 14d483eca0
			
		
	
	
		14d483eca0
		
	
	
	
	
		
			
			git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@7102 c046a42c-6fe2-441c-8c8c-71466251a162
		
			
				
	
	
		
			497 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			497 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Native implementation of soft float functions */
 | |
| #include <math.h>
 | |
| 
 | |
| #if (defined(HOST_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
 | |
| #include <ieeefp.h>
 | |
| #define fabsf(f) ((float)fabs(f))
 | |
| #else
 | |
| #include <fenv.h>
 | |
| #endif
 | |
| 
 | |
| #if defined(__OpenBSD__) || defined(__NetBSD__)
 | |
| #include <sys/param.h>
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Define some C99-7.12.3 classification macros and
 | |
|  *        some C99-.12.4 for Solaris systems OS less than 10,
 | |
|  *        or Solaris 10 systems running GCC 3.x or less.
 | |
|  *   Solaris 10 with GCC4 does not need these macros as they
 | |
|  *   are defined in <iso/math_c99.h> with a compiler directive
 | |
|  */
 | |
| #if defined(HOST_SOLARIS) && (( HOST_SOLARIS <= 9 ) || ((HOST_SOLARIS >= 10) \
 | |
|                                                         && (__GNUC__ < 4))) \
 | |
|     || (defined(__OpenBSD__) && (OpenBSD < 200811))
 | |
| /*
 | |
|  * C99 7.12.3 classification macros
 | |
|  * and
 | |
|  * C99 7.12.14 comparison macros
 | |
|  *
 | |
|  * ... do not work on Solaris 10 using GNU CC 3.4.x.
 | |
|  * Try to workaround the missing / broken C99 math macros.
 | |
|  */
 | |
| #if defined(__OpenBSD__)
 | |
| #define unordered(x, y) (isnan(x) || isnan(y))
 | |
| #endif
 | |
| 
 | |
| #ifdef __NetBSD__
 | |
| #ifndef isgreater
 | |
| #define isgreater(x, y)		__builtin_isgreater(x, y)
 | |
| #endif
 | |
| #ifndef isgreaterequal
 | |
| #define isgreaterequal(x, y)	__builtin_isgreaterequal(x, y)
 | |
| #endif
 | |
| #ifndef isless
 | |
| #define isless(x, y)		__builtin_isless(x, y)
 | |
| #endif
 | |
| #ifndef islessequal
 | |
| #define islessequal(x, y)	__builtin_islessequal(x, y)
 | |
| #endif
 | |
| #ifndef isunordered
 | |
| #define isunordered(x, y)	__builtin_isunordered(x, y)
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define isnormal(x)             (fpclass(x) >= FP_NZERO)
 | |
| #define isgreater(x, y)         ((!unordered(x, y)) && ((x) > (y)))
 | |
| #define isgreaterequal(x, y)    ((!unordered(x, y)) && ((x) >= (y)))
 | |
| #define isless(x, y)            ((!unordered(x, y)) && ((x) < (y)))
 | |
| #define islessequal(x, y)       ((!unordered(x, y)) && ((x) <= (y)))
 | |
| #define isunordered(x,y)        unordered(x, y)
 | |
| #endif
 | |
| 
 | |
| #if defined(__sun__) && !defined(NEED_LIBSUNMATH)
 | |
| 
 | |
| #ifndef isnan
 | |
| # define isnan(x) \
 | |
|     (sizeof (x) == sizeof (long double) ? isnan_ld (x) \
 | |
|      : sizeof (x) == sizeof (double) ? isnan_d (x) \
 | |
|      : isnan_f (x))
 | |
| static inline int isnan_f  (float       x) { return x != x; }
 | |
| static inline int isnan_d  (double      x) { return x != x; }
 | |
| static inline int isnan_ld (long double x) { return x != x; }
 | |
| #endif
 | |
| 
 | |
| #ifndef isinf
 | |
| # define isinf(x) \
 | |
|     (sizeof (x) == sizeof (long double) ? isinf_ld (x) \
 | |
|      : sizeof (x) == sizeof (double) ? isinf_d (x) \
 | |
|      : isinf_f (x))
 | |
| static inline int isinf_f  (float       x) { return isnan (x - x); }
 | |
| static inline int isinf_d  (double      x) { return isnan (x - x); }
 | |
| static inline int isinf_ld (long double x) { return isnan (x - x); }
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| typedef float float32;
 | |
| typedef double float64;
 | |
| #ifdef FLOATX80
 | |
| typedef long double floatx80;
 | |
| #endif
 | |
| 
 | |
| typedef union {
 | |
|     float32 f;
 | |
|     uint32_t i;
 | |
| } float32u;
 | |
| typedef union {
 | |
|     float64 f;
 | |
|     uint64_t i;
 | |
| } float64u;
 | |
| #ifdef FLOATX80
 | |
| typedef union {
 | |
|     floatx80 f;
 | |
|     struct {
 | |
|         uint64_t low;
 | |
|         uint16_t high;
 | |
|     } i;
 | |
| } floatx80u;
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE floating-point rounding mode.
 | |
| *----------------------------------------------------------------------------*/
 | |
| #if (defined(HOST_BSD) && !defined(__APPLE__)) || defined(HOST_SOLARIS)
 | |
| #if defined(__OpenBSD__)
 | |
| #define FE_RM FP_RM
 | |
| #define FE_RP FP_RP
 | |
| #define FE_RZ FP_RZ
 | |
| #endif
 | |
| enum {
 | |
|     float_round_nearest_even = FP_RN,
 | |
|     float_round_down         = FP_RM,
 | |
|     float_round_up           = FP_RP,
 | |
|     float_round_to_zero      = FP_RZ
 | |
| };
 | |
| #elif defined(__arm__)
 | |
| enum {
 | |
|     float_round_nearest_even = 0,
 | |
|     float_round_down         = 1,
 | |
|     float_round_up           = 2,
 | |
|     float_round_to_zero      = 3
 | |
| };
 | |
| #else
 | |
| enum {
 | |
|     float_round_nearest_even = FE_TONEAREST,
 | |
|     float_round_down         = FE_DOWNWARD,
 | |
|     float_round_up           = FE_UPWARD,
 | |
|     float_round_to_zero      = FE_TOWARDZERO
 | |
| };
 | |
| #endif
 | |
| 
 | |
| typedef struct float_status {
 | |
|     int float_rounding_mode;
 | |
| #ifdef FLOATX80
 | |
|     int floatx80_rounding_precision;
 | |
| #endif
 | |
| } float_status;
 | |
| 
 | |
| void set_float_rounding_mode(int val STATUS_PARAM);
 | |
| #ifdef FLOATX80
 | |
| void set_floatx80_rounding_precision(int val STATUS_PARAM);
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE integer-to-floating-point conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 int32_to_float32( int STATUS_PARAM);
 | |
| float32 uint32_to_float32( unsigned int STATUS_PARAM);
 | |
| float64 int32_to_float64( int STATUS_PARAM);
 | |
| float64 uint32_to_float64( unsigned int STATUS_PARAM);
 | |
| #ifdef FLOATX80
 | |
| floatx80 int32_to_floatx80( int STATUS_PARAM);
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 int32_to_float128( int STATUS_PARAM);
 | |
| #endif
 | |
| float32 int64_to_float32( int64_t STATUS_PARAM);
 | |
| float32 uint64_to_float32( uint64_t STATUS_PARAM);
 | |
| float64 int64_to_float64( int64_t STATUS_PARAM);
 | |
| float64 uint64_to_float64( uint64_t v STATUS_PARAM);
 | |
| #ifdef FLOATX80
 | |
| floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 int64_to_float128( int64_t STATUS_PARAM);
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int float32_to_int32( float32  STATUS_PARAM);
 | |
| int float32_to_int32_round_to_zero( float32  STATUS_PARAM);
 | |
| unsigned int float32_to_uint32( float32 a STATUS_PARAM);
 | |
| unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
 | |
| int64_t float32_to_int64( float32  STATUS_PARAM);
 | |
| int64_t float32_to_int64_round_to_zero( float32  STATUS_PARAM);
 | |
| float64 float32_to_float64( float32  STATUS_PARAM);
 | |
| #ifdef FLOATX80
 | |
| floatx80 float32_to_floatx80( float32  STATUS_PARAM);
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float32_to_float128( float32  STATUS_PARAM);
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE single-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float32 float32_round_to_int( float32  STATUS_PARAM);
 | |
| INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a + b;
 | |
| }
 | |
| INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a - b;
 | |
| }
 | |
| INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a * b;
 | |
| }
 | |
| INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a / b;
 | |
| }
 | |
| float32 float32_rem( float32, float32  STATUS_PARAM);
 | |
| float32 float32_sqrt( float32  STATUS_PARAM);
 | |
| INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a == b;
 | |
| }
 | |
| INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a <= b;
 | |
| }
 | |
| INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a < b;
 | |
| }
 | |
| INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return a <= b && a >= b;
 | |
| }
 | |
| INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return islessequal(a, b);
 | |
| }
 | |
| INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return isless(a, b);
 | |
| }
 | |
| INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
 | |
| {
 | |
|     return isunordered(a, b);
 | |
| 
 | |
| }
 | |
| int float32_compare( float32, float32 STATUS_PARAM );
 | |
| int float32_compare_quiet( float32, float32 STATUS_PARAM );
 | |
| int float32_is_signaling_nan( float32 );
 | |
| int float32_is_nan( float32 );
 | |
| 
 | |
| INLINE float32 float32_abs(float32 a)
 | |
| {
 | |
|     return fabsf(a);
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_chs(float32 a)
 | |
| {
 | |
|     return -a;
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_is_infinity(float32 a)
 | |
| {
 | |
|     return fpclassify(a) == FP_INFINITE;
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_is_neg(float32 a)
 | |
| {
 | |
|     float32u u;
 | |
|     u.f = a;
 | |
|     return u.i >> 31;
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_is_zero(float32 a)
 | |
| {
 | |
|     return fpclassify(a) == FP_ZERO;
 | |
| }
 | |
| 
 | |
| INLINE float32 float32_scalbn(float32 a, int n)
 | |
| {
 | |
|     return scalbnf(a, n);
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int float64_to_int32( float64 STATUS_PARAM );
 | |
| int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
 | |
| unsigned int float64_to_uint32( float64 STATUS_PARAM );
 | |
| unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
 | |
| int64_t float64_to_int64( float64 STATUS_PARAM );
 | |
| int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
 | |
| uint64_t float64_to_uint64( float64 STATUS_PARAM );
 | |
| uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
 | |
| float32 float64_to_float32( float64 STATUS_PARAM );
 | |
| #ifdef FLOATX80
 | |
| floatx80 float64_to_floatx80( float64 STATUS_PARAM );
 | |
| #endif
 | |
| #ifdef FLOAT128
 | |
| float128 float64_to_float128( float64 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| float64 float64_round_to_int( float64 STATUS_PARAM );
 | |
| float64 float64_trunc_to_int( float64 STATUS_PARAM );
 | |
| INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a + b;
 | |
| }
 | |
| INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a - b;
 | |
| }
 | |
| INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a * b;
 | |
| }
 | |
| INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a / b;
 | |
| }
 | |
| float64 float64_rem( float64, float64 STATUS_PARAM );
 | |
| float64 float64_sqrt( float64 STATUS_PARAM );
 | |
| INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a == b;
 | |
| }
 | |
| INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a <= b;
 | |
| }
 | |
| INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a < b;
 | |
| }
 | |
| INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return a <= b && a >= b;
 | |
| }
 | |
| INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return islessequal(a, b);
 | |
| }
 | |
| INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return isless(a, b);
 | |
| 
 | |
| }
 | |
| INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
 | |
| {
 | |
|     return isunordered(a, b);
 | |
| 
 | |
| }
 | |
| int float64_compare( float64, float64 STATUS_PARAM );
 | |
| int float64_compare_quiet( float64, float64 STATUS_PARAM );
 | |
| int float64_is_signaling_nan( float64 );
 | |
| int float64_is_nan( float64 );
 | |
| 
 | |
| INLINE float64 float64_abs(float64 a)
 | |
| {
 | |
|     return fabs(a);
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_chs(float64 a)
 | |
| {
 | |
|     return -a;
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_is_infinity(float64 a)
 | |
| {
 | |
|     return fpclassify(a) == FP_INFINITE;
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_is_neg(float64 a)
 | |
| {
 | |
|     float64u u;
 | |
|     u.f = a;
 | |
|     return u.i >> 63;
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_is_zero(float64 a)
 | |
| {
 | |
|     return fpclassify(a) == FP_ZERO;
 | |
| }
 | |
| 
 | |
| INLINE float64 float64_scalbn(float64 a, int n)
 | |
| {
 | |
|     return scalbn(a, n);
 | |
| }
 | |
| 
 | |
| #ifdef FLOATX80
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision conversion routines.
 | |
| *----------------------------------------------------------------------------*/
 | |
| int floatx80_to_int32( floatx80 STATUS_PARAM );
 | |
| int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
 | |
| int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
 | |
| int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
 | |
| float32 floatx80_to_float32( floatx80 STATUS_PARAM );
 | |
| float64 floatx80_to_float64( floatx80 STATUS_PARAM );
 | |
| #ifdef FLOAT128
 | |
| float128 floatx80_to_float128( floatx80 STATUS_PARAM );
 | |
| #endif
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Software IEC/IEEE extended double-precision operations.
 | |
| *----------------------------------------------------------------------------*/
 | |
| floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
 | |
| INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a + b;
 | |
| }
 | |
| INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a - b;
 | |
| }
 | |
| INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a * b;
 | |
| }
 | |
| INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a / b;
 | |
| }
 | |
| floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
 | |
| floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
 | |
| INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a == b;
 | |
| }
 | |
| INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a <= b;
 | |
| }
 | |
| INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a < b;
 | |
| }
 | |
| INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return a <= b && a >= b;
 | |
| }
 | |
| INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return islessequal(a, b);
 | |
| }
 | |
| INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return isless(a, b);
 | |
| 
 | |
| }
 | |
| INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
 | |
| {
 | |
|     return isunordered(a, b);
 | |
| 
 | |
| }
 | |
| int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
 | |
| int floatx80_is_signaling_nan( floatx80 );
 | |
| int floatx80_is_nan( floatx80 );
 | |
| 
 | |
| INLINE floatx80 floatx80_abs(floatx80 a)
 | |
| {
 | |
|     return fabsl(a);
 | |
| }
 | |
| 
 | |
| INLINE floatx80 floatx80_chs(floatx80 a)
 | |
| {
 | |
|     return -a;
 | |
| }
 | |
| 
 | |
| INLINE floatx80 floatx80_is_infinity(floatx80 a)
 | |
| {
 | |
|     return fpclassify(a) == FP_INFINITE;
 | |
| }
 | |
| 
 | |
| INLINE floatx80 floatx80_is_neg(floatx80 a)
 | |
| {
 | |
|     floatx80u u;
 | |
|     u.f = a;
 | |
|     return u.i.high >> 15;
 | |
| }
 | |
| 
 | |
| INLINE floatx80 floatx80_is_zero(floatx80 a)
 | |
| {
 | |
|     return fpclassify(a) == FP_ZERO;
 | |
| }
 | |
| 
 | |
| INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
 | |
| {
 | |
|     return scalbnl(a, n);
 | |
| }
 | |
| 
 | |
| #endif
 |