 c566080cd3
			
		
	
	
		c566080cd3
		
	
	
	
	
		
			
			Our GDB syscall support is the last chunk of code that needs target specific support so move it to a new file. We take the opportunity to move the syscall state into its own singleton instance and add in a few helpers for the main gdbstub to interact with the module. I also moved the gdb_exit() declaration into syscalls.h as it feels pretty related and most of the callers of it treat it as such. Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Message-Id: <20230302190846.2593720-22-alex.bennee@linaro.org> Message-Id: <20230303025805.625589-22-richard.henderson@linaro.org>
		
			
				
	
	
		
			797 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			797 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Semihosting support for systems modeled on the Arm "Angel"
 | |
|  *  semihosting syscalls design. This includes Arm and RISC-V processors
 | |
|  *
 | |
|  *  Copyright (c) 2005, 2007 CodeSourcery.
 | |
|  *  Copyright (c) 2019 Linaro
 | |
|  *  Written by Paul Brook.
 | |
|  *
 | |
|  *  Copyright © 2020 by Keith Packard <keithp@keithp.com>
 | |
|  *  Adapted for systems other than ARM, including RISC-V, by Keith Packard
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  *
 | |
|  *  ARM Semihosting is documented in:
 | |
|  *     Semihosting for AArch32 and AArch64 Release 2.0
 | |
|  *     https://github.com/ARM-software/abi-aa/blob/main/semihosting/semihosting.rst
 | |
|  *
 | |
|  *  RISC-V Semihosting is documented in:
 | |
|  *     RISC-V Semihosting
 | |
|  *     https://github.com/riscv/riscv-semihosting-spec/blob/main/riscv-semihosting-spec.adoc
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "exec/gdbstub.h"
 | |
| #include "gdbstub/syscalls.h"
 | |
| #include "semihosting/semihost.h"
 | |
| #include "semihosting/console.h"
 | |
| #include "semihosting/common-semi.h"
 | |
| #include "semihosting/guestfd.h"
 | |
| #include "semihosting/syscalls.h"
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| #include "qemu.h"
 | |
| 
 | |
| #define COMMON_SEMI_HEAP_SIZE (128 * 1024 * 1024)
 | |
| #else
 | |
| #include "qemu/cutils.h"
 | |
| #include "hw/loader.h"
 | |
| #include "hw/boards.h"
 | |
| #endif
 | |
| 
 | |
| #define TARGET_SYS_OPEN        0x01
 | |
| #define TARGET_SYS_CLOSE       0x02
 | |
| #define TARGET_SYS_WRITEC      0x03
 | |
| #define TARGET_SYS_WRITE0      0x04
 | |
| #define TARGET_SYS_WRITE       0x05
 | |
| #define TARGET_SYS_READ        0x06
 | |
| #define TARGET_SYS_READC       0x07
 | |
| #define TARGET_SYS_ISERROR     0x08
 | |
| #define TARGET_SYS_ISTTY       0x09
 | |
| #define TARGET_SYS_SEEK        0x0a
 | |
| #define TARGET_SYS_FLEN        0x0c
 | |
| #define TARGET_SYS_TMPNAM      0x0d
 | |
| #define TARGET_SYS_REMOVE      0x0e
 | |
| #define TARGET_SYS_RENAME      0x0f
 | |
| #define TARGET_SYS_CLOCK       0x10
 | |
| #define TARGET_SYS_TIME        0x11
 | |
| #define TARGET_SYS_SYSTEM      0x12
 | |
| #define TARGET_SYS_ERRNO       0x13
 | |
| #define TARGET_SYS_GET_CMDLINE 0x15
 | |
| #define TARGET_SYS_HEAPINFO    0x16
 | |
| #define TARGET_SYS_EXIT        0x18
 | |
| #define TARGET_SYS_SYNCCACHE   0x19
 | |
| #define TARGET_SYS_EXIT_EXTENDED 0x20
 | |
| #define TARGET_SYS_ELAPSED     0x30
 | |
| #define TARGET_SYS_TICKFREQ    0x31
 | |
| 
 | |
| /* ADP_Stopped_ApplicationExit is used for exit(0),
 | |
|  * anything else is implemented as exit(1) */
 | |
| #define ADP_Stopped_ApplicationExit     (0x20026)
 | |
| 
 | |
| #ifndef O_BINARY
 | |
| #define O_BINARY 0
 | |
| #endif
 | |
| 
 | |
| static int gdb_open_modeflags[12] = {
 | |
|     GDB_O_RDONLY,
 | |
|     GDB_O_RDONLY,
 | |
|     GDB_O_RDWR,
 | |
|     GDB_O_RDWR,
 | |
|     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
 | |
|     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_TRUNC,
 | |
|     GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
 | |
|     GDB_O_RDWR | GDB_O_CREAT | GDB_O_TRUNC,
 | |
|     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
 | |
|     GDB_O_WRONLY | GDB_O_CREAT | GDB_O_APPEND,
 | |
|     GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
 | |
|     GDB_O_RDWR | GDB_O_CREAT | GDB_O_APPEND,
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| 
 | |
| /**
 | |
|  * common_semi_find_bases: find information about ram and heap base
 | |
|  *
 | |
|  * This function attempts to provide meaningful numbers for RAM and
 | |
|  * HEAP base addresses. The rambase is simply the lowest addressable
 | |
|  * RAM position. For the heapbase we ask the loader to scan the
 | |
|  * address space and the largest available gap by querying the "ROM"
 | |
|  * regions.
 | |
|  *
 | |
|  * Returns: a structure with the numbers we need.
 | |
|  */
 | |
| 
 | |
| typedef struct LayoutInfo {
 | |
|     target_ulong rambase;
 | |
|     size_t ramsize;
 | |
|     hwaddr heapbase;
 | |
|     hwaddr heaplimit;
 | |
| } LayoutInfo;
 | |
| 
 | |
| static bool find_ram_cb(Int128 start, Int128 len, const MemoryRegion *mr,
 | |
|                         hwaddr offset_in_region, void *opaque)
 | |
| {
 | |
|     LayoutInfo *info = (LayoutInfo *) opaque;
 | |
|     uint64_t size = int128_get64(len);
 | |
| 
 | |
|     if (!mr->ram || mr->readonly) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (size > info->ramsize) {
 | |
|         info->rambase = int128_get64(start);
 | |
|         info->ramsize = size;
 | |
|     }
 | |
| 
 | |
|     /* search exhaustively for largest RAM */
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static LayoutInfo common_semi_find_bases(CPUState *cs)
 | |
| {
 | |
|     FlatView *fv;
 | |
|     LayoutInfo info = { 0, 0, 0, 0 };
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     fv = address_space_to_flatview(cs->as);
 | |
|     flatview_for_each_range(fv, find_ram_cb, &info);
 | |
| 
 | |
|     /*
 | |
|      * If we have found the RAM lets iterate through the ROM blobs to
 | |
|      * work out the best place for the remainder of RAM and split it
 | |
|      * equally between stack and heap.
 | |
|      */
 | |
|     if (info.rambase || info.ramsize > 0) {
 | |
|         RomGap gap = rom_find_largest_gap_between(info.rambase, info.ramsize);
 | |
|         info.heapbase = gap.base;
 | |
|         info.heaplimit = gap.base + gap.size;
 | |
|     }
 | |
| 
 | |
|     return info;
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #include "common-semi-target.h"
 | |
| 
 | |
| /*
 | |
|  * Read the input value from the argument block; fail the semihosting
 | |
|  * call if the memory read fails. Eventually we could use a generic
 | |
|  * CPUState helper function here.
 | |
|  * Note that GET_ARG() handles memory access errors by jumping to
 | |
|  * do_fault, so must be used as the first thing done in handling a
 | |
|  * semihosting call, to avoid accidentally leaking allocated resources.
 | |
|  * SET_ARG(), since it unavoidably happens late, instead returns an
 | |
|  * error indication (0 on success, non-0 for error) which the caller
 | |
|  * should check.
 | |
|  */
 | |
| 
 | |
| #define GET_ARG(n) do {                                 \
 | |
|     if (is_64bit_semihosting(env)) {                    \
 | |
|         if (get_user_u64(arg ## n, args + (n) * 8)) {   \
 | |
|             goto do_fault;                              \
 | |
|         }                                               \
 | |
|     } else {                                            \
 | |
|         if (get_user_u32(arg ## n, args + (n) * 4)) {   \
 | |
|             goto do_fault;                              \
 | |
|         }                                               \
 | |
|     }                                                   \
 | |
| } while (0)
 | |
| 
 | |
| #define SET_ARG(n, val)                                 \
 | |
|     (is_64bit_semihosting(env) ?                        \
 | |
|      put_user_u64(val, args + (n) * 8) :                \
 | |
|      put_user_u32(val, args + (n) * 4))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * The semihosting API has no concept of its errno being thread-safe,
 | |
|  * as the API design predates SMP CPUs and was intended as a simple
 | |
|  * real-hardware set of debug functionality. For QEMU, we make the
 | |
|  * errno be per-thread in linux-user mode; in softmmu it is a simple
 | |
|  * global, and we assume that the guest takes care of avoiding any races.
 | |
|  */
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| static target_ulong syscall_err;
 | |
| 
 | |
| #include "semihosting/softmmu-uaccess.h"
 | |
| #endif
 | |
| 
 | |
| static inline uint32_t get_swi_errno(CPUState *cs)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     TaskState *ts = cs->opaque;
 | |
| 
 | |
|     return ts->swi_errno;
 | |
| #else
 | |
|     return syscall_err;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void common_semi_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     if (err) {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|         TaskState *ts = cs->opaque;
 | |
|         ts->swi_errno = err;
 | |
| #else
 | |
|         syscall_err = err;
 | |
| #endif
 | |
|     }
 | |
|     common_semi_set_ret(cs, ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use 0xdeadbeef as the return value when there isn't a defined
 | |
|  * return value for the call.
 | |
|  */
 | |
| static void common_semi_dead_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     common_semi_set_ret(cs, 0xdeadbeef);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SYS_READ and SYS_WRITE always return the number of bytes not read/written.
 | |
|  * There is no error condition, other than returning the original length.
 | |
|  */
 | |
| static void common_semi_rw_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     /* Recover the original length from the third argument. */
 | |
|     CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
 | |
|     target_ulong args = common_semi_arg(cs, 1);
 | |
|     target_ulong arg2;
 | |
|     GET_ARG(2);
 | |
| 
 | |
|     if (err) {
 | |
|  do_fault:
 | |
|         ret = 0; /* error: no bytes transmitted */
 | |
|     }
 | |
|     common_semi_set_ret(cs, arg2 - ret);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Convert from Posix ret+errno to Arm SYS_ISTTY return values.
 | |
|  * With gdbstub, err is only ever set for protocol errors to EIO.
 | |
|  */
 | |
| static void common_semi_istty_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     if (err) {
 | |
|         ret = (err == ENOTTY ? 0 : -1);
 | |
|     }
 | |
|     common_semi_cb(cs, ret, err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SYS_SEEK returns 0 on success, not the resulting offset.
 | |
|  */
 | |
| static void common_semi_seek_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     if (!err) {
 | |
|         ret = 0;
 | |
|     }
 | |
|     common_semi_cb(cs, ret, err);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return an address in target memory of 64 bytes where the remote
 | |
|  * gdb should write its stat struct. (The format of this structure
 | |
|  * is defined by GDB's remote protocol and is not target-specific.)
 | |
|  * We put this on the guest's stack just below SP.
 | |
|  */
 | |
| static target_ulong common_semi_flen_buf(CPUState *cs)
 | |
| {
 | |
|     target_ulong sp = common_semi_stack_bottom(cs);
 | |
|     return sp - 64;
 | |
| }
 | |
| 
 | |
| static void
 | |
| common_semi_flen_fstat_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     if (!err) {
 | |
|         /* The size is always stored in big-endian order, extract the value. */
 | |
|         uint64_t size;
 | |
|         if (cpu_memory_rw_debug(cs, common_semi_flen_buf(cs) +
 | |
|                                 offsetof(struct gdb_stat, gdb_st_size),
 | |
|                                 &size, 8, 0)) {
 | |
|             ret = -1, err = EFAULT;
 | |
|         } else {
 | |
|             size = be64_to_cpu(size);
 | |
|             if (ret != size) {
 | |
|                 ret = -1, err = EOVERFLOW;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     common_semi_cb(cs, ret, err);
 | |
| }
 | |
| 
 | |
| static void
 | |
| common_semi_readc_cb(CPUState *cs, uint64_t ret, int err)
 | |
| {
 | |
|     if (!err) {
 | |
|         CPUArchState *env G_GNUC_UNUSED = cs->env_ptr;
 | |
|         uint8_t ch;
 | |
| 
 | |
|         if (get_user_u8(ch, common_semi_stack_bottom(cs) - 1)) {
 | |
|             ret = -1, err = EFAULT;
 | |
|         } else {
 | |
|             ret = ch;
 | |
|         }
 | |
|     }
 | |
|     common_semi_cb(cs, ret, err);
 | |
| }
 | |
| 
 | |
| #define SHFB_MAGIC_0 0x53
 | |
| #define SHFB_MAGIC_1 0x48
 | |
| #define SHFB_MAGIC_2 0x46
 | |
| #define SHFB_MAGIC_3 0x42
 | |
| 
 | |
| /* Feature bits reportable in feature byte 0 */
 | |
| #define SH_EXT_EXIT_EXTENDED (1 << 0)
 | |
| #define SH_EXT_STDOUT_STDERR (1 << 1)
 | |
| 
 | |
| static const uint8_t featurefile_data[] = {
 | |
|     SHFB_MAGIC_0,
 | |
|     SHFB_MAGIC_1,
 | |
|     SHFB_MAGIC_2,
 | |
|     SHFB_MAGIC_3,
 | |
|     SH_EXT_EXIT_EXTENDED | SH_EXT_STDOUT_STDERR, /* Feature byte 0 */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Do a semihosting call.
