 542147f4e5
			
		
	
	
		542147f4e5
		
	
	
	
	
		
			
			We never read or write beyond the used_length of memory blocks when migrating. Make this clearer by using offset_in_ramblock() consistently. Reviewed-by: Dr. David Alan Gilbert <dgilbert@redhat.com> Signed-off-by: David Hildenbrand <david@redhat.com> Message-Id: <20210429112708.12291-11-david@redhat.com> Signed-off-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
		
			
				
	
	
		
			4180 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4180 lines
		
	
	
		
			124 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU System Emulator
 | |
|  *
 | |
|  * Copyright (c) 2003-2008 Fabrice Bellard
 | |
|  * Copyright (c) 2011-2015 Red Hat Inc
 | |
|  *
 | |
|  * Authors:
 | |
|  *  Juan Quintela <quintela@redhat.com>
 | |
|  *
 | |
|  * Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
|  * of this software and associated documentation files (the "Software"), to deal
 | |
|  * in the Software without restriction, including without limitation the rights
 | |
|  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
|  * copies of the Software, and to permit persons to whom the Software is
 | |
|  * furnished to do so, subject to the following conditions:
 | |
|  *
 | |
|  * The above copyright notice and this permission notice shall be included in
 | |
|  * all copies or substantial portions of the Software.
 | |
|  *
 | |
|  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
|  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | |
|  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
|  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
|  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
|  * THE SOFTWARE.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/cutils.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include "qemu/bitmap.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "xbzrle.h"
 | |
| #include "ram.h"
 | |
| #include "migration.h"
 | |
| #include "migration/register.h"
 | |
| #include "migration/misc.h"
 | |
| #include "qemu-file.h"
 | |
| #include "postcopy-ram.h"
 | |
| #include "page_cache.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qapi/error.h"
 | |
| #include "qapi/qapi-types-migration.h"
 | |
| #include "qapi/qapi-events-migration.h"
 | |
| #include "qapi/qmp/qerror.h"
 | |
| #include "trace.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "exec/target_page.h"
 | |
| #include "qemu/rcu_queue.h"
 | |
| #include "migration/colo.h"
 | |
| #include "block.h"
 | |
| #include "sysemu/cpu-throttle.h"
 | |
| #include "savevm.h"
 | |
| #include "qemu/iov.h"
 | |
| #include "multifd.h"
 | |
| #include "sysemu/runstate.h"
 | |
| 
 | |
| #if defined(__linux__)
 | |
| #include "qemu/userfaultfd.h"
 | |
| #endif /* defined(__linux__) */
 | |
| 
 | |
| /***********************************************************/
 | |
| /* ram save/restore */
 | |
| 
 | |
| /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
 | |
|  * worked for pages that where filled with the same char.  We switched
 | |
|  * it to only search for the zero value.  And to avoid confusion with
 | |
|  * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
 | |
|  */
 | |
| 
 | |
| #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
 | |
| #define RAM_SAVE_FLAG_ZERO     0x02
 | |
| #define RAM_SAVE_FLAG_MEM_SIZE 0x04
 | |
| #define RAM_SAVE_FLAG_PAGE     0x08
 | |
| #define RAM_SAVE_FLAG_EOS      0x10
 | |
| #define RAM_SAVE_FLAG_CONTINUE 0x20
 | |
| #define RAM_SAVE_FLAG_XBZRLE   0x40
 | |
| /* 0x80 is reserved in migration.h start with 0x100 next */
 | |
| #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
 | |
| 
 | |
| static inline bool is_zero_range(uint8_t *p, uint64_t size)
 | |
| {
 | |
|     return buffer_is_zero(p, size);
 | |
| }
 | |
| 
 | |
| XBZRLECacheStats xbzrle_counters;
 | |
| 
 | |
| /* struct contains XBZRLE cache and a static page
 | |
|    used by the compression */
 | |
| static struct {
 | |
|     /* buffer used for XBZRLE encoding */
 | |
|     uint8_t *encoded_buf;
 | |
|     /* buffer for storing page content */
 | |
|     uint8_t *current_buf;
 | |
|     /* Cache for XBZRLE, Protected by lock. */
 | |
|     PageCache *cache;
 | |
|     QemuMutex lock;
 | |
|     /* it will store a page full of zeros */
 | |
|     uint8_t *zero_target_page;
 | |
|     /* buffer used for XBZRLE decoding */
 | |
|     uint8_t *decoded_buf;
 | |
| } XBZRLE;
 | |
| 
 | |
| static void XBZRLE_cache_lock(void)
 | |
| {
 | |
|     if (migrate_use_xbzrle()) {
 | |
|         qemu_mutex_lock(&XBZRLE.lock);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void XBZRLE_cache_unlock(void)
 | |
| {
 | |
|     if (migrate_use_xbzrle()) {
 | |
|         qemu_mutex_unlock(&XBZRLE.lock);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xbzrle_cache_resize: resize the xbzrle cache
 | |
|  *
 | |
|  * This function is called from migrate_params_apply in main
 | |
|  * thread, possibly while a migration is in progress.  A running
 | |
|  * migration may be using the cache and might finish during this call,
 | |
|  * hence changes to the cache are protected by XBZRLE.lock().
 | |
|  *
 | |
|  * Returns 0 for success or -1 for error
 | |
|  *
 | |
|  * @new_size: new cache size
 | |
|  * @errp: set *errp if the check failed, with reason
 | |
|  */
 | |
| int xbzrle_cache_resize(uint64_t new_size, Error **errp)
 | |
| {
 | |
|     PageCache *new_cache;
 | |
|     int64_t ret = 0;
 | |
| 
 | |
|     /* Check for truncation */
 | |
|     if (new_size != (size_t)new_size) {
 | |
|         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
 | |
|                    "exceeding address space");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (new_size == migrate_xbzrle_cache_size()) {
 | |
|         /* nothing to do */
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     XBZRLE_cache_lock();
 | |
| 
 | |
|     if (XBZRLE.cache != NULL) {
 | |
|         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
 | |
|         if (!new_cache) {
 | |
|             ret = -1;
 | |
|             goto out;
 | |
|         }
 | |
| 
 | |
|         cache_fini(XBZRLE.cache);
 | |
|         XBZRLE.cache = new_cache;
 | |
|     }
 | |
| out:
 | |
|     XBZRLE_cache_unlock();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| bool ramblock_is_ignored(RAMBlock *block)
 | |
| {
 | |
|     return !qemu_ram_is_migratable(block) ||
 | |
|            (migrate_ignore_shared() && qemu_ram_is_shared(block));
 | |
| }
 | |
| 
 | |
| #undef RAMBLOCK_FOREACH
 | |
| 
 | |
| int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     int ret = 0;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         ret = func(block, opaque);
 | |
|         if (ret) {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void ramblock_recv_map_init(void)
 | |
| {
 | |
|     RAMBlock *rb;
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | |
|         assert(!rb->receivedmap);
 | |
|         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
 | |
|     }
 | |
| }
 | |
| 
 | |
| int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
 | |
| {
 | |
|     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
 | |
|                     rb->receivedmap);
 | |
| }
 | |
| 
 | |
| bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
 | |
| {
 | |
|     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
 | |
| }
 | |
| 
 | |
| void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
 | |
| {
 | |
|     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
 | |
| }
 | |
| 
 | |
| void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
 | |
|                                     size_t nr)
 | |
| {
 | |
|     bitmap_set_atomic(rb->receivedmap,
 | |
|                       ramblock_recv_bitmap_offset(host_addr, rb),
 | |
|                       nr);
 | |
| }
 | |
| 
 | |
| #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
 | |
| 
 | |
| /*
 | |
|  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
 | |
|  *
 | |
|  * Returns >0 if success with sent bytes, or <0 if error.
 | |
|  */
 | |
| int64_t ramblock_recv_bitmap_send(QEMUFile *file,
 | |
|                                   const char *block_name)
 | |
| {
 | |
|     RAMBlock *block = qemu_ram_block_by_name(block_name);
 | |
|     unsigned long *le_bitmap, nbits;
 | |
|     uint64_t size;
 | |
| 
 | |
|     if (!block) {
 | |
|         error_report("%s: invalid block name: %s", __func__, block_name);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     /*
 | |
|      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
 | |
|      * machines we may need 4 more bytes for padding (see below
 | |
|      * comment). So extend it a bit before hand.
 | |
|      */
 | |
|     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
 | |
| 
 | |
|     /*
 | |
|      * Always use little endian when sending the bitmap. This is
 | |
|      * required that when source and destination VMs are not using the
 | |
|      * same endianness. (Note: big endian won't work.)
 | |
|      */
 | |
|     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
 | |
| 
 | |
|     /* Size of the bitmap, in bytes */
 | |
|     size = DIV_ROUND_UP(nbits, 8);
 | |
| 
 | |
|     /*
 | |
|      * size is always aligned to 8 bytes for 64bit machines, but it
 | |
|      * may not be true for 32bit machines. We need this padding to
 | |
|      * make sure the migration can survive even between 32bit and
 | |
|      * 64bit machines.
 | |
|      */
 | |
|     size = ROUND_UP(size, 8);
 | |
| 
 | |
|     qemu_put_be64(file, size);
 | |
|     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
 | |
|     /*
 | |
|      * Mark as an end, in case the middle part is screwed up due to
 | |
|      * some "mysterious" reason.
