI_IPAS2E1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_ipas2e1is_write },
 | |
|     { .name = "TLBI_IPAS2LE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 0, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_ipas2e1is_write },
 | |
|     { .name = "TLBI_ALLE1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 4,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1is_write },
 | |
|     { .name = "TLBI_VMALLS12E1IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 6,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1is_write },
 | |
|     { .name = "TLBI_IPAS2E1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 1,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_ipas2e1_write },
 | |
|     { .name = "TLBI_IPAS2LE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 4, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_ipas2e1_write },
 | |
|     { .name = "TLBI_ALLE1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 4,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1_write },
 | |
|     { .name = "TLBI_VMALLS12E1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 6,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle1is_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* 64 bit address translation operations */
 | |
|     { .name = "AT_S1E1R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E1W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E0R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 2,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E0W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 3,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E1R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 4,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E1W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E0R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 6,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S12E0W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 7,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
 | |
|     { .name = "AT_S1E3R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E3W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "PAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 7, .crm = 4, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.par_el[1]),
 | |
|       .writefn = par_write },
 | |
| #endif
 | |
|     /* TLB invalidate last level of translation table walk */
 | |
|     { .name = "TLBIMVALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_is_write },
 | |
|     { .name = "TLBIMVAALIS", .cp = 15, .opc1 = 0, .crn = 8, .crm = 3, .opc2 = 7,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W,
 | |
|       .writefn = tlbimvaa_is_write },
 | |
|     { .name = "TLBIMVAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimva_write },
 | |
|     { .name = "TLBIMVAAL", .cp = 15, .opc1 = 0, .crn = 8, .crm = 7, .opc2 = 7,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL1_W, .writefn = tlbimvaa_write },
 | |
|     /* 32 bit cache operations */
 | |
|     { .name = "ICIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "BPIALLUIS", .cp = 15, .opc1 = 0, .crn = 7, .crm = 1, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "ICIALLU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 0,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "ICIMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "BPIALL", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 6,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "BPIMVA", .cp = 15, .opc1 = 0, .crn = 7, .crm = 5, .opc2 = 7,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 6, .opc2 = 2,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCCMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCCSW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 10, .opc2 = 2,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCCMVAU", .cp = 15, .opc1 = 0, .crn = 7, .crm = 11, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCCIMVAC", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 1,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     { .name = "DCCISW", .cp = 15, .opc1 = 0, .crn = 7, .crm = 14, .opc2 = 2,
 | |
|       .type = ARM_CP_NOP, .access = PL1_W },
 | |
|     /* MMU Domain access control / MPU write buffer control */
 | |
|     { .name = "DACR", .cp = 15, .opc1 = 0, .crn = 3, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW, .resetvalue = 0,
 | |
|       .writefn = dacr_write, .raw_writefn = raw_write,
 | |
|       .bank_fieldoffsets = { offsetoflow32(CPUARMState, cp15.dacr_s),
 | |
|                              offsetoflow32(CPUARMState, cp15.dacr_ns) } },
 | |
|     { .name = "ELR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, elr_el[1]) },
 | |
|     { .name = "SPSR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_SVC]) },
 | |
|     /* We rely on the access checks not allowing the guest to write to the
 | |
|      * state field when SPSel indicates that it's being used as the stack
 | |
|      * pointer.
 | |
|      */
 | |
|     { .name = "SP_EL0", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = sp_el0_access,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, sp_el[0]) },
 | |
|     { .name = "SP_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, sp_el[1]) },
 | |
|     { .name = "SPSel", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
 | |
|     { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]),
 | |
|       .access = PL2_RW, .accessfn = fpexc32_access },
 | |
|     { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .writefn = dacr_write, .raw_writefn = raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
 | |
|     { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
 | |
|     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_IRQ]) },
 | |
|     { .name = "SPSR_ABT", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_ABT]) },
 | |
|     { .name = "SPSR_UND", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 2,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_UND]) },
 | |
|     { .name = "SPSR_FIQ", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 3,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_FIQ]) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| /* Used to describe the behaviour of EL2 regs when EL2 does not exist.  */
 | |
| static const ARMCPRegInfo el3_no_el2_cp_reginfo[] = {
 | |
|     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
 | |
|     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_NO_RAW,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .readfn = arm_cp_read_zero, .writefn = arm_cp_write_ignore },
 | |
|     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "VTCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 6, .crm = 2,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static void hcr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     uint64_t valid_mask = HCR_MASK;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         valid_mask &= ~HCR_HCD;
 | |
|     } else {
 | |
|         valid_mask &= ~HCR_TSC;
 | |
|     }
 | |
| 
 | |
|     /* Clear RES0 bits.  */
 | |
|     value &= valid_mask;
 | |
| 
 | |
|     /* These bits change the MMU setup:
 | |
|      * HCR_VM enables stage 2 translation
 | |
|      * HCR_PTW forbids certain page-table setups
 | |
|      * HCR_DC Disables stage1 and enables stage2 translation
 | |
|      */
 | |
|     if ((raw_read(env, ri) ^ value) & (HCR_VM | HCR_PTW | HCR_DC)) {
 | |
|         tlb_flush(CPU(cpu), 1);
 | |
|     }
 | |
|     raw_write(env, ri, value);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo el2_cp_reginfo[] = {
 | |
|     { .name = "HCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.hcr_el2),
 | |
|       .writefn = hcr_write },
 | |
|     { .name = "ELR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, elr_el[2]) },
 | |
|     { .name = "ESR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[2]) },
 | |
|     { .name = "FAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[2]) },
 | |
|     { .name = "SPSR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_HYP]) },
 | |
|     { .name = "VBAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .writefn = vbar_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[2]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "SP_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 1, .opc2 = 0,
 | |
|       .access = PL3_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, sp_el[2]) },
 | |
|     { .name = "CPTR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .accessfn = cptr_access, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[2]) },
 | |
|     { .name = "MAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 0,
 | |
|       .access = PL2_RW, .fieldoffset = offsetof(CPUARMState, cp15.mair_el[2]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .opc1 = 4, .crn = 10, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetofhigh32(CPUARMState, cp15.mair_el[2]) },
 | |
|     { .name = "AMAIR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
 | |
|     { .name = "HMAIR1", .state = ARM_CP_STATE_AA32,
 | |
|       .opc1 = 4, .crn = 10, .crm = 3, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR0_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .writefn = vmsa_tcr_el1_write,
 | |
|       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[2]) },
 | |
|     { .name = "VTCR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
 | |
|     { .name = "VTCR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vtcr_el2) },
 | |
|     { .name = "VTTBR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 6, .crm = 2,
 | |
|       .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2),
 | |
|       .writefn = vttbr_write },
 | |
|     { .name = "VTTBR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 1, .opc2 = 0,
 | |
|       .access = PL2_RW, .writefn = vttbr_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vttbr_el2) },
 | |
|     { .name = "SCTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[2]) },
 | |
|     { .name = "TPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 13, .crm = 0, .opc2 = 2,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[2]) },
 | |
|     { .name = "TTBR0_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
 | |
|     { .name = "HTTBR", .cp = 15, .opc1 = 4, .crm = 2,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[2]) },
 | |
|     { .name = "TLBI_ALLE2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbi_aa64_alle2_write },
 | |
|     { .name = "TLBI_VAE2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbi_aa64_vae2_write },
 | |
|     { .name = "TLBI_VALE2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae2_write },
 | |
|     { .name = "TLBI_ALLE2IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle2is_write },
 | |
|     { .name = "TLBI_VAE2IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .type = ARM_CP_NO_RAW, .access = PL2_W,
 | |
|       .writefn = tlbi_aa64_vae2is_write },
 | |
|     { .name = "TLBI_VALE2IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .access = PL2_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae2is_write },
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     /* Unlike the other EL2-related AT operations, these must
 | |
|      * UNDEF from EL3 if EL2 is not implemented, which is why we
 | |
|      * define them here rather than with the rest of the AT ops.
 | |
|      */
 | |
|     { .name = "AT_S1E2R", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL2_W, .accessfn = at_s1e2_access,
 | |
|       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     { .name = "AT_S1E2W", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL2_W, .accessfn = at_s1e2_access,
 | |
|       .type = ARM_CP_NO_RAW, .writefn = ats_write64 },
 | |
|     /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
 | |
|      * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
 | |
|      * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
 | |
|      * to behave as if SCR.NS was 1.
 | |
|      */
 | |
|     { .name = "ATS1HR", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 0,
 | |
|       .access = PL2_W,
 | |
|       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
 | |
|     { .name = "ATS1HW", .cp = 15, .opc1 = 4, .crn = 7, .crm = 8, .opc2 = 1,
 | |
|       .access = PL2_W,
 | |
|       .writefn = ats1h_write, .type = ARM_CP_NO_RAW },
 | |
|     { .name = "CNTHCTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 1, .opc2 = 0,
 | |
|       /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
 | |
|        * reset values as IMPDEF. We choose to reset to 3 to comply with
 | |
|        * both ARMv7 and ARMv8.
 | |
|        */
 | |
|       .access = PL2_RW, .resetvalue = 3,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cnthctl_el2) },
 | |
|     { .name = "CNTVOFF_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 0, .opc2 = 3,
 | |
|       .access = PL2_RW, .type = ARM_CP_IO, .resetvalue = 0,
 | |
|       .writefn = gt_cntvoff_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
 | |
|     { .name = "CNTVOFF", .cp = 15, .opc1 = 4, .crm = 14,
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_ALIAS | ARM_CP_IO,
 | |
|       .writefn = gt_cntvoff_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cntvoff_el2) },
 | |
|     { .name = "CNTHP_CVAL_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 2,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
 | |
|       .type = ARM_CP_IO, .access = PL2_RW,
 | |
|       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTHP_CVAL", .cp = 15, .opc1 = 6, .crm = 14,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].cval),
 | |
|       .access = PL2_RW, .type = ARM_CP_64BIT | ARM_CP_IO,
 | |
|       .writefn = gt_hyp_cval_write, .raw_writefn = raw_write },
 | |
|     { .name = "CNTHP_TVAL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 0,
 | |
|       .type = ARM_CP_IO, .access = PL2_RW,
 | |
|       .resetfn = gt_hyp_timer_reset,
 | |
|       .readfn = gt_hyp_tval_read, .writefn = gt_hyp_tval_write },
 | |
|     { .name = "CNTHP_CTL_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .type = ARM_CP_IO,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 14, .crm = 2, .opc2 = 1,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.c14_timer[GTIMER_HYP].ctl),
 | |
|       .resetvalue = 0,
 | |
|       .writefn = gt_hyp_ctl_write, .raw_writefn = raw_write },
 | |
| #endif
 | |
|     /* The only field of MDCR_EL2 that has a defined architectural reset value
 | |
|      * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
 | |
|      * don't impelment any PMU event counters, so using zero as a reset
 | |
|      * value for MDCR_EL2 is okay
 | |
|      */
 | |
|     { .name = "MDCR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL2_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el2), },
 | |
|     { .name = "HPFAR", .state = ARM_CP_STATE_AA32,
 | |
|       .cp = 15, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | |
|       .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
 | |
|     { .name = "HPFAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 4, .crn = 6, .crm = 0, .opc2 = 4,
 | |
|       .access = PL2_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.hpfar_el2) },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static CPAccessResult nsacr_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                    bool isread)
 | |
| {
 | |
|     /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
 | |
|      * At Secure EL1 it traps to EL3.
 | |
|      */
 | |
|     if (arm_current_el(env) == 3) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     if (arm_is_secure_below_el3(env)) {
 | |
|         return CP_ACCESS_TRAP_EL3;
 | |
|     }
 | |
|     /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
 | |
|     if (isread) {
 | |
|         return CP_ACCESS_OK;
 | |
|     }
 | |
|     return CP_ACCESS_TRAP_UNCATEGORIZED;
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo el3_cp_reginfo[] = {
 | |
|     { .name = "SCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.scr_el3),
 | |
|       .resetvalue = 0, .writefn = scr_write },
 | |
|     { .name = "SCR",  .type = ARM_CP_ALIAS,
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.scr_el3),
 | |
|       .writefn = scr_write },
 | |
|     { .name = "MDCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 3, .opc2 = 1,
 | |
|       .resetvalue = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.mdcr_el3) },
 | |
|     { .name = "SDCR", .type = ARM_CP_ALIAS,
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
 | |
|     { .name = "SDER32_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.sder) },
 | |
|     { .name = "SDER",
 | |
|       .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 1,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetoflow32(CPUARMState, cp15.sder) },
 | |
|     { .name = "MVBAR", .cp = 15, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|       .access = PL1_RW, .accessfn = access_trap_aa32s_el1,
 | |
|       .writefn = vbar_write, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mvbar) },
 | |
|     { .name = "SCTLR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS, /* reset handled by AArch32 view */
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .raw_writefn = raw_write, .writefn = sctlr_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.sctlr_el[3]) },
 | |
|     { .name = "TTBR0_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .writefn = vmsa_ttbr_write, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.ttbr0_el[3]) },
 | |
|     { .name = "TCR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 2, .crm = 0, .opc2 = 2,
 | |
|       .access = PL3_RW, .writefn = vmsa_tcr_el1_write,
 | |
|       .resetfn = vmsa_ttbcr_reset, .raw_writefn = raw_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tcr_el[3]) },
 | |
|     { .name = "ELR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 1,
 | |
|       .access = PL3_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, elr_el[3]) },
 | |
|     { .name = "ESR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 2, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.esr_el[3]) },
 | |
|     { .name = "FAR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 6, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .fieldoffset = offsetof(CPUARMState, cp15.far_el[3]) },
 | |
|     { .name = "SPSR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 4, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW,
 | |
|       .fieldoffset = offsetof(CPUARMState, banked_spsr[BANK_MON]) },
 | |
|     { .name = "VBAR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 0,
 | |
|       .access = PL3_RW, .writefn = vbar_write,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.vbar_el[3]),
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "CPTR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|       .access = PL3_RW, .accessfn = cptr_access, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.cptr_el[3]) },
 | |
|     { .name = "TPIDR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 13, .crm = 0, .opc2 = 2,
 | |
|       .access = PL3_RW, .resetvalue = 0,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.tpidr_el[3]) },
 | |
|     { .name = "AMAIR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 10, .crm = 3, .opc2 = 0,
 | |
|       .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR0_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 0,
 | |
|       .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "AFSR1_EL3", .state = ARM_CP_STATE_BOTH,
 | |
|       .opc0 = 3, .opc1 = 6, .crn = 5, .crm = 1, .opc2 = 1,
 | |
|       .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|       .resetvalue = 0 },
 | |
|     { .name = "TLBI_ALLE3IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 0,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle3is_write },
 | |
|     { .name = "TLBI_VAE3IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 1,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3is_write },
 | |
|     { .name = "TLBI_VALE3IS", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 3, .opc2 = 5,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3is_write },
 | |
|     { .name = "TLBI_ALLE3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 0,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_alle3_write },
 | |
|     { .name = "TLBI_VAE3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 1,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3_write },
 | |
|     { .name = "TLBI_VALE3", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 1, .opc1 = 6, .crn = 8, .crm = 7, .opc2 = 5,
 | |
|       .access = PL3_W, .type = ARM_CP_NO_RAW,
 | |
|       .writefn = tlbi_aa64_vae3_write },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static CPAccessResult ctr_el0_access(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                                      bool isread)
 | |
| {
 | |
|     /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
 | |
|      * but the AArch32 CTR has its own reginfo struct)
 | |
|      */
 | |
|     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UCT)) {
 | |
|         return CP_ACCESS_TRAP;
 | |
|     }
 | |
|     return CP_ACCESS_OK;
 | |
| }
 | |
| 
 | |
| static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                         uint64_t value)
 | |
| {
 | |
|     /* Writes to OSLAR_EL1 may update the OS lock status, which can be
 | |
|      * read via a bit in OSLSR_EL1.
 | |
|      */
 | |
|     int oslock;
 | |
| 
 | |
|     if (ri->state == ARM_CP_STATE_AA32) {
 | |
|         oslock = (value == 0xC5ACCE55);
 | |
|     } else {
 | |
|         oslock = value & 1;
 | |
|     }
 | |
| 
 | |
|     env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
 | |
| }
 | |
| 
 | |
| static const ARMCPRegInfo debug_cp_reginfo[] = {
 | |
|     /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
 | |
|      * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
 | |
|      * unlike DBGDRAR it is never accessible from EL0.
 | |
|      * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
 | |
|      * accessor.
 | |
|      */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|       .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|       .access = PL1_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|       .access = PL0_R, .accessfn = access_tdra,
 | |
|       .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|     /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
 | |
|     { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
 | |
|       .resetvalue = 0 },
 | |
|     /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
 | |
|      * We don't implement the configurable EL0 access.
 | |
|      */
 | |
|     { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | |
|       .type = ARM_CP_ALIAS,
 | |
|       .access = PL1_R, .accessfn = access_tda,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
 | |
|     { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
 | |
|       .access = PL1_W, .type = ARM_CP_NO_RAW,
 | |
|       .accessfn = access_tdosa,
 | |
|       .writefn = oslar_write },
 | |
|     { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
 | |
|       .access = PL1_R, .resetvalue = 10,
 | |
|       .accessfn = access_tdosa,
 | |
|       .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
 | |
|     /* Dummy OSDLR_EL1: 32-bit Linux will read this */
 | |
|     { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|       .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
 | |
|       .access = PL1_RW, .accessfn = access_tdosa,
 | |
|       .type = ARM_CP_NOP },
 | |
|     /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
 | |
|      * implement vector catch debug events yet.
 | |
|      */
 | |
|     { .name = "DBGVCR",
 | |
|       .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|       .access = PL1_RW, .accessfn = access_tda,
 | |
|       .type = ARM_CP_NOP },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
 | |
|     /* 64 bit access versions of the (dummy) debug registers */
 | |
|     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
 | |
|       .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
 | |
|     REGINFO_SENTINEL
 | |
| };
 | |
| 
 | |
| void hw_watchpoint_update(ARMCPU *cpu, int n)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     vaddr len = 0;
 | |
|     vaddr wvr = env->cp15.dbgwvr[n];
 | |
|     uint64_t wcr = env->cp15.dbgwcr[n];
 | |
|     int mask;
 | |
|     int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
 | |
| 
 | |
|     if (env->cpu_watchpoint[n]) {
 | |
|         cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
 | |
|         env->cpu_watchpoint[n] = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!extract64(wcr, 0, 1)) {
 | |
|         /* E bit clear : watchpoint disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (extract64(wcr, 3, 2)) {
 | |
|     case 0:
 | |
|         /* LSC 00 is reserved and must behave as if the wp is disabled */
 | |
|         return;
 | |
|     case 1:
 | |
|         flags |= BP_MEM_READ;
 | |
|         break;
 | |
|     case 2:
 | |
|         flags |= BP_MEM_WRITE;
 | |
|         break;
 | |
|     case 3:
 | |
|         flags |= BP_MEM_ACCESS;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     /* Attempts to use both MASK and BAS fields simultaneously are
 | |
|      * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
 | |
|      * thus generating a watchpoint for every byte in the masked region.
 | |
|      */
 | |
|     mask = extract64(wcr, 24, 4);
 | |
|     if (mask == 1 || mask == 2) {
 | |
|         /* Reserved values of MASK; we must act as if the mask value was
 | |
|          * some non-reserved value, or as if the watchpoint were disabled.
 | |
|          * We choose the latter.
 | |
|          */
 | |
|         return;
 | |
|     } else if (mask) {
 | |
|         /* Watchpoint covers an aligned area up to 2GB in size */
 | |
|         len = 1ULL << mask;
 | |
|         /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
 | |
|          * whether the watchpoint fires when the unmasked bits match; we opt
 | |
|          * to generate the exceptions.
 | |
|          */
 | |
|         wvr &= ~(len - 1);
 | |
|     } else {
 | |
|         /* Watchpoint covers bytes defined by the byte address select bits */
 | |
|         int bas = extract64(wcr, 5, 8);
 | |
|         int basstart;
 | |
| 
 | |
|         if (bas == 0) {
 | |
|             /* This must act as if the watchpoint is disabled */
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (extract64(wvr, 2, 1)) {
 | |
|             /* Deprecated case of an only 4-aligned address. BAS[7:4] are
 | |
|              * ignored, and BAS[3:0] define which bytes to watch.
 | |
|              */
 | |
|             bas &= 0xf;
 | |
|         }
 | |
|         /* The BAS bits are supposed to be programmed to indicate a contiguous
 | |
|          * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
 | |
|          * we fire for each byte in the word/doubleword addressed by the WVR.
 | |
|          * We choose to ignore any non-zero bits after the first range of 1s.
 | |
|          */
 | |
|         basstart = ctz32(bas);
 | |
|         len = cto32(bas >> basstart);
 | |
|         wvr += basstart;
 | |
|     }
 | |
| 
 | |
|     cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
 | |
|                           &env->cpu_watchpoint[n]);
 | |
| }
 | |
| 
 | |
| void hw_watchpoint_update_all(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* Completely clear out existing QEMU watchpoints and our array, to
 | |
|      * avoid possible stale entries following migration load.
 | |
|      */
 | |
|     cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
 | |
|     memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
 | |
|         hw_watchpoint_update(cpu, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
 | |
|      * register reads and behaves as if values written are sign extended.
 | |
|      * Bits [1:0] are RES0.
 | |
|      */
 | |
|     value = sextract64(value, 0, 49) & ~3ULL;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_watchpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_watchpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| void hw_breakpoint_update(ARMCPU *cpu, int n)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t bvr = env->cp15.dbgbvr[n];
 | |
|     uint64_t bcr = env->cp15.dbgbcr[n];
 | |
|     vaddr addr;
 | |
|     int bt;
 | |
|     int flags = BP_CPU;
 | |
| 
 | |
|     if (env->cpu_breakpoint[n]) {
 | |
|         cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
 | |
|         env->cpu_breakpoint[n] = NULL;
 | |
|     }
 | |
| 
 | |
|     if (!extract64(bcr, 0, 1)) {
 | |
|         /* E bit clear : watchpoint disabled */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     bt = extract64(bcr, 20, 4);
 | |
| 
 | |
|     switch (bt) {
 | |
|     case 4: /* unlinked address mismatch (reserved if AArch64) */
 | |
|     case 5: /* linked address mismatch (reserved if AArch64) */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "arm: address mismatch breakpoint types not implemented");
 | |
|         return;
 | |
|     case 0: /* unlinked address match */
 | |
|     case 1: /* linked address match */
 | |
|     {
 | |
|         /* Bits [63:49] are hardwired to the value of bit [48]; that is,
 | |
|          * we behave as if the register was sign extended. Bits [1:0] are
 | |
|          * RES0. The BAS field is used to allow setting breakpoints on 16
 | |
|          * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
 | |
|          * a bp will fire if the addresses covered by the bp and the addresses
 | |
|          * covered by the insn overlap but the insn doesn't start at the
 | |
|          * start of the bp address range. We choose to require the insn and
 | |
|          * the bp to have the same address. The constraints on writing to
 | |
|          * BAS enforced in dbgbcr_write mean we have only four cases:
 | |
|          *  0b0000  => no breakpoint
 | |
|          *  0b0011  => breakpoint on addr
 | |
|          *  0b1100  => breakpoint on addr + 2
 | |
|          *  0b1111  => breakpoint on addr
 | |
|          * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
 | |
|          */
 | |
|         int bas = extract64(bcr, 5, 4);
 | |
|         addr = sextract64(bvr, 0, 49) & ~3ULL;
 | |
|         if (bas == 0) {
 | |
|             return;
 | |
|         }
 | |
|         if (bas == 0xc) {
 | |
|             addr += 2;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case 2: /* unlinked context ID match */
 | |
|     case 8: /* unlinked VMID match (reserved if no EL2) */
 | |
|     case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "arm: unlinked context breakpoint types not implemented");
 | |
|         return;
 | |
|     case 9: /* linked VMID match (reserved if no EL2) */
 | |
|     case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | |
|     case 3: /* linked context ID match */
 | |
|     default:
 | |
|         /* We must generate no events for Linked context matches (unless
 | |
|          * they are linked to by some other bp/wp, which is handled in
 | |
|          * updates for the linking bp/wp). We choose to also generate no events
 | |
|          * for reserved values.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
 | |
| }
 | |
| 
 | |
| void hw_breakpoint_update_all(ARMCPU *cpu)
 | |
| {
 | |
|     int i;
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* Completely clear out existing QEMU breakpoints and our array, to
 | |
|      * avoid possible stale entries following migration load.
 | |
|      */
 | |
|     cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
 | |
|     memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
 | |
|         hw_breakpoint_update(cpu, i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_breakpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int i = ri->crm;
 | |
| 
 | |
|     /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
 | |
|      * copy of BAS[0].
 | |
|      */
 | |
|     value = deposit64(value, 6, 1, extract64(value, 5, 1));
 | |
|     value = deposit64(value, 8, 1, extract64(value, 7, 1));
 | |
| 
 | |
|     raw_write(env, ri, value);
 | |
|     hw_breakpoint_update(cpu, i);
 | |
| }
 | |
| 
 | |
| static void define_debug_regs(ARMCPU *cpu)
 | |
| {
 | |
|     /* Define v7 and v8 architectural debug registers.
 | |
|      * These are just dummy implementations for now.
 | |
|      */
 | |
|     int i;
 | |
|     int wrps, brps, ctx_cmps;
 | |
|     ARMCPRegInfo dbgdidr = {
 | |
|         .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
 | |
|         .access = PL0_R, .accessfn = access_tda,
 | |
|         .type = ARM_CP_CONST, .resetvalue = cpu->dbgdidr,
 | |
|     };
 | |
| 
 | |
|     /* Note that all these register fields hold "number of Xs minus 1". */
 | |
|     brps = extract32(cpu->dbgdidr, 24, 4);
 | |
|     wrps = extract32(cpu->dbgdidr, 28, 4);
 | |
|     ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
 | |
| 
 | |
|     assert(ctx_cmps <= brps);
 | |
| 
 | |
|     /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
 | |
|      * of the debug registers such as number of breakpoints;
 | |
|      * check that if they both exist then they agree.
 | |
|      */
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         assert(extract32(cpu->id_aa64dfr0, 12, 4) == brps);
 | |
|         assert(extract32(cpu->id_aa64dfr0, 20, 4) == wrps);
 | |
|         assert(extract32(cpu->id_aa64dfr0, 28, 4) == ctx_cmps);
 | |
|     }
 | |
| 
 | |
|     define_one_arm_cp_reg(cpu, &dbgdidr);
 | |
|     define_arm_cp_regs(cpu, debug_cp_reginfo);
 | |
| 
 | |
|     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
 | |
|         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < brps + 1; i++) {
 | |
|         ARMCPRegInfo dbgregs[] = {
 | |
|             { .name = "DBGBVR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
 | |
|               .writefn = dbgbvr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             { .name = "DBGBCR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
 | |
|               .writefn = dbgbcr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgregs);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < wrps + 1; i++) {
 | |
|         ARMCPRegInfo dbgregs[] = {
 | |
|             { .name = "DBGWVR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
 | |
|               .writefn = dbgwvr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             { .name = "DBGWCR", .state = ARM_CP_STATE_BOTH,
 | |
|               .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
 | |
|               .access = PL1_RW, .accessfn = access_tda,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
 | |
|               .writefn = dbgwcr_write, .raw_writefn = raw_write
 | |
|             },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, dbgregs);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void register_cp_regs_for_features(ARMCPU *cpu)
 | |
| {
 | |
|     /* Register all the coprocessor registers based on feature bits */
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         /* M profile has no coprocessor registers */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     define_arm_cp_regs(cpu, cp_reginfo);
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* Must go early as it is full of wildcards that may be
 | |
|          * overridden by later definitions.
 | |
|          */
 | |
|         define_arm_cp_regs(cpu, not_v8_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|         /* The ID registers all have impdef reset values */
 | |
|         ARMCPRegInfo v6_idregs[] = {
 | |
|             { .name = "ID_PFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_pfr0 },
 | |
|             { .name = "ID_PFR1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_pfr1 },
 | |
|             { .name = "ID_DFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_dfr0 },
 | |
|             { .name = "ID_AFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_afr0 },
 | |
|             { .name = "ID_MMFR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr0 },
 | |
|             { .name = "ID_MMFR1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr1 },
 | |
|             { .name = "ID_MMFR2", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr2 },
 | |
|             { .name = "ID_MMFR3", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 7,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_mmfr3 },
 | |
|             { .name = "ID_ISAR0", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar0 },
 | |
|             { .name = "ID_ISAR1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar1 },
 | |
|             { .name = "ID_ISAR2", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar2 },
 | |
|             { .name = "ID_ISAR3", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar3 },
 | |
|             { .name = "ID_ISAR4", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar4 },
 | |
|             { .name = "ID_ISAR5", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_isar5 },
 | |
|             /* 6..7 are as yet unallocated and must RAZ */
 | |
|             { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
 | |
|               .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, v6_idregs);
 | |
|         define_arm_cp_regs(cpu, v6_cp_reginfo);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, not_v6_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|         define_arm_cp_regs(cpu, v6k_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7MP) &&
 | |
|         !arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         define_arm_cp_regs(cpu, v7mp_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         /* v7 performance monitor control register: same implementor
 | |
|          * field as main ID register, and we implement only the cycle
 | |
|          * count register.
 | |
|          */
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         ARMCPRegInfo pmcr = {
 | |
|             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
 | |
|             .access = PL0_RW,
 | |
|             .type = ARM_CP_IO | ARM_CP_ALIAS,
 | |
|             .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
 | |
|             .accessfn = pmreg_access, .writefn = pmcr_write,
 | |
|             .raw_writefn = raw_write,
 | |
|         };
 | |
|         ARMCPRegInfo pmcr64 = {
 | |
|             .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|             .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 0,
 | |
|             .access = PL0_RW, .accessfn = pmreg_access,
 | |
|             .type = ARM_CP_IO,
 | |
|             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
 | |
|             .resetvalue = cpu->midr & 0xff000000,
 | |
|             .writefn = pmcr_write, .raw_writefn = raw_write,
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &pmcr);
 | |
|         define_one_arm_cp_reg(cpu, &pmcr64);
 | |
| #endif
 | |
|         ARMCPRegInfo clidr = {
 | |
|             .name = "CLIDR", .state = ARM_CP_STATE_BOTH,
 | |
|             .opc0 = 3, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
 | |
|             .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &clidr);
 | |
|         define_arm_cp_regs(cpu, v7_cp_reginfo);
 | |
|         define_debug_regs(cpu);
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, not_v7_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         /* AArch64 ID registers, which all have impdef reset values */
 | |
|         ARMCPRegInfo v8_idregs[] = {
 | |
|             { .name = "ID_AA64PFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64pfr0 },
 | |
|             { .name = "ID_AA64PFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 4, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64pfr1},
 | |
|             { .name = "ID_AA64DFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               /* We mask out the PMUVer field, because we don't currently
 | |
|                * implement the PMU. Not advertising it prevents the guest
 | |
|                * from trying to use it and getting UNDEFs on registers we
 | |
|                * don't implement.
 | |
|                */
 | |
|               .resetvalue = cpu->id_aa64dfr0 & ~0xf00 },
 | |
|             { .name = "ID_AA64DFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64dfr1 },
 | |
|             { .name = "ID_AA64AFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64afr0 },
 | |
|             { .name = "ID_AA64AFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 5, .opc2 = 5,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64afr1 },
 | |
|             { .name = "ID_AA64ISAR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64isar0 },
 | |
|             { .name = "ID_AA64ISAR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64isar1 },
 | |
|             { .name = "ID_AA64MMFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64mmfr0 },
 | |
|             { .name = "ID_AA64MMFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->id_aa64mmfr1 },
 | |
|             { .name = "MVFR0_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->mvfr0 },
 | |
|             { .name = "MVFR1_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->mvfr1 },
 | |
|             { .name = "MVFR2_EL1", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->mvfr2 },
 | |
|             { .name = "PMCEID0", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 6,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmceid0 },
 | |
|             { .name = "PMCEID0_EL0", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 6,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmceid0 },
 | |
|             { .name = "PMCEID1", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 0, .crn = 9, .crm = 12, .opc2 = 7,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmceid1 },
 | |
|             { .name = "PMCEID1_EL0", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .crn = 9, .crm = 12, .opc2 = 7,
 | |
|               .access = PL0_R, .accessfn = pmreg_access, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmceid1 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
 | |
|         if (!arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|             !arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             ARMCPRegInfo rvbar = {
 | |
|                 .name = "RVBAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|                 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|                 .type = ARM_CP_CONST, .access = PL1_R, .resetvalue = cpu->rvbar
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &rvbar);
 | |
|         }
 | |
|         define_arm_cp_regs(cpu, v8_idregs);
 | |
|         define_arm_cp_regs(cpu, v8_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         uint64_t vmpidr_def = mpidr_read_val(env);
 | |
|         ARMCPRegInfo vpidr_regs[] = {
 | |
|             { .name = "VPIDR", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|               .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|               .resetvalue = cpu->midr,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | |
|             { .name = "VPIDR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|               .access = PL2_RW, .resetvalue = cpu->midr,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | |
|             { .name = "VMPIDR", .state = ARM_CP_STATE_AA32,
 | |
|               .cp = 15, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | |
|               .access = PL2_RW, .accessfn = access_el3_aa32ns,
 | |
|               .resetvalue = vmpidr_def,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
 | |
|             { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | |
|               .access = PL2_RW,
 | |
|               .resetvalue = vmpidr_def,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.vmpidr_el2) },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, vpidr_regs);
 | |
|         define_arm_cp_regs(cpu, el2_cp_reginfo);
 | |
|         /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
 | |
|         if (!arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             ARMCPRegInfo rvbar = {
 | |
|                 .name = "RVBAR_EL2", .state = ARM_CP_STATE_AA64,
 | |
|                 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|                 .type = ARM_CP_CONST, .access = PL2_R, .resetvalue = cpu->rvbar
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &rvbar);
 | |
|         }
 | |
|     } else {
 | |
|         /* If EL2 is missing but higher ELs are enabled, we need to
 | |
|          * register the no_el2 reginfos.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|             /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
 | |
|              * of MIDR_EL1 and MPIDR_EL1.
 | |
|              */
 | |
|             ARMCPRegInfo vpidr_regs[] = {
 | |
|                 { .name = "VPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | |
|                   .type = ARM_CP_CONST, .resetvalue = cpu->midr,
 | |
|                   .fieldoffset = offsetof(CPUARMState, cp15.vpidr_el2) },
 | |
|                 { .name = "VMPIDR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|                   .opc0 = 3, .opc1 = 4, .crn = 0, .crm = 0, .opc2 = 5,
 | |
|                   .access = PL2_RW, .accessfn = access_el3_aa32ns_aa64any,
 | |
|                   .type = ARM_CP_NO_RAW,
 | |
|                   .writefn = arm_cp_write_ignore, .readfn = mpidr_read },
 | |
|                 REGINFO_SENTINEL
 | |
|             };
 | |
|             define_arm_cp_regs(cpu, vpidr_regs);
 | |
|             define_arm_cp_regs(cpu, el3_no_el2_cp_reginfo);
 | |
|         }
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         define_arm_cp_regs(cpu, el3_cp_reginfo);
 | |
|         ARMCPRegInfo rvbar = {
 | |
|             .name = "RVBAR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|             .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 0, .opc2 = 1,
 | |
|             .type = ARM_CP_CONST, .access = PL3_R, .resetvalue = cpu->rvbar
 | |
|         };
 | |
|         define_one_arm_cp_reg(cpu, &rvbar);
 | |
|     }
 | |
|     /* The behaviour of NSACR is sufficiently various that we don't
 | |
|      * try to describe it in a single reginfo:
 | |
|      *  if EL3 is 64 bit, then trap to EL3 from S EL1,
 | |
|      *     reads as constant 0xc00 from NS EL1 and NS EL2
 | |
|      *  if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
 | |
|      *  if v7 without EL3, register doesn't exist
 | |
|      *  if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|             ARMCPRegInfo nsacr = {
 | |
|                 .name = "NSACR", .type = ARM_CP_CONST,
 | |
|                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|                 .access = PL1_RW, .accessfn = nsacr_access,
 | |
|                 .resetvalue = 0xc00
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &nsacr);
 | |
|         } else {
 | |
|             ARMCPRegInfo nsacr = {
 | |
|                 .name = "NSACR",
 | |
|                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|                 .access = PL3_RW | PL1_R,
 | |
|                 .resetvalue = 0,
 | |
|                 .fieldoffset = offsetof(CPUARMState, cp15.nsacr)
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &nsacr);
 | |
|         }
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             ARMCPRegInfo nsacr = {
 | |
|                 .name = "NSACR", .type = ARM_CP_CONST,
 | |
|                 .cp = 15, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 2,
 | |
|                 .access = PL1_R,
 | |
|                 .resetvalue = 0xc00
 | |
|             };
 | |
|             define_one_arm_cp_reg(cpu, &nsacr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_V6)) {
 | |
|             /* PMSAv6 not implemented */
 | |
|             assert(arm_feature(env, ARM_FEATURE_V7));
 | |
|             define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
 | |
|             define_arm_cp_regs(cpu, pmsav7_cp_reginfo);
 | |
|         } else {
 | |
|             define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
 | |
|         }
 | |
|     } else {
 | |
|         define_arm_cp_regs(cpu, vmsa_pmsa_cp_reginfo);
 | |
|         define_arm_cp_regs(cpu, vmsa_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
 | |
|         define_arm_cp_regs(cpu, t2ee_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
 | |
|         define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_VAPA)) {
 | |
|         define_arm_cp_regs(cpu, vapa_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
 | |
|         define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
 | |
|         define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
 | |
|         define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
 | |
|         define_arm_cp_regs(cpu, omap_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | |
|         define_arm_cp_regs(cpu, strongarm_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|         define_arm_cp_regs(cpu, xscale_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
 | |
|         define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)) {
 | |
|         define_arm_cp_regs(cpu, lpae_cp_reginfo);
 | |
|     }
 | |
|     /* Slightly awkwardly, the OMAP and StrongARM cores need all of
 | |
|      * cp15 crn=0 to be writes-ignored, whereas for other cores they should
 | |
|      * be read-only (ie write causes UNDEF exception).
 | |
|      */
 | |
|     {
 | |
|         ARMCPRegInfo id_pre_v8_midr_cp_reginfo[] = {
 | |
|             /* Pre-v8 MIDR space.
 | |
|              * Note that the MIDR isn't a simple constant register because
 | |
|              * of the TI925 behaviour where writes to another register can
 | |
|              * cause the MIDR value to change.
 | |
|              *
 | |
|              * Unimplemented registers in the c15 0 0 0 space default to
 | |
|              * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
 | |
|              * and friends override accordingly.
 | |
|              */
 | |
|             { .name = "MIDR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr,
 | |
|               .writefn = arm_cp_write_ignore, .raw_writefn = raw_write,
 | |
|               .readfn = midr_read,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
 | |
|               .type = ARM_CP_OVERRIDE },
 | |
|             /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             { .name = "DUMMY",
 | |
|               .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         ARMCPRegInfo id_v8_midr_cp_reginfo[] = {
 | |
|             { .name = "MIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 0,
 | |
|               .access = PL1_R, .type = ARM_CP_NO_RAW, .resetvalue = cpu->midr,
 | |
|               .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid),
 | |
|               .readfn = midr_read },
 | |
|             /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
 | |
|             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr },
 | |
|             { .name = "MIDR", .type = ARM_CP_ALIAS | ARM_CP_CONST,
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 7,
 | |
|               .access = PL1_R, .resetvalue = cpu->midr },
 | |
|             { .name = "REVIDR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 6,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->revidr },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         ARMCPRegInfo id_cp_reginfo[] = {
 | |
|             /* These are common to v8 and pre-v8 */
 | |
|             { .name = "CTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | |
|             { .name = "CTR_EL0", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 3, .opc2 = 1, .crn = 0, .crm = 0,
 | |
|               .access = PL0_R, .accessfn = ctr_el0_access,
 | |
|               .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
 | |
|             /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
 | |
|             { .name = "TCMTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         /* TLBTR is specific to VMSA */
 | |
|         ARMCPRegInfo id_tlbtr_reginfo = {
 | |
|               .name = "TLBTR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0,
 | |
|         };
 | |
|         /* MPUIR is specific to PMSA V6+ */
 | |
|         ARMCPRegInfo id_mpuir_reginfo = {
 | |
|               .name = "MPUIR",
 | |
|               .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 4,
 | |
|               .access = PL1_R, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->pmsav7_dregion << 8
 | |
|         };
 | |
|         ARMCPRegInfo crn0_wi_reginfo = {
 | |
|             .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
 | |
|             .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
 | |
|             .type = ARM_CP_NOP | ARM_CP_OVERRIDE
 | |
|         };
 | |
|         if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
 | |
|             arm_feature(env, ARM_FEATURE_STRONGARM)) {
 | |
|             ARMCPRegInfo *r;
 | |
|             /* Register the blanket "writes ignored" value first to cover the
 | |
|              * whole space. Then update the specific ID registers to allow write
 | |
|              * access, so that they ignore writes rather than causing them to
 | |
|              * UNDEF.
 | |
|              */
 | |
|             define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
 | |
|             for (r = id_pre_v8_midr_cp_reginfo;
 | |
|                  r->type != ARM_CP_SENTINEL; r++) {
 | |
|                 r->access = PL1_RW;
 | |
|             }
 | |
|             for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
 | |
|                 r->access = PL1_RW;
 | |
|             }
 | |
|             id_tlbtr_reginfo.access = PL1_RW;
 | |
|             id_tlbtr_reginfo.access = PL1_RW;
 | |
|         }
 | |
|         if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|             define_arm_cp_regs(cpu, id_v8_midr_cp_reginfo);
 | |
|         } else {
 | |
|             define_arm_cp_regs(cpu, id_pre_v8_midr_cp_reginfo);
 | |
|         }
 | |
|         define_arm_cp_regs(cpu, id_cp_reginfo);
 | |
|         if (!arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|             define_one_arm_cp_reg(cpu, &id_tlbtr_reginfo);
 | |
|         } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|             define_one_arm_cp_reg(cpu, &id_mpuir_reginfo);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_MPIDR)) {
 | |
|         define_arm_cp_regs(cpu, mpidr_cp_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AUXCR)) {
 | |
|         ARMCPRegInfo auxcr_reginfo[] = {
 | |
|             { .name = "ACTLR_EL1", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 1,
 | |
|               .access = PL1_RW, .type = ARM_CP_CONST,
 | |
|               .resetvalue = cpu->reset_auxcr },
 | |
|             { .name = "ACTLR_EL2", .state = ARM_CP_STATE_BOTH,
 | |
|               .opc0 = 3, .opc1 = 4, .crn = 1, .crm = 0, .opc2 = 1,
 | |
|               .access = PL2_RW, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             { .name = "ACTLR_EL3", .state = ARM_CP_STATE_AA64,
 | |
|               .opc0 = 3, .opc1 = 6, .crn = 1, .crm = 0, .opc2 = 1,
 | |
|               .access = PL3_RW, .type = ARM_CP_CONST,
 | |
|               .resetvalue = 0 },
 | |
|             REGINFO_SENTINEL
 | |
|         };
 | |
|         define_arm_cp_regs(cpu, auxcr_reginfo);
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_CBAR)) {
 | |
|         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|             /* 32 bit view is [31:18] 0...0 [43:32]. */
 | |
|             uint32_t cbar32 = (extract64(cpu->reset_cbar, 18, 14) << 18)
 | |
|                 | extract64(cpu->reset_cbar, 32, 12);
 | |
|             ARMCPRegInfo cbar_reginfo[] = {
 | |
|                 { .name = "CBAR",
 | |
|                   .type = ARM_CP_CONST,
 | |
|                   .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
 | |
|                   .access = PL1_R, .resetvalue = cpu->reset_cbar },
 | |
|                 { .name = "CBAR_EL1", .state = ARM_CP_STATE_AA64,
 | |
|                   .type = ARM_CP_CONST,
 | |
|                   .opc0 = 3, .opc1 = 1, .crn = 15, .crm = 3, .opc2 = 0,
 | |
|                   .access = PL1_R, .resetvalue = cbar32 },
 | |
|                 REGINFO_SENTINEL
 | |
|             };
 | |
|             /* We don't implement a r/w 64 bit CBAR currently */
 | |
|             assert(arm_feature(env, ARM_FEATURE_CBAR_RO));
 | |
|             define_arm_cp_regs(cpu, cbar_reginfo);
 | |
|         } else {
 | |
|             ARMCPRegInfo cbar = {
 | |
|                 .name = "CBAR",
 | |
|                 .cp = 15, .crn = 15, .crm = 0, .opc1 = 4, .opc2 = 0,
 | |
|                 .access = PL1_R|PL3_W, .resetvalue = cpu->reset_cbar,
 | |
|                 .fieldoffset = offsetof(CPUARMState,
 | |
|                                         cp15.c15_config_base_address)
 | |
|             };
 | |
|             if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
 | |
|                 cbar.access = PL1_R;
 | |
|                 cbar.fieldoffset = 0;
 | |
|                 cbar.type = ARM_CP_CONST;
 | |
|             }
 | |
|             define_one_arm_cp_reg(cpu, &cbar);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Generic registers whose values depend on the implementation */
 | |
|     {
 | |
|         ARMCPRegInfo sctlr = {
 | |
|             .name = "SCTLR", .state = ARM_CP_STATE_BOTH,
 | |
|             .opc0 = 3, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
 | |
|             .access = PL1_RW,
 | |
|             .bank_fieldoffsets = { offsetof(CPUARMState, cp15.sctlr_s),
 | |
|                                    offsetof(CPUARMState, cp15.sctlr_ns) },
 | |
|             .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr,
 | |
|             .raw_writefn = raw_write,
 | |
|         };
 | |
|         if (arm_feature(env, ARM_FEATURE_XSCALE)) {
 | |
|             /* Normally we would always end the TB on an SCTLR write, but Linux
 | |
|              * arch/arm/mach-pxa/sleep.S expects two instructions following
 | |
|              * an MMU enable to execute from cache.  Imitate this behaviour.
 | |
|              */
 | |
|             sctlr.type |= ARM_CP_SUPPRESS_TB_END;
 | |
|         }
 | |
|         define_one_arm_cp_reg(cpu, &sctlr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| ARMCPU *cpu_arm_init(const char *cpu_model)
 | |
| {
 | |
|     return ARM_CPU(cpu_generic_init(TYPE_ARM_CPU, cpu_model));
 | |
| }
 | |
| 
 | |
| void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
 | |
| {
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|         gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
 | |
|                                  aarch64_fpu_gdb_set_reg,
 | |
|                                  34, "aarch64-fpu.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_NEON)) {
 | |
|         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  51, "arm-neon.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
 | |
|         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  35, "arm-vfp3.xml", 0);
 | |
|     } else if (arm_feature(env, ARM_FEATURE_VFP)) {
 | |
|         gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
 | |
|                                  19, "arm-vfp.xml", 0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Sort alphabetically by type name, except for "any". */
 | |
| static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
 | |
| {
 | |
|     ObjectClass *class_a = (ObjectClass *)a;
 | |
|     ObjectClass *class_b = (ObjectClass *)b;
 | |
|     const char *name_a, *name_b;
 | |
| 
 | |
|     name_a = object_class_get_name(class_a);
 | |
|     name_b = object_class_get_name(class_b);
 | |
|     if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
 | |
|         return 1;
 | |
|     } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
 | |
|         return -1;
 | |
|     } else {
 | |
|         return strcmp(name_a, name_b);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_cpu_list_entry(gpointer data, gpointer user_data)
 | |
| {
 | |
|     ObjectClass *oc = data;
 | |
|     CPUListState *s = user_data;
 | |
|     const char *typename;
 | |
|     char *name;
 | |
| 
 | |
|     typename = object_class_get_name(oc);
 | |
|     name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | |
|     (*s->cpu_fprintf)(s->file, "  %s\n",
 | |
|                       name);
 | |
|     g_free(name);
 | |
| }
 | |
| 
 | |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     CPUListState s = {
 | |
|         .file = f,
 | |
|         .cpu_fprintf = cpu_fprintf,
 | |
|     };
 | |
|     GSList *list;
 | |
| 
 | |
|     list = object_class_get_list(TYPE_ARM_CPU, false);
 | |
|     list = g_slist_sort(list, arm_cpu_list_compare);
 | |
|     (*cpu_fprintf)(f, "Available CPUs:\n");
 | |
|     g_slist_foreach(list, arm_cpu_list_entry, &s);
 | |
|     g_slist_free(list);
 | |
| #ifdef CONFIG_KVM
 | |
|     /* The 'host' CPU type is dynamically registered only if KVM is
 | |
|      * enabled, so we have to special-case it here:
 | |
|      */
 | |
|     (*cpu_fprintf)(f, "  host (only available in KVM mode)\n");
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void arm_cpu_add_definition(gpointer data, gpointer user_data)
 | |
| {
 | |
|     ObjectClass *oc = data;
 | |
|     CpuDefinitionInfoList **cpu_list = user_data;
 | |
|     CpuDefinitionInfoList *entry;
 | |
|     CpuDefinitionInfo *info;
 | |
|     const char *typename;
 | |
| 
 | |
|     typename = object_class_get_name(oc);
 | |
|     info = g_malloc0(sizeof(*info));
 | |
|     info->name = g_strndup(typename,
 | |
|                            strlen(typename) - strlen("-" TYPE_ARM_CPU));
 | |
| 
 | |
|     entry = g_malloc0(sizeof(*entry));
 | |
|     entry->value = info;
 | |
|     entry->next = *cpu_list;
 | |
|     *cpu_list = entry;
 | |
| }
 | |
| 
 | |
| CpuDefinitionInfoList *arch_query_cpu_definitions(Error **errp)
 | |
| {
 | |
|     CpuDefinitionInfoList *cpu_list = NULL;
 | |
|     GSList *list;
 | |
| 
 | |
|     list = object_class_get_list(TYPE_ARM_CPU, false);
 | |
|     g_slist_foreach(list, arm_cpu_add_definition, &cpu_list);
 | |
|     g_slist_free(list);
 | |
| 
 | |
|     return cpu_list;
 | |
| }
 | |
| 
 | |
| static void add_cpreg_to_hashtable(ARMCPU *cpu, const ARMCPRegInfo *r,
 | |
|                                    void *opaque, int state, int secstate,
 | |
|                                    int crm, int opc1, int opc2)
 | |
| {
 | |
|     /* Private utility function for define_one_arm_cp_reg_with_opaque():
 | |
|      * add a single reginfo struct to the hash table.
 | |
|      */
 | |
|     uint32_t *key = g_new(uint32_t, 1);
 | |
|     ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
 | |
|     int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
 | |
|     int ns = (secstate & ARM_CP_SECSTATE_NS) ? 1 : 0;
 | |
| 
 | |
|     /* Reset the secure state to the specific incoming state.  This is
 | |
|      * necessary as the register may have been defined with both states.
 | |
|      */
 | |
|     r2->secure = secstate;
 | |
| 
 | |
|     if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
 | |
|         /* Register is banked (using both entries in array).
 | |
|          * Overwriting fieldoffset as the array is only used to define
 | |
|          * banked registers but later only fieldoffset is used.
 | |
|          */
 | |
|         r2->fieldoffset = r->bank_fieldoffsets[ns];
 | |
|     }
 | |
| 
 | |
|     if (state == ARM_CP_STATE_AA32) {
 | |
|         if (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1]) {
 | |
|             /* If the register is banked then we don't need to migrate or
 | |
|              * reset the 32-bit instance in certain cases:
 | |
|              *
 | |
|              * 1) If the register has both 32-bit and 64-bit instances then we
 | |
|              *    can count on the 64-bit instance taking care of the
 | |
|              *    non-secure bank.
 | |
|              * 2) If ARMv8 is enabled then we can count on a 64-bit version
 | |
|              *    taking care of the secure bank.  This requires that separate
 | |
|              *    32 and 64-bit definitions are provided.
 | |
|              */
 | |
|             if ((r->state == ARM_CP_STATE_BOTH && ns) ||
 | |
|                 (arm_feature(&cpu->env, ARM_FEATURE_V8) && !ns)) {
 | |
|                 r2->type |= ARM_CP_ALIAS;
 | |
|             }
 | |
|         } else if ((secstate != r->secure) && !ns) {
 | |
|             /* The register is not banked so we only want to allow migration of
 | |
|              * the non-secure instance.
 | |
|              */
 | |
|             r2->type |= ARM_CP_ALIAS;
 | |
|         }
 | |
| 
 | |
|         if (r->state == ARM_CP_STATE_BOTH) {
 | |
|             /* We assume it is a cp15 register if the .cp field is left unset.
 | |
|              */
 | |
|             if (r2->cp == 0) {
 | |
|                 r2->cp = 15;
 | |
|             }
 | |
| 
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|             if (r2->fieldoffset) {
 | |
|                 r2->fieldoffset += sizeof(uint32_t);
 | |
|             }
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
|     if (state == ARM_CP_STATE_AA64) {
 | |
|         /* To allow abbreviation of ARMCPRegInfo
 | |
|          * definitions, we treat cp == 0 as equivalent to
 | |
|          * the value for "standard guest-visible sysreg".
 | |
|          * STATE_BOTH definitions are also always "standard
 | |
|          * sysreg" in their AArch64 view (the .cp value may
 | |
|          * be non-zero for the benefit of the AArch32 view).
 | |
|          */
 | |
|         if (r->cp == 0 || r->state == ARM_CP_STATE_BOTH) {
 | |
|             r2->cp = CP_REG_ARM64_SYSREG_CP;
 | |
|         }
 | |
|         *key = ENCODE_AA64_CP_REG(r2->cp, r2->crn, crm,
 | |
|                                   r2->opc0, opc1, opc2);
 | |
|     } else {
 | |
|         *key = ENCODE_CP_REG(r2->cp, is64, ns, r2->crn, crm, opc1, opc2);
 | |
|     }
 | |
|     if (opaque) {
 | |
|         r2->opaque = opaque;
 | |
|     }
 | |
|     /* reginfo passed to helpers is correct for the actual access,
 | |
|      * and is never ARM_CP_STATE_BOTH:
 | |
|      */
 | |
|     r2->state = state;
 | |
|     /* Make sure reginfo passed to helpers for wildcarded regs
 | |
|      * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
 | |
|      */
 | |
|     r2->crm = crm;
 | |
|     r2->opc1 = opc1;
 | |
|     r2->opc2 = opc2;
 | |
|     /* By convention, for wildcarded registers only the first
 | |
|      * entry is used for migration; the others are marked as
 | |
|      * ALIAS so we don't try to transfer the register
 | |
|      * multiple times. Special registers (ie NOP/WFI) are
 | |
|      * never migratable and not even raw-accessible.
 | |
|      */
 | |
|     if ((r->type & ARM_CP_SPECIAL)) {
 | |
|         r2->type |= ARM_CP_NO_RAW;
 | |
|     }
 | |
|     if (((r->crm == CP_ANY) && crm != 0) ||
 | |
|         ((r->opc1 == CP_ANY) && opc1 != 0) ||
 | |
|         ((r->opc2 == CP_ANY) && opc2 != 0)) {
 | |
|         r2->type |= ARM_CP_ALIAS;
 | |
|     }
 | |
| 
 | |
|     /* Check that raw accesses are either forbidden or handled. Note that
 | |
|      * we can't assert this earlier because the setup of fieldoffset for
 | |
|      * banked registers has to be done first.
 | |
|      */
 | |
|     if (!(r2->type & ARM_CP_NO_RAW)) {
 | |
|         assert(!raw_accessors_invalid(r2));
 | |
|     }
 | |
| 
 | |
|     /* Overriding of an existing definition must be explicitly
 | |
|      * requested.
 | |
|      */
 | |
|     if (!(r->type & ARM_CP_OVERRIDE)) {
 | |
|         ARMCPRegInfo *oldreg;
 | |
|         oldreg = g_hash_table_lookup(cpu->cp_regs, key);
 | |
|         if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
 | |
|             fprintf(stderr, "Register redefined: cp=%d %d bit "
 | |
|                     "crn=%d crm=%d opc1=%d opc2=%d, "
 | |
|                     "was %s, now %s\n", r2->cp, 32 + 32 * is64,
 | |
|                     r2->crn, r2->crm, r2->opc1, r2->opc2,
 | |
|                     oldreg->name, r2->name);
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
|     }
 | |
|     g_hash_table_insert(cpu->cp_regs, key, r2);
 | |
| }
 | |
| 
 | |
| 
 | |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | |
|                                        const ARMCPRegInfo *r, void *opaque)
 | |
| {
 | |
|     /* Define implementations of coprocessor registers.
 | |
|      * We store these in a hashtable because typically
 | |
|      * there are less than 150 registers in a space which
 | |
|      * is 16*16*16*8*8 = 262144 in size.
 | |
|      * Wildcarding is supported for the crm, opc1 and opc2 fields.
 | |
|      * If a register is defined twice then the second definition is
 | |
|      * used, so this can be used to define some generic registers and
 | |
|      * then override them with implementation specific variations.
 | |
|      * At least one of the original and the second definition should
 | |
|      * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
 | |
|      * against accidental use.
 | |
|      *
 | |
|      * The state field defines whether the register is to be
 | |
|      * visible in the AArch32 or AArch64 execution state. If the
 | |
|      * state is set to ARM_CP_STATE_BOTH then we synthesise a
 | |
|      * reginfo structure for the AArch32 view, which sees the lower
 | |
|      * 32 bits of the 64 bit register.
 | |
|      *
 | |
|      * Only registers visible in AArch64 may set r->opc0; opc0 cannot
 | |
|      * be wildcarded. AArch64 registers are always considered to be 64
 | |
|      * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
 | |
|      * the register, if any.
 | |
|      */
 | |
|     int crm, opc1, opc2, state;
 | |
|     int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
 | |
|     int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
 | |
|     int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
 | |
|     int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
 | |
|     int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
 | |
|     int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
 | |
|     /* 64 bit registers have only CRm and Opc1 fields */
 | |
|     assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
 | |
|     /* op0 only exists in the AArch64 encodings */
 | |
|     assert((r->state != ARM_CP_STATE_AA32) || (r->opc0 == 0));
 | |
|     /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
 | |
|     assert((r->state != ARM_CP_STATE_AA64) || !(r->type & ARM_CP_64BIT));
 | |
|     /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
 | |
|      * encodes a minimum access level for the register. We roll this
 | |
|      * runtime check into our general permission check code, so check
 | |
|      * here that the reginfo's specified permissions are strict enough
 | |
|      * to encompass the generic architectural permission check.
 | |
|      */
 | |
|     if (r->state != ARM_CP_STATE_AA32) {
 | |
|         int mask = 0;
 | |
|         switch (r->opc1) {
 | |
|         case 0: case 1: case 2:
 | |
|             /* min_EL EL1 */
 | |
|             mask = PL1_RW;
 | |
|             break;
 | |
|         case 3:
 | |
|             /* min_EL EL0 */
 | |
|             mask = PL0_RW;
 | |
|             break;
 | |
|         case 4:
 | |
|             /* min_EL EL2 */
 | |
|             mask = PL2_RW;
 | |
|             break;
 | |
|         case 5:
 | |
|             /* unallocated encoding, so not possible */
 | |
|             assert(false);
 | |
|             break;
 | |
|         case 6:
 | |
|             /* min_EL EL3 */
 | |
|             mask = PL3_RW;
 | |
|             break;
 | |
|         case 7:
 | |
|             /* min_EL EL1, secure mode only (we don't check the latter) */
 | |
|             mask = PL1_RW;
 | |
|             break;
 | |
|         default:
 | |
|             /* broken reginfo with out-of-range opc1 */
 | |
|             assert(false);
 | |
|             break;
 | |
|         }
 | |
|         /* assert our permissions are not too lax (stricter is fine) */
 | |
|         assert((r->access & ~mask) == 0);
 | |
|     }
 | |
| 
 | |
|     /* Check that the register definition has enough info to handle
 | |
|      * reads and writes if they are permitted.
 | |
|      */
 | |
|     if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
 | |
|         if (r->access & PL3_R) {
 | |
|             assert((r->fieldoffset ||
 | |
|                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
 | |
|                    r->readfn);
 | |
|         }
 | |
|         if (r->access & PL3_W) {
 | |
|             assert((r->fieldoffset ||
 | |
|                    (r->bank_fieldoffsets[0] && r->bank_fieldoffsets[1])) ||
 | |
|                    r->writefn);
 | |
|         }
 | |
|     }
 | |
|     /* Bad type field probably means missing sentinel at end of reg list */
 | |
|     assert(cptype_valid(r->type));
 | |
|     for (crm = crmmin; crm <= crmmax; crm++) {
 | |
|         for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
 | |
|             for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
 | |
|                 for (state = ARM_CP_STATE_AA32;
 | |
|                      state <= ARM_CP_STATE_AA64; state++) {
 | |
|                     if (r->state != state && r->state != ARM_CP_STATE_BOTH) {
 | |
|                         continue;
 | |
|                     }
 | |
|                     if (state == ARM_CP_STATE_AA32) {
 | |
|                         /* Under AArch32 CP registers can be common
 | |
|                          * (same for secure and non-secure world) or banked.
 | |
|                          */
 | |
|                         switch (r->secure) {
 | |
|                         case ARM_CP_SECSTATE_S:
 | |
|                         case ARM_CP_SECSTATE_NS:
 | |
|                             add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                    r->secure, crm, opc1, opc2);
 | |
|                             break;
 | |
|                         default:
 | |
|                             add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                    ARM_CP_SECSTATE_S,
 | |
|                                                    crm, opc1, opc2);
 | |
|                             add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                    ARM_CP_SECSTATE_NS,
 | |
|                                                    crm, opc1, opc2);
 | |
|                             break;
 | |
|                         }
 | |
|                     } else {
 | |
|                         /* AArch64 registers get mapped to non-secure instance
 | |
|                          * of AArch32 */
 | |
|                         add_cpreg_to_hashtable(cpu, r, opaque, state,
 | |
|                                                ARM_CP_SECSTATE_NS,
 | |
|                                                crm, opc1, opc2);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | |
|                                     const ARMCPRegInfo *regs, void *opaque)
 | |
| {
 | |
|     /* Define a whole list of registers */
 | |
|     const ARMCPRegInfo *r;
 | |
|     for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
 | |
|         define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
 | |
|     }
 | |
| }
 | |
| 
 | |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp)
 | |
| {
 | |
|     return g_hash_table_lookup(cpregs, &encoded_cp);
 | |
| }
 | |
| 
 | |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value)
 | |
| {
 | |
|     /* Helper coprocessor write function for write-ignore registers */
 | |
| }
 | |
| 
 | |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri)
 | |
| {
 | |
|     /* Helper coprocessor write function for read-as-zero registers */
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque)
 | |
| {
 | |
|     /* Helper coprocessor reset function for do-nothing-on-reset registers */
 | |
| }
 | |
| 
 | |
| static int bad_mode_switch(CPUARMState *env, int mode)
 | |
| {
 | |
|     /* Return true if it is not valid for us to switch to
 | |
|      * this CPU mode (ie all the UNPREDICTABLE cases in
 | |
|      * the ARM ARM CPSRWriteByInstr pseudocode).
 | |
|      */
 | |
|     switch (mode) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|     case ARM_CPU_MODE_SYS:
 | |
|     case ARM_CPU_MODE_SVC:
 | |
|     case ARM_CPU_MODE_ABT:
 | |
|     case ARM_CPU_MODE_UND:
 | |
|     case ARM_CPU_MODE_IRQ:
 | |
|     case ARM_CPU_MODE_FIQ:
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_MON:
 | |
|         return !arm_is_secure(env);
 | |
|     default:
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t cpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
 | |
|         (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | (env->GE << 16) | (env->daif & CPSR_AIF);
 | |
| }
 | |
| 
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     uint32_t changed_daif;
 | |
| 
 | |
|     if (mask & CPSR_NZCV) {
 | |
|         env->ZF = (~val) & CPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & CPSR_Q)
 | |
|         env->QF = ((val & CPSR_Q) != 0);
 | |
|     if (mask & CPSR_T)
 | |
|         env->thumb = ((val & CPSR_T) != 0);
 | |
|     if (mask & CPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & CPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & CPSR_GE) {
 | |
|         env->GE = (val >> 16) & 0xf;
 | |
|     }
 | |
| 
 | |
|     /* In a V7 implementation that includes the security extensions but does
 | |
|      * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
 | |
|      * whether non-secure software is allowed to change the CPSR_F and CPSR_A
 | |
|      * bits respectively.
 | |
|      *
 | |
|      * In a V8 implementation, it is permitted for privileged software to
 | |
|      * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
 | |
|      */
 | |
|     if (!arm_feature(env, ARM_FEATURE_V8) &&
 | |
|         arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|         !arm_feature(env, ARM_FEATURE_EL2) &&
 | |
|         !arm_is_secure(env)) {
 | |
| 
 | |
|         changed_daif = (env->daif ^ val) & mask;
 | |
| 
 | |
|         if (changed_daif & CPSR_A) {
 | |
|             /* Check to see if we are allowed to change the masking of async
 | |
|              * abort exceptions from a non-secure state.
 | |
|              */
 | |
|             if (!(env->cp15.scr_el3 & SCR_AW)) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "Ignoring attempt to switch CPSR_A flag from "
 | |
|                               "non-secure world with SCR.AW bit clear\n");
 | |
|                 mask &= ~CPSR_A;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (changed_daif & CPSR_F) {
 | |
|             /* Check to see if we are allowed to change the masking of FIQ
 | |
|              * exceptions from a non-secure state.
 | |
|              */
 | |
|             if (!(env->cp15.scr_el3 & SCR_FW)) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "Ignoring attempt to switch CPSR_F flag from "
 | |
|                               "non-secure world with SCR.FW bit clear\n");
 | |
|                 mask &= ~CPSR_F;
 | |
|             }
 | |
| 
 | |
|             /* Check whether non-maskable FIQ (NMFI) support is enabled.
 | |
|              * If this bit is set software is not allowed to mask
 | |
|              * FIQs, but is allowed to set CPSR_F to 0.
 | |
|              */
 | |
|             if ((A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_NMFI) &&
 | |
|                 (val & CPSR_F)) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                               "Ignoring attempt to enable CPSR_F flag "
 | |
|                               "(non-maskable FIQ [NMFI] support enabled)\n");
 | |
|                 mask &= ~CPSR_F;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     env->daif &= ~(CPSR_AIF & mask);
 | |
|     env->daif |= val & CPSR_AIF & mask;
 | |
| 
 | |
|     if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
 | |
|         if (bad_mode_switch(env, val & CPSR_M)) {
 | |
|             /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
 | |
|              * We choose to ignore the attempt and leave the CPSR M field
 | |
|              * untouched.
 | |
|              */
 | |
|             mask &= ~CPSR_M;
 | |
|         } else {
 | |
|             switch_mode(env, val & CPSR_M);
 | |
|         }
 | |
|     }
 | |
|     mask &= ~CACHED_CPSR_BITS;
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
 | |
| }
 | |
| 
 | |
| /* Sign/zero extend */
 | |
| uint32_t HELPER(sxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(int8_t)x;
 | |
|     res |= (uint32_t)(int8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(uxtb16)(uint32_t x)
 | |
| {
 | |
|     uint32_t res;
 | |
|     res = (uint16_t)(uint8_t)x;
 | |
|     res |= (uint32_t)(uint8_t)(x >> 16) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(clz)(uint32_t x)
 | |
| {
 | |
|     return clz32(x);
 | |
| }
 | |
| 
 | |
| int32_t HELPER(sdiv)(int32_t num, int32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     if (num == INT_MIN && den == -1)
 | |
|       return INT_MIN;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
 | |
| {
 | |
|     if (den == 0)
 | |
|       return 0;
 | |
|     return num / den;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rbit)(uint32_t x)
 | |
| {
 | |
|     return revbit32(x);
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| /* These should probably raise undefined insn exceptions.  */
 | |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     cpu_abort(CPU(cpu), "v7m_msr %d\n", reg);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     cpu_abort(CPU(cpu), "v7m_mrs %d\n", reg);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void switch_mode(CPUARMState *env, int mode)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     if (mode != ARM_CPU_MODE_USR) {
 | |
|         cpu_abort(CPU(cpu), "Tried to switch out of user mode\n");
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | |
|                                  uint32_t cur_el, bool secure)
 | |
| {
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| void aarch64_sync_64_to_32(CPUARMState *env)
 | |
| {
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| void switch_mode(CPUARMState *env, int mode)
 | |
| {
 | |
|     int old_mode;
 | |
|     int i;
 | |
| 
 | |
|     old_mode = env->uncached_cpsr & CPSR_M;
 | |
|     if (mode == old_mode)
 | |
|         return;
 | |
| 
 | |
|     if (old_mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
 | |
|     } else if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
 | |
|         memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
 | |
|     }
 | |
| 
 | |
|     i = bank_number(old_mode);
 | |
|     env->banked_r13[i] = env->regs[13];
 | |
|     env->banked_r14[i] = env->regs[14];
 | |
|     env->banked_spsr[i] = env->spsr;
 | |
| 
 | |
|     i = bank_number(mode);
 | |
|     env->regs[13] = env->banked_r13[i];
 | |
|     env->regs[14] = env->banked_r14[i];
 | |
|     env->spsr = env->banked_spsr[i];
 | |
| }
 | |
| 
 | |
| /* Physical Interrupt Target EL Lookup Table
 | |
|  *
 | |
|  * [ From ARM ARM section G1.13.4 (Table G1-15) ]
 | |
|  *
 | |
|  * The below multi-dimensional table is used for looking up the target
 | |
|  * exception level given numerous condition criteria.  Specifically, the
 | |
|  * target EL is based on SCR and HCR routing controls as well as the
 | |
|  * currently executing EL and secure state.
 | |
|  *
 | |
|  *    Dimensions:
 | |
|  *    target_el_table[2][2][2][2][2][4]
 | |
|  *                    |  |  |  |  |  +--- Current EL
 | |
|  *                    |  |  |  |  +------ Non-secure(0)/Secure(1)
 | |
|  *                    |  |  |  +--------- HCR mask override
 | |
|  *                    |  |  +------------ SCR exec state control
 | |
|  *                    |  +--------------- SCR mask override
 | |
|  *                    +------------------ 32-bit(0)/64-bit(1) EL3
 | |
|  *
 | |
|  *    The table values are as such:
 | |
|  *    0-3 = EL0-EL3
 | |
|  *     -1 = Cannot occur
 | |
|  *
 | |
|  * The ARM ARM target EL table includes entries indicating that an "exception
 | |
|  * is not taken".  The two cases where this is applicable are:
 | |
|  *    1) An exception is taken from EL3 but the SCR does not have the exception
 | |
|  *    routed to EL3.
 | |
|  *    2) An exception is taken from EL2 but the HCR does not have the exception
 | |
|  *    routed to EL2.
 | |
|  * In these two cases, the below table contain a target of EL1.  This value is
 | |
|  * returned as it is expected that the consumer of the table data will check
 | |
|  * for "target EL >= current EL" to ensure the exception is not taken.
 | |
|  *
 | |
|  *            SCR     HCR
 | |
|  *         64  EA     AMO                 From
 | |
|  *        BIT IRQ     IMO      Non-secure         Secure
 | |
|  *        EL3 FIQ  RW FMO   EL0 EL1 EL2 EL3   EL0 EL1 EL2 EL3
 | |
|  */
 | |
| static const int8_t target_el_table[2][2][2][2][2][4] = {
 | |
|     {{{{/* 0   0   0   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   0   0   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},
 | |
|       {{/* 0   0   1   0 */{ 1,  1,  2, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   0   1   1 */{ 2,  2,  2, -1 },{ 3, -1, -1,  3 },},},},
 | |
|      {{{/* 0   1   0   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   1   0   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},
 | |
|       {{/* 0   1   1   0 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},
 | |
|        {/* 0   1   1   1 */{ 3,  3,  3, -1 },{ 3, -1, -1,  3 },},},},},
 | |
|     {{{{/* 1   0   0   0 */{ 1,  1,  2, -1 },{ 1,  1, -1,  1 },},
 | |
|        {/* 1   0   0   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},
 | |
|       {{/* 1   0   1   0 */{ 1,  1,  1, -1 },{ 1,  1, -1,  1 },},
 | |
|        {/* 1   0   1   1 */{ 2,  2,  2, -1 },{ 1,  1, -1,  1 },},},},
 | |
|      {{{/* 1   1   0   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
 | |
|        {/* 1   1   0   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},
 | |
|       {{/* 1   1   1   0 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},
 | |
|        {/* 1   1   1   1 */{ 3,  3,  3, -1 },{ 3,  3, -1,  3 },},},},},
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Determine the target EL for physical exceptions
 | |
|  */
 | |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | |
|                                  uint32_t cur_el, bool secure)
 | |
| {
 | |
|     CPUARMState *env = cs->env_ptr;
 | |
|     int rw;
 | |
|     int scr;
 | |
|     int hcr;
 | |
|     int target_el;
 | |
|     /* Is the highest EL AArch64? */
 | |
|     int is64 = arm_feature(env, ARM_FEATURE_AARCH64);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         rw = ((env->cp15.scr_el3 & SCR_RW) == SCR_RW);
 | |
|     } else {
 | |
|         /* Either EL2 is the highest EL (and so the EL2 register width
 | |
|          * is given by is64); or there is no EL2 or EL3, in which case
 | |
|          * the value of 'rw' does not affect the table lookup anyway.
 | |
|          */
 | |
|         rw = is64;
 | |
|     }
 | |
| 
 | |
|     switch (excp_idx) {
 | |
|     case EXCP_IRQ:
 | |
|         scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
 | |
|         hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO);
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
 | |
|         hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO);
 | |
|         break;
 | |
|     default:
 | |
|         scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
 | |
|         hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO);
 | |
|         break;
 | |
|     };
 | |
| 
 | |
|     /* If HCR.TGE is set then HCR is treated as being 1 */
 | |
|     hcr |= ((env->cp15.hcr_el2 & HCR_TGE) == HCR_TGE);
 | |
| 
 | |
|     /* Perform a table-lookup for the target EL given the current state */
 | |
|     target_el = target_el_table[is64][scr][rw][hcr][secure][cur_el];
 | |
| 
 | |
|     assert(target_el > 0);
 | |
| 
 | |
|     return target_el;
 | |
| }
 | |
| 
 | |
| static void v7m_push(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
| 
 | |
|     env->regs[13] -= 4;
 | |
|     stl_phys(cs->as, env->regs[13], val);
 | |
| }
 | |
| 
 | |
| static uint32_t v7m_pop(CPUARMState *env)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
|     uint32_t val;
 | |
| 
 | |
|     val = ldl_phys(cs->as, env->regs[13]);
 | |
|     env->regs[13] += 4;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Switch to V7M main or process stack pointer.  */
 | |
| static void switch_v7m_sp(CPUARMState *env, int process)
 | |
| {
 | |
|     uint32_t tmp;
 | |
|     if (env->v7m.current_sp != process) {
 | |
|         tmp = env->v7m.other_sp;
 | |
|         env->v7m.other_sp = env->regs[13];
 | |
|         env->regs[13] = tmp;
 | |
|         env->v7m.current_sp = process;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void do_v7m_exception_exit(CPUARMState *env)
 | |
| {
 | |
|     uint32_t type;
 | |
|     uint32_t xpsr;
 | |
| 
 | |
|     type = env->regs[15];
 | |
|     if (env->v7m.exception != 0)
 | |
|         armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
 | |
| 
 | |
|     /* Switch to the target stack.  */
 | |
|     switch_v7m_sp(env, (type & 4) != 0);
 | |
|     /* Pop registers.  */
 | |
|     env->regs[0] = v7m_pop(env);
 | |
|     env->regs[1] = v7m_pop(env);
 | |
|     env->regs[2] = v7m_pop(env);
 | |
|     env->regs[3] = v7m_pop(env);
 | |
|     env->regs[12] = v7m_pop(env);
 | |
|     env->regs[14] = v7m_pop(env);
 | |
|     env->regs[15] = v7m_pop(env);
 | |
|     if (env->regs[15] & 1) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "M profile return from interrupt with misaligned "
 | |
|                       "PC is UNPREDICTABLE\n");
 | |
|         /* Actual hardware seems to ignore the lsbit, and there are several
 | |
|          * RTOSes out there which incorrectly assume the r15 in the stack
 | |
|          * frame should be a Thumb-style "lsbit indicates ARM/Thumb" value.
 | |
|          */
 | |
|         env->regs[15] &= ~1U;
 | |
|     }
 | |
|     xpsr = v7m_pop(env);
 | |
|     xpsr_write(env, xpsr, 0xfffffdff);
 | |
|     /* Undo stack alignment.  */
 | |
|     if (xpsr & 0x200)
 | |
|         env->regs[13] |= 4;
 | |
|     /* ??? The exception return type specifies Thread/Handler mode.  However
 | |
|        this is also implied by the xPSR value. Not sure what to do
 | |
|        if there is a mismatch.  */
 | |
|     /* ??? Likewise for mismatches between the CONTROL register and the stack
 | |
|        pointer.  */
 | |
| }
 | |
| 
 | |
| void arm_v7m_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint32_t xpsr = xpsr_read(env);
 | |
|     uint32_t lr;
 | |
|     uint32_t addr;
 | |
| 
 | |
|     arm_log_exception(cs->exception_index);
 | |
| 
 | |
|     lr = 0xfffffff1;
 | |
|     if (env->v7m.current_sp)
 | |
|         lr |= 4;
 | |
|     if (env->v7m.exception == 0)
 | |
|         lr |= 8;
 | |
| 
 | |
|     /* For exceptions we just mark as pending on the NVIC, and let that
 | |
|        handle it.  */
 | |
|     /* TODO: Need to escalate if the current priority is higher than the
 | |
|        one we're raising.  */
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
 | |
|         return;
 | |
|     case EXCP_SWI:
 | |
|         /* The PC already points to the next instruction.  */
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
 | |
|         return;
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|     case EXCP_DATA_ABORT:
 | |
|         /* TODO: if we implemented the MPU registers, this is where we
 | |
|          * should set the MMFAR, etc from exception.fsr and exception.vaddress.
 | |
|          */
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
 | |
|         return;
 | |
|     case EXCP_BKPT:
 | |
|         if (semihosting_enabled()) {
 | |
|             int nr;
 | |
|             nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
 | |
|             if (nr == 0xab) {
 | |
|                 env->regs[15] += 2;
 | |
|                 qemu_log_mask(CPU_LOG_INT,
 | |
|                               "...handling as semihosting call 0x%x\n",
 | |
|                               env->regs[0]);
 | |
|                 env->regs[0] = do_arm_semihosting(env);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
 | |
|         return;
 | |
|     case EXCP_IRQ:
 | |
|         env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
 | |
|         break;
 | |
|     case EXCP_EXCEPTION_EXIT:
 | |
|         do_v7m_exception_exit(env);
 | |
|         return;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
| 
 | |
|     /* Align stack pointer.  */
 | |
|     /* ??? Should only do this if Configuration Control Register
 | |
|        STACKALIGN bit is set.  */
 | |
|     if (env->regs[13] & 4) {
 | |
|         env->regs[13] -= 4;
 | |
|         xpsr |= 0x200;
 | |
|     }
 | |
|     /* Switch to the handler mode.  */
 | |
|     v7m_push(env, xpsr);
 | |
|     v7m_push(env, env->regs[15]);
 | |
|     v7m_push(env, env->regs[14]);
 | |
|     v7m_push(env, env->regs[12]);
 | |
|     v7m_push(env, env->regs[3]);
 | |
|     v7m_push(env, env->regs[2]);
 | |
|     v7m_push(env, env->regs[1]);
 | |
|     v7m_push(env, env->regs[0]);
 | |
|     switch_v7m_sp(env, 0);
 | |
|     /* Clear IT bits */
 | |
|     env->condexec_bits = 0;
 | |
|     env->regs[14] = lr;
 | |
|     addr = ldl_phys(cs->as, env->v7m.vecbase + env->v7m.exception * 4);
 | |
|     env->regs[15] = addr & 0xfffffffe;
 | |
|     env->thumb = addr & 1;
 | |
| }
 | |
| 
 | |
| /* Function used to synchronize QEMU's AArch64 register set with AArch32
 | |
|  * register set.  This is necessary when switching between AArch32 and AArch64
 | |
|  * execution state.
 | |
|  */
 | |
| void aarch64_sync_32_to_64(CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t mode = env->uncached_cpsr & CPSR_M;
 | |
| 
 | |
|     /* We can blanket copy R[0:7] to X[0:7] */
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         env->xregs[i] = env->regs[i];
 | |
|     }
 | |
| 
 | |
|     /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
 | |
|      * Otherwise, they come from the banked user regs.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->xregs[i] = env->usr_regs[i - 8];
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->xregs[i] = env->regs[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Registers x13-x23 are the various mode SP and FP registers. Registers
 | |
|      * r13 and r14 are only copied if we are in that mode, otherwise we copy
 | |
|      * from the mode banked register.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
 | |
|         env->xregs[13] = env->regs[13];
 | |
|         env->xregs[14] = env->regs[14];
 | |
|     } else {
 | |
|         env->xregs[13] = env->banked_r13[bank_number(ARM_CPU_MODE_USR)];
 | |
|         /* HYP is an exception in that it is copied from r14 */
 | |
|         if (mode == ARM_CPU_MODE_HYP) {
 | |
|             env->xregs[14] = env->regs[14];
 | |
|         } else {
 | |
|             env->xregs[14] = env->banked_r14[bank_number(ARM_CPU_MODE_USR)];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_HYP) {
 | |
|         env->xregs[15] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[15] = env->banked_r13[bank_number(ARM_CPU_MODE_HYP)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_IRQ) {
 | |
|         env->xregs[16] = env->regs[14];
 | |
|         env->xregs[17] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[16] = env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)];
 | |
|         env->xregs[17] = env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_SVC) {
 | |
|         env->xregs[18] = env->regs[14];
 | |
|         env->xregs[19] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[18] = env->banked_r14[bank_number(ARM_CPU_MODE_SVC)];
 | |
|         env->xregs[19] = env->banked_r13[bank_number(ARM_CPU_MODE_SVC)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_ABT) {
 | |
|         env->xregs[20] = env->regs[14];
 | |
|         env->xregs[21] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[20] = env->banked_r14[bank_number(ARM_CPU_MODE_ABT)];
 | |
|         env->xregs[21] = env->banked_r13[bank_number(ARM_CPU_MODE_ABT)];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_UND) {
 | |
|         env->xregs[22] = env->regs[14];
 | |
|         env->xregs[23] = env->regs[13];
 | |
|     } else {
 | |
|         env->xregs[22] = env->banked_r14[bank_number(ARM_CPU_MODE_UND)];
 | |
|         env->xregs[23] = env->banked_r13[bank_number(ARM_CPU_MODE_UND)];
 | |
|     }
 | |
| 
 | |
|     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
 | |
|      * mode, then we can copy from r8-r14.  Otherwise, we copy from the
 | |
|      * FIQ bank for r8-r14.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 24; i < 31; i++) {
 | |
|             env->xregs[i] = env->regs[i - 16];   /* X[24:30] <- R[8:14] */
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 24; i < 29; i++) {
 | |
|             env->xregs[i] = env->fiq_regs[i - 24];
 | |
|         }
 | |
|         env->xregs[29] = env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)];
 | |
|         env->xregs[30] = env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)];
 | |
|     }
 | |
| 
 | |
|     env->pc = env->regs[15];
 | |
| }
 | |
| 
 | |
| /* Function used to synchronize QEMU's AArch32 register set with AArch64
 | |
|  * register set.  This is necessary when switching between AArch32 and AArch64
 | |
|  * execution state.
 | |
|  */
 | |
| void aarch64_sync_64_to_32(CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t mode = env->uncached_cpsr & CPSR_M;
 | |
| 
 | |
|     /* We can blanket copy X[0:7] to R[0:7] */
 | |
|     for (i = 0; i < 8; i++) {
 | |
|         env->regs[i] = env->xregs[i];
 | |
|     }
 | |
| 
 | |
|     /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
 | |
|      * Otherwise, we copy x8-x12 into the banked user regs.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->usr_regs[i - 8] = env->xregs[i];
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 8; i < 13; i++) {
 | |
|             env->regs[i] = env->xregs[i];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Registers r13 & r14 depend on the current mode.
 | |
|      * If we are in a given mode, we copy the corresponding x registers to r13
 | |
|      * and r14.  Otherwise, we copy the x register to the banked r13 and r14
 | |
|      * for the mode.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_USR || mode == ARM_CPU_MODE_SYS) {
 | |
|         env->regs[13] = env->xregs[13];
 | |
|         env->regs[14] = env->xregs[14];
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_USR)] = env->xregs[13];
 | |
| 
 | |
|         /* HYP is an exception in that it does not have its own banked r14 but
 | |
|          * shares the USR r14
 | |
|          */
 | |
|         if (mode == ARM_CPU_MODE_HYP) {
 | |
|             env->regs[14] = env->xregs[14];
 | |
|         } else {
 | |
|             env->banked_r14[bank_number(ARM_CPU_MODE_USR)] = env->xregs[14];
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_HYP) {
 | |
|         env->regs[13] = env->xregs[15];
 | |
|     } else {
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_HYP)] = env->xregs[15];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_IRQ) {
 | |
|         env->regs[14] = env->xregs[16];
 | |
|         env->regs[13] = env->xregs[17];
 | |
|     } else {
 | |
|         env->banked_r14[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[16];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_IRQ)] = env->xregs[17];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_SVC) {
 | |
|         env->regs[14] = env->xregs[18];
 | |
|         env->regs[13] = env->xregs[19];
 | |
|     } else {
 | |
|         env->banked_r14[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[18];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_SVC)] = env->xregs[19];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_ABT) {
 | |
|         env->regs[14] = env->xregs[20];
 | |
|         env->regs[13] = env->xregs[21];
 | |
|     } else {
 | |
|         env->banked_r14[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[20];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_ABT)] = env->xregs[21];
 | |
|     }
 | |
| 
 | |
|     if (mode == ARM_CPU_MODE_UND) {
 | |
|         env->regs[14] = env->xregs[22];
 | |
|         env->regs[13] = env->xregs[23];
 | |
|     } else {
 | |
|         env->banked_r14[bank_number(ARM_CPU_MODE_UND)] = env->xregs[22];
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_UND)] = env->xregs[23];
 | |
|     }
 | |
| 
 | |
|     /* Registers x24-x30 are mapped to r8-r14 in FIQ mode.  If we are in FIQ
 | |
|      * mode, then we can copy to r8-r14.  Otherwise, we copy to the
 | |
|      * FIQ bank for r8-r14.
 | |
|      */
 | |
|     if (mode == ARM_CPU_MODE_FIQ) {
 | |
|         for (i = 24; i < 31; i++) {
 | |
|             env->regs[i - 16] = env->xregs[i];   /* X[24:30] -> R[8:14] */
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 24; i < 29; i++) {
 | |
|             env->fiq_regs[i - 24] = env->xregs[i];
 | |
|         }
 | |
|         env->banked_r13[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[29];
 | |
|         env->banked_r14[bank_number(ARM_CPU_MODE_FIQ)] = env->xregs[30];
 | |
|     }
 | |
| 
 | |
|     env->regs[15] = env->pc;
 | |
| }
 | |
| 
 | |
| static void arm_cpu_do_interrupt_aarch32(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint32_t addr;
 | |
|     uint32_t mask;
 | |
|     int new_mode;
 | |
|     uint32_t offset;
 | |
|     uint32_t moe;
 | |
| 
 | |
|     /* If this is a debug exception we must update the DBGDSCR.MOE bits */
 | |
|     switch (env->exception.syndrome >> ARM_EL_EC_SHIFT) {
 | |
|     case EC_BREAKPOINT:
 | |
|     case EC_BREAKPOINT_SAME_EL:
 | |
|         moe = 1;
 | |
|         break;
 | |
|     case EC_WATCHPOINT:
 | |
|     case EC_WATCHPOINT_SAME_EL:
 | |
|         moe = 10;
 | |
|         break;
 | |
|     case EC_AA32_BKPT:
 | |
|         moe = 3;
 | |
|         break;
 | |
|     case EC_VECTORCATCH:
 | |
|         moe = 5;
 | |
|         break;
 | |
|     default:
 | |
|         moe = 0;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (moe) {
 | |
|         env->cp15.mdscr_el1 = deposit64(env->cp15.mdscr_el1, 2, 4, moe);
 | |
|     }
 | |
| 
 | |
|     /* TODO: Vectored interrupt controller.  */
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_UDEF:
 | |
|         new_mode = ARM_CPU_MODE_UND;
 | |
|         addr = 0x04;
 | |
|         mask = CPSR_I;
 | |
|         if (env->thumb)
 | |
|             offset = 2;
 | |
|         else
 | |
|             offset = 4;
 | |
|         break;
 | |
|     case EXCP_SWI:
 | |
|         new_mode = ARM_CPU_MODE_SVC;
 | |
|         addr = 0x08;
 | |
|         mask = CPSR_I;
 | |
|         /* The PC already points to the next instruction.  */
 | |
|         offset = 0;
 | |
|         break;
 | |
|     case EXCP_BKPT:
 | |
|         env->exception.fsr = 2;
 | |
|         /* Fall through to prefetch abort.  */
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|         A32_BANKED_CURRENT_REG_SET(env, ifsr, env->exception.fsr);
 | |
|         A32_BANKED_CURRENT_REG_SET(env, ifar, env->exception.vaddress);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with IFSR 0x%x IFAR 0x%x\n",
 | |
|                       env->exception.fsr, (uint32_t)env->exception.vaddress);
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x0c;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_DATA_ABORT:
 | |
|         A32_BANKED_CURRENT_REG_SET(env, dfsr, env->exception.fsr);
 | |
|         A32_BANKED_CURRENT_REG_SET(env, dfar, env->exception.vaddress);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with DFSR 0x%x DFAR 0x%x\n",
 | |
|                       env->exception.fsr,
 | |
|                       (uint32_t)env->exception.vaddress);
 | |
|         new_mode = ARM_CPU_MODE_ABT;
 | |
|         addr = 0x10;
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 8;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|         new_mode = ARM_CPU_MODE_IRQ;
 | |
|         addr = 0x18;
 | |
|         /* Disable IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I;
 | |
|         offset = 4;
 | |
|         if (env->cp15.scr_el3 & SCR_IRQ) {
 | |
|             /* IRQ routed to monitor mode */
 | |
|             new_mode = ARM_CPU_MODE_MON;
 | |
|             mask |= CPSR_F;
 | |
|         }
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|         new_mode = ARM_CPU_MODE_FIQ;
 | |
|         addr = 0x1c;
 | |
|         /* Disable FIQ, IRQ and imprecise data aborts.  */
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         if (env->cp15.scr_el3 & SCR_FIQ) {
 | |
|             /* FIQ routed to monitor mode */
 | |
|             new_mode = ARM_CPU_MODE_MON;
 | |
|         }
 | |
|         offset = 4;
 | |
|         break;
 | |
|     case EXCP_SMC:
 | |
|         new_mode = ARM_CPU_MODE_MON;
 | |
|         addr = 0x08;
 | |
|         mask = CPSR_A | CPSR_I | CPSR_F;
 | |
|         offset = 0;
 | |
|         break;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|         return; /* Never happens.  Keep compiler happy.  */
 | |
|     }
 | |
| 
 | |
|     if (new_mode == ARM_CPU_MODE_MON) {
 | |
|         addr += env->cp15.mvbar;
 | |
|     } else if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
 | |
|         /* High vectors. When enabled, base address cannot be remapped. */
 | |
|         addr += 0xffff0000;
 | |
|     } else {
 | |
|         /* ARM v7 architectures provide a vector base address register to remap
 | |
|          * the interrupt vector table.
 | |
|          * This register is only followed in non-monitor mode, and is banked.
 | |
|          * Note: only bits 31:5 are valid.
 | |
|          */
 | |
|         addr += A32_BANKED_CURRENT_REG_GET(env, vbar);
 | |
|     }
 | |
| 
 | |
|     if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
 | |
|         env->cp15.scr_el3 &= ~SCR_NS;
 | |
|     }
 | |
| 
 | |
|     switch_mode (env, new_mode);
 | |
|     /* For exceptions taken to AArch32 we must clear the SS bit in both
 | |
|      * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
 | |
|      */
 | |
|     env->uncached_cpsr &= ~PSTATE_SS;
 | |
|     env->spsr = cpsr_read(env);
 | |
|     /* Clear IT bits.  */
 | |
|     env->condexec_bits = 0;
 | |
|     /* Switch to the new mode, and to the correct instruction set.  */
 | |
|     env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
 | |
|     env->daif |= mask;
 | |
|     /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
 | |
|      * and we should just guard the thumb mode on V4 */
 | |
|     if (arm_feature(env, ARM_FEATURE_V4T)) {
 | |
|         env->thumb = (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_TE) != 0;
 | |
|     }
 | |
|     env->regs[14] = env->regs[15] + offset;
 | |
|     env->regs[15] = addr;
 | |
| }
 | |
| 
 | |
| /* Handle exception entry to a target EL which is using AArch64 */
 | |
| static void arm_cpu_do_interrupt_aarch64(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     unsigned int new_el = env->exception.target_el;
 | |
|     target_ulong addr = env->cp15.vbar_el[new_el];
 | |
|     unsigned int new_mode = aarch64_pstate_mode(new_el, true);
 | |
| 
 | |
|     if (arm_current_el(env) < new_el) {
 | |
|         /* Entry vector offset depends on whether the implemented EL
 | |
|          * immediately lower than the target level is using AArch32 or AArch64
 | |
|          */
 | |
|         bool is_aa64;
 | |
| 
 | |
|         switch (new_el) {
 | |
|         case 3:
 | |
|             is_aa64 = (env->cp15.scr_el3 & SCR_RW) != 0;
 | |
|             break;
 | |
|         case 2:
 | |
|             is_aa64 = (env->cp15.hcr_el2 & HCR_RW) != 0;
 | |
|             break;
 | |
|         case 1:
 | |
|             is_aa64 = is_a64(env);
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         if (is_aa64) {
 | |
|             addr += 0x400;
 | |
|         } else {
 | |
|             addr += 0x600;
 | |
|         }
 | |
|     } else if (pstate_read(env) & PSTATE_SP) {
 | |
|         addr += 0x200;
 | |
|     }
 | |
| 
 | |
|     switch (cs->exception_index) {
 | |
|     case EXCP_PREFETCH_ABORT:
 | |
|     case EXCP_DATA_ABORT:
 | |
|         env->cp15.far_el[new_el] = env->exception.vaddress;
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with FAR 0x%" PRIx64 "\n",
 | |
|                       env->cp15.far_el[new_el]);
 | |
|         /* fall through */
 | |
|     case EXCP_BKPT:
 | |
|     case EXCP_UDEF:
 | |
|     case EXCP_SWI:
 | |
|     case EXCP_HVC:
 | |
|     case EXCP_HYP_TRAP:
 | |
|     case EXCP_SMC:
 | |
|         env->cp15.esr_el[new_el] = env->exception.syndrome;
 | |
|         break;
 | |
|     case EXCP_IRQ:
 | |
|     case EXCP_VIRQ:
 | |
|         addr += 0x80;
 | |
|         break;
 | |
|     case EXCP_FIQ:
 | |
|     case EXCP_VFIQ:
 | |
|         addr += 0x100;
 | |
|         break;
 | |
|     case EXCP_SEMIHOST:
 | |
|         qemu_log_mask(CPU_LOG_INT,
 | |
|                       "...handling as semihosting call 0x%" PRIx64 "\n",
 | |
|                       env->xregs[0]);
 | |
|         env->xregs[0] = do_arm_semihosting(env);
 | |
|         return;
 | |
|     default:
 | |
|         cpu_abort(cs, "Unhandled exception 0x%x\n", cs->exception_index);
 | |
|     }
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = pstate_read(env);
 | |
|         aarch64_save_sp(env, arm_current_el(env));
 | |
|         env->elr_el[new_el] = env->pc;
 | |
|     } else {
 | |
|         env->banked_spsr[aarch64_banked_spsr_index(new_el)] = cpsr_read(env);
 | |
|         if (!env->thumb) {
 | |
|             env->cp15.esr_el[new_el] |= 1 << 25;
 | |
|         }
 | |
|         env->elr_el[new_el] = env->regs[15];
 | |
| 
 | |
|         aarch64_sync_32_to_64(env);
 | |
| 
 | |
|         env->condexec_bits = 0;
 | |
|     }
 | |
|     qemu_log_mask(CPU_LOG_INT, "...with ELR 0x%" PRIx64 "\n",
 | |
|                   env->elr_el[new_el]);
 | |
| 
 | |
|     pstate_write(env, PSTATE_DAIF | new_mode);
 | |
|     env->aarch64 = 1;
 | |
|     aarch64_restore_sp(env, new_el);
 | |
| 
 | |
|     env->pc = addr;
 | |
| 
 | |
|     qemu_log_mask(CPU_LOG_INT, "...to EL%d PC 0x%" PRIx64 " PSTATE 0x%x\n",
 | |
|                   new_el, env->pc, pstate_read(env));
 | |
| }
 | |
| 
 | |
| static inline bool check_for_semihosting(CPUState *cs)
 | |
| {
 | |
|     /* Check whether this exception is a semihosting call; if so
 | |
|      * then handle it and return true; otherwise return false.
 | |
|      */
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         if (cs->exception_index == EXCP_SEMIHOST) {
 | |
|             /* This is always the 64-bit semihosting exception.
 | |
|              * The "is this usermode" and "is semihosting enabled"
 | |
|              * checks have been done at translate time.
 | |
|              */
 | |
|             qemu_log_mask(CPU_LOG_INT,
 | |
|                           "...handling as semihosting call 0x%" PRIx64 "\n",
 | |
|                           env->xregs[0]);
 | |
|             env->xregs[0] = do_arm_semihosting(env);
 | |
|             return true;
 | |
|         }
 | |
|         return false;
 | |
|     } else {
 | |
|         uint32_t imm;
 | |
| 
 | |
|         /* Only intercept calls from privileged modes, to provide some
 | |
|          * semblance of security.
 | |
|          */
 | |
|         if (!semihosting_enabled() ||
 | |
|             ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR)) {
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         switch (cs->exception_index) {
 | |
|         case EXCP_SWI:
 | |
|             /* Check for semihosting interrupt.  */
 | |
|             if (env->thumb) {
 | |
|                 imm = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
 | |
|                     & 0xff;
 | |
|                 if (imm == 0xab) {
 | |
|                     break;
 | |
|                 }
 | |
|             } else {
 | |
|                 imm = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
 | |
|                     & 0xffffff;
 | |
|                 if (imm == 0x123456) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             return false;
 | |
|         case EXCP_BKPT:
 | |
|             /* See if this is a semihosting syscall.  */
 | |
|             if (env->thumb) {
 | |
|                 imm = arm_lduw_code(env, env->regs[15], env->bswap_code)
 | |
|                     & 0xff;
 | |
|                 if (imm == 0xab) {
 | |
|                     env->regs[15] += 2;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             return false;
 | |
|         default:
 | |
|             return false;
 | |
|         }
 | |
| 
 | |
|         qemu_log_mask(CPU_LOG_INT,
 | |
|                       "...handling as semihosting call 0x%x\n",
 | |
|                       env->regs[0]);
 | |
|         env->regs[0] = do_arm_semihosting(env);
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Handle a CPU exception for A and R profile CPUs.
 | |
|  * Do any appropriate logging, handle PSCI calls, and then hand off
 | |
|  * to the AArch64-entry or AArch32-entry function depending on the
 | |
|  * target exception level's register width.
 | |
|  */
 | |
| void arm_cpu_do_interrupt(CPUState *cs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     unsigned int new_el = env->exception.target_el;
 | |
| 
 | |
|     assert(!IS_M(env));
 | |
| 
 | |
|     arm_log_exception(cs->exception_index);
 | |
|     qemu_log_mask(CPU_LOG_INT, "...from EL%d to EL%d\n", arm_current_el(env),
 | |
|                   new_el);
 | |
|     if (qemu_loglevel_mask(CPU_LOG_INT)
 | |
|         && !excp_is_internal(cs->exception_index)) {
 | |
|         qemu_log_mask(CPU_LOG_INT, "...with ESR %x/0x%" PRIx32 "\n",
 | |
|                       env->exception.syndrome >> ARM_EL_EC_SHIFT,
 | |
|                       env->exception.syndrome);
 | |
|     }
 | |
| 
 | |
|     if (arm_is_psci_call(cpu, cs->exception_index)) {
 | |
|         arm_handle_psci_call(cpu);
 | |
|         qemu_log_mask(CPU_LOG_INT, "...handled as PSCI call\n");
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Semihosting semantics depend on the register width of the
 | |
|      * code that caused the exception, not the target exception level,
 | |
|      * so must be handled here.
 | |
|      */
 | |
|     if (check_for_semihosting(cs)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert(!excp_is_internal(cs->exception_index));
 | |
|     if (arm_el_is_aa64(env, new_el)) {
 | |
|         arm_cpu_do_interrupt_aarch64(cs);
 | |
|     } else {
 | |
|         arm_cpu_do_interrupt_aarch32(cs);
 | |
|     }
 | |
| 
 | |
|     if (!kvm_enabled()) {
 | |
|         cs->interrupt_request |= CPU_INTERRUPT_EXITTB;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the exception level which controls this address translation regime */
 | |
| static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_S2NS:
 | |
|     case ARMMMUIdx_S1E2:
 | |
|         return 2;
 | |
|     case ARMMMUIdx_S1E3:
 | |
|         return 3;
 | |
|     case ARMMMUIdx_S1SE0:
 | |
|         return arm_el_is_aa64(env, 3) ? 1 : 3;
 | |
|     case ARMMMUIdx_S1SE1:
 | |
|     case ARMMMUIdx_S1NSE0:
 | |
|     case ARMMMUIdx_S1NSE1:
 | |
|         return 1;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if this address translation regime is secure */
 | |
| static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_S12NSE0:
 | |
|     case ARMMMUIdx_S12NSE1:
 | |
|     case ARMMMUIdx_S1NSE0:
 | |
|     case ARMMMUIdx_S1NSE1:
 | |
|     case ARMMMUIdx_S1E2:
 | |
|     case ARMMMUIdx_S2NS:
 | |
|         return false;
 | |
|     case ARMMMUIdx_S1E3:
 | |
|     case ARMMMUIdx_S1SE0:
 | |
|     case ARMMMUIdx_S1SE1:
 | |
|         return true;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the SCTLR value which controls this address translation regime */
 | |
| static inline uint32_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
 | |
| }
 | |
| 
 | |
| /* Return true if the specified stage of address translation is disabled */
 | |
| static inline bool regime_translation_disabled(CPUARMState *env,
 | |
|                                                ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_S2NS) {
 | |
|         return (env->cp15.hcr_el2 & HCR_VM) == 0;
 | |
|     }
 | |
|     return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
 | |
| }
 | |
| 
 | |
| /* Return the TCR controlling this translation regime */
 | |
| static inline TCR *regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_S2NS) {
 | |
|         return &env->cp15.vtcr_el2;
 | |
|     }
 | |
|     return &env->cp15.tcr_el[regime_el(env, mmu_idx)];
 | |
| }
 | |
| 
 | |
| /* Return the TTBR associated with this translation regime */
 | |
| static inline uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                    int ttbrn)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_S2NS) {
 | |
|         return env->cp15.vttbr_el2;
 | |
|     }
 | |
|     if (ttbrn == 0) {
 | |
|         return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
 | |
|     } else {
 | |
|         return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if the translation regime is using LPAE format page tables */
 | |
| static inline bool regime_using_lpae_format(CPUARMState *env,
 | |
|                                             ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     int el = regime_el(env, mmu_idx);
 | |
|     if (el == 2 || arm_el_is_aa64(env, el)) {
 | |
|         return true;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_LPAE)
 | |
|         && (regime_tcr(env, mmu_idx)->raw_tcr & TTBCR_EAE)) {
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Returns true if the stage 1 translation regime is using LPAE format page
 | |
|  * tables. Used when raising alignment exceptions, whose FSR changes depending
 | |
|  * on whether the long or short descriptor format is in use. */
 | |
| bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
 | |
|         mmu_idx += ARMMMUIdx_S1NSE0;
 | |
|     }
 | |
| 
 | |
|     return regime_using_lpae_format(env, mmu_idx);
 | |
| }
 | |
| 
 | |
| static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx) {
 | |
|     case ARMMMUIdx_S1SE0:
 | |
|     case ARMMMUIdx_S1NSE0:
 | |
|         return true;
 | |
|     default:
 | |
|         return false;
 | |
|     case ARMMMUIdx_S12NSE0:
 | |
|     case ARMMMUIdx_S12NSE1:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Translate section/page access permissions to page
 | |
|  * R/W protection flags
 | |
|  *
 | |
|  * @env:         CPUARMState
 | |
|  * @mmu_idx:     MMU index indicating required translation regime
 | |
|  * @ap:          The 3-bit access permissions (AP[2:0])
 | |
|  * @domain_prot: The 2-bit domain access permissions
 | |
|  */
 | |
| static inline int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                 int ap, int domain_prot)
 | |
| {
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     if (domain_prot == 3) {
 | |
|         return PAGE_READ | PAGE_WRITE;
 | |
|     }
 | |
| 
 | |
|     switch (ap) {
 | |
|     case 0:
 | |
|         if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|             return 0;
 | |
|         }
 | |
|         switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
 | |
|         case SCTLR_S:
 | |
|             return is_user ? 0 : PAGE_READ;
 | |
|         case SCTLR_R:
 | |
|             return PAGE_READ;
 | |
|         default:
 | |
|             return 0;
 | |
|         }
 | |
|     case 1:
 | |
|         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | |
|     case 2:
 | |
|         if (is_user) {
 | |
|             return PAGE_READ;
 | |
|         } else {
 | |
|             return PAGE_READ | PAGE_WRITE;
 | |
|         }
 | |
|     case 3:
 | |
|         return PAGE_READ | PAGE_WRITE;
 | |
|     case 4: /* Reserved.  */
 | |
|         return 0;
 | |
|     case 5:
 | |
|         return is_user ? 0 : PAGE_READ;
 | |
|     case 6:
 | |
|         return PAGE_READ;
 | |
|     case 7:
 | |
|         if (!arm_feature(env, ARM_FEATURE_V6K)) {
 | |
|             return 0;
 | |
|         }
 | |
|         return PAGE_READ;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Translate section/page access permissions to page
 | |
|  * R/W protection flags.
 | |
|  *
 | |
|  * @ap:      The 2-bit simple AP (AP[2:1])
 | |
|  * @is_user: TRUE if accessing from PL0
 | |
|  */
 | |
| static inline int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
 | |
| {
 | |
|     switch (ap) {
 | |
|     case 0:
 | |
|         return is_user ? 0 : PAGE_READ | PAGE_WRITE;
 | |
|     case 1:
 | |
|         return PAGE_READ | PAGE_WRITE;
 | |
|     case 2:
 | |
|         return is_user ? 0 : PAGE_READ;
 | |
|     case 3:
 | |
|         return PAGE_READ;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
 | |
| {
 | |
|     return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
 | |
| }
 | |
| 
 | |
| /* Translate S2 section/page access permissions to protection flags
 | |
|  *
 | |
|  * @env:     CPUARMState
 | |
|  * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 | |
|  * @xn:      XN (execute-never) bit
 | |
|  */
 | |
| static int get_S2prot(CPUARMState *env, int s2ap, int xn)
 | |
| {
 | |
|     int prot = 0;
 | |
| 
 | |
|     if (s2ap & 1) {
 | |
|         prot |= PAGE_READ;
 | |
|     }
 | |
|     if (s2ap & 2) {
 | |
|         prot |= PAGE_WRITE;
 | |
|     }
 | |
|     if (!xn) {
 | |
|         prot |= PAGE_EXEC;
 | |
|     }
 | |
|     return prot;
 | |
| }
 | |
| 
 | |
| /* Translate section/page access permissions to protection flags
 | |
|  *
 | |
|  * @env:     CPUARMState
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  * @is_aa64: TRUE if AArch64
 | |
|  * @ap:      The 2-bit simple AP (AP[2:1])
 | |
|  * @ns:      NS (non-secure) bit
 | |
|  * @xn:      XN (execute-never) bit
 | |
|  * @pxn:     PXN (privileged execute-never) bit
 | |
|  */
 | |
| static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
 | |
|                       int ap, int ns, int xn, int pxn)
 | |
| {
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
|     int prot_rw, user_rw;
 | |
|     bool have_wxn;
 | |
|     int wxn = 0;
 | |
| 
 | |
|     assert(mmu_idx != ARMMMUIdx_S2NS);
 | |
| 
 | |
|     user_rw = simple_ap_to_rw_prot_is_user(ap, true);
 | |
|     if (is_user) {
 | |
|         prot_rw = user_rw;
 | |
|     } else {
 | |
|         prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
 | |
|     }
 | |
| 
 | |
|     if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
 | |
|         return prot_rw;
 | |
|     }
 | |
| 
 | |
|     /* TODO have_wxn should be replaced with
 | |
|      *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
 | |
|      * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
 | |
|      * compatible processors have EL2, which is required for [U]WXN.
 | |
|      */
 | |
|     have_wxn = arm_feature(env, ARM_FEATURE_LPAE);
 | |
| 
 | |
|     if (have_wxn) {
 | |
|         wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
 | |
|     }
 | |
| 
 | |
|     if (is_aa64) {
 | |
|         switch (regime_el(env, mmu_idx)) {
 | |
|         case 1:
 | |
|             if (!is_user) {
 | |
|                 xn = pxn || (user_rw & PAGE_WRITE);
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|         case 3:
 | |
|             break;
 | |
|         }
 | |
|     } else if (arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         switch (regime_el(env, mmu_idx)) {
 | |
|         case 1:
 | |
|         case 3:
 | |
|             if (is_user) {
 | |
|                 xn = xn || !(user_rw & PAGE_READ);
 | |
|             } else {
 | |
|                 int uwxn = 0;
 | |
|                 if (have_wxn) {
 | |
|                     uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
 | |
|                 }
 | |
|                 xn = xn || !(prot_rw & PAGE_READ) || pxn ||
 | |
|                      (uwxn && (user_rw & PAGE_WRITE));
 | |
|             }
 | |
|             break;
 | |
|         case 2:
 | |
|             break;
 | |
|         }
 | |
|     } else {
 | |
|         xn = wxn = 0;
 | |
|     }
 | |
| 
 | |
|     if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
 | |
|         return prot_rw;
 | |
|     }
 | |
|     return prot_rw | PAGE_EXEC;
 | |
| }
 | |
| 
 | |
| static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                      uint32_t *table, uint32_t address)
 | |
| {
 | |
|     /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
 | |
|     TCR *tcr = regime_tcr(env, mmu_idx);
 | |
| 
 | |
|     if (address & tcr->mask) {
 | |
|         if (tcr->raw_tcr & TTBCR_PD1) {
 | |
|             /* Translation table walk disabled for TTBR1 */
 | |
|             return false;
 | |
|         }
 | |
|         *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
 | |
|     } else {
 | |
|         if (tcr->raw_tcr & TTBCR_PD0) {
 | |
|             /* Translation table walk disabled for TTBR0 */
 | |
|             return false;
 | |
|         }
 | |
|         *table = regime_ttbr(env, mmu_idx, 0) & tcr->base_mask;
 | |
|     }
 | |
|     *table |= (address >> 18) & 0x3ffc;
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Translate a S1 pagetable walk through S2 if needed.  */
 | |
| static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
 | |
|                                hwaddr addr, MemTxAttrs txattrs,
 | |
|                                uint32_t *fsr,
 | |
|                                ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     if ((mmu_idx == ARMMMUIdx_S1NSE0 || mmu_idx == ARMMMUIdx_S1NSE1) &&
 | |
|         !regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
 | |
|         target_ulong s2size;
 | |
|         hwaddr s2pa;
 | |
|         int s2prot;
 | |
|         int ret;
 | |
| 
 | |
|         ret = get_phys_addr_lpae(env, addr, 0, ARMMMUIdx_S2NS, &s2pa,
 | |
|                                  &txattrs, &s2prot, &s2size, fsr, fi);
 | |
|         if (ret) {
 | |
|             fi->s2addr = addr;
 | |
|             fi->stage2 = true;
 | |
|             fi->s1ptw = true;
 | |
|             return ~0;
 | |
|         }
 | |
|         addr = s2pa;
 | |
|     }
 | |
|     return addr;
 | |
| }
 | |
| 
 | |
| /* All loads done in the course of a page table walk go through here.
 | |
|  * TODO: rather than ignoring errors from physical memory reads (which
 | |
|  * are external aborts in ARM terminology) we should propagate this
 | |
|  * error out so that we can turn it into a Data Abort if this walk
 | |
|  * was being done for a CPU load/store or an address translation instruction
 | |
|  * (but not if it was for a debug access).
 | |
|  */
 | |
| static uint32_t arm_ldl_ptw(CPUState *cs, hwaddr addr, bool is_secure,
 | |
|                             ARMMMUIdx mmu_idx, uint32_t *fsr,
 | |
|                             ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     MemTxAttrs attrs = {};
 | |
|     AddressSpace *as;
 | |
| 
 | |
|     attrs.secure = is_secure;
 | |
|     as = arm_addressspace(cs, attrs);
 | |
|     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
 | |
|     if (fi->s1ptw) {
 | |
|         return 0;
 | |
|     }
 | |
|     return address_space_ldl(as, addr, attrs, NULL);
 | |
| }
 | |
| 
 | |
| static uint64_t arm_ldq_ptw(CPUState *cs, hwaddr addr, bool is_secure,
 | |
|                             ARMMMUIdx mmu_idx, uint32_t *fsr,
 | |
|                             ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     MemTxAttrs attrs = {};
 | |
|     AddressSpace *as;
 | |
| 
 | |
|     attrs.secure = is_secure;
 | |
|     as = arm_addressspace(cs, attrs);
 | |
|     addr = S1_ptw_translate(env, mmu_idx, addr, attrs, fsr, fi);
 | |
|     if (fi->s1ptw) {
 | |
|         return 0;
 | |
|     }
 | |
|     return address_space_ldq(as, addr, attrs, NULL);
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
 | |
|                              int access_type, ARMMMUIdx mmu_idx,
 | |
|                              hwaddr *phys_ptr, int *prot,
 | |
|                              target_ulong *page_size, uint32_t *fsr,
 | |
|                              ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
|     int code;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain = 0;
 | |
|     int domain_prot;
 | |
|     hwaddr phys_addr;
 | |
|     uint32_t dacr;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
 | |
|         /* Section translation fault if page walk is disabled by PD0 or PD1 */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                        mmu_idx, fsr, fi);
 | |
|     type = (desc & 3);
 | |
|     domain = (desc >> 5) & 0x0f;
 | |
|     if (regime_el(env, mmu_idx) == 1) {
 | |
|         dacr = env->cp15.dacr_ns;
 | |
|     } else {
 | |
|         dacr = env->cp15.dacr_s;
 | |
|     }
 | |
|     domain_prot = (dacr >> (domain * 2)) & 3;
 | |
|     if (type == 0) {
 | |
|         /* Section translation fault.  */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (domain_prot == 0 || domain_prot == 2) {
 | |
|         if (type == 2)
 | |
|             code = 9; /* Section domain fault.  */
 | |
|         else
 | |
|             code = 11; /* Page domain fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type == 2) {
 | |
|         /* 1Mb section.  */
 | |
|         phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|         ap = (desc >> 10) & 3;
 | |
|         code = 13;
 | |
|         *page_size = 1024 * 1024;
 | |
|     } else {
 | |
|         /* Lookup l2 entry.  */
 | |
|         if (type == 1) {
 | |
|             /* Coarse pagetable.  */
 | |
|             table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
|         } else {
 | |
|             /* Fine pagetable.  */
 | |
|             table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
 | |
|         }
 | |
|         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                            mmu_idx, fsr, fi);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             code = 7;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
 | |
|             if (type == 1) {
 | |
|                 /* ARMv6/XScale extended small page format */
 | |
|                 if (arm_feature(env, ARM_FEATURE_XSCALE)
 | |
|                     || arm_feature(env, ARM_FEATURE_V6)) {
 | |
|                     phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|                     *page_size = 0x1000;
 | |
|                 } else {
 | |
|                     /* UNPREDICTABLE in ARMv5; we choose to take a
 | |
|                      * page translation fault.
 | |
|                      */
 | |
|                     code = 7;
 | |
|                     goto do_fault;
 | |
|                 }
 | |
|             } else {
 | |
|                 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
 | |
|                 *page_size = 0x400;
 | |
|             }
 | |
|             ap = (desc >> 4) & 3;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|         code = 15;
 | |
|     }
 | |
|     *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
 | |
|     *prot |= *prot ? PAGE_EXEC : 0;
 | |
|     if (!(*prot & (1 << access_type))) {
 | |
|         /* Access permission fault.  */
 | |
|         goto do_fault;
 | |
|     }
 | |
|     *phys_ptr = phys_addr;
 | |
|     return false;
 | |
| do_fault:
 | |
|     *fsr = code | (domain << 4);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
 | |
|                              int access_type, ARMMMUIdx mmu_idx,
 | |
|                              hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | |
|                              target_ulong *page_size, uint32_t *fsr,
 | |
|                              ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
|     int code;
 | |
|     uint32_t table;
 | |
|     uint32_t desc;
 | |
|     uint32_t xn;
 | |
|     uint32_t pxn = 0;
 | |
|     int type;
 | |
|     int ap;
 | |
|     int domain = 0;
 | |
|     int domain_prot;
 | |
|     hwaddr phys_addr;
 | |
|     uint32_t dacr;
 | |
|     bool ns;
 | |
| 
 | |
|     /* Pagetable walk.  */
 | |
|     /* Lookup l1 descriptor.  */
 | |
|     if (!get_level1_table_address(env, mmu_idx, &table, address)) {
 | |
|         /* Section translation fault if page walk is disabled by PD0 or PD1 */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                        mmu_idx, fsr, fi);
 | |
|     type = (desc & 3);
 | |
|     if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
 | |
|         /* Section translation fault, or attempt to use the encoding
 | |
|          * which is Reserved on implementations without PXN.
 | |
|          */
 | |
|         code = 5;
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if ((type == 1) || !(desc & (1 << 18))) {
 | |
|         /* Page or Section.  */
 | |
|         domain = (desc >> 5) & 0x0f;
 | |
|     }
 | |
|     if (regime_el(env, mmu_idx) == 1) {
 | |
|         dacr = env->cp15.dacr_ns;
 | |
|     } else {
 | |
|         dacr = env->cp15.dacr_s;
 | |
|     }
 | |
|     domain_prot = (dacr >> (domain * 2)) & 3;
 | |
|     if (domain_prot == 0 || domain_prot == 2) {
 | |
|         if (type != 1) {
 | |
|             code = 9; /* Section domain fault.  */
 | |
|         } else {
 | |
|             code = 11; /* Page domain fault.  */
 | |
|         }
 | |
|         goto do_fault;
 | |
|     }
 | |
|     if (type != 1) {
 | |
|         if (desc & (1 << 18)) {
 | |
|             /* Supersection.  */
 | |
|             phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
 | |
|             phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
 | |
|             phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
 | |
|             *page_size = 0x1000000;
 | |
|         } else {
 | |
|             /* Section.  */
 | |
|             phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
 | |
|             *page_size = 0x100000;
 | |
|         }
 | |
|         ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
 | |
|         xn = desc & (1 << 4);
 | |
|         pxn = desc & 1;
 | |
|         code = 13;
 | |
|         ns = extract32(desc, 19, 1);
 | |
|     } else {
 | |
|         if (arm_feature(env, ARM_FEATURE_PXN)) {
 | |
|             pxn = (desc >> 2) & 1;
 | |
|         }
 | |
|         ns = extract32(desc, 3, 1);
 | |
|         /* Lookup l2 entry.  */
 | |
|         table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
 | |
|         desc = arm_ldl_ptw(cs, table, regime_is_secure(env, mmu_idx),
 | |
|                            mmu_idx, fsr, fi);
 | |
|         ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
 | |
|         switch (desc & 3) {
 | |
|         case 0: /* Page translation fault.  */
 | |
|             code = 7;
 | |
|             goto do_fault;
 | |
|         case 1: /* 64k page.  */
 | |
|             phys_addr = (desc & 0xffff0000) | (address & 0xffff);
 | |
|             xn = desc & (1 << 15);
 | |
|             *page_size = 0x10000;
 | |
|             break;
 | |
|         case 2: case 3: /* 4k page.  */
 | |
|             phys_addr = (desc & 0xfffff000) | (address & 0xfff);
 | |
|             xn = desc & 1;
 | |
|             *page_size = 0x1000;
 | |
|             break;
 | |
|         default:
 | |
|             /* Never happens, but compiler isn't smart enough to tell.  */
 | |
|             abort();
 | |
|         }
 | |
|         code = 15;
 | |
|     }
 | |
|     if (domain_prot == 3) {
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|     } else {
 | |
|         if (pxn && !regime_is_user(env, mmu_idx)) {
 | |
|             xn = 1;
 | |
|         }
 | |
|         if (xn && access_type == 2)
 | |
|             goto do_fault;
 | |
| 
 | |
|         if (arm_feature(env, ARM_FEATURE_V6K) &&
 | |
|                 (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
 | |
|             /* The simplified model uses AP[0] as an access control bit.  */
 | |
|             if ((ap & 1) == 0) {
 | |
|                 /* Access flag fault.  */
 | |
|                 code = (code == 15) ? 6 : 3;
 | |
|                 goto do_fault;
 | |
|             }
 | |
|             *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
 | |
|         } else {
 | |
|             *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
 | |
|         }
 | |
|         if (*prot && !xn) {
 | |
|             *prot |= PAGE_EXEC;
 | |
|         }
 | |
|         if (!(*prot & (1 << access_type))) {
 | |
|             /* Access permission fault.  */
 | |
|             goto do_fault;
 | |
|         }
 | |
|     }
 | |
|     if (ns) {
 | |
|         /* The NS bit will (as required by the architecture) have no effect if
 | |
|          * the CPU doesn't support TZ or this is a non-secure translation
 | |
|          * regime, because the attribute will already be non-secure.
 | |
|          */
 | |
|         attrs->secure = false;
 | |
|     }
 | |
|     *phys_ptr = phys_addr;
 | |
|     return false;
 | |
| do_fault:
 | |
|     *fsr = code | (domain << 4);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /* Fault type for long-descriptor MMU fault reporting; this corresponds
 | |
|  * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
 | |
|  */
 | |
| typedef enum {
 | |
|     translation_fault = 1,
 | |
|     access_fault = 2,
 | |
|     permission_fault = 3,
 | |
| } MMUFaultType;
 | |
| 
 | |
| /*
 | |
|  * check_s2_mmu_setup
 | |
|  * @cpu:        ARMCPU
 | |
|  * @is_aa64:    True if the translation regime is in AArch64 state
 | |
|  * @startlevel: Suggested starting level
 | |
|  * @inputsize:  Bitsize of IPAs
 | |
|  * @stride:     Page-table stride (See the ARM ARM)
 | |
|  *
 | |
|  * Returns true if the suggested S2 translation parameters are OK and
 | |
|  * false otherwise.
 | |
|  */
 | |
| static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
 | |
|                                int inputsize, int stride)
 | |
| {
 | |
|     const int grainsize = stride + 3;
 | |
|     int startsizecheck;
 | |
| 
 | |
|     /* Negative levels are never allowed.  */
 | |
|     if (level < 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     startsizecheck = inputsize - ((3 - level) * stride + grainsize);
 | |
|     if (startsizecheck < 1 || startsizecheck > stride + 4) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (is_aa64) {
 | |
|         CPUARMState *env = &cpu->env;
 | |
|         unsigned int pamax = arm_pamax(cpu);
 | |
| 
 | |
|         switch (stride) {
 | |
|         case 13: /* 64KB Pages.  */
 | |
|             if (level == 0 || (level == 1 && pamax <= 42)) {
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         case 11: /* 16KB Pages.  */
 | |
|             if (level == 0 || (level == 1 && pamax <= 40)) {
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         case 9: /* 4KB Pages.  */
 | |
|             if (level == 0 && pamax <= 42) {
 | |
|                 return false;
 | |
|             }
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         /* Inputsize checks.  */
 | |
|         if (inputsize > pamax &&
 | |
|             (arm_el_is_aa64(env, 1) || inputsize > 40)) {
 | |
|             /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
 | |
|             return false;
 | |
|         }
 | |
|     } else {
 | |
|         /* AArch32 only supports 4KB pages. Assert on that.  */
 | |
|         assert(stride == 9);
 | |
| 
 | |
|         if (level == 0) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_lpae(CPUARMState *env, target_ulong address,
 | |
|                                int access_type, ARMMMUIdx mmu_idx,
 | |
|                                hwaddr *phys_ptr, MemTxAttrs *txattrs, int *prot,
 | |
|                                target_ulong *page_size_ptr, uint32_t *fsr,
 | |
|                                ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
|     /* Read an LPAE long-descriptor translation table. */
 | |
|     MMUFaultType fault_type = translation_fault;
 | |
|     uint32_t level = 1;
 | |
|     uint32_t epd = 0;
 | |
|     int32_t t0sz, t1sz;
 | |
|     uint32_t tg;
 | |
|     uint64_t ttbr;
 | |
|     int ttbr_select;
 | |
|     hwaddr descaddr, descmask;
 | |
|     uint32_t tableattrs;
 | |
|     target_ulong page_size;
 | |
|     uint32_t attrs;
 | |
|     int32_t stride = 9;
 | |
|     int32_t va_size = 32;
 | |
|     int inputsize;
 | |
|     int32_t tbi = 0;
 | |
|     TCR *tcr = regime_tcr(env, mmu_idx);
 | |
|     int ap, ns, xn, pxn;
 | |
|     uint32_t el = regime_el(env, mmu_idx);
 | |
|     bool ttbr1_valid = true;
 | |
|     uint64_t descaddrmask;
 | |
| 
 | |
|     /* TODO:
 | |
|      * This code does not handle the different format TCR for VTCR_EL2.
 | |
|      * This code also does not support shareability levels.
 | |
|      * Attribute and permission bit handling should also be checked when adding
 | |
|      * support for those page table walks.
 | |
|      */
 | |
|     if (arm_el_is_aa64(env, el)) {
 | |
|         va_size = 64;
 | |
|         if (el > 1) {
 | |
|             if (mmu_idx != ARMMMUIdx_S2NS) {
 | |
|                 tbi = extract64(tcr->raw_tcr, 20, 1);
 | |
|             }
 | |
|         } else {
 | |
|             if (extract64(address, 55, 1)) {
 | |
|                 tbi = extract64(tcr->raw_tcr, 38, 1);
 | |
|             } else {
 | |
|                 tbi = extract64(tcr->raw_tcr, 37, 1);
 | |
|             }
 | |
|         }
 | |
|         tbi *= 8;
 | |
| 
 | |
|         /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
 | |
|          * invalid.
 | |
|          */
 | |
|         if (el > 1) {
 | |
|             ttbr1_valid = false;
 | |
|         }
 | |
|     } else {
 | |
|         /* There is no TTBR1 for EL2 */
 | |
|         if (el == 2) {
 | |
|             ttbr1_valid = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Determine whether this address is in the region controlled by
 | |
|      * TTBR0 or TTBR1 (or if it is in neither region and should fault).
 | |
|      * This is a Non-secure PL0/1 stage 1 translation, so controlled by
 | |
|      * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
 | |
|      */
 | |
|     if (va_size == 64) {
 | |
|         /* AArch64 translation.  */
 | |
|         t0sz = extract32(tcr->raw_tcr, 0, 6);
 | |
|         t0sz = MIN(t0sz, 39);
 | |
|         t0sz = MAX(t0sz, 16);
 | |
|     } else if (mmu_idx != ARMMMUIdx_S2NS) {
 | |
|         /* AArch32 stage 1 translation.  */
 | |
|         t0sz = extract32(tcr->raw_tcr, 0, 3);
 | |
|     } else {
 | |
|         /* AArch32 stage 2 translation.  */
 | |
|         bool sext = extract32(tcr->raw_tcr, 4, 1);
 | |
|         bool sign = extract32(tcr->raw_tcr, 3, 1);
 | |
|         t0sz = sextract32(tcr->raw_tcr, 0, 4);
 | |
| 
 | |
|         /* If the sign-extend bit is not the same as t0sz[3], the result
 | |
|          * is unpredictable. Flag this as a guest error.  */
 | |
|         if (sign != sext) {
 | |
|             qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                           "AArch32: VTCR.S / VTCR.T0SZ[3] missmatch\n");
 | |
|         }
 | |
|     }
 | |
|     t1sz = extract32(tcr->raw_tcr, 16, 6);
 | |
|     if (va_size == 64) {
 | |
|         t1sz = MIN(t1sz, 39);
 | |
|         t1sz = MAX(t1sz, 16);
 | |
|     }
 | |
|     if (t0sz && !extract64(address, va_size - t0sz, t0sz - tbi)) {
 | |
|         /* there is a ttbr0 region and we are in it (high bits all zero) */
 | |
|         ttbr_select = 0;
 | |
|     } else if (ttbr1_valid && t1sz &&
 | |
|                !extract64(~address, va_size - t1sz, t1sz - tbi)) {
 | |
|         /* there is a ttbr1 region and we are in it (high bits all one) */
 | |
|         ttbr_select = 1;
 | |
|     } else if (!t0sz) {
 | |
|         /* ttbr0 region is "everything not in the ttbr1 region" */
 | |
|         ttbr_select = 0;
 | |
|     } else if (!t1sz && ttbr1_valid) {
 | |
|         /* ttbr1 region is "everything not in the ttbr0 region" */
 | |
|         ttbr_select = 1;
 | |
|     } else {
 | |
|         /* in the gap between the two regions, this is a Translation fault */
 | |
|         fault_type = translation_fault;
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     /* Note that QEMU ignores shareability and cacheability attributes,
 | |
|      * so we don't need to do anything with the SH, ORGN, IRGN fields
 | |
|      * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
 | |
|      * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
 | |
|      * implement any ASID-like capability so we can ignore it (instead
 | |
|      * we will always flush the TLB any time the ASID is changed).
 | |
|      */
 | |
|     if (ttbr_select == 0) {
 | |
|         ttbr = regime_ttbr(env, mmu_idx, 0);
 | |
|         if (el < 2) {
 | |
|             epd = extract32(tcr->raw_tcr, 7, 1);
 | |
|         }
 | |
|         inputsize = va_size - t0sz;
 | |
| 
 | |
|         tg = extract32(tcr->raw_tcr, 14, 2);
 | |
|         if (tg == 1) { /* 64KB pages */
 | |
|             stride = 13;
 | |
|         }
 | |
|         if (tg == 2) { /* 16KB pages */
 | |
|             stride = 11;
 | |
|         }
 | |
|     } else {
 | |
|         /* We should only be here if TTBR1 is valid */
 | |
|         assert(ttbr1_valid);
 | |
| 
 | |
|         ttbr = regime_ttbr(env, mmu_idx, 1);
 | |
|         epd = extract32(tcr->raw_tcr, 23, 1);
 | |
|         inputsize = va_size - t1sz;
 | |
| 
 | |
|         tg = extract32(tcr->raw_tcr, 30, 2);
 | |
|         if (tg == 3)  { /* 64KB pages */
 | |
|             stride = 13;
 | |
|         }
 | |
|         if (tg == 1) { /* 16KB pages */
 | |
|             stride = 11;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Here we should have set up all the parameters for the translation:
 | |
|      * va_size, inputsize, ttbr, epd, stride, tbi
 | |
|      */
 | |
| 
 | |
|     if (epd) {
 | |
|         /* Translation table walk disabled => Translation fault on TLB miss
 | |
|          * Note: This is always 0 on 64-bit EL2 and EL3.
 | |
|          */
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     if (mmu_idx != ARMMMUIdx_S2NS) {
 | |
|         /* The starting level depends on the virtual address size (which can
 | |
|          * be up to 48 bits) and the translation granule size. It indicates
 | |
|          * the number of strides (stride bits at a time) needed to
 | |
|          * consume the bits of the input address. In the pseudocode this is:
 | |
|          *  level = 4 - RoundUp((inputsize - grainsize) / stride)
 | |
|          * where their 'inputsize' is our 'inputsize', 'grainsize' is
 | |
|          * our 'stride + 3' and 'stride' is our 'stride'.
 | |
|          * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
 | |
|          * = 4 - (inputsize - stride - 3 + stride - 1) / stride
 | |
|          * = 4 - (inputsize - 4) / stride;
 | |
|          */
 | |
|         level = 4 - (inputsize - 4) / stride;
 | |
|     } else {
 | |
|         /* For stage 2 translations the starting level is specified by the
 | |
|          * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
 | |
|          */
 | |
|         int startlevel = extract32(tcr->raw_tcr, 6, 2);
 | |
|         bool ok;
 | |
| 
 | |
|         if (va_size == 32 || stride == 9) {
 | |
|             /* AArch32 or 4KB pages */
 | |
|             level = 2 - startlevel;
 | |
|         } else {
 | |
|             /* 16KB or 64KB pages */
 | |
|             level = 3 - startlevel;
 | |
|         }
 | |
| 
 | |
|         /* Check that the starting level is valid. */
 | |
|         ok = check_s2_mmu_setup(cpu, va_size == 64, level, inputsize, stride);
 | |
|         if (!ok) {
 | |
|             /* AArch64 reports these as level 0 faults.
 | |
|              * AArch32 reports these as level 1 faults.
 | |
|              */
 | |
|             level = va_size == 64 ? 0 : 1;
 | |
|             fault_type = translation_fault;
 | |
|             goto do_fault;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Clear the vaddr bits which aren't part of the within-region address,
 | |
|      * so that we don't have to special case things when calculating the
 | |
|      * first descriptor address.
 | |
|      */
 | |
|     if (va_size != inputsize) {
 | |
|         address &= (1ULL << inputsize) - 1;
 | |
|     }
 | |
| 
 | |
|     descmask = (1ULL << (stride + 3)) - 1;
 | |
| 
 | |
|     /* Now we can extract the actual base address from the TTBR */
 | |
|     descaddr = extract64(ttbr, 0, 48);
 | |
|     descaddr &= ~((1ULL << (inputsize - (stride * (4 - level)))) - 1);
 | |
| 
 | |
|     /* The address field in the descriptor goes up to bit 39 for ARMv7
 | |
|      * but up to bit 47 for ARMv8.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         descaddrmask = 0xfffffffff000ULL;
 | |
|     } else {
 | |
|         descaddrmask = 0xfffffff000ULL;
 | |
|     }
 | |
| 
 | |
|     /* Secure accesses start with the page table in secure memory and
 | |
|      * can be downgraded to non-secure at any step. Non-secure accesses
 | |
|      * remain non-secure. We implement this by just ORing in the NSTable/NS
 | |
|      * bits at each step.
 | |
|      */
 | |
|     tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
 | |
|     for (;;) {
 | |
|         uint64_t descriptor;
 | |
|         bool nstable;
 | |
| 
 | |
|         descaddr |= (address >> (stride * (4 - level))) & descmask;
 | |
|         descaddr &= ~7ULL;
 | |
|         nstable = extract32(tableattrs, 4, 1);
 | |
|         descriptor = arm_ldq_ptw(cs, descaddr, !nstable, mmu_idx, fsr, fi);
 | |
|         if (fi->s1ptw) {
 | |
|             goto do_fault;
 | |
|         }
 | |
| 
 | |
|         if (!(descriptor & 1) ||
 | |
|             (!(descriptor & 2) && (level == 3))) {
 | |
|             /* Invalid, or the Reserved level 3 encoding */
 | |
|             goto do_fault;
 | |
|         }
 | |
|         descaddr = descriptor & descaddrmask;
 | |
| 
 | |
|         if ((descriptor & 2) && (level < 3)) {
 | |
|             /* Table entry. The top five bits are attributes which  may
 | |
|              * propagate down through lower levels of the table (and
 | |
|              * which are all arranged so that 0 means "no effect", so
 | |
|              * we can gather them up by ORing in the bits at each level).
 | |
|              */
 | |
|             tableattrs |= extract64(descriptor, 59, 5);
 | |
|             level++;
 | |
|             continue;
 | |
|         }
 | |
|         /* Block entry at level 1 or 2, or page entry at level 3.
 | |
|          * These are basically the same thing, although the number
 | |
|          * of bits we pull in from the vaddr varies.
 | |
|          */
 | |
|         page_size = (1ULL << ((stride * (4 - level)) + 3));
 | |
|         descaddr |= (address & (page_size - 1));
 | |
|         /* Extract attributes from the descriptor */
 | |
|         attrs = extract64(descriptor, 2, 10)
 | |
|             | (extract64(descriptor, 52, 12) << 10);
 | |
| 
 | |
|         if (mmu_idx == ARMMMUIdx_S2NS) {
 | |
|             /* Stage 2 table descriptors do not include any attribute fields */
 | |
|             break;
 | |
|         }
 | |
|         /* Merge in attributes from table descriptors */
 | |
|         attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
 | |
|         attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
 | |
|         /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
 | |
|          * means "force PL1 access only", which means forcing AP[1] to 0.
 | |
|          */
 | |
|         if (extract32(tableattrs, 2, 1)) {
 | |
|             attrs &= ~(1 << 4);
 | |
|         }
 | |
|         attrs |= nstable << 3; /* NS */
 | |
|         break;
 | |
|     }
 | |
|     /* Here descaddr is the final physical address, and attributes
 | |
|      * are all in attrs.
 | |
|      */
 | |
|     fault_type = access_fault;
 | |
|     if ((attrs & (1 << 8)) == 0) {
 | |
|         /* Access flag */
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     ap = extract32(attrs, 4, 2);
 | |
|     xn = extract32(attrs, 12, 1);
 | |
| 
 | |
|     if (mmu_idx == ARMMMUIdx_S2NS) {
 | |
|         ns = true;
 | |
|         *prot = get_S2prot(env, ap, xn);
 | |
|     } else {
 | |
|         ns = extract32(attrs, 3, 1);
 | |
|         pxn = extract32(attrs, 11, 1);
 | |
|         *prot = get_S1prot(env, mmu_idx, va_size == 64, ap, ns, xn, pxn);
 | |
|     }
 | |
| 
 | |
|     fault_type = permission_fault;
 | |
|     if (!(*prot & (1 << access_type))) {
 | |
|         goto do_fault;
 | |
|     }
 | |
| 
 | |
|     if (ns) {
 | |
|         /* The NS bit will (as required by the architecture) have no effect if
 | |
|          * the CPU doesn't support TZ or this is a non-secure translation
 | |
|          * regime, because the attribute will already be non-secure.
 | |
|          */
 | |
|         txattrs->secure = false;
 | |
|     }
 | |
|     *phys_ptr = descaddr;
 | |
|     *page_size_ptr = page_size;
 | |
|     return false;
 | |
| 
 | |
| do_fault:
 | |
|     /* Long-descriptor format IFSR/DFSR value */
 | |
|     *fsr = (1 << 9) | (fault_type << 2) | level;
 | |
|     /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
 | |
|     fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_S2NS);
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static inline void get_phys_addr_pmsav7_default(CPUARMState *env,
 | |
|                                                 ARMMMUIdx mmu_idx,
 | |
|                                                 int32_t address, int *prot)
 | |
| {
 | |
|     *prot = PAGE_READ | PAGE_WRITE;
 | |
|     switch (address) {
 | |
|     case 0xF0000000 ... 0xFFFFFFFF:
 | |
|         if (regime_sctlr(env, mmu_idx) & SCTLR_V) { /* hivecs execing is ok */
 | |
|             *prot |= PAGE_EXEC;
 | |
|         }
 | |
|         break;
 | |
|     case 0x00000000 ... 0x7FFFFFFF:
 | |
|         *prot |= PAGE_EXEC;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
 | |
|                                  int access_type, ARMMMUIdx mmu_idx,
 | |
|                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int n;
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     *phys_ptr = address;
 | |
|     *prot = 0;
 | |
| 
 | |
|     if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
 | |
|         get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | |
|     } else { /* MPU enabled */
 | |
|         for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
 | |
|             /* region search */
 | |
|             uint32_t base = env->pmsav7.drbar[n];
 | |
|             uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
 | |
|             uint32_t rmask;
 | |
|             bool srdis = false;
 | |
| 
 | |
|             if (!(env->pmsav7.drsr[n] & 0x1)) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (!rsize) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR, "DRSR.Rsize field can not be 0");
 | |
|                 continue;
 | |
|             }
 | |
|             rsize++;
 | |
|             rmask = (1ull << rsize) - 1;
 | |
| 
 | |
|             if (base & rmask) {
 | |
|                 qemu_log_mask(LOG_GUEST_ERROR, "DRBAR %" PRIx32 " misaligned "
 | |
|                               "to DRSR region size, mask = %" PRIx32,
 | |
|                               base, rmask);
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (address < base || address > base + rmask) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             /* Region matched */
 | |
| 
 | |
|             if (rsize >= 8) { /* no subregions for regions < 256 bytes */
 | |
|                 int i, snd;
 | |
|                 uint32_t srdis_mask;
 | |
| 
 | |
|                 rsize -= 3; /* sub region size (power of 2) */
 | |
|                 snd = ((address - base) >> rsize) & 0x7;
 | |
|                 srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);
 | |
| 
 | |
|                 srdis_mask = srdis ? 0x3 : 0x0;
 | |
|                 for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
 | |
|                     /* This will check in groups of 2, 4 and then 8, whether
 | |
|                      * the subregion bits are consistent. rsize is incremented
 | |
|                      * back up to give the region size, considering consistent
 | |
|                      * adjacent subregions as one region. Stop testing if rsize
 | |
|                      * is already big enough for an entire QEMU page.
 | |
|                      */
 | |
|                     int snd_rounded = snd & ~(i - 1);
 | |
|                     uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
 | |
|                                                      snd_rounded + 8, i);
 | |
|                     if (srdis_mask ^ srdis_multi) {
 | |
|                         break;
 | |
|                     }
 | |
|                     srdis_mask = (srdis_mask << i) | srdis_mask;
 | |
|                     rsize++;
 | |
|                 }
 | |
|             }
 | |
|             if (rsize < TARGET_PAGE_BITS) {
 | |
|                 qemu_log_mask(LOG_UNIMP, "No support for MPU (sub)region"
 | |
|                               "alignment of %" PRIu32 " bits. Minimum is %d\n",
 | |
|                               rsize, TARGET_PAGE_BITS);
 | |
|                 continue;
 | |
|             }
 | |
|             if (srdis) {
 | |
|                 continue;
 | |
|             }
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (n == -1) { /* no hits */
 | |
|             if (cpu->pmsav7_dregion &&
 | |
|                 (is_user || !(regime_sctlr(env, mmu_idx) & SCTLR_BR))) {
 | |
|                 /* background fault */
 | |
|                 *fsr = 0;
 | |
|                 return true;
 | |
|             }
 | |
|             get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
 | |
|         } else { /* a MPU hit! */
 | |
|             uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
 | |
| 
 | |
|             if (is_user) { /* User mode AP bit decoding */
 | |
|                 switch (ap) {
 | |
|                 case 0:
 | |
|                 case 1:
 | |
|                 case 5:
 | |
|                     break; /* no access */
 | |
|                 case 3:
 | |
|                     *prot |= PAGE_WRITE;
 | |
|                     /* fall through */
 | |
|                 case 2:
 | |
|                 case 6:
 | |
|                     *prot |= PAGE_READ | PAGE_EXEC;
 | |
|                     break;
 | |
|                 default:
 | |
|                     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                                   "Bad value for AP bits in DRACR %"
 | |
|                                   PRIx32 "\n", ap);
 | |
|                 }
 | |
|             } else { /* Priv. mode AP bits decoding */
 | |
|                 switch (ap) {
 | |
|                 case 0:
 | |
|                     break; /* no access */
 | |
|                 case 1:
 | |
|                 case 2:
 | |
|                 case 3:
 | |
|                     *prot |= PAGE_WRITE;
 | |
|                     /* fall through */
 | |
|                 case 5:
 | |
|                 case 6:
 | |
|                     *prot |= PAGE_READ | PAGE_EXEC;
 | |
|                     break;
 | |
|                 default:
 | |
|                     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                                   "Bad value for AP bits in DRACR %"
 | |
|                                   PRIx32 "\n", ap);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             /* execute never */
 | |
|             if (env->pmsav7.dracr[n] & (1 << 12)) {
 | |
|                 *prot &= ~PAGE_EXEC;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *fsr = 0x00d; /* Permission fault */
 | |
|     return !(*prot & (1 << access_type));
 | |
| }
 | |
| 
 | |
| static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
 | |
|                                  int access_type, ARMMMUIdx mmu_idx,
 | |
|                                  hwaddr *phys_ptr, int *prot, uint32_t *fsr)
 | |
| {
 | |
|     int n;
 | |
|     uint32_t mask;
 | |
|     uint32_t base;
 | |
|     bool is_user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     *phys_ptr = address;
 | |
|     for (n = 7; n >= 0; n--) {
 | |
|         base = env->cp15.c6_region[n];
 | |
|         if ((base & 1) == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         mask = 1 << ((base >> 1) & 0x1f);
 | |
|         /* Keep this shift separate from the above to avoid an
 | |
|            (undefined) << 32.  */
 | |
|         mask = (mask << 1) - 1;
 | |
|         if (((base ^ address) & ~mask) == 0) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     if (n < 0) {
 | |
|         *fsr = 2;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (access_type == 2) {
 | |
|         mask = env->cp15.pmsav5_insn_ap;
 | |
|     } else {
 | |
|         mask = env->cp15.pmsav5_data_ap;
 | |
|     }
 | |
|     mask = (mask >> (n * 4)) & 0xf;
 | |
|     switch (mask) {
 | |
|     case 0:
 | |
|         *fsr = 1;
 | |
|         return true;
 | |
|     case 1:
 | |
|         if (is_user) {
 | |
|             *fsr = 1;
 | |
|             return true;
 | |
|         }
 | |
|         *prot = PAGE_READ | PAGE_WRITE;
 | |
|         break;
 | |
|     case 2:
 | |
|         *prot = PAGE_READ;
 | |
|         if (!is_user) {
 | |
|             *prot |= PAGE_WRITE;
 | |
|         }
 | |
|         break;
 | |
|     case 3:
 | |
|         *prot = PAGE_READ | PAGE_WRITE;
 | |
|         break;
 | |
|     case 5:
 | |
|         if (is_user) {
 | |
|             *fsr = 1;
 | |
|             return true;
 | |
|         }
 | |
|         *prot = PAGE_READ;
 | |
|         break;
 | |
|     case 6:
 | |
|         *prot = PAGE_READ;
 | |
|         break;
 | |
|     default:
 | |
|         /* Bad permission.  */
 | |
|         *fsr = 1;
 | |
|         return true;
 | |
|     }
 | |
|     *prot |= PAGE_EXEC;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* get_phys_addr - get the physical address for this virtual address
 | |
|  *
 | |
|  * Find the physical address corresponding to the given virtual address,
 | |
|  * by doing a translation table walk on MMU based systems or using the
 | |
|  * MPU state on MPU based systems.
 | |
|  *
 | |
|  * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 | |
|  * prot and page_size may not be filled in, and the populated fsr value provides
 | |
|  * information on why the translation aborted, in the format of a
 | |
|  * DFSR/IFSR fault register, with the following caveats:
 | |
|  *  * we honour the short vs long DFSR format differences.
 | |
|  *  * the WnR bit is never set (the caller must do this).
 | |
|  *  * for PSMAv5 based systems we don't bother to return a full FSR format
 | |
|  *    value.
 | |
|  *
 | |
|  * @env: CPUARMState
 | |
|  * @address: virtual address to get physical address for
 | |
|  * @access_type: 0 for read, 1 for write, 2 for execute
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  * @phys_ptr: set to the physical address corresponding to the virtual address
 | |
|  * @attrs: set to the memory transaction attributes to use
 | |
|  * @prot: set to the permissions for the page containing phys_ptr
 | |
|  * @page_size: set to the size of the page containing phys_ptr
 | |
|  * @fsr: set to the DFSR/IFSR value on failure
 | |
|  */
 | |
| static bool get_phys_addr(CPUARMState *env, target_ulong address,
 | |
|                           int access_type, ARMMMUIdx mmu_idx,
 | |
|                           hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
 | |
|                           target_ulong *page_size, uint32_t *fsr,
 | |
|                           ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     if (mmu_idx == ARMMMUIdx_S12NSE0 || mmu_idx == ARMMMUIdx_S12NSE1) {
 | |
|         /* Call ourselves recursively to do the stage 1 and then stage 2
 | |
|          * translations.
 | |
|          */
 | |
|         if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|             hwaddr ipa;
 | |
|             int s2_prot;
 | |
|             int ret;
 | |
| 
 | |
|             ret = get_phys_addr(env, address, access_type,
 | |
|                                 mmu_idx + ARMMMUIdx_S1NSE0, &ipa, attrs,
 | |
|                                 prot, page_size, fsr, fi);
 | |
| 
 | |
|             /* If S1 fails or S2 is disabled, return early.  */
 | |
|             if (ret || regime_translation_disabled(env, ARMMMUIdx_S2NS)) {
 | |
|                 *phys_ptr = ipa;
 | |
|                 return ret;
 | |
|             }
 | |
| 
 | |
|             /* S1 is done. Now do S2 translation.  */
 | |
|             ret = get_phys_addr_lpae(env, ipa, access_type, ARMMMUIdx_S2NS,
 | |
|                                      phys_ptr, attrs, &s2_prot,
 | |
|                                      page_size, fsr, fi);
 | |
|             fi->s2addr = ipa;
 | |
|             /* Combine the S1 and S2 perms.  */
 | |
|             *prot &= s2_prot;
 | |
|             return ret;
 | |
|         } else {
 | |
|             /*
 | |
|              * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
 | |
|              */
 | |
|             mmu_idx += ARMMMUIdx_S1NSE0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* The page table entries may downgrade secure to non-secure, but
 | |
|      * cannot upgrade an non-secure translation regime's attributes
 | |
|      * to secure.
 | |
|      */
 | |
|     attrs->secure = regime_is_secure(env, mmu_idx);
 | |
|     attrs->user = regime_is_user(env, mmu_idx);
 | |
| 
 | |
|     /* Fast Context Switch Extension. This doesn't exist at all in v8.
 | |
|      * In v7 and earlier it affects all stage 1 translations.
 | |
|      */
 | |
|     if (address < 0x02000000 && mmu_idx != ARMMMUIdx_S2NS
 | |
|         && !arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         if (regime_el(env, mmu_idx) == 3) {
 | |
|             address += env->cp15.fcseidr_s;
 | |
|         } else {
 | |
|             address += env->cp15.fcseidr_ns;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* pmsav7 has special handling for when MPU is disabled so call it before
 | |
|      * the common MMU/MPU disabled check below.
 | |
|      */
 | |
|     if (arm_feature(env, ARM_FEATURE_MPU) &&
 | |
|         arm_feature(env, ARM_FEATURE_V7)) {
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
|         return get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
 | |
|                                     phys_ptr, prot, fsr);
 | |
|     }
 | |
| 
 | |
|     if (regime_translation_disabled(env, mmu_idx)) {
 | |
|         /* MMU/MPU disabled.  */
 | |
|         *phys_ptr = address;
 | |
|         *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_MPU)) {
 | |
|         /* Pre-v7 MPU */
 | |
|         *page_size = TARGET_PAGE_SIZE;
 | |
|         return get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
 | |
|                                     phys_ptr, prot, fsr);
 | |
|     }
 | |
| 
 | |
|     if (regime_using_lpae_format(env, mmu_idx)) {
 | |
|         return get_phys_addr_lpae(env, address, access_type, mmu_idx, phys_ptr,
 | |
|                                   attrs, prot, page_size, fsr, fi);
 | |
|     } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
 | |
|         return get_phys_addr_v6(env, address, access_type, mmu_idx, phys_ptr,
 | |
|                                 attrs, prot, page_size, fsr, fi);
 | |
|     } else {
 | |
|         return get_phys_addr_v5(env, address, access_type, mmu_idx, phys_ptr,
 | |
|                                 prot, page_size, fsr, fi);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Walk the page table and (if the mapping exists) add the page
 | |
|  * to the TLB. Return false on success, or true on failure. Populate
 | |
|  * fsr with ARM DFSR/IFSR fault register format value on failure.
 | |
|  */
 | |
| bool arm_tlb_fill(CPUState *cs, vaddr address,
 | |
|                   int access_type, int mmu_idx, uint32_t *fsr,
 | |
|                   ARMMMUFaultInfo *fi)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     int ret;
 | |
|     MemTxAttrs attrs = {};
 | |
| 
 | |
|     ret = get_phys_addr(env, address, access_type, mmu_idx, &phys_addr,
 | |
|                         &attrs, &prot, &page_size, fsr, fi);
 | |
|     if (!ret) {
 | |
|         /* Map a single [sub]page.  */
 | |
|         phys_addr &= TARGET_PAGE_MASK;
 | |
|         address &= TARGET_PAGE_MASK;
 | |
|         tlb_set_page_with_attrs(cs, address, phys_addr, attrs,
 | |
|                                 prot, mmu_idx, page_size);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
 | |
|                                          MemTxAttrs *attrs)
 | |
| {
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     hwaddr phys_addr;
 | |
|     target_ulong page_size;
 | |
|     int prot;
 | |
|     bool ret;
 | |
|     uint32_t fsr;
 | |
|     ARMMMUFaultInfo fi = {};
 | |
| 
 | |
|     *attrs = (MemTxAttrs) {};
 | |
| 
 | |
|     ret = get_phys_addr(env, addr, 0, cpu_mmu_index(env, false), &phys_addr,
 | |
|                         attrs, &prot, &page_size, &fsr, &fi);
 | |
| 
 | |
|     if (ret) {
 | |
|         return -1;
 | |
|     }
 | |
|     return phys_addr;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     switch (reg) {
 | |
|     case 0: /* APSR */
 | |
|         return xpsr_read(env) & 0xf8000000;
 | |
|     case 1: /* IAPSR */
 | |
|         return xpsr_read(env) & 0xf80001ff;
 | |
|     case 2: /* EAPSR */
 | |
|         return xpsr_read(env) & 0xff00fc00;
 | |
|     case 3: /* xPSR */
 | |
|         return xpsr_read(env) & 0xff00fdff;
 | |
|     case 5: /* IPSR */
 | |
|         return xpsr_read(env) & 0x000001ff;
 | |
|     case 6: /* EPSR */
 | |
|         return xpsr_read(env) & 0x0700fc00;
 | |
|     case 7: /* IEPSR */
 | |
|         return xpsr_read(env) & 0x0700edff;
 | |
|     case 8: /* MSP */
 | |
|         return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
 | |
|     case 9: /* PSP */
 | |
|         return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
 | |
|     case 16: /* PRIMASK */
 | |
|         return (env->daif & PSTATE_I) != 0;
 | |
|     case 17: /* BASEPRI */
 | |
|     case 18: /* BASEPRI_MAX */
 | |
|         return env->v7m.basepri;
 | |
|     case 19: /* FAULTMASK */
 | |
|         return (env->daif & PSTATE_F) != 0;
 | |
|     case 20: /* CONTROL */
 | |
|         return env->v7m.control;
 | |
|     default:
 | |
|         /* ??? For debugging only.  */
 | |
|         cpu_abort(CPU(cpu), "Unimplemented system register read (%d)\n", reg);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     switch (reg) {
 | |
|     case 0: /* APSR */
 | |
|         xpsr_write(env, val, 0xf8000000);
 | |
|         break;
 | |
|     case 1: /* IAPSR */
 | |
|         xpsr_write(env, val, 0xf8000000);
 | |
|         break;
 | |
|     case 2: /* EAPSR */
 | |
|         xpsr_write(env, val, 0xfe00fc00);
 | |
|         break;
 | |
|     case 3: /* xPSR */
 | |
|         xpsr_write(env, val, 0xfe00fc00);
 | |
|         break;
 | |
|     case 5: /* IPSR */
 | |
|         /* IPSR bits are readonly.  */
 | |
|         break;
 | |
|     case 6: /* EPSR */
 | |
|         xpsr_write(env, val, 0x0600fc00);
 | |
|         break;
 | |
|     case 7: /* IEPSR */
 | |
|         xpsr_write(env, val, 0x0600fc00);
 | |
|         break;
 | |
|     case 8: /* MSP */
 | |
|         if (env->v7m.current_sp)
 | |
|             env->v7m.other_sp = val;
 | |
|         else
 | |
|             env->regs[13] = val;
 | |
|         break;
 | |
|     case 9: /* PSP */
 | |
|         if (env->v7m.current_sp)
 | |
|             env->regs[13] = val;
 | |
|         else
 | |
|             env->v7m.other_sp = val;
 | |
|         break;
 | |
|     case 16: /* PRIMASK */
 | |
|         if (val & 1) {
 | |
|             env->daif |= PSTATE_I;
 | |
|         } else {
 | |
|             env->daif &= ~PSTATE_I;
 | |
|         }
 | |
|         break;
 | |
|     case 17: /* BASEPRI */
 | |
|         env->v7m.basepri = val & 0xff;
 | |
|         break;
 | |
|     case 18: /* BASEPRI_MAX */
 | |
|         val &= 0xff;
 | |
|         if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
 | |
|             env->v7m.basepri = val;
 | |
|         break;
 | |
|     case 19: /* FAULTMASK */
 | |
|         if (val & 1) {
 | |
|             env->daif |= PSTATE_F;
 | |
|         } else {
 | |
|             env->daif &= ~PSTATE_F;
 | |
|         }
 | |
|         break;
 | |
|     case 20: /* CONTROL */
 | |
|         env->v7m.control = val & 3;
 | |
|         switch_v7m_sp(env, (val & 2) != 0);
 | |
|         break;
 | |
|     default:
 | |
|         /* ??? For debugging only.  */
 | |
|         cpu_abort(CPU(cpu), "Unimplemented system register write (%d)\n", reg);
 | |
|         return;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
 | |
| {
 | |
|     /* Implement DC ZVA, which zeroes a fixed-length block of memory.
 | |
|      * Note that we do not implement the (architecturally mandated)
 | |
|      * alignment fault for attempts to use this on Device memory
 | |
|      * (which matches the usual QEMU behaviour of not implementing either
 | |
|      * alignment faults or any memory attribute handling).
 | |
|      */
 | |
| 
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     uint64_t blocklen = 4 << cpu->dcz_blocksize;
 | |
|     uint64_t vaddr = vaddr_in & ~(blocklen - 1);
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     {
 | |
|         /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
 | |
|          * the block size so we might have to do more than one TLB lookup.
 | |
|          * We know that in fact for any v8 CPU the page size is at least 4K
 | |
|          * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
 | |
|          * 1K as an artefact of legacy v5 subpage support being present in the
 | |
|          * same QEMU executable.
 | |
|          */
 | |
|         int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
 | |
|         void *hostaddr[maxidx];
 | |
|         int try, i;
 | |
|         unsigned mmu_idx = cpu_mmu_index(env, false);
 | |
|         TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
 | |
| 
 | |
|         for (try = 0; try < 2; try++) {
 | |
| 
 | |
|             for (i = 0; i < maxidx; i++) {
 | |
|                 hostaddr[i] = tlb_vaddr_to_host(env,
 | |
|                                                 vaddr + TARGET_PAGE_SIZE * i,
 | |
|                                                 1, mmu_idx);
 | |
|                 if (!hostaddr[i]) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (i == maxidx) {
 | |
|                 /* If it's all in the TLB it's fair game for just writing to;
 | |
|                  * we know we don't need to update dirty status, etc.
 | |
|                  */
 | |
|                 for (i = 0; i < maxidx - 1; i++) {
 | |
|                     memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
 | |
|                 }
 | |
|                 memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
 | |
|                 return;
 | |
|             }
 | |
|             /* OK, try a store and see if we can populate the tlb. This
 | |
|              * might cause an exception if the memory isn't writable,
 | |
|              * in which case we will longjmp out of here. We must for
 | |
|              * this purpose use the actual register value passed to us
 | |
|              * so that we get the fault address right.
 | |
|              */
 | |
|             helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETRA());
 | |
|             /* Now we can populate the other TLB entries, if any */
 | |
|             for (i = 0; i < maxidx; i++) {
 | |
|                 uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
 | |
|                 if (va != (vaddr_in & TARGET_PAGE_MASK)) {
 | |
|                     helper_ret_stb_mmu(env, va, 0, oi, GETRA());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Slow path (probably attempt to do this to an I/O device or
 | |
|          * similar, or clearing of a block of code we have translations
 | |
|          * cached for). Just do a series of byte writes as the architecture
 | |
|          * demands. It's not worth trying to use a cpu_physical_memory_map(),
 | |
|          * memset(), unmap() sequence here because:
 | |
|          *  + we'd need to account for the blocksize being larger than a page
 | |
|          *  + the direct-RAM access case is almost always going to be dealt
 | |
|          *    with in the fastpath code above, so there's no speed benefit
 | |
|          *  + we would have to deal with the map returning NULL because the
 | |
|          *    bounce buffer was in use
 | |
|          */
 | |
|         for (i = 0; i < blocklen; i++) {
 | |
|             helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETRA());
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     memset(g2h(vaddr), 0, blocklen);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Note that signed overflow is undefined in C.  The following routines are
 | |
|    careful to use unsigned types where modulo arithmetic is required.
 | |
|    Failure to do so _will_ break on newer gcc.  */
 | |
| 
 | |
| /* Signed saturating arithmetic.  */
 | |
| 
 | |
| /* Perform 16-bit signed saturating addition.  */
 | |
| static inline uint16_t add16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating addition.  */
 | |
| static inline uint8_t add8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a + b;
 | |
|     if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 16-bit signed saturating subtraction.  */
 | |
| static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
 | |
|         if (a & 0x8000)
 | |
|             res = 0x8000;
 | |
|         else
 | |
|             res = 0x7fff;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Perform 8-bit signed saturating subtraction.  */
 | |
| static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
| 
 | |
|     res = a - b;
 | |
|     if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
 | |
|         if (a & 0x80)
 | |
|             res = 0x80;
 | |
|         else
 | |
|             res = 0x7f;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
 | |
| #define PFX q
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned saturating arithmetic.  */
 | |
| static inline uint16_t add16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     uint16_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xffff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| static inline uint8_t add8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     uint8_t res;
 | |
|     res = a + b;
 | |
|     if (res < a)
 | |
|         res = 0xff;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return 0;
 | |
| }
 | |
| 
 | |
| #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
 | |
| #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
 | |
| #define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
 | |
| #define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
 | |
| #define PFX uq
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Signed modulo arithmetic.  */
 | |
| #define SARITH16(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SARITH8(a, b, n, op) do { \
 | |
|     int32_t sum; \
 | |
|     sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if (sum >= 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| 
 | |
| #define ADD16(a, b, n) SARITH16(a, b, n, +)
 | |
| #define SUB16(a, b, n) SARITH16(a, b, n, -)
 | |
| #define ADD8(a, b, n)  SARITH8(a, b, n, +)
 | |
| #define SUB8(a, b, n)  SARITH8(a, b, n, -)
 | |
| #define PFX s
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Unsigned modulo arithmetic.  */
 | |
| #define ADD16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 1) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define ADD8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 1) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB16(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
 | |
|     RESULT(sum, n, 16); \
 | |
|     if ((sum >> 16) == 0) \
 | |
|         ge |= 3 << (n * 2); \
 | |
|     } while(0)
 | |
| 
 | |
| #define SUB8(a, b, n) do { \
 | |
|     uint32_t sum; \
 | |
|     sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
 | |
|     RESULT(sum, n, 8); \
 | |
|     if ((sum >> 8) == 0) \
 | |
|         ge |= 1 << n; \
 | |
|     } while(0)
 | |
| 
 | |
| #define PFX u
 | |
| #define ARITH_GE
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved signed arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
 | |
| #define PFX sh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| /* Halved unsigned arithmetic.  */
 | |
| #define ADD16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define SUB16(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
 | |
| #define ADD8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define SUB8(a, b, n) \
 | |
|   RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
 | |
| #define PFX uh
 | |
| 
 | |
| #include "op_addsub.h"
 | |
| 
 | |
| static inline uint8_t do_usad(uint8_t a, uint8_t b)
 | |
| {
 | |
|     if (a > b)
 | |
|         return a - b;
 | |
|     else
 | |
|         return b - a;
 | |
| }
 | |
| 
 | |
| /* Unsigned sum of absolute byte differences.  */
 | |
| uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t sum;
 | |
|     sum = do_usad(a, b);
 | |
|     sum += do_usad(a >> 8, b >> 8);
 | |
|     sum += do_usad(a >> 16, b >>16);
 | |
|     sum += do_usad(a >> 24, b >> 24);
 | |
|     return sum;
 | |
| }
 | |
| 
 | |
| /* For ARMv6 SEL instruction.  */
 | |
| uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     mask = 0;
 | |
|     if (flags & 1)
 | |
|         mask |= 0xff;
 | |
|     if (flags & 2)
 | |
|         mask |= 0xff00;
 | |
|     if (flags & 4)
 | |
|         mask |= 0xff0000;
 | |
|     if (flags & 8)
 | |
|         mask |= 0xff000000;
 | |
|     return (a & mask) | (b & ~mask);
 | |
| }
 | |
| 
 | |
| /* VFP support.  We follow the convention used for VFP instructions:
 | |
|    Single precision routines have a "s" suffix, double precision a
 | |
|    "d" suffix.  */
 | |
| 
 | |
| /* Convert host exception flags to vfp form.  */
 | |
| static inline int vfp_exceptbits_from_host(int host_bits)
 | |
| {
 | |
|     int target_bits = 0;
 | |
| 
 | |
|     if (host_bits & float_flag_invalid)
 | |
|         target_bits |= 1;
 | |
|     if (host_bits & float_flag_divbyzero)
 | |
|         target_bits |= 2;
 | |
|     if (host_bits & float_flag_overflow)
 | |
|         target_bits |= 4;
 | |
|     if (host_bits & (float_flag_underflow | float_flag_output_denormal))
 | |
|         target_bits |= 8;
 | |
|     if (host_bits & float_flag_inexact)
 | |
|         target_bits |= 0x10;
 | |
|     if (host_bits & float_flag_input_denormal)
 | |
|         target_bits |= 0x80;
 | |
|     return target_bits;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t fpscr;
 | |
| 
 | |
|     fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
 | |
|             | (env->vfp.vec_len << 16)
 | |
|             | (env->vfp.vec_stride << 20);
 | |
|     i = get_float_exception_flags(&env->vfp.fp_status);
 | |
|     i |= get_float_exception_flags(&env->vfp.standard_fp_status);
 | |
|     fpscr |= vfp_exceptbits_from_host(i);
 | |
|     return fpscr;
 | |
| }
 | |
| 
 | |
| uint32_t vfp_get_fpscr(CPUARMState *env)
 | |
| {
 | |
|     return HELPER(vfp_get_fpscr)(env);
 | |
| }
 | |
| 
 | |
| /* Convert vfp exception flags to target form.  */
 | |
| static inline int vfp_exceptbits_to_host(int target_bits)
 | |
| {
 | |
|     int host_bits = 0;
 | |
| 
 | |
|     if (target_bits & 1)
 | |
|         host_bits |= float_flag_invalid;
 | |
|     if (target_bits & 2)
 | |
|         host_bits |= float_flag_divbyzero;
 | |
|     if (target_bits & 4)
 | |
|         host_bits |= float_flag_overflow;
 | |
|     if (target_bits & 8)
 | |
|         host_bits |= float_flag_underflow;
 | |
|     if (target_bits & 0x10)
 | |
|         host_bits |= float_flag_inexact;
 | |
|     if (target_bits & 0x80)
 | |
|         host_bits |= float_flag_input_denormal;
 | |
|     return host_bits;
 | |
| }
 | |
| 
 | |
| void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     int i;
 | |
|     uint32_t changed;
 | |
| 
 | |
|     changed = env->vfp.xregs[ARM_VFP_FPSCR];
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
 | |
|     env->vfp.vec_len = (val >> 16) & 7;
 | |
|     env->vfp.vec_stride = (val >> 20) & 3;
 | |
| 
 | |
|     changed ^= val;
 | |
|     if (changed & (3 << 22)) {
 | |
|         i = (val >> 22) & 3;
 | |
|         switch (i) {
 | |
|         case FPROUNDING_TIEEVEN:
 | |
|             i = float_round_nearest_even;
 | |
|             break;
 | |
|         case FPROUNDING_POSINF:
 | |
|             i = float_round_up;
 | |
|             break;
 | |
|         case FPROUNDING_NEGINF:
 | |
|             i = float_round_down;
 | |
|             break;
 | |
|         case FPROUNDING_ZERO:
 | |
|             i = float_round_to_zero;
 | |
|             break;
 | |
|         }
 | |
|         set_float_rounding_mode(i, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & (1 << 24)) {
 | |
|         set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | |
|         set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
 | |
|     }
 | |
|     if (changed & (1 << 25))
 | |
|         set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
 | |
| 
 | |
|     i = vfp_exceptbits_to_host(val);
 | |
|     set_float_exception_flags(i, &env->vfp.fp_status);
 | |
|     set_float_exception_flags(0, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     HELPER(vfp_set_fpscr)(env, val);
 | |
| }
 | |
| 
 | |
| #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
 | |
| 
 | |
| #define VFP_BINOP(name) \
 | |
| float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float32_ ## name(a, b, fpst); \
 | |
| } \
 | |
| float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return float64_ ## name(a, b, fpst); \
 | |
| }
 | |
| VFP_BINOP(add)
 | |
| VFP_BINOP(sub)
 | |
| VFP_BINOP(mul)
 | |
| VFP_BINOP(div)
 | |
| VFP_BINOP(min)
 | |
| VFP_BINOP(max)
 | |
| VFP_BINOP(minnum)
 | |
| VFP_BINOP(maxnum)
 | |
| #undef VFP_BINOP
 | |
| 
 | |
| float32 VFP_HELPER(neg, s)(float32 a)
 | |
| {
 | |
|     return float32_chs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(neg, d)(float64 a)
 | |
| {
 | |
|     return float64_chs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(abs, s)(float32 a)
 | |
| {
 | |
|     return float32_abs(a);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(abs, d)(float64 a)
 | |
| {
 | |
|     return float64_abs(a);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return float32_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
 | |
| {
 | |
|     return float64_sqrt(a, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| /* XXX: check quiet/signaling case */
 | |
| #define DO_VFP_cmp(p, type) \
 | |
| void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
 | |
| { \
 | |
|     uint32_t flags; \
 | |
|     switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
 | |
|     case 0: flags = 0x6; break; \
 | |
|     case -1: flags = 0x8; break; \
 | |
|     case 1: flags = 0x2; break; \
 | |
|     default: case 2: flags = 0x3; break; \
 | |
|     } \
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | |
|         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | |
| } \
 | |
| void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
 | |
| { \
 | |
|     uint32_t flags; \
 | |
|     switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
 | |
|     case 0: flags = 0x6; break; \
 | |
|     case -1: flags = 0x8; break; \
 | |
|     case 1: flags = 0x2; break; \
 | |
|     default: case 2: flags = 0x3; break; \
 | |
|     } \
 | |
|     env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
 | |
|         | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
 | |
| }
 | |
| DO_VFP_cmp(s, float32)
 | |
| DO_VFP_cmp(d, float64)
 | |
| #undef DO_VFP_cmp
 | |
| 
 | |
| /* Integer to float and float to integer conversions */
 | |
| 
 | |
| #define CONV_ITOF(name, fsz, sign) \
 | |
|     float##fsz HELPER(name)(uint32_t x, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
 | |
| }
 | |
| 
 | |
| #define CONV_FTOI(name, fsz, sign, round) \
 | |
| uint32_t HELPER(name)(float##fsz x, void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     if (float##fsz##_is_any_nan(x)) { \
 | |
|         float_raise(float_flag_invalid, fpst); \
 | |
|         return 0; \
 | |
|     } \
 | |
|     return float##fsz##_to_##sign##int32##round(x, fpst); \
 | |
| }
 | |
| 
 | |
| #define FLOAT_CONVS(name, p, fsz, sign) \
 | |
| CONV_ITOF(vfp_##name##to##p, fsz, sign) \
 | |
| CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
 | |
| CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
 | |
| 
 | |
| FLOAT_CONVS(si, s, 32, )
 | |
| FLOAT_CONVS(si, d, 64, )
 | |
| FLOAT_CONVS(ui, s, 32, u)
 | |
| FLOAT_CONVS(ui, d, 64, u)
 | |
| 
 | |
| #undef CONV_ITOF
 | |
| #undef CONV_FTOI
 | |
| #undef FLOAT_CONVS
 | |
| 
 | |
| /* floating point conversion */
 | |
| float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
 | |
| {
 | |
|     float64 r = float32_to_float64(x, &env->vfp.fp_status);
 | |
|     /* ARM requires that S<->D conversion of any kind of NaN generates
 | |
|      * a quiet NaN by forcing the most significant frac bit to 1.
 | |
|      */
 | |
|     return float64_maybe_silence_nan(r);
 | |
| }
 | |
| 
 | |
| float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
 | |
| {
 | |
|     float32 r =  float64_to_float32(x, &env->vfp.fp_status);
 | |
|     /* ARM requires that S<->D conversion of any kind of NaN generates
 | |
|      * a quiet NaN by forcing the most significant frac bit to 1.
 | |
|      */
 | |
|     return float32_maybe_silence_nan(r);
 | |
| }
 | |
| 
 | |
| /* VFP3 fixed point conversion.  */
 | |
| #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
 | |
| float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
 | |
|                                      void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     float##fsz tmp; \
 | |
|     tmp = itype##_to_##float##fsz(x, fpst); \
 | |
|     return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
 | |
| }
 | |
| 
 | |
| /* Notice that we want only input-denormal exception flags from the
 | |
|  * scalbn operation: the other possible flags (overflow+inexact if
 | |
|  * we overflow to infinity, output-denormal) aren't correct for the
 | |
|  * complete scale-and-convert operation.
 | |
|  */
 | |
| #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, round) \
 | |
| uint##isz##_t HELPER(vfp_to##name##p##round)(float##fsz x, \
 | |
|                                              uint32_t shift, \
 | |
|                                              void *fpstp) \
 | |
| { \
 | |
|     float_status *fpst = fpstp; \
 | |
|     int old_exc_flags = get_float_exception_flags(fpst); \
 | |
|     float##fsz tmp; \
 | |
|     if (float##fsz##_is_any_nan(x)) { \
 | |
|         float_raise(float_flag_invalid, fpst); \
 | |
|         return 0; \
 | |
|     } \
 | |
|     tmp = float##fsz##_scalbn(x, shift, fpst); \
 | |
|     old_exc_flags |= get_float_exception_flags(fpst) \
 | |
|         & float_flag_input_denormal; \
 | |
|     set_float_exception_flags(old_exc_flags, fpst); \
 | |
|     return float##fsz##_to_##itype##round(tmp, fpst); \
 | |
| }
 | |
| 
 | |
| #define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
 | |
| VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
 | |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, _round_to_zero) \
 | |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
 | |
| 
 | |
| #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
 | |
| VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
 | |
| VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, )
 | |
| 
 | |
| VFP_CONV_FIX(sh, d, 64, 64, int16)
 | |
| VFP_CONV_FIX(sl, d, 64, 64, int32)
 | |
| VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
 | |
| VFP_CONV_FIX(uh, d, 64, 64, uint16)
 | |
| VFP_CONV_FIX(ul, d, 64, 64, uint32)
 | |
| VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
 | |
| VFP_CONV_FIX(sh, s, 32, 32, int16)
 | |
| VFP_CONV_FIX(sl, s, 32, 32, int32)
 | |
| VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
 | |
| VFP_CONV_FIX(uh, s, 32, 32, uint16)
 | |
| VFP_CONV_FIX(ul, s, 32, 32, uint32)
 | |
| VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)
 | |
| #undef VFP_CONV_FIX
 | |
| #undef VFP_CONV_FIX_FLOAT
 | |
| #undef VFP_CONV_FLOAT_FIX_ROUND
 | |
| 
 | |
| /* Set the current fp rounding mode and return the old one.
 | |
|  * The argument is a softfloat float_round_ value.
 | |
|  */
 | |
| uint32_t HELPER(set_rmode)(uint32_t rmode, CPUARMState *env)
 | |
| {
 | |
|     float_status *fp_status = &env->vfp.fp_status;
 | |
| 
 | |
|     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 | |
|     set_float_rounding_mode(rmode, fp_status);
 | |
| 
 | |
|     return prev_rmode;
 | |
| }
 | |
| 
 | |
| /* Set the current fp rounding mode in the standard fp status and return
 | |
|  * the old one. This is for NEON instructions that need to change the
 | |
|  * rounding mode but wish to use the standard FPSCR values for everything
 | |
|  * else. Always set the rounding mode back to the correct value after
 | |
|  * modifying it.
 | |
|  * The argument is a softfloat float_round_ value.
 | |
|  */
 | |
| uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
 | |
| {
 | |
|     float_status *fp_status = &env->vfp.standard_fp_status;
 | |
| 
 | |
|     uint32_t prev_rmode = get_float_rounding_mode(fp_status);
 | |
|     set_float_rounding_mode(rmode, fp_status);
 | |
| 
 | |
|     return prev_rmode;
 | |
| }
 | |
| 
 | |
| /* Half precision conversions.  */
 | |
| static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float32 r = float16_to_float32(make_float16(a), ieee, s);
 | |
|     if (ieee) {
 | |
|         return float32_maybe_silence_nan(r);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float16 r = float32_to_float16(a, ieee, s);
 | |
|     if (ieee) {
 | |
|         r = float16_maybe_silence_nan(r);
 | |
|     }
 | |
|     return float16_val(r);
 | |
| }
 | |
| 
 | |
| float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
 | |
| }
 | |
| 
 | |
| float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
 | |
| {
 | |
|     return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
 | |
| }
 | |
| 
 | |
| float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, CPUARMState *env)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float64 r = float16_to_float64(make_float16(a), ieee, &env->vfp.fp_status);
 | |
|     if (ieee) {
 | |
|         return float64_maybe_silence_nan(r);
 | |
|     }
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, CPUARMState *env)
 | |
| {
 | |
|     int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
 | |
|     float16 r = float64_to_float16(a, ieee, &env->vfp.fp_status);
 | |
|     if (ieee) {
 | |
|         r = float16_maybe_silence_nan(r);
 | |
|     }
 | |
|     return float16_val(r);
 | |
| }
 | |
| 
 | |
| #define float32_two make_float32(0x40000000)
 | |
| #define float32_three make_float32(0x40400000)
 | |
| #define float32_one_point_five make_float32(0x3fc00000)
 | |
| 
 | |
| float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | |
|         if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         return float32_two;
 | |
|     }
 | |
|     return float32_sub(float32_two, float32_mul(a, b, s), s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
 | |
| {
 | |
|     float_status *s = &env->vfp.standard_fp_status;
 | |
|     float32 product;
 | |
|     if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
 | |
|         (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
 | |
|         if (!(float32_is_zero(a) || float32_is_zero(b))) {
 | |
|             float_raise(float_flag_input_denormal, s);
 | |
|         }
 | |
|         return float32_one_point_five;
 | |
|     }
 | |
|     product = float32_mul(a, b, s);
 | |
|     return float32_div(float32_sub(float32_three, product, s), float32_two, s);
 | |
| }
 | |
| 
 | |
| /* NEON helpers.  */
 | |
| 
 | |
| /* Constants 256 and 512 are used in some helpers; we avoid relying on
 | |
|  * int->float conversions at run-time.  */
 | |
| #define float64_256 make_float64(0x4070000000000000LL)
 | |
| #define float64_512 make_float64(0x4080000000000000LL)
 | |
| #define float32_maxnorm make_float32(0x7f7fffff)
 | |
| #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 | |
| 
 | |
| /* Reciprocal functions
 | |
|  *
 | |
|  * The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM, see FPRecipEstimate()
 | |
|  */
 | |
| 
 | |
| static float64 recip_estimate(float64 a, float_status *real_fp_status)
 | |
| {
 | |
|     /* These calculations mustn't set any fp exception flags,
 | |
|      * so we use a local copy of the fp_status.
 | |
|      */
 | |
|     float_status dummy_status = *real_fp_status;
 | |
|     float_status *s = &dummy_status;
 | |
|     /* q = (int)(a * 512.0) */
 | |
|     float64 q = float64_mul(float64_512, a, s);
 | |
|     int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* r = 1.0 / (((double)q + 0.5) / 512.0) */
 | |
|     q = int64_to_float64(q_int, s);
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q = float64_div(q, float64_512, s);
 | |
|     q = float64_div(float64_one, q, s);
 | |
| 
 | |
|     /* s = (int)(256.0 * r + 0.5) */
 | |
|     q = float64_mul(q, float64_256, s);
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* return (double)s / 256.0 */
 | |
|     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | |
| }
 | |
| 
 | |
| /* Common wrapper to call recip_estimate */
 | |
| static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
 | |
| {
 | |
|     uint64_t val64 = float64_val(num);
 | |
|     uint64_t frac = extract64(val64, 0, 52);
 | |
|     int64_t exp = extract64(val64, 52, 11);
 | |
|     uint64_t sbit;
 | |
|     float64 scaled, estimate;
 | |
| 
 | |
|     /* Generate the scaled number for the estimate function */
 | |
|     if (exp == 0) {
 | |
|         if (extract64(frac, 51, 1) == 0) {
 | |
|             exp = -1;
 | |
|             frac = extract64(frac, 0, 50) << 2;
 | |
|         } else {
 | |
|             frac = extract64(frac, 0, 51) << 1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
 | |
|     scaled = make_float64((0x3feULL << 52)
 | |
|                           | extract64(frac, 44, 8) << 44);
 | |
| 
 | |
|     estimate = recip_estimate(scaled, fpst);
 | |
| 
 | |
|     /* Build new result */
 | |
|     val64 = float64_val(estimate);
 | |
|     sbit = 0x8000000000000000ULL & val64;
 | |
|     exp = off - exp;
 | |
|     frac = extract64(val64, 0, 52);
 | |
| 
 | |
|     if (exp == 0) {
 | |
|         frac = 1ULL << 51 | extract64(frac, 1, 51);
 | |
|     } else if (exp == -1) {
 | |
|         frac = 1ULL << 50 | extract64(frac, 2, 50);
 | |
|         exp = 0;
 | |
|     }
 | |
| 
 | |
|     return make_float64(sbit | (exp << 52) | frac);
 | |
| }
 | |
| 
 | |
| static bool round_to_inf(float_status *fpst, bool sign_bit)
 | |
| {
 | |
|     switch (fpst->float_rounding_mode) {
 | |
|     case float_round_nearest_even: /* Round to Nearest */
 | |
|         return true;
 | |
|     case float_round_up: /* Round to +Inf */
 | |
|         return !sign_bit;
 | |
|     case float_round_down: /* Round to -Inf */
 | |
|         return sign_bit;
 | |
|     case float_round_to_zero: /* Round to Zero */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| float32 HELPER(recpe_f32)(float32 input, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float32 f32 = float32_squash_input_denormal(input, fpst);
 | |
|     uint32_t f32_val = float32_val(f32);
 | |
|     uint32_t f32_sbit = 0x80000000ULL & f32_val;
 | |
|     int32_t f32_exp = extract32(f32_val, 23, 8);
 | |
|     uint32_t f32_frac = extract32(f32_val, 0, 23);
 | |
|     float64 f64, r64;
 | |
|     uint64_t r64_val;
 | |
|     int64_t r64_exp;
 | |
|     uint64_t r64_frac;
 | |
| 
 | |
|     if (float32_is_any_nan(f32)) {
 | |
|         float32 nan = f32;
 | |
|         if (float32_is_signaling_nan(f32)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             nan = float32_maybe_silence_nan(f32);
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan =  float32_default_nan;
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float32_is_infinity(f32)) {
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(f32));
 | |
|     } else if (float32_is_zero(f32)) {
 | |
|         float_raise(float_flag_divbyzero, fpst);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | |
|     } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
 | |
|         /* Abs(value) < 2.0^-128 */
 | |
|         float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | |
|         if (round_to_inf(fpst, f32_sbit)) {
 | |
|             return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | |
|         } else {
 | |
|             return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
 | |
|         }
 | |
|     } else if (f32_exp >= 253 && fpst->flush_to_zero) {
 | |
|         float_raise(float_flag_underflow, fpst);
 | |
|         return float32_set_sign(float32_zero, float32_is_neg(f32));
 | |
|     }
 | |
| 
 | |
| 
 | |
|     f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
 | |
|     r64 = call_recip_estimate(f64, 253, fpst);
 | |
|     r64_val = float64_val(r64);
 | |
|     r64_exp = extract64(r64_val, 52, 11);
 | |
|     r64_frac = extract64(r64_val, 0, 52);
 | |
| 
 | |
|     /* result = sign : result_exp<7:0> : fraction<51:29>; */
 | |
|     return make_float32(f32_sbit |
 | |
|                         (r64_exp & 0xff) << 23 |
 | |
|                         extract64(r64_frac, 29, 24));
 | |
| }
 | |
| 
 | |
| float64 HELPER(recpe_f64)(float64 input, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float64 f64 = float64_squash_input_denormal(input, fpst);
 | |
|     uint64_t f64_val = float64_val(f64);
 | |
|     uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
 | |
|     int64_t f64_exp = extract64(f64_val, 52, 11);
 | |
|     float64 r64;
 | |
|     uint64_t r64_val;
 | |
|     int64_t r64_exp;
 | |
|     uint64_t r64_frac;
 | |
| 
 | |
|     /* Deal with any special cases */
 | |
|     if (float64_is_any_nan(f64)) {
 | |
|         float64 nan = f64;
 | |
|         if (float64_is_signaling_nan(f64)) {
 | |
|             float_raise(float_flag_invalid, fpst);
 | |
|             nan = float64_maybe_silence_nan(f64);
 | |
|         }
 | |
|         if (fpst->default_nan_mode) {
 | |
|             nan =  float64_default_nan;
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float64_is_infinity(f64)) {
 | |
|         return float64_set_sign(float64_zero, float64_is_neg(f64));
 | |
|     } else if (float64_is_zero(f64)) {
 | |
|         float_raise(float_flag_divbyzero, fpst);
 | |
|         return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | |
|     } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
 | |
|         /* Abs(value) < 2.0^-1024 */
 | |
|         float_raise(float_flag_overflow | float_flag_inexact, fpst);
 | |
|         if (round_to_inf(fpst, f64_sbit)) {
 | |
|             return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | |
|         } else {
 | |
|             return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
 | |
|         }
 | |
|     } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
 | |
|         float_raise(float_flag_underflow, fpst);
 | |
|         return float64_set_sign(float64_zero, float64_is_neg(f64));
 | |
|     }
 | |
| 
 | |
|     r64 = call_recip_estimate(f64, 2045, fpst);
 | |
|     r64_val = float64_val(r64);
 | |
|     r64_exp = extract64(r64_val, 52, 11);
 | |
|     r64_frac = extract64(r64_val, 0, 52);
 | |
| 
 | |
|     /* result = sign : result_exp<10:0> : fraction<51:0> */
 | |
|     return make_float64(f64_sbit |
 | |
|                         ((r64_exp & 0x7ff) << 52) |
 | |
|                         r64_frac);
 | |
| }
 | |
| 
 | |
| /* The algorithm that must be used to calculate the estimate
 | |
|  * is specified by the ARM ARM.
 | |
|  */
 | |
| static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
 | |
| {
 | |
|     /* These calculations mustn't set any fp exception flags,
 | |
|      * so we use a local copy of the fp_status.
 | |
|      */
 | |
|     float_status dummy_status = *real_fp_status;
 | |
|     float_status *s = &dummy_status;
 | |
|     float64 q;
 | |
|     int64_t q_int;
 | |
| 
 | |
|     if (float64_lt(a, float64_half, s)) {
 | |
|         /* range 0.25 <= a < 0.5 */
 | |
| 
 | |
|         /* a in units of 1/512 rounded down */
 | |
|         /* q0 = (int)(a * 512.0);  */
 | |
|         q = float64_mul(float64_512, a, s);
 | |
|         q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|         /* reciprocal root r */
 | |
|         /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0);  */
 | |
|         q = int64_to_float64(q_int, s);
 | |
|         q = float64_add(q, float64_half, s);
 | |
|         q = float64_div(q, float64_512, s);
 | |
|         q = float64_sqrt(q, s);
 | |
|         q = float64_div(float64_one, q, s);
 | |
|     } else {
 | |
|         /* range 0.5 <= a < 1.0 */
 | |
| 
 | |
|         /* a in units of 1/256 rounded down */
 | |
|         /* q1 = (int)(a * 256.0); */
 | |
|         q = float64_mul(float64_256, a, s);
 | |
|         int64_t q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|         /* reciprocal root r */
 | |
|         /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
 | |
|         q = int64_to_float64(q_int, s);
 | |
|         q = float64_add(q, float64_half, s);
 | |
|         q = float64_div(q, float64_256, s);
 | |
|         q = float64_sqrt(q, s);
 | |
|         q = float64_div(float64_one, q, s);
 | |
|     }
 | |
|     /* r in units of 1/256 rounded to nearest */
 | |
|     /* s = (int)(256.0 * r + 0.5); */
 | |
| 
 | |
|     q = float64_mul(q, float64_256,s );
 | |
|     q = float64_add(q, float64_half, s);
 | |
|     q_int = float64_to_int64_round_to_zero(q, s);
 | |
| 
 | |
|     /* return (double)s / 256.0;*/
 | |
|     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
|     float32 f32 = float32_squash_input_denormal(input, s);
 | |
|     uint32_t val = float32_val(f32);
 | |
|     uint32_t f32_sbit = 0x80000000 & val;
 | |
|     int32_t f32_exp = extract32(val, 23, 8);
 | |
|     uint32_t f32_frac = extract32(val, 0, 23);
 | |
|     uint64_t f64_frac;
 | |
|     uint64_t val64;
 | |
|     int result_exp;
 | |
|     float64 f64;
 | |
| 
 | |
|     if (float32_is_any_nan(f32)) {
 | |
|         float32 nan = f32;
 | |
|         if (float32_is_signaling_nan(f32)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|             nan = float32_maybe_silence_nan(f32);
 | |
|         }
 | |
|         if (s->default_nan_mode) {
 | |
|             nan =  float32_default_nan;
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float32_is_zero(f32)) {
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float32_set_sign(float32_infinity, float32_is_neg(f32));
 | |
|     } else if (float32_is_neg(f32)) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float32_default_nan;
 | |
|     } else if (float32_is_infinity(f32)) {
 | |
|         return float32_zero;
 | |
|     }
 | |
| 
 | |
|     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 | |
|      * preserving the parity of the exponent.  */
 | |
| 
 | |
|     f64_frac = ((uint64_t) f32_frac) << 29;
 | |
|     if (f32_exp == 0) {
 | |
|         while (extract64(f64_frac, 51, 1) == 0) {
 | |
|             f64_frac = f64_frac << 1;
 | |
|             f32_exp = f32_exp-1;
 | |
|         }
 | |
|         f64_frac = extract64(f64_frac, 0, 51) << 1;
 | |
|     }
 | |
| 
 | |
|     if (extract64(f32_exp, 0, 1) == 0) {
 | |
|         f64 = make_float64(((uint64_t) f32_sbit) << 32
 | |
|                            | (0x3feULL << 52)
 | |
|                            | f64_frac);
 | |
|     } else {
 | |
|         f64 = make_float64(((uint64_t) f32_sbit) << 32
 | |
|                            | (0x3fdULL << 52)
 | |
|                            | f64_frac);
 | |
|     }
 | |
| 
 | |
|     result_exp = (380 - f32_exp) / 2;
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, s);
 | |
| 
 | |
|     val64 = float64_val(f64);
 | |
| 
 | |
|     val = ((result_exp & 0xff) << 23)
 | |
|         | ((val64 >> 29)  & 0x7fffff);
 | |
|     return make_float32(val);
 | |
| }
 | |
| 
 | |
| float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
|     float64 f64 = float64_squash_input_denormal(input, s);
 | |
|     uint64_t val = float64_val(f64);
 | |
|     uint64_t f64_sbit = 0x8000000000000000ULL & val;
 | |
|     int64_t f64_exp = extract64(val, 52, 11);
 | |
|     uint64_t f64_frac = extract64(val, 0, 52);
 | |
|     int64_t result_exp;
 | |
|     uint64_t result_frac;
 | |
| 
 | |
|     if (float64_is_any_nan(f64)) {
 | |
|         float64 nan = f64;
 | |
|         if (float64_is_signaling_nan(f64)) {
 | |
|             float_raise(float_flag_invalid, s);
 | |
|             nan = float64_maybe_silence_nan(f64);
 | |
|         }
 | |
|         if (s->default_nan_mode) {
 | |
|             nan =  float64_default_nan;
 | |
|         }
 | |
|         return nan;
 | |
|     } else if (float64_is_zero(f64)) {
 | |
|         float_raise(float_flag_divbyzero, s);
 | |
|         return float64_set_sign(float64_infinity, float64_is_neg(f64));
 | |
|     } else if (float64_is_neg(f64)) {
 | |
|         float_raise(float_flag_invalid, s);
 | |
|         return float64_default_nan;
 | |
|     } else if (float64_is_infinity(f64)) {
 | |
|         return float64_zero;
 | |
|     }
 | |
| 
 | |
|     /* Scale and normalize to a double-precision value between 0.25 and 1.0,
 | |
|      * preserving the parity of the exponent.  */
 | |
| 
 | |
|     if (f64_exp == 0) {
 | |
|         while (extract64(f64_frac, 51, 1) == 0) {
 | |
|             f64_frac = f64_frac << 1;
 | |
|             f64_exp = f64_exp - 1;
 | |
|         }
 | |
|         f64_frac = extract64(f64_frac, 0, 51) << 1;
 | |
|     }
 | |
| 
 | |
|     if (extract64(f64_exp, 0, 1) == 0) {
 | |
|         f64 = make_float64(f64_sbit
 | |
|                            | (0x3feULL << 52)
 | |
|                            | f64_frac);
 | |
|     } else {
 | |
|         f64 = make_float64(f64_sbit
 | |
|                            | (0x3fdULL << 52)
 | |
|                            | f64_frac);
 | |
|     }
 | |
| 
 | |
|     result_exp = (3068 - f64_exp) / 2;
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, s);
 | |
| 
 | |
|     result_frac = extract64(float64_val(f64), 0, 52);
 | |
| 
 | |
|     return make_float64(f64_sbit |
 | |
|                         ((result_exp & 0x7ff) << 52) |
 | |
|                         result_frac);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
 | |
| {
 | |
|     float_status *s = fpstp;
 | |
|     float64 f64;
 | |
| 
 | |
|     if ((a & 0x80000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     f64 = make_float64((0x3feULL << 52)
 | |
|                        | ((int64_t)(a & 0x7fffffff) << 21));
 | |
| 
 | |
|     f64 = recip_estimate(f64, s);
 | |
| 
 | |
|     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     float64 f64;
 | |
| 
 | |
|     if ((a & 0xc0000000) == 0) {
 | |
|         return 0xffffffff;
 | |
|     }
 | |
| 
 | |
|     if (a & 0x80000000) {
 | |
|         f64 = make_float64((0x3feULL << 52)
 | |
|                            | ((uint64_t)(a & 0x7fffffff) << 21));
 | |
|     } else { /* bits 31-30 == '01' */
 | |
|         f64 = make_float64((0x3fdULL << 52)
 | |
|                            | ((uint64_t)(a & 0x3fffffff) << 22));
 | |
|     }
 | |
| 
 | |
|     f64 = recip_sqrt_estimate(f64, fpst);
 | |
| 
 | |
|     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 | |
| }
 | |
| 
 | |
| /* VFPv4 fused multiply-accumulate */
 | |
| float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float32_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
 | |
| {
 | |
|     float_status *fpst = fpstp;
 | |
|     return float64_muladd(a, b, c, 0, fpst);
 | |
| }
 | |
| 
 | |
| /* ARMv8 round to integral */
 | |
| float32 HELPER(rints_exact)(float32 x, void *fp_status)
 | |
| {
 | |
|     return float32_round_to_int(x, fp_status);
 | |
| }
 | |
| 
 | |
| float64 HELPER(rintd_exact)(float64 x, void *fp_status)
 | |
| {
 | |
|     return float64_round_to_int(x, fp_status);
 | |
| }
 | |
| 
 | |
| float32 HELPER(rints)(float32 x, void *fp_status)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fp_status), new_flags;
 | |
|     float32 ret;
 | |
| 
 | |
|     ret = float32_round_to_int(x, fp_status);
 | |
| 
 | |
|     /* Suppress any inexact exceptions the conversion produced */
 | |
|     if (!(old_flags & float_flag_inexact)) {
 | |
|         new_flags = get_float_exception_flags(fp_status);
 | |
|         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| float64 HELPER(rintd)(float64 x, void *fp_status)
 | |
| {
 | |
|     int old_flags = get_float_exception_flags(fp_status), new_flags;
 | |
|     float64 ret;
 | |
| 
 | |
|     ret = float64_round_to_int(x, fp_status);
 | |
| 
 | |
|     new_flags = get_float_exception_flags(fp_status);
 | |
| 
 | |
|     /* Suppress any inexact exceptions the conversion produced */
 | |
|     if (!(old_flags & float_flag_inexact)) {
 | |
|         new_flags = get_float_exception_flags(fp_status);
 | |
|         set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Convert ARM rounding mode to softfloat */
 | |
| int arm_rmode_to_sf(int rmode)
 | |
| {
 | |
|     switch (rmode) {
 | |
|     case FPROUNDING_TIEAWAY:
 | |
|         rmode = float_round_ties_away;
 | |
|         break;
 | |
|     case FPROUNDING_ODD:
 | |
|         /* FIXME: add support for TIEAWAY and ODD */
 | |
|         qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
 | |
|                       rmode);
 | |
|     case FPROUNDING_TIEEVEN:
 | |
|     default:
 | |
|         rmode = float_round_nearest_even;
 | |
|         break;
 | |
|     case FPROUNDING_POSINF:
 | |
|         rmode = float_round_up;
 | |
|         break;
 | |
|     case FPROUNDING_NEGINF:
 | |
|         rmode = float_round_down;
 | |
|         break;
 | |
|     case FPROUNDING_ZERO:
 | |
|         rmode = float_round_to_zero;
 | |
|         break;
 | |
|     }
 | |
|     return rmode;
 | |
| }
 | |
| 
 | |
| /* CRC helpers.
 | |
|  * The upper bytes of val (above the number specified by 'bytes') must have
 | |
|  * been zeroed out by the caller.
 | |
|  */
 | |
| uint32_t HELPER(crc32)(uint32_t acc, uint32_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[4];
 | |
| 
 | |
|     stl_le_p(buf, val);
 | |
| 
 | |
|     /* zlib crc32 converts the accumulator and output to one's complement.  */
 | |
|     return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(crc32c)(uint32_t acc, uint32_t val, uint32_t bytes)
 | |
| {
 | |
|     uint8_t buf[4];
 | |
| 
 | |
|     stl_le_p(buf, val);
 | |
| 
 | |
|     /* Linux crc32c converts the output to one's complement.  */
 | |
|     return crc32c(acc, buf, bytes) ^ 0xffffffff;
 | |
| }
 |