 | |
|  *
 | |
|  * The specification always says that the "return register" either
 | |
|  * returns a specific value or is corrupted, so we don't need to
 | |
|  * report to our caller whether we are returning a value or trying to
 | |
|  * leave the register unchanged.
 | |
|  */
 | |
| void do_common_semihosting(CPUState *cs)
 | |
| {
 | |
|     CPUArchState *env = cs->env_ptr;
 | |
|     target_ulong args;
 | |
|     target_ulong arg0, arg1, arg2, arg3;
 | |
|     target_ulong ul_ret;
 | |
|     char * s;
 | |
|     int nr;
 | |
|     uint32_t ret;
 | |
|     int64_t elapsed;
 | |
| 
 | |
|     nr = common_semi_arg(cs, 0) & 0xffffffffU;
 | |
|     args = common_semi_arg(cs, 1);
 | |
| 
 | |
|     switch (nr) {
 | |
|     case TARGET_SYS_OPEN:
 | |
|     {
 | |
|         int ret, err = 0;
 | |
|         int hostfd;
 | |
| 
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         GET_ARG(2);
 | |
|         s = lock_user_string(arg0);
 | |
|         if (!s) {
 | |
|             goto do_fault;
 | |
|         }
 | |
|         if (arg1 >= 12) {
 | |
|             unlock_user(s, arg0, 0);
 | |
|             common_semi_cb(cs, -1, EINVAL);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (strcmp(s, ":tt") == 0) {
 | |
|             /*
 | |
|              * We implement SH_EXT_STDOUT_STDERR, so:
 | |
|              *  open for read == stdin
 | |
|              *  open for write == stdout
 | |
|              *  open for append == stderr
 | |
|              */
 | |
|             if (arg1 < 4) {
 | |
|                 hostfd = STDIN_FILENO;
 | |
|             } else if (arg1 < 8) {
 | |
|                 hostfd = STDOUT_FILENO;
 | |
|             } else {
 | |
|                 hostfd = STDERR_FILENO;
 | |
|             }
 | |
|             ret = alloc_guestfd();
 | |
|             associate_guestfd(ret, hostfd);
 | |
|         } else if (strcmp(s, ":semihosting-features") == 0) {
 | |
|             /* We must fail opens for modes other than 0 ('r') or 1 ('rb') */
 | |
|             if (arg1 != 0 && arg1 != 1) {
 | |
|                 ret = -1;
 | |
|                 err = EACCES;
 | |
|             } else {
 | |
|                 ret = alloc_guestfd();
 | |
|                 staticfile_guestfd(ret, featurefile_data,
 | |
|                                    sizeof(featurefile_data));
 | |
|             }
 | |
|         } else {
 | |
|             unlock_user(s, arg0, 0);
 | |
|             semihost_sys_open(cs, common_semi_cb, arg0, arg2 + 1,
 | |
|                               gdb_open_modeflags[arg1], 0644);
 | |
|             break;
 | |
|         }
 | |
|         unlock_user(s, arg0, 0);
 | |
|         common_semi_cb(cs, ret, err);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     case TARGET_SYS_CLOSE:
 | |
|         GET_ARG(0);
 | |
|         semihost_sys_close(cs, common_semi_cb, arg0);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_WRITEC:
 | |
|         /*
 | |
|          * FIXME: the byte to be written is in a target_ulong slot,
 | |
|          * which means this is wrong for a big-endian guest.
 | |
|          */
 | |
|         semihost_sys_write_gf(cs, common_semi_dead_cb,
 | |
|                               &console_out_gf, args, 1);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_WRITE0:
 | |
|         {
 | |
|             ssize_t len = target_strlen(args);
 | |
|             if (len < 0) {
 | |
|                 common_semi_dead_cb(cs, -1, EFAULT);
 | |
|             } else {
 | |
|                 semihost_sys_write_gf(cs, common_semi_dead_cb,
 | |
|                                       &console_out_gf, args, len);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_WRITE:
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         GET_ARG(2);
 | |
|         semihost_sys_write(cs, common_semi_rw_cb, arg0, arg1, arg2);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_READ:
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         GET_ARG(2);
 | |
|         semihost_sys_read(cs, common_semi_rw_cb, arg0, arg1, arg2);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_READC:
 | |
|         semihost_sys_read_gf(cs, common_semi_readc_cb, &console_in_gf,
 | |
|                              common_semi_stack_bottom(cs) - 1, 1);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_ISERROR:
 | |
|         GET_ARG(0);
 | |
|         common_semi_set_ret(cs, (target_long)arg0 < 0);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_ISTTY:
 | |
|         GET_ARG(0);
 | |
|         semihost_sys_isatty(cs, common_semi_istty_cb, arg0);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_SEEK:
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         semihost_sys_lseek(cs, common_semi_seek_cb, arg0, arg1, GDB_SEEK_SET);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_FLEN:
 | |
|         GET_ARG(0);
 | |
|         semihost_sys_flen(cs, common_semi_flen_fstat_cb, common_semi_cb,
 | |
|                           arg0, common_semi_flen_buf(cs));
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_TMPNAM:
 | |
|     {
 | |
|         int len;
 | |
|         char *p;
 | |
| 
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         GET_ARG(2);
 | |
|         len = asprintf(&s, "%s/qemu-%x%02x", g_get_tmp_dir(),
 | |
|                        getpid(), (int)arg1 & 0xff);
 | |
|         if (len < 0) {
 | |
|             common_semi_set_ret(cs, -1);
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Allow for trailing NUL */
 | |
|         len++;
 | |
|         /* Make sure there's enough space in the buffer */
 | |
|         if (len > arg2) {
 | |
|             free(s);
 | |
|             common_semi_set_ret(cs, -1);
 | |
|             break;
 | |
|         }
 | |
|         p = lock_user(VERIFY_WRITE, arg0, len, 0);
 | |
|         if (!p) {
 | |
|             free(s);
 | |
|             goto do_fault;
 | |
|         }
 | |
|         memcpy(p, s, len);
 | |
|         unlock_user(p, arg0, len);
 | |
|         free(s);
 | |
|         common_semi_set_ret(cs, 0);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     case TARGET_SYS_REMOVE:
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         semihost_sys_remove(cs, common_semi_cb, arg0, arg1 + 1);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_RENAME:
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         GET_ARG(2);
 | |
|         GET_ARG(3);
 | |
|         semihost_sys_rename(cs, common_semi_cb, arg0, arg1 + 1, arg2, arg3 + 1);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_CLOCK:
 | |
|         common_semi_set_ret(cs, clock() / (CLOCKS_PER_SEC / 100));
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_TIME:
 | |
|         ul_ret = time(NULL);
 | |
|         common_semi_cb(cs, ul_ret, ul_ret == -1 ? errno : 0);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_SYSTEM:
 | |
|         GET_ARG(0);
 | |
|         GET_ARG(1);
 | |
|         semihost_sys_system(cs, common_semi_cb, arg0, arg1 + 1);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_ERRNO:
 | |
|         common_semi_set_ret(cs, get_swi_errno(cs));
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_GET_CMDLINE:
 | |
|         {
 | |
|             /* Build a command-line from the original argv.
 | |
|              *
 | |
|              * The inputs are:
 | |
|              *     * arg0, pointer to a buffer of at least the size
 | |
|              *               specified in arg1.
 | |
|              *     * arg1, size of the buffer pointed to by arg0 in
 | |
|              *               bytes.
 | |
|              *
 | |
|              * The outputs are:
 | |
|              *     * arg0, pointer to null-terminated string of the
 | |
|              *               command line.
 | |
|              *     * arg1, length of the string pointed to by arg0.
 | |
|              */
 | |
| 
 | |
|             char *output_buffer;
 | |
|             size_t input_size;
 | |
|             size_t output_size;
 | |
|             int status = 0;
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|             const char *cmdline;
 | |
| #else
 | |
|             TaskState *ts = cs->opaque;
 | |
| #endif
 | |
|             GET_ARG(0);
 | |
|             GET_ARG(1);
 | |
|             input_size = arg1;
 | |
|             /* Compute the size of the output string.  */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|             cmdline = semihosting_get_cmdline();
 | |
|             if (cmdline == NULL) {
 | |
|                 cmdline = ""; /* Default to an empty line. */
 | |
|             }
 | |
|             output_size = strlen(cmdline) + 1; /* Count terminating 0. */
 | |
| #else
 | |
|             unsigned int i;
 | |
| 
 | |
|             output_size = ts->info->env_strings - ts->info->arg_strings;
 | |
|             if (!output_size) {
 | |
|                 /*
 | |
|                  * We special-case the "empty command line" case (argc==0).
 | |
|                  * Just provide the terminating 0.
 | |
|                  */
 | |
|                 output_size = 1;
 | |
|             }
 | |
| #endif
 | |
| 
 | |
|             if (output_size > input_size) {
 | |
|                 /* Not enough space to store command-line arguments.  */
 | |
|                 common_semi_cb(cs, -1, E2BIG);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /* Adjust the command-line length.  */
 | |
|             if (SET_ARG(1, output_size - 1)) {
 | |
|                 /* Couldn't write back to argument block */
 | |
|                 goto do_fault;
 | |
|             }
 | |
| 
 | |
|             /* Lock the buffer on the ARM side.  */
 | |
|             output_buffer = lock_user(VERIFY_WRITE, arg0, output_size, 0);
 | |
|             if (!output_buffer) {
 | |
|                 goto do_fault;
 | |
|             }
 | |
| 
 | |
|             /* Copy the command-line arguments.  */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|             pstrcpy(output_buffer, output_size, cmdline);
 | |
| #else
 | |
|             if (output_size == 1) {
 | |
|                 /* Empty command-line.  */
 | |
|                 output_buffer[0] = '\0';
 | |
|                 goto out;
 | |
|             }
 | |
| 
 | |
|             if (copy_from_user(output_buffer, ts->info->arg_strings,
 | |
|                                output_size)) {
 | |
|                 unlock_user(output_buffer, arg0, 0);
 | |
|                 goto do_fault;
 | |
|             }
 | |
| 
 | |
|             /* Separate arguments by white spaces.  */
 | |
|             for (i = 0; i < output_size - 1; i++) {
 | |
|                 if (output_buffer[i] == 0) {
 | |
|                     output_buffer[i] = ' ';
 | |
|                 }
 | |
|             }
 | |
|         out:
 | |
| #endif
 | |
|             /* Unlock the buffer on the ARM side.  */
 | |
|             unlock_user(output_buffer, arg0, output_size);
 | |
|             common_semi_cb(cs, status, 0);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_HEAPINFO:
 | |
|         {
 | |
|             target_ulong retvals[4];
 | |
|             int i;
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|             TaskState *ts = cs->opaque;
 | |
|             target_ulong limit;
 | |
| #else
 | |
|             LayoutInfo info = common_semi_find_bases(cs);
 | |
| #endif
 | |
| 
 | |
|             GET_ARG(0);
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|             /*
 | |
|              * Some C libraries assume the heap immediately follows .bss, so
 | |
|              * allocate it using sbrk.
 | |
|              */
 | |
|             if (!ts->heap_limit) {
 | |
|                 abi_ulong ret;
 | |
| 
 | |
|                 ts->heap_base = do_brk(0);
 | |
|                 limit = ts->heap_base + COMMON_SEMI_HEAP_SIZE;
 | |
|                 /* Try a big heap, and reduce the size if that fails.  */
 | |
|                 for (;;) {
 | |
|                     ret = do_brk(limit);
 | |
|                     if (ret >= limit) {
 | |
|                         break;
 | |
|                     }
 | |
|                     limit = (ts->heap_base >> 1) + (limit >> 1);
 | |
|                 }
 | |
|                 ts->heap_limit = limit;
 | |
|             }
 | |
| 
 | |
|             retvals[0] = ts->heap_base;
 | |
|             retvals[1] = ts->heap_limit;
 | |
|             retvals[2] = ts->stack_base;
 | |
|             retvals[3] = 0; /* Stack limit.  */
 | |
| #else
 | |
|             retvals[0] = info.heapbase;  /* Heap Base */
 | |
|             retvals[1] = info.heaplimit; /* Heap Limit */
 | |
|             retvals[2] = info.heaplimit; /* Stack base */
 | |
|             retvals[3] = info.heapbase;  /* Stack limit.  */
 | |
| #endif
 | |
| 
 | |
|             for (i = 0; i < ARRAY_SIZE(retvals); i++) {
 | |
|                 bool fail;
 | |
| 
 | |
|                 if (is_64bit_semihosting(env)) {
 | |
|                     fail = put_user_u64(retvals[i], arg0 + i * 8);
 | |
|                 } else {
 | |
|                     fail = put_user_u32(retvals[i], arg0 + i * 4);
 | |
|                 }
 | |
| 
 | |
|                 if (fail) {
 | |
|                     /* Couldn't write back to argument block */
 | |
|                     goto do_fault;
 | |
|                 }
 | |
|             }
 | |
|             common_semi_set_ret(cs, 0);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_EXIT:
 | |
|     case TARGET_SYS_EXIT_EXTENDED:
 | |
|         if (common_semi_sys_exit_extended(cs, nr)) {
 | |
|             /*
 | |
|              * The A64 version of SYS_EXIT takes a parameter block,
 | |
|              * so the application-exit type can return a subcode which
 | |
|              * is the exit status code from the application.
 | |
|              * SYS_EXIT_EXTENDED is an a new-in-v2.0 optional function
 | |
|              * which allows A32/T32 guests to also provide a status code.
 | |
|              */
 | |
|             GET_ARG(0);
 | |
|             GET_ARG(1);
 | |
| 
 | |
|             if (arg0 == ADP_Stopped_ApplicationExit) {
 | |
|                 ret = arg1;
 | |
|             } else {
 | |
|                 ret = 1;
 | |
|             }
 | |
|         } else {
 | |
|             /*
 | |
|              * The A32/T32 version of SYS_EXIT specifies only
 | |
|              * Stopped_ApplicationExit as normal exit, but does not
 | |
|              * allow the guest to specify the exit status code.
 | |
|              * Everything else is considered an error.
 | |
|              */
 | |
|             ret = (args == ADP_Stopped_ApplicationExit) ? 0 : 1;
 | |
|         }
 | |
|         gdb_exit(ret);
 | |
|         exit(ret);
 | |
| 
 | |
|     case TARGET_SYS_ELAPSED:
 | |
|         elapsed = get_clock() - clock_start;
 | |
|         if (sizeof(target_ulong) == 8) {
 | |
|             if (SET_ARG(0, elapsed)) {
 | |
|                 goto do_fault;
 | |
|             }
 | |
|         } else {
 | |
|             if (SET_ARG(0, (uint32_t) elapsed) ||
 | |
|                 SET_ARG(1, (uint32_t) (elapsed >> 32))) {
 | |
|                 goto do_fault;
 | |
|             }
 | |
|         }
 | |
|         common_semi_set_ret(cs, 0);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_TICKFREQ:
 | |
|         /* qemu always uses nsec */
 | |
|         common_semi_set_ret(cs, 1000000000);
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SYS_SYNCCACHE:
 | |
|         /*
 | |
|          * Clean the D-cache and invalidate the I-cache for the specified
 | |
|          * virtual address range. This is a nop for us since we don't
 | |
|          * implement caches. This is only present on A64.
 | |
|          */
 | |
|         if (common_semi_has_synccache(env)) {
 | |
|             common_semi_set_ret(cs, 0);
 | |
|             break;
 | |
|         }
 | |
|         /* fall through */
 | |
|     default:
 | |
|         fprintf(stderr, "qemu: Unsupported SemiHosting SWI 0x%02x\n", nr);
 | |
|         cpu_dump_state(cs, stderr, 0);
 | |
|         abort();
 | |
| 
 | |
|     do_fault:
 | |
|         common_semi_cb(cs, -1, EFAULT);
 | |
|         break;
 | |
|     }
 | |
| }
 |