 | |
|      */
 | |
|     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
 | |
|     qemu_fflush(file);
 | |
| 
 | |
|     g_free(le_bitmap);
 | |
| 
 | |
|     if (qemu_file_get_error(file)) {
 | |
|         return qemu_file_get_error(file);
 | |
|     }
 | |
| 
 | |
|     return size + sizeof(size);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * An outstanding page request, on the source, having been received
 | |
|  * and queued
 | |
|  */
 | |
| struct RAMSrcPageRequest {
 | |
|     RAMBlock *rb;
 | |
|     hwaddr    offset;
 | |
|     hwaddr    len;
 | |
| 
 | |
|     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
 | |
| };
 | |
| 
 | |
| /* State of RAM for migration */
 | |
| struct RAMState {
 | |
|     /* QEMUFile used for this migration */
 | |
|     QEMUFile *f;
 | |
|     /* UFFD file descriptor, used in 'write-tracking' migration */
 | |
|     int uffdio_fd;
 | |
|     /* Last block that we have visited searching for dirty pages */
 | |
|     RAMBlock *last_seen_block;
 | |
|     /* Last block from where we have sent data */
 | |
|     RAMBlock *last_sent_block;
 | |
|     /* Last dirty target page we have sent */
 | |
|     ram_addr_t last_page;
 | |
|     /* last ram version we have seen */
 | |
|     uint32_t last_version;
 | |
|     /* How many times we have dirty too many pages */
 | |
|     int dirty_rate_high_cnt;
 | |
|     /* these variables are used for bitmap sync */
 | |
|     /* last time we did a full bitmap_sync */
 | |
|     int64_t time_last_bitmap_sync;
 | |
|     /* bytes transferred at start_time */
 | |
|     uint64_t bytes_xfer_prev;
 | |
|     /* number of dirty pages since start_time */
 | |
|     uint64_t num_dirty_pages_period;
 | |
|     /* xbzrle misses since the beginning of the period */
 | |
|     uint64_t xbzrle_cache_miss_prev;
 | |
|     /* Amount of xbzrle pages since the beginning of the period */
 | |
|     uint64_t xbzrle_pages_prev;
 | |
|     /* Amount of xbzrle encoded bytes since the beginning of the period */
 | |
|     uint64_t xbzrle_bytes_prev;
 | |
|     /* Start using XBZRLE (e.g., after the first round). */
 | |
|     bool xbzrle_enabled;
 | |
| 
 | |
|     /* compression statistics since the beginning of the period */
 | |
|     /* amount of count that no free thread to compress data */
 | |
|     uint64_t compress_thread_busy_prev;
 | |
|     /* amount bytes after compression */
 | |
|     uint64_t compressed_size_prev;
 | |
|     /* amount of compressed pages */
 | |
|     uint64_t compress_pages_prev;
 | |
| 
 | |
|     /* total handled target pages at the beginning of period */
 | |
|     uint64_t target_page_count_prev;
 | |
|     /* total handled target pages since start */
 | |
|     uint64_t target_page_count;
 | |
|     /* number of dirty bits in the bitmap */
 | |
|     uint64_t migration_dirty_pages;
 | |
|     /* Protects modification of the bitmap and migration dirty pages */
 | |
|     QemuMutex bitmap_mutex;
 | |
|     /* The RAMBlock used in the last src_page_requests */
 | |
|     RAMBlock *last_req_rb;
 | |
|     /* Queue of outstanding page requests from the destination */
 | |
|     QemuMutex src_page_req_mutex;
 | |
|     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
 | |
| };
 | |
| typedef struct RAMState RAMState;
 | |
| 
 | |
| static RAMState *ram_state;
 | |
| 
 | |
| static NotifierWithReturnList precopy_notifier_list;
 | |
| 
 | |
| void precopy_infrastructure_init(void)
 | |
| {
 | |
|     notifier_with_return_list_init(&precopy_notifier_list);
 | |
| }
 | |
| 
 | |
| void precopy_add_notifier(NotifierWithReturn *n)
 | |
| {
 | |
|     notifier_with_return_list_add(&precopy_notifier_list, n);
 | |
| }
 | |
| 
 | |
| void precopy_remove_notifier(NotifierWithReturn *n)
 | |
| {
 | |
|     notifier_with_return_remove(n);
 | |
| }
 | |
| 
 | |
| int precopy_notify(PrecopyNotifyReason reason, Error **errp)
 | |
| {
 | |
|     PrecopyNotifyData pnd;
 | |
|     pnd.reason = reason;
 | |
|     pnd.errp = errp;
 | |
| 
 | |
|     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
 | |
| }
 | |
| 
 | |
| uint64_t ram_bytes_remaining(void)
 | |
| {
 | |
|     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
 | |
|                        0;
 | |
| }
 | |
| 
 | |
| MigrationStats ram_counters;
 | |
| 
 | |
| /* used by the search for pages to send */
 | |
| struct PageSearchStatus {
 | |
|     /* Current block being searched */
 | |
|     RAMBlock    *block;
 | |
|     /* Current page to search from */
 | |
|     unsigned long page;
 | |
|     /* Set once we wrap around */
 | |
|     bool         complete_round;
 | |
| };
 | |
| typedef struct PageSearchStatus PageSearchStatus;
 | |
| 
 | |
| CompressionStats compression_counters;
 | |
| 
 | |
| struct CompressParam {
 | |
|     bool done;
 | |
|     bool quit;
 | |
|     bool zero_page;
 | |
|     QEMUFile *file;
 | |
|     QemuMutex mutex;
 | |
|     QemuCond cond;
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
| 
 | |
|     /* internally used fields */
 | |
|     z_stream stream;
 | |
|     uint8_t *originbuf;
 | |
| };
 | |
| typedef struct CompressParam CompressParam;
 | |
| 
 | |
| struct DecompressParam {
 | |
|     bool done;
 | |
|     bool quit;
 | |
|     QemuMutex mutex;
 | |
|     QemuCond cond;
 | |
|     void *des;
 | |
|     uint8_t *compbuf;
 | |
|     int len;
 | |
|     z_stream stream;
 | |
| };
 | |
| typedef struct DecompressParam DecompressParam;
 | |
| 
 | |
| static CompressParam *comp_param;
 | |
| static QemuThread *compress_threads;
 | |
| /* comp_done_cond is used to wake up the migration thread when
 | |
|  * one of the compression threads has finished the compression.
 | |
|  * comp_done_lock is used to co-work with comp_done_cond.
 | |
|  */
 | |
| static QemuMutex comp_done_lock;
 | |
| static QemuCond comp_done_cond;
 | |
| /* The empty QEMUFileOps will be used by file in CompressParam */
 | |
| static const QEMUFileOps empty_ops = { };
 | |
| 
 | |
| static QEMUFile *decomp_file;
 | |
| static DecompressParam *decomp_param;
 | |
| static QemuThread *decompress_threads;
 | |
| static QemuMutex decomp_done_lock;
 | |
| static QemuCond decomp_done_cond;
 | |
| 
 | |
| static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
 | |
|                                  ram_addr_t offset, uint8_t *source_buf);
 | |
| 
 | |
| static void *do_data_compress(void *opaque)
 | |
| {
 | |
|     CompressParam *param = opaque;
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
|     bool zero_page;
 | |
| 
 | |
|     qemu_mutex_lock(¶m->mutex);
 | |
|     while (!param->quit) {
 | |
|         if (param->block) {
 | |
|             block = param->block;
 | |
|             offset = param->offset;
 | |
|             param->block = NULL;
 | |
|             qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|             zero_page = do_compress_ram_page(param->file, ¶m->stream,
 | |
|                                              block, offset, param->originbuf);
 | |
| 
 | |
|             qemu_mutex_lock(&comp_done_lock);
 | |
|             param->done = true;
 | |
|             param->zero_page = zero_page;
 | |
|             qemu_cond_signal(&comp_done_cond);
 | |
|             qemu_mutex_unlock(&comp_done_lock);
 | |
| 
 | |
|             qemu_mutex_lock(¶m->mutex);
 | |
|         } else {
 | |
|             qemu_cond_wait(¶m->cond, ¶m->mutex);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static void compress_threads_save_cleanup(void)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression() || !comp_param) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     thread_count = migrate_compress_threads();
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         /*
 | |
|          * we use it as a indicator which shows if the thread is
 | |
|          * properly init'd or not
 | |
|          */
 | |
|         if (!comp_param[i].file) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         qemu_mutex_lock(&comp_param[i].mutex);
 | |
|         comp_param[i].quit = true;
 | |
|         qemu_cond_signal(&comp_param[i].cond);
 | |
|         qemu_mutex_unlock(&comp_param[i].mutex);
 | |
| 
 | |
|         qemu_thread_join(compress_threads + i);
 | |
|         qemu_mutex_destroy(&comp_param[i].mutex);
 | |
|         qemu_cond_destroy(&comp_param[i].cond);
 | |
|         deflateEnd(&comp_param[i].stream);
 | |
|         g_free(comp_param[i].originbuf);
 | |
|         qemu_fclose(comp_param[i].file);
 | |
|         comp_param[i].file = NULL;
 | |
|     }
 | |
|     qemu_mutex_destroy(&comp_done_lock);
 | |
|     qemu_cond_destroy(&comp_done_cond);
 | |
|     g_free(compress_threads);
 | |
|     g_free(comp_param);
 | |
|     compress_threads = NULL;
 | |
|     comp_param = NULL;
 | |
| }
 | |
| 
 | |
| static int compress_threads_save_setup(void)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return 0;
 | |
|     }
 | |
|     thread_count = migrate_compress_threads();
 | |
|     compress_threads = g_new0(QemuThread, thread_count);
 | |
|     comp_param = g_new0(CompressParam, thread_count);
 | |
|     qemu_cond_init(&comp_done_cond);
 | |
|     qemu_mutex_init(&comp_done_lock);
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
 | |
|         if (!comp_param[i].originbuf) {
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         if (deflateInit(&comp_param[i].stream,
 | |
|                         migrate_compress_level()) != Z_OK) {
 | |
|             g_free(comp_param[i].originbuf);
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         /* comp_param[i].file is just used as a dummy buffer to save data,
 | |
|          * set its ops to empty.
 | |
|          */
 | |
|         comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops);
 | |
|         comp_param[i].done = true;
 | |
|         comp_param[i].quit = false;
 | |
|         qemu_mutex_init(&comp_param[i].mutex);
 | |
|         qemu_cond_init(&comp_param[i].cond);
 | |
|         qemu_thread_create(compress_threads + i, "compress",
 | |
|                            do_data_compress, comp_param + i,
 | |
|                            QEMU_THREAD_JOINABLE);
 | |
|     }
 | |
|     return 0;
 | |
| 
 | |
| exit:
 | |
|     compress_threads_save_cleanup();
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * save_page_header: write page header to wire
 | |
|  *
 | |
|  * If this is the 1st block, it also writes the block identification
 | |
|  *
 | |
|  * Returns the number of bytes written
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  *          in the lower bits, it contains flags
 | |
|  */
 | |
| static size_t save_page_header(RAMState *rs, QEMUFile *f,  RAMBlock *block,
 | |
|                                ram_addr_t offset)
 | |
| {
 | |
|     size_t size, len;
 | |
| 
 | |
|     if (block == rs->last_sent_block) {
 | |
|         offset |= RAM_SAVE_FLAG_CONTINUE;
 | |
|     }
 | |
|     qemu_put_be64(f, offset);
 | |
|     size = 8;
 | |
| 
 | |
|     if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
 | |
|         len = strlen(block->idstr);
 | |
|         qemu_put_byte(f, len);
 | |
|         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
 | |
|         size += 1 + len;
 | |
|         rs->last_sent_block = block;
 | |
|     }
 | |
|     return size;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * mig_throttle_guest_down: throotle down the guest
 | |
|  *
 | |
|  * Reduce amount of guest cpu execution to hopefully slow down memory
 | |
|  * writes. If guest dirty memory rate is reduced below the rate at
 | |
|  * which we can transfer pages to the destination then we should be
 | |
|  * able to complete migration. Some workloads dirty memory way too
 | |
|  * fast and will not effectively converge, even with auto-converge.
 | |
|  */
 | |
| static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
 | |
|                                     uint64_t bytes_dirty_threshold)
 | |
| {
 | |
|     MigrationState *s = migrate_get_current();
 | |
|     uint64_t pct_initial = s->parameters.cpu_throttle_initial;
 | |
|     uint64_t pct_increment = s->parameters.cpu_throttle_increment;
 | |
|     bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
 | |
|     int pct_max = s->parameters.max_cpu_throttle;
 | |
| 
 | |
|     uint64_t throttle_now = cpu_throttle_get_percentage();
 | |
|     uint64_t cpu_now, cpu_ideal, throttle_inc;
 | |
| 
 | |
|     /* We have not started throttling yet. Let's start it. */
 | |
|     if (!cpu_throttle_active()) {
 | |
|         cpu_throttle_set(pct_initial);
 | |
|     } else {
 | |
|         /* Throttling already on, just increase the rate */
 | |
|         if (!pct_tailslow) {
 | |
|             throttle_inc = pct_increment;
 | |
|         } else {
 | |
|             /* Compute the ideal CPU percentage used by Guest, which may
 | |
|              * make the dirty rate match the dirty rate threshold. */
 | |
|             cpu_now = 100 - throttle_now;
 | |
|             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
 | |
|                         bytes_dirty_period);
 | |
|             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
 | |
|         }
 | |
|         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @current_addr: address for the zero page
 | |
|  *
 | |
|  * Update the xbzrle cache to reflect a page that's been sent as all 0.
 | |
|  * The important thing is that a stale (not-yet-0'd) page be replaced
 | |
|  * by the new data.
 | |
|  * As a bonus, if the page wasn't in the cache it gets added so that
 | |
|  * when a small write is made into the 0'd page it gets XBZRLE sent.
 | |
|  */
 | |
| static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
 | |
| {
 | |
|     if (!rs->xbzrle_enabled) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* We don't care if this fails to allocate a new cache page
 | |
|      * as long as it updated an old one */
 | |
|     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
 | |
|                  ram_counters.dirty_sync_count);
 | |
| }
 | |
| 
 | |
| #define ENCODING_FLAG_XBZRLE 0x1
 | |
| 
 | |
| /**
 | |
|  * save_xbzrle_page: compress and send current page
 | |
|  *
 | |
|  * Returns: 1 means that we wrote the page
 | |
|  *          0 means that page is identical to the one already sent
 | |
|  *          -1 means that xbzrle would be longer than normal
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @current_data: pointer to the address of the page contents
 | |
|  * @current_addr: addr of the page
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
 | |
|                             ram_addr_t current_addr, RAMBlock *block,
 | |
|                             ram_addr_t offset, bool last_stage)
 | |
| {
 | |
|     int encoded_len = 0, bytes_xbzrle;
 | |
|     uint8_t *prev_cached_page;
 | |
| 
 | |
|     if (!cache_is_cached(XBZRLE.cache, current_addr,
 | |
|                          ram_counters.dirty_sync_count)) {
 | |
|         xbzrle_counters.cache_miss++;
 | |
|         if (!last_stage) {
 | |
|             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
 | |
|                              ram_counters.dirty_sync_count) == -1) {
 | |
|                 return -1;
 | |
|             } else {
 | |
|                 /* update *current_data when the page has been
 | |
|                    inserted into cache */
 | |
|                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
 | |
|             }
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Reaching here means the page has hit the xbzrle cache, no matter what
 | |
|      * encoding result it is (normal encoding, overflow or skipping the page),
 | |
|      * count the page as encoded. This is used to calculate the encoding rate.
 | |
|      *
 | |
|      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
 | |
|      * 2nd page turns out to be skipped (i.e. no new bytes written to the
 | |
|      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
 | |
|      * skipped page included. In this way, the encoding rate can tell if the
 | |
|      * guest page is good for xbzrle encoding.
 | |
|      */
 | |
|     xbzrle_counters.pages++;
 | |
|     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
 | |
| 
 | |
|     /* save current buffer into memory */
 | |
|     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
 | |
| 
 | |
|     /* XBZRLE encoding (if there is no overflow) */
 | |
|     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
 | |
|                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
 | |
|                                        TARGET_PAGE_SIZE);
 | |
| 
 | |
|     /*
 | |
|      * Update the cache contents, so that it corresponds to the data
 | |
|      * sent, in all cases except where we skip the page.
 | |
|      */
 | |
|     if (!last_stage && encoded_len != 0) {
 | |
|         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
 | |
|         /*
 | |
|          * In the case where we couldn't compress, ensure that the caller
 | |
|          * sends the data from the cache, since the guest might have
 | |
|          * changed the RAM since we copied it.
 | |
|          */
 | |
|         *current_data = prev_cached_page;
 | |
|     }
 | |
| 
 | |
|     if (encoded_len == 0) {
 | |
|         trace_save_xbzrle_page_skipping();
 | |
|         return 0;
 | |
|     } else if (encoded_len == -1) {
 | |
|         trace_save_xbzrle_page_overflow();
 | |
|         xbzrle_counters.overflow++;
 | |
|         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Send XBZRLE based compressed page */
 | |
|     bytes_xbzrle = save_page_header(rs, rs->f, block,
 | |
|                                     offset | RAM_SAVE_FLAG_XBZRLE);
 | |
|     qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
 | |
|     qemu_put_be16(rs->f, encoded_len);
 | |
|     qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
 | |
|     bytes_xbzrle += encoded_len + 1 + 2;
 | |
|     /*
 | |
|      * Like compressed_size (please see update_compress_thread_counts),
 | |
|      * the xbzrle encoded bytes don't count the 8 byte header with
 | |
|      * RAM_SAVE_FLAG_CONTINUE.
 | |
|      */
 | |
|     xbzrle_counters.bytes += bytes_xbzrle - 8;
 | |
|     ram_counters.transferred += bytes_xbzrle;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migration_bitmap_find_dirty: find the next dirty page from start
 | |
|  *
 | |
|  * Returns the page offset within memory region of the start of a dirty page
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @rb: RAMBlock where to search for dirty pages
 | |
|  * @start: page where we start the search
 | |
|  */
 | |
| static inline
 | |
| unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
 | |
|                                           unsigned long start)
 | |
| {
 | |
|     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
 | |
|     unsigned long *bitmap = rb->bmap;
 | |
| 
 | |
|     if (ramblock_is_ignored(rb)) {
 | |
|         return size;
 | |
|     }
 | |
| 
 | |
|     return find_next_bit(bitmap, size, start);
 | |
| }
 | |
| 
 | |
| static inline bool migration_bitmap_clear_dirty(RAMState *rs,
 | |
|                                                 RAMBlock *rb,
 | |
|                                                 unsigned long page)
 | |
| {
 | |
|     bool ret;
 | |
| 
 | |
|     QEMU_LOCK_GUARD(&rs->bitmap_mutex);
 | |
| 
 | |
|     /*
 | |
|      * Clear dirty bitmap if needed.  This _must_ be called before we
 | |
|      * send any of the page in the chunk because we need to make sure
 | |
|      * we can capture further page content changes when we sync dirty
 | |
|      * log the next time.  So as long as we are going to send any of
 | |
|      * the page in the chunk we clear the remote dirty bitmap for all.
 | |
|      * Clearing it earlier won't be a problem, but too late will.
 | |
|      */
 | |
|     if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) {
 | |
|         uint8_t shift = rb->clear_bmap_shift;
 | |
|         hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift);
 | |
|         hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size);
 | |
| 
 | |
|         /*
 | |
|          * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
 | |
|          * can make things easier sometimes since then start address
 | |
|          * of the small chunk will always be 64 pages aligned so the
 | |
|          * bitmap will always be aligned to unsigned long.  We should
 | |
|          * even be able to remove this restriction but I'm simply
 | |
|          * keeping it.
 | |
|          */
 | |
|         assert(shift >= 6);
 | |
|         trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
 | |
|         memory_region_clear_dirty_bitmap(rb->mr, start, size);
 | |
|     }
 | |
| 
 | |
|     ret = test_and_clear_bit(page, rb->bmap);
 | |
| 
 | |
|     if (ret) {
 | |
|         rs->migration_dirty_pages--;
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Called with RCU critical section */
 | |
| static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
 | |
| {
 | |
|     uint64_t new_dirty_pages =
 | |
|         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
 | |
| 
 | |
|     rs->migration_dirty_pages += new_dirty_pages;
 | |
|     rs->num_dirty_pages_period += new_dirty_pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_pagesize_summary: calculate all the pagesizes of a VM
 | |
|  *
 | |
|  * Returns a summary bitmap of the page sizes of all RAMBlocks
 | |
|  *
 | |
|  * For VMs with just normal pages this is equivalent to the host page
 | |
|  * size. If it's got some huge pages then it's the OR of all the
 | |
|  * different page sizes.
 | |
|  */
 | |
| uint64_t ram_pagesize_summary(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint64_t summary = 0;
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         summary |= block->page_size;
 | |
|     }
 | |
| 
 | |
|     return summary;
 | |
| }
 | |
| 
 | |
| uint64_t ram_get_total_transferred_pages(void)
 | |
| {
 | |
|     return  ram_counters.normal + ram_counters.duplicate +
 | |
|                 compression_counters.pages + xbzrle_counters.pages;
 | |
| }
 | |
| 
 | |
| static void migration_update_rates(RAMState *rs, int64_t end_time)
 | |
| {
 | |
|     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
 | |
|     double compressed_size;
 | |
| 
 | |
|     /* calculate period counters */
 | |
|     ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
 | |
|                 / (end_time - rs->time_last_bitmap_sync);
 | |
| 
 | |
|     if (!page_count) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (migrate_use_xbzrle()) {
 | |
|         double encoded_size, unencoded_size;
 | |
| 
 | |
|         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
 | |
|             rs->xbzrle_cache_miss_prev) / page_count;
 | |
|         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
 | |
|         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
 | |
|                          TARGET_PAGE_SIZE;
 | |
|         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
 | |
|         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
 | |
|             xbzrle_counters.encoding_rate = 0;
 | |
|         } else {
 | |
|             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
 | |
|         }
 | |
|         rs->xbzrle_pages_prev = xbzrle_counters.pages;
 | |
|         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
 | |
|     }
 | |
| 
 | |
|     if (migrate_use_compression()) {
 | |
|         compression_counters.busy_rate = (double)(compression_counters.busy -
 | |
|             rs->compress_thread_busy_prev) / page_count;
 | |
|         rs->compress_thread_busy_prev = compression_counters.busy;
 | |
| 
 | |
|         compressed_size = compression_counters.compressed_size -
 | |
|                           rs->compressed_size_prev;
 | |
|         if (compressed_size) {
 | |
|             double uncompressed_size = (compression_counters.pages -
 | |
|                                     rs->compress_pages_prev) * TARGET_PAGE_SIZE;
 | |
| 
 | |
|             /* Compression-Ratio = Uncompressed-size / Compressed-size */
 | |
|             compression_counters.compression_rate =
 | |
|                                         uncompressed_size / compressed_size;
 | |
| 
 | |
|             rs->compress_pages_prev = compression_counters.pages;
 | |
|             rs->compressed_size_prev = compression_counters.compressed_size;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void migration_trigger_throttle(RAMState *rs)
 | |
| {
 | |
|     MigrationState *s = migrate_get_current();
 | |
|     uint64_t threshold = s->parameters.throttle_trigger_threshold;
 | |
| 
 | |
|     uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
 | |
|     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
 | |
|     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
 | |
| 
 | |
|     /* During block migration the auto-converge logic incorrectly detects
 | |
|      * that ram migration makes no progress. Avoid this by disabling the
 | |
|      * throttling logic during the bulk phase of block migration. */
 | |
|     if (migrate_auto_converge() && !blk_mig_bulk_active()) {
 | |
|         /* The following detection logic can be refined later. For now:
 | |
|            Check to see if the ratio between dirtied bytes and the approx.
 | |
|            amount of bytes that just got transferred since the last time
 | |
|            we were in this routine reaches the threshold. If that happens
 | |
|            twice, start or increase throttling. */
 | |
| 
 | |
|         if ((bytes_dirty_period > bytes_dirty_threshold) &&
 | |
|             (++rs->dirty_rate_high_cnt >= 2)) {
 | |
|             trace_migration_throttle();
 | |
|             rs->dirty_rate_high_cnt = 0;
 | |
|             mig_throttle_guest_down(bytes_dirty_period,
 | |
|                                     bytes_dirty_threshold);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void migration_bitmap_sync(RAMState *rs)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     int64_t end_time;
 | |
| 
 | |
|     ram_counters.dirty_sync_count++;
 | |
| 
 | |
|     if (!rs->time_last_bitmap_sync) {
 | |
|         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | |
|     }
 | |
| 
 | |
|     trace_migration_bitmap_sync_start();
 | |
|     memory_global_dirty_log_sync();
 | |
| 
 | |
|     qemu_mutex_lock(&rs->bitmap_mutex);
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             ramblock_sync_dirty_bitmap(rs, block);
 | |
|         }
 | |
|         ram_counters.remaining = ram_bytes_remaining();
 | |
|     }
 | |
|     qemu_mutex_unlock(&rs->bitmap_mutex);
 | |
| 
 | |
|     memory_global_after_dirty_log_sync();
 | |
|     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
 | |
| 
 | |
|     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | |
| 
 | |
|     /* more than 1 second = 1000 millisecons */
 | |
|     if (end_time > rs->time_last_bitmap_sync + 1000) {
 | |
|         migration_trigger_throttle(rs);
 | |
| 
 | |
|         migration_update_rates(rs, end_time);
 | |
| 
 | |
|         rs->target_page_count_prev = rs->target_page_count;
 | |
| 
 | |
|         /* reset period counters */
 | |
|         rs->time_last_bitmap_sync = end_time;
 | |
|         rs->num_dirty_pages_period = 0;
 | |
|         rs->bytes_xfer_prev = ram_counters.transferred;
 | |
|     }
 | |
|     if (migrate_use_events()) {
 | |
|         qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void migration_bitmap_sync_precopy(RAMState *rs)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     /*
 | |
|      * The current notifier usage is just an optimization to migration, so we
 | |
|      * don't stop the normal migration process in the error case.
 | |
|      */
 | |
|     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
 | |
|         error_report_err(local_err);
 | |
|         local_err = NULL;
 | |
|     }
 | |
| 
 | |
|     migration_bitmap_sync(rs);
 | |
| 
 | |
|     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
 | |
|         error_report_err(local_err);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * save_zero_page_to_file: send the zero page to the file
 | |
|  *
 | |
|  * Returns the size of data written to the file, 0 means the page is not
 | |
|  * a zero page
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @file: the file where the data is saved
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  */
 | |
| static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
 | |
|                                   RAMBlock *block, ram_addr_t offset)
 | |
| {
 | |
|     uint8_t *p = block->host + offset;
 | |
|     int len = 0;
 | |
| 
 | |
|     if (is_zero_range(p, TARGET_PAGE_SIZE)) {
 | |
|         len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
 | |
|         qemu_put_byte(file, 0);
 | |
|         len += 1;
 | |
|     }
 | |
|     return len;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * save_zero_page: send the zero page to the stream
 | |
|  *
 | |
|  * Returns the number of pages written.
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  */
 | |
| static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
 | |
| {
 | |
|     int len = save_zero_page_to_file(rs, rs->f, block, offset);
 | |
| 
 | |
|     if (len) {
 | |
|         ram_counters.duplicate++;
 | |
|         ram_counters.transferred += len;
 | |
|         return 1;
 | |
|     }
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
 | |
| {
 | |
|     if (!migrate_release_ram() || !migration_in_postcopy()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @pages: the number of pages written by the control path,
 | |
|  *        < 0 - error
 | |
|  *        > 0 - number of pages written
 | |
|  *
 | |
|  * Return true if the pages has been saved, otherwise false is returned.
 | |
|  */
 | |
| static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
 | |
|                               int *pages)
 | |
| {
 | |
|     uint64_t bytes_xmit = 0;
 | |
|     int ret;
 | |
| 
 | |
|     *pages = -1;
 | |
|     ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
 | |
|                                 &bytes_xmit);
 | |
|     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (bytes_xmit) {
 | |
|         ram_counters.transferred += bytes_xmit;
 | |
|         *pages = 1;
 | |
|     }
 | |
| 
 | |
|     if (ret == RAM_SAVE_CONTROL_DELAYED) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     if (bytes_xmit > 0) {
 | |
|         ram_counters.normal++;
 | |
|     } else if (bytes_xmit == 0) {
 | |
|         ram_counters.duplicate++;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * directly send the page to the stream
 | |
|  *
 | |
|  * Returns the number of pages written.
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  * @buf: the page to be sent
 | |
|  * @async: send to page asyncly
 | |
|  */
 | |
| static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
 | |
|                             uint8_t *buf, bool async)
 | |
| {
 | |
|     ram_counters.transferred += save_page_header(rs, rs->f, block,
 | |
|                                                  offset | RAM_SAVE_FLAG_PAGE);
 | |
|     if (async) {
 | |
|         qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
 | |
|                               migrate_release_ram() &
 | |
|                               migration_in_postcopy());
 | |
|     } else {
 | |
|         qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
 | |
|     }
 | |
|     ram_counters.transferred += TARGET_PAGE_SIZE;
 | |
|     ram_counters.normal++;
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_page: send the given page to the stream
 | |
|  *
 | |
|  * Returns the number of pages written.
 | |
|  *          < 0 - error
 | |
|  *          >=0 - Number of pages written - this might legally be 0
 | |
|  *                if xbzrle noticed the page was the same.
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @block: block that contains the page we want to send
 | |
|  * @offset: offset inside the block for the page
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
 | |
| {
 | |
|     int pages = -1;
 | |
|     uint8_t *p;
 | |
|     bool send_async = true;
 | |
|     RAMBlock *block = pss->block;
 | |
|     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
 | |
|     ram_addr_t current_addr = block->offset + offset;
 | |
| 
 | |
|     p = block->host + offset;
 | |
|     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
 | |
| 
 | |
|     XBZRLE_cache_lock();
 | |
|     if (rs->xbzrle_enabled && !migration_in_postcopy()) {
 | |
|         pages = save_xbzrle_page(rs, &p, current_addr, block,
 | |
|                                  offset, last_stage);
 | |
|         if (!last_stage) {
 | |
|             /* Can't send this cached data async, since the cache page
 | |
|              * might get updated before it gets to the wire
 | |
|              */
 | |
|             send_async = false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* XBZRLE overflow or normal page */
 | |
|     if (pages == -1) {
 | |
|         pages = save_normal_page(rs, block, offset, p, send_async);
 | |
|     }
 | |
| 
 | |
|     XBZRLE_cache_unlock();
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
 | |
|                                  ram_addr_t offset)
 | |
| {
 | |
|     if (multifd_queue_page(rs->f, block, offset) < 0) {
 | |
|         return -1;
 | |
|     }
 | |
|     ram_counters.normal++;
 | |
| 
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
 | |
|                                  ram_addr_t offset, uint8_t *source_buf)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
 | |
|     bool zero_page = false;
 | |
|     int ret;
 | |
| 
 | |
|     if (save_zero_page_to_file(rs, f, block, offset)) {
 | |
|         zero_page = true;
 | |
|         goto exit;
 | |
|     }
 | |
| 
 | |
|     save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
 | |
| 
 | |
|     /*
 | |
|      * copy it to a internal buffer to avoid it being modified by VM
 | |
|      * so that we can catch up the error during compression and
 | |
|      * decompression
 | |
|      */
 | |
|     memcpy(source_buf, p, TARGET_PAGE_SIZE);
 | |
|     ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
 | |
|     if (ret < 0) {
 | |
|         qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
 | |
|         error_report("compressed data failed!");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| exit:
 | |
|     ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
 | |
|     return zero_page;
 | |
| }
 | |
| 
 | |
| static void
 | |
| update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
 | |
| {
 | |
|     ram_counters.transferred += bytes_xmit;
 | |
| 
 | |
|     if (param->zero_page) {
 | |
|         ram_counters.duplicate++;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
 | |
|     compression_counters.compressed_size += bytes_xmit - 8;
 | |
|     compression_counters.pages++;
 | |
| }
 | |
| 
 | |
| static bool save_page_use_compression(RAMState *rs);
 | |
| 
 | |
| static void flush_compressed_data(RAMState *rs)
 | |
| {
 | |
|     int idx, len, thread_count;
 | |
| 
 | |
|     if (!save_page_use_compression(rs)) {
 | |
|         return;
 | |
|     }
 | |
|     thread_count = migrate_compress_threads();
 | |
| 
 | |
|     qemu_mutex_lock(&comp_done_lock);
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         while (!comp_param[idx].done) {
 | |
|             qemu_cond_wait(&comp_done_cond, &comp_done_lock);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&comp_done_lock);
 | |
| 
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         qemu_mutex_lock(&comp_param[idx].mutex);
 | |
|         if (!comp_param[idx].quit) {
 | |
|             len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
 | |
|             /*
 | |
|              * it's safe to fetch zero_page without holding comp_done_lock
 | |
|              * as there is no further request submitted to the thread,
 | |
|              * i.e, the thread should be waiting for a request at this point.
 | |
|              */
 | |
|             update_compress_thread_counts(&comp_param[idx], len);
 | |
|         }
 | |
|         qemu_mutex_unlock(&comp_param[idx].mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void set_compress_params(CompressParam *param, RAMBlock *block,
 | |
|                                        ram_addr_t offset)
 | |
| {
 | |
|     param->block = block;
 | |
|     param->offset = offset;
 | |
| }
 | |
| 
 | |
| static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
 | |
|                                            ram_addr_t offset)
 | |
| {
 | |
|     int idx, thread_count, bytes_xmit = -1, pages = -1;
 | |
|     bool wait = migrate_compress_wait_thread();
 | |
| 
 | |
|     thread_count = migrate_compress_threads();
 | |
|     qemu_mutex_lock(&comp_done_lock);
 | |
| retry:
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         if (comp_param[idx].done) {
 | |
|             comp_param[idx].done = false;
 | |
|             bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
 | |
|             qemu_mutex_lock(&comp_param[idx].mutex);
 | |
|             set_compress_params(&comp_param[idx], block, offset);
 | |
|             qemu_cond_signal(&comp_param[idx].cond);
 | |
|             qemu_mutex_unlock(&comp_param[idx].mutex);
 | |
|             pages = 1;
 | |
|             update_compress_thread_counts(&comp_param[idx], bytes_xmit);
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * wait for the free thread if the user specifies 'compress-wait-thread',
 | |
|      * otherwise we will post the page out in the main thread as normal page.
 | |
|      */
 | |
|     if (pages < 0 && wait) {
 | |
|         qemu_cond_wait(&comp_done_cond, &comp_done_lock);
 | |
|         goto retry;
 | |
|     }
 | |
|     qemu_mutex_unlock(&comp_done_lock);
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * find_dirty_block: find the next dirty page and update any state
 | |
|  * associated with the search process.
 | |
|  *
 | |
|  * Returns true if a page is found
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: data about the state of the current dirty page scan
 | |
|  * @again: set to false if the search has scanned the whole of RAM
 | |
|  */
 | |
| static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
 | |
| {
 | |
|     pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
 | |
|     if (pss->complete_round && pss->block == rs->last_seen_block &&
 | |
|         pss->page >= rs->last_page) {
 | |
|         /*
 | |
|          * We've been once around the RAM and haven't found anything.
 | |
|          * Give up.
 | |
|          */
 | |
|         *again = false;
 | |
|         return false;
 | |
|     }
 | |
|     if (!offset_in_ramblock(pss->block,
 | |
|                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
 | |
|         /* Didn't find anything in this RAM Block */
 | |
|         pss->page = 0;
 | |
|         pss->block = QLIST_NEXT_RCU(pss->block, next);
 | |
|         if (!pss->block) {
 | |
|             /*
 | |
|              * If memory migration starts over, we will meet a dirtied page
 | |
|              * which may still exists in compression threads's ring, so we
 | |
|              * should flush the compressed data to make sure the new page
 | |
|              * is not overwritten by the old one in the destination.
 | |
|              *
 | |
|              * Also If xbzrle is on, stop using the data compression at this
 | |
|              * point. In theory, xbzrle can do better than compression.
 | |
|              */
 | |
|             flush_compressed_data(rs);
 | |
| 
 | |
|             /* Hit the end of the list */
 | |
|             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
 | |
|             /* Flag that we've looped */
 | |
|             pss->complete_round = true;
 | |
|             /* After the first round, enable XBZRLE. */
 | |
|             if (migrate_use_xbzrle()) {
 | |
|                 rs->xbzrle_enabled = true;
 | |
|             }
 | |
|         }
 | |
|         /* Didn't find anything this time, but try again on the new block */
 | |
|         *again = true;
 | |
|         return false;
 | |
|     } else {
 | |
|         /* Can go around again, but... */
 | |
|         *again = true;
 | |
|         /* We've found something so probably don't need to */
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * unqueue_page: gets a page of the queue
 | |
|  *
 | |
|  * Helper for 'get_queued_page' - gets a page off the queue
 | |
|  *
 | |
|  * Returns the block of the page (or NULL if none available)
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @offset: used to return the offset within the RAMBlock
 | |
|  */
 | |
| static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
 | |
| {
 | |
|     RAMBlock *block = NULL;
 | |
| 
 | |
|     if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
 | |
|     if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
 | |
|         struct RAMSrcPageRequest *entry =
 | |
|                                 QSIMPLEQ_FIRST(&rs->src_page_requests);
 | |
|         block = entry->rb;
 | |
|         *offset = entry->offset;
 | |
| 
 | |
|         if (entry->len > TARGET_PAGE_SIZE) {
 | |
|             entry->len -= TARGET_PAGE_SIZE;
 | |
|             entry->offset += TARGET_PAGE_SIZE;
 | |
|         } else {
 | |
|             memory_region_unref(block->mr);
 | |
|             QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
 | |
|             g_free(entry);
 | |
|             migration_consume_urgent_request();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| #if defined(__linux__)
 | |
| /**
 | |
|  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
 | |
|  *   is found, return RAM block pointer and page offset
 | |
|  *
 | |
|  * Returns pointer to the RAMBlock containing faulting page,
 | |
|  *   NULL if no write faults are pending
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @offset: page offset from the beginning of the block
 | |
|  */
 | |
| static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
 | |
| {
 | |
|     struct uffd_msg uffd_msg;
 | |
|     void *page_address;
 | |
|     RAMBlock *block;
 | |
|     int res;
 | |
| 
 | |
|     if (!migrate_background_snapshot()) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
 | |
|     if (res <= 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
 | |
|     block = qemu_ram_block_from_host(page_address, false, offset);
 | |
|     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_release_protection: release UFFD write protection after
 | |
|  *   a range of pages has been saved
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: page-search-status structure
 | |
|  * @start_page: index of the first page in the range relative to pss->block
 | |
|  *
 | |
|  * Returns 0 on success, negative value in case of an error
 | |
| */
 | |
| static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
 | |
|         unsigned long start_page)
 | |
| {
 | |
|     int res = 0;
 | |
| 
 | |
|     /* Check if page is from UFFD-managed region. */
 | |
|     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
 | |
|         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
 | |
|         uint64_t run_length = (pss->page - start_page + 1) << TARGET_PAGE_BITS;
 | |
| 
 | |
|         /* Flush async buffers before un-protect. */
 | |
|         qemu_fflush(rs->f);
 | |
|         /* Un-protect memory range. */
 | |
|         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
 | |
|                 false, false);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* ram_write_tracking_available: check if kernel supports required UFFD features
 | |
|  *
 | |
|  * Returns true if supports, false otherwise
 | |
|  */
 | |
| bool ram_write_tracking_available(void)
 | |
| {
 | |
|     uint64_t uffd_features;
 | |
|     int res;
 | |
| 
 | |
|     res = uffd_query_features(&uffd_features);
 | |
|     return (res == 0 &&
 | |
|             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
 | |
| }
 | |
| 
 | |
| /* ram_write_tracking_compatible: check if guest configuration is
 | |
|  *   compatible with 'write-tracking'
 | |
|  *
 | |
|  * Returns true if compatible, false otherwise
 | |
|  */
 | |
| bool ram_write_tracking_compatible(void)
 | |
| {
 | |
|     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
 | |
|     int uffd_fd;
 | |
|     RAMBlock *block;
 | |
|     bool ret = false;
 | |
| 
 | |
|     /* Open UFFD file descriptor */
 | |
|     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
 | |
|     if (uffd_fd < 0) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         uint64_t uffd_ioctls;
 | |
| 
 | |
|         /* Nothing to do with read-only and MMIO-writable regions */
 | |
|         if (block->mr->readonly || block->mr->rom_device) {
 | |
|             continue;
 | |
|         }
 | |
|         /* Try to register block memory via UFFD-IO to track writes */
 | |
|         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
 | |
|                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
 | |
|             goto out;
 | |
|         }
 | |
|         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
|     ret = true;
 | |
| 
 | |
| out:
 | |
|     uffd_close_fd(uffd_fd);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ram_block_populate_pages: populate memory in the RAM block by reading
 | |
|  *   an integer from the beginning of each page.
 | |
|  *
 | |
|  * Since it's solely used for userfault_fd WP feature, here we just
 | |
|  *   hardcode page size to qemu_real_host_page_size.
 | |
|  *
 | |
|  * @block: RAM block to populate
 | |
|  */
 | |
| static void ram_block_populate_pages(RAMBlock *block)
 | |
| {
 | |
|     char *ptr = (char *) block->host;
 | |
| 
 | |
|     for (ram_addr_t offset = 0; offset < block->used_length;
 | |
|             offset += qemu_real_host_page_size) {
 | |
|         char tmp = *(ptr + offset);
 | |
| 
 | |
|         /* Don't optimize the read out */
 | |
|         asm volatile("" : "+r" (tmp));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
 | |
|  */
 | |
| void ram_write_tracking_prepare(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         /* Nothing to do with read-only and MMIO-writable regions */
 | |
|         if (block->mr->readonly || block->mr->rom_device) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|          * Populate pages of the RAM block before enabling userfault_fd
 | |
|          * write protection.
 | |
|          *
 | |
|          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
 | |
|          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
 | |
|          * pages with pte_none() entries in page table.
 | |
|          */
 | |
|         ram_block_populate_pages(block);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * ram_write_tracking_start: start UFFD-WP memory tracking
 | |
|  *
 | |
|  * Returns 0 for success or negative value in case of error
 | |
|  */
 | |
| int ram_write_tracking_start(void)
 | |
| {
 | |
|     int uffd_fd;
 | |
|     RAMState *rs = ram_state;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* Open UFFD file descriptor */
 | |
|     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
 | |
|     if (uffd_fd < 0) {
 | |
|         return uffd_fd;
 | |
|     }
 | |
|     rs->uffdio_fd = uffd_fd;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         /* Nothing to do with read-only and MMIO-writable regions */
 | |
|         if (block->mr->readonly || block->mr->rom_device) {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         /* Register block memory with UFFD to track writes */
 | |
|         if (uffd_register_memory(rs->uffdio_fd, block->host,
 | |
|                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
 | |
|             goto fail;
 | |
|         }
 | |
|         /* Apply UFFD write protection to the block memory range */
 | |
|         if (uffd_change_protection(rs->uffdio_fd, block->host,
 | |
|                 block->max_length, true, false)) {
 | |
|             goto fail;
 | |
|         }
 | |
|         block->flags |= RAM_UF_WRITEPROTECT;
 | |
|         memory_region_ref(block->mr);
 | |
| 
 | |
|         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
 | |
|                 block->host, block->max_length);
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| 
 | |
| fail:
 | |
|     error_report("ram_write_tracking_start() failed: restoring initial memory state");
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         /*
 | |
|          * In case some memory block failed to be write-protected
 | |
|          * remove protection and unregister all succeeded RAM blocks
 | |
|          */
 | |
|         uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
 | |
|                 false, false);
 | |
|         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
 | |
|         /* Cleanup flags and remove reference */
 | |
|         block->flags &= ~RAM_UF_WRITEPROTECT;
 | |
|         memory_region_unref(block->mr);
 | |
|     }
 | |
| 
 | |
|     uffd_close_fd(uffd_fd);
 | |
|     rs->uffdio_fd = -1;
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
 | |
|  */
 | |
| void ram_write_tracking_stop(void)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
 | |
|             continue;
 | |
|         }
 | |
|         /* Remove protection and unregister all affected RAM blocks */
 | |
|         uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
 | |
|                 false, false);
 | |
|         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
 | |
| 
 | |
|         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
 | |
|                 block->host, block->max_length);
 | |
| 
 | |
|         /* Cleanup flags and remove reference */
 | |
|         block->flags &= ~RAM_UF_WRITEPROTECT;
 | |
|         memory_region_unref(block->mr);
 | |
|     }
 | |
| 
 | |
|     /* Finally close UFFD file descriptor */
 | |
|     uffd_close_fd(rs->uffdio_fd);
 | |
|     rs->uffdio_fd = -1;
 | |
| }
 | |
| 
 | |
| #else
 | |
| /* No target OS support, stubs just fail or ignore */
 | |
| 
 | |
| static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
 | |
| {
 | |
|     (void) rs;
 | |
|     (void) offset;
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
 | |
|         unsigned long start_page)
 | |
| {
 | |
|     (void) rs;
 | |
|     (void) pss;
 | |
|     (void) start_page;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool ram_write_tracking_available(void)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool ram_write_tracking_compatible(void)
 | |
| {
 | |
|     assert(0);
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| int ram_write_tracking_start(void)
 | |
| {
 | |
|     assert(0);
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| void ram_write_tracking_stop(void)
 | |
| {
 | |
|     assert(0);
 | |
| }
 | |
| #endif /* defined(__linux__) */
 | |
| 
 | |
| /**
 | |
|  * get_queued_page: unqueue a page from the postcopy requests
 | |
|  *
 | |
|  * Skips pages that are already sent (!dirty)
 | |
|  *
 | |
|  * Returns true if a queued page is found
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: data about the state of the current dirty page scan
 | |
|  */
 | |
| static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
 | |
| {
 | |
|     RAMBlock  *block;
 | |
|     ram_addr_t offset;
 | |
|     bool dirty;
 | |
| 
 | |
|     do {
 | |
|         block = unqueue_page(rs, &offset);
 | |
|         /*
 | |
|          * We're sending this page, and since it's postcopy nothing else
 | |
|          * will dirty it, and we must make sure it doesn't get sent again
 | |
|          * even if this queue request was received after the background
 | |
|          * search already sent it.
 | |
|          */
 | |
|         if (block) {
 | |
|             unsigned long page;
 | |
| 
 | |
|             page = offset >> TARGET_PAGE_BITS;
 | |
|             dirty = test_bit(page, block->bmap);
 | |
|             if (!dirty) {
 | |
|                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
 | |
|                                                 page);
 | |
|             } else {
 | |
|                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     } while (block && !dirty);
 | |
| 
 | |
|     if (!block) {
 | |
|         /*
 | |
|          * Poll write faults too if background snapshot is enabled; that's
 | |
|          * when we have vcpus got blocked by the write protected pages.
 | |
|          */
 | |
|         block = poll_fault_page(rs, &offset);
 | |
|     }
 | |
| 
 | |
|     if (block) {
 | |
|         /*
 | |
|          * We want the background search to continue from the queued page
 | |
|          * since the guest is likely to want other pages near to the page
 | |
|          * it just requested.
 | |
|          */
 | |
|         pss->block = block;
 | |
|         pss->page = offset >> TARGET_PAGE_BITS;
 | |
| 
 | |
|         /*
 | |
|          * This unqueued page would break the "one round" check, even is
 | |
|          * really rare.
 | |
|          */
 | |
|         pss->complete_round = false;
 | |
|     }
 | |
| 
 | |
|     return !!block;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * migration_page_queue_free: drop any remaining pages in the ram
 | |
|  * request queue
 | |
|  *
 | |
|  * It should be empty at the end anyway, but in error cases there may
 | |
|  * be some left.  in case that there is any page left, we drop it.
 | |
|  *
 | |
|  */
 | |
| static void migration_page_queue_free(RAMState *rs)
 | |
| {
 | |
|     struct RAMSrcPageRequest *mspr, *next_mspr;
 | |
|     /* This queue generally should be empty - but in the case of a failed
 | |
|      * migration might have some droppings in.
 | |
|      */
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
 | |
|         memory_region_unref(mspr->rb->mr);
 | |
|         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
 | |
|         g_free(mspr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_queue_pages: queue the page for transmission
 | |
|  *
 | |
|  * A request from postcopy destination for example.
 | |
|  *
 | |
|  * Returns zero on success or negative on error
 | |
|  *
 | |
|  * @rbname: Name of the RAMBLock of the request. NULL means the
 | |
|  *          same that last one.
 | |
|  * @start: starting address from the start of the RAMBlock
 | |
|  * @len: length (in bytes) to send
 | |
|  */
 | |
| int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
 | |
| {
 | |
|     RAMBlock *ramblock;
 | |
|     RAMState *rs = ram_state;
 | |
| 
 | |
|     ram_counters.postcopy_requests++;
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     if (!rbname) {
 | |
|         /* Reuse last RAMBlock */
 | |
|         ramblock = rs->last_req_rb;
 | |
| 
 | |
|         if (!ramblock) {
 | |
|             /*
 | |
|              * Shouldn't happen, we can't reuse the last RAMBlock if
 | |
|              * it's the 1st request.
 | |
|              */
 | |
|             error_report("ram_save_queue_pages no previous block");
 | |
|             return -1;
 | |
|         }
 | |
|     } else {
 | |
|         ramblock = qemu_ram_block_by_name(rbname);
 | |
| 
 | |
|         if (!ramblock) {
 | |
|             /* We shouldn't be asked for a non-existent RAMBlock */
 | |
|             error_report("ram_save_queue_pages no block '%s'", rbname);
 | |
|             return -1;
 | |
|         }
 | |
|         rs->last_req_rb = ramblock;
 | |
|     }
 | |
|     trace_ram_save_queue_pages(ramblock->idstr, start, len);
 | |
|     if (!offset_in_ramblock(ramblock, start + len - 1)) {
 | |
|         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
 | |
|                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
 | |
|                      __func__, start, len, ramblock->used_length);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     struct RAMSrcPageRequest *new_entry =
 | |
|         g_malloc0(sizeof(struct RAMSrcPageRequest));
 | |
|     new_entry->rb = ramblock;
 | |
|     new_entry->offset = start;
 | |
|     new_entry->len = len;
 | |
| 
 | |
|     memory_region_ref(ramblock->mr);
 | |
|     qemu_mutex_lock(&rs->src_page_req_mutex);
 | |
|     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
 | |
|     migration_make_urgent_request();
 | |
|     qemu_mutex_unlock(&rs->src_page_req_mutex);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool save_page_use_compression(RAMState *rs)
 | |
| {
 | |
|     if (!migrate_use_compression()) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If xbzrle is enabled (e.g., after first round of migration), stop
 | |
|      * using the data compression. In theory, xbzrle can do better than
 | |
|      * compression.
 | |
|      */
 | |
|     if (rs->xbzrle_enabled) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * try to compress the page before posting it out, return true if the page
 | |
|  * has been properly handled by compression, otherwise needs other
 | |
|  * paths to handle it
 | |
|  */
 | |
| static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
 | |
| {
 | |
|     if (!save_page_use_compression(rs)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When starting the process of a new block, the first page of
 | |
|      * the block should be sent out before other pages in the same
 | |
|      * block, and all the pages in last block should have been sent
 | |
|      * out, keeping this order is important, because the 'cont' flag
 | |
|      * is used to avoid resending the block name.
 | |
|      *
 | |
|      * We post the fist page as normal page as compression will take
 | |
|      * much CPU resource.
 | |
|      */
 | |
|     if (block != rs->last_sent_block) {
 | |
|         flush_compressed_data(rs);
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     if (compress_page_with_multi_thread(rs, block, offset) > 0) {
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     compression_counters.busy++;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_target_page: save one target page
 | |
|  *
 | |
|  * Returns the number of pages written
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @pss: data about the page we want to send
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
 | |
|                                 bool last_stage)
 | |
| {
 | |
|     RAMBlock *block = pss->block;
 | |
|     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
 | |
|     int res;
 | |
| 
 | |
|     if (control_save_page(rs, block, offset, &res)) {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     if (save_compress_page(rs, block, offset)) {
 | |
|         return 1;
 | |
|     }
 | |
| 
 | |
|     res = save_zero_page(rs, block, offset);
 | |
|     if (res > 0) {
 | |
|         /* Must let xbzrle know, otherwise a previous (now 0'd) cached
 | |
|          * page would be stale
 | |
|          */
 | |
|         if (!save_page_use_compression(rs)) {
 | |
|             XBZRLE_cache_lock();
 | |
|             xbzrle_cache_zero_page(rs, block->offset + offset);
 | |
|             XBZRLE_cache_unlock();
 | |
|         }
 | |
|         ram_release_pages(block->idstr, offset, res);
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Do not use multifd for:
 | |
|      * 1. Compression as the first page in the new block should be posted out
 | |
|      *    before sending the compressed page
 | |
|      * 2. In postcopy as one whole host page should be placed
 | |
|      */
 | |
|     if (!save_page_use_compression(rs) && migrate_use_multifd()
 | |
|         && !migration_in_postcopy()) {
 | |
|         return ram_save_multifd_page(rs, block, offset);
 | |
|     }
 | |
| 
 | |
|     return ram_save_page(rs, pss, last_stage);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_host_page: save a whole host page
 | |
|  *
 | |
|  * Starting at *offset send pages up to the end of the current host
 | |
|  * page. It's valid for the initial offset to point into the middle of
 | |
|  * a host page in which case the remainder of the hostpage is sent.
 | |
|  * Only dirty target pages are sent. Note that the host page size may
 | |
|  * be a huge page for this block.
 | |
|  * The saving stops at the boundary of the used_length of the block
 | |
|  * if the RAMBlock isn't a multiple of the host page size.
 | |
|  *
 | |
|  * Returns the number of pages written or negative on error
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @ms: current migration state
 | |
|  * @pss: data about the page we want to send
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  */
 | |
| static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
 | |
|                               bool last_stage)
 | |
| {
 | |
|     int tmppages, pages = 0;
 | |
|     size_t pagesize_bits =
 | |
|         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
 | |
|     unsigned long hostpage_boundary =
 | |
|         QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
 | |
|     unsigned long start_page = pss->page;
 | |
|     int res;
 | |
| 
 | |
|     if (ramblock_is_ignored(pss->block)) {
 | |
|         error_report("block %s should not be migrated !", pss->block->idstr);
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         /* Check the pages is dirty and if it is send it */
 | |
|         if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
 | |
|             tmppages = ram_save_target_page(rs, pss, last_stage);
 | |
|             if (tmppages < 0) {
 | |
|                 return tmppages;
 | |
|             }
 | |
| 
 | |
|             pages += tmppages;
 | |
|             /*
 | |
|              * Allow rate limiting to happen in the middle of huge pages if
 | |
|              * something is sent in the current iteration.
 | |
|              */
 | |
|             if (pagesize_bits > 1 && tmppages > 0) {
 | |
|                 migration_rate_limit();
 | |
|             }
 | |
|         }
 | |
|         pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
 | |
|     } while ((pss->page < hostpage_boundary) &&
 | |
|              offset_in_ramblock(pss->block,
 | |
|                                 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
 | |
|     /* The offset we leave with is the min boundary of host page and block */
 | |
|     pss->page = MIN(pss->page, hostpage_boundary) - 1;
 | |
| 
 | |
|     res = ram_save_release_protection(rs, pss, start_page);
 | |
|     return (res < 0 ? res : pages);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_find_and_save_block: finds a dirty page and sends it to f
 | |
|  *
 | |
|  * Called within an RCU critical section.
 | |
|  *
 | |
|  * Returns the number of pages written where zero means no dirty pages,
 | |
|  * or negative on error
 | |
|  *
 | |
|  * @rs: current RAM state
 | |
|  * @last_stage: if we are at the completion stage
 | |
|  *
 | |
|  * On systems where host-page-size > target-page-size it will send all the
 | |
|  * pages in a host page that are dirty.
 | |
|  */
 | |
| 
 | |
| static int ram_find_and_save_block(RAMState *rs, bool last_stage)
 | |
| {
 | |
|     PageSearchStatus pss;
 | |
|     int pages = 0;
 | |
|     bool again, found;
 | |
| 
 | |
|     /* No dirty page as there is zero RAM */
 | |
|     if (!ram_bytes_total()) {
 | |
|         return pages;
 | |
|     }
 | |
| 
 | |
|     pss.block = rs->last_seen_block;
 | |
|     pss.page = rs->last_page;
 | |
|     pss.complete_round = false;
 | |
| 
 | |
|     if (!pss.block) {
 | |
|         pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
 | |
|     }
 | |
| 
 | |
|     do {
 | |
|         again = true;
 | |
|         found = get_queued_page(rs, &pss);
 | |
| 
 | |
|         if (!found) {
 | |
|             /* priority queue empty, so just search for something dirty */
 | |
|             found = find_dirty_block(rs, &pss, &again);
 | |
|         }
 | |
| 
 | |
|         if (found) {
 | |
|             pages = ram_save_host_page(rs, &pss, last_stage);
 | |
|         }
 | |
|     } while (!pages && again);
 | |
| 
 | |
|     rs->last_seen_block = pss.block;
 | |
|     rs->last_page = pss.page;
 | |
| 
 | |
|     return pages;
 | |
| }
 | |
| 
 | |
| void acct_update_position(QEMUFile *f, size_t size, bool zero)
 | |
| {
 | |
|     uint64_t pages = size / TARGET_PAGE_SIZE;
 | |
| 
 | |
|     if (zero) {
 | |
|         ram_counters.duplicate += pages;
 | |
|     } else {
 | |
|         ram_counters.normal += pages;
 | |
|         ram_counters.transferred += size;
 | |
|         qemu_update_position(f, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t ram_bytes_total_common(bool count_ignored)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint64_t total = 0;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     if (count_ignored) {
 | |
|         RAMBLOCK_FOREACH_MIGRATABLE(block) {
 | |
|             total += block->used_length;
 | |
|         }
 | |
|     } else {
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             total += block->used_length;
 | |
|         }
 | |
|     }
 | |
|     return total;
 | |
| }
 | |
| 
 | |
| uint64_t ram_bytes_total(void)
 | |
| {
 | |
|     return ram_bytes_total_common(false);
 | |
| }
 | |
| 
 | |
| static void xbzrle_load_setup(void)
 | |
| {
 | |
|     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static void xbzrle_load_cleanup(void)
 | |
| {
 | |
|     g_free(XBZRLE.decoded_buf);
 | |
|     XBZRLE.decoded_buf = NULL;
 | |
| }
 | |
| 
 | |
| static void ram_state_cleanup(RAMState **rsp)
 | |
| {
 | |
|     if (*rsp) {
 | |
|         migration_page_queue_free(*rsp);
 | |
|         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
 | |
|         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
 | |
|         g_free(*rsp);
 | |
|         *rsp = NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void xbzrle_cleanup(void)
 | |
| {
 | |
|     XBZRLE_cache_lock();
 | |
|     if (XBZRLE.cache) {
 | |
|         cache_fini(XBZRLE.cache);
 | |
|         g_free(XBZRLE.encoded_buf);
 | |
|         g_free(XBZRLE.current_buf);
 | |
|         g_free(XBZRLE.zero_target_page);
 | |
|         XBZRLE.cache = NULL;
 | |
|         XBZRLE.encoded_buf = NULL;
 | |
|         XBZRLE.current_buf = NULL;
 | |
|         XBZRLE.zero_target_page = NULL;
 | |
|     }
 | |
|     XBZRLE_cache_unlock();
 | |
| }
 | |
| 
 | |
| static void ram_save_cleanup(void *opaque)
 | |
| {
 | |
|     RAMState **rsp = opaque;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     /* We don't use dirty log with background snapshots */
 | |
|     if (!migrate_background_snapshot()) {
 | |
|         /* caller have hold iothread lock or is in a bh, so there is
 | |
|          * no writing race against the migration bitmap
 | |
|          */
 | |
|         memory_global_dirty_log_stop();
 | |
|     }
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         g_free(block->clear_bmap);
 | |
|         block->clear_bmap = NULL;
 | |
|         g_free(block->bmap);
 | |
|         block->bmap = NULL;
 | |
|     }
 | |
| 
 | |
|     xbzrle_cleanup();
 | |
|     compress_threads_save_cleanup();
 | |
|     ram_state_cleanup(rsp);
 | |
| }
 | |
| 
 | |
| static void ram_state_reset(RAMState *rs)
 | |
| {
 | |
|     rs->last_seen_block = NULL;
 | |
|     rs->last_sent_block = NULL;
 | |
|     rs->last_page = 0;
 | |
|     rs->last_version = ram_list.version;
 | |
|     rs->xbzrle_enabled = false;
 | |
| }
 | |
| 
 | |
| #define MAX_WAIT 50 /* ms, half buffered_file limit */
 | |
| 
 | |
| /*
 | |
|  * 'expected' is the value you expect the bitmap mostly to be full
 | |
|  * of; it won't bother printing lines that are all this value.
 | |
|  * If 'todump' is null the migration bitmap is dumped.
 | |
|  */
 | |
| void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
 | |
|                            unsigned long pages)
 | |
| {
 | |
|     int64_t cur;
 | |
|     int64_t linelen = 128;
 | |
|     char linebuf[129];
 | |
| 
 | |
|     for (cur = 0; cur < pages; cur += linelen) {
 | |
|         int64_t curb;
 | |
|         bool found = false;
 | |
|         /*
 | |
|          * Last line; catch the case where the line length
 | |
|          * is longer than remaining ram
 | |
|          */
 | |
|         if (cur + linelen > pages) {
 | |
|             linelen = pages - cur;
 | |
|         }
 | |
|         for (curb = 0; curb < linelen; curb++) {
 | |
|             bool thisbit = test_bit(cur + curb, todump);
 | |
|             linebuf[curb] = thisbit ? '1' : '.';
 | |
|             found = found || (thisbit != expected);
 | |
|         }
 | |
|         if (found) {
 | |
|             linebuf[curb] = '\0';
 | |
|             fprintf(stderr,  "0x%08" PRIx64 " : %s\n", cur, linebuf);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* **** functions for postcopy ***** */
 | |
| 
 | |
| void ram_postcopy_migrated_memory_release(MigrationState *ms)
 | |
| {
 | |
|     struct RAMBlock *block;
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         unsigned long *bitmap = block->bmap;
 | |
|         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
 | |
|         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
 | |
| 
 | |
|         while (run_start < range) {
 | |
|             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
 | |
|             ram_discard_range(block->idstr,
 | |
|                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
 | |
|                               ((ram_addr_t)(run_end - run_start))
 | |
|                                 << TARGET_PAGE_BITS);
 | |
|             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_send_discard_bm_ram: discard a RAMBlock
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * Callback from postcopy_each_ram_send_discard for each RAMBlock
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  * @block: RAMBlock to discard
 | |
|  */
 | |
| static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
 | |
| {
 | |
|     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
 | |
|     unsigned long current;
 | |
|     unsigned long *bitmap = block->bmap;
 | |
| 
 | |
|     for (current = 0; current < end; ) {
 | |
|         unsigned long one = find_next_bit(bitmap, end, current);
 | |
|         unsigned long zero, discard_length;
 | |
| 
 | |
|         if (one >= end) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         zero = find_next_zero_bit(bitmap, end, one + 1);
 | |
| 
 | |
|         if (zero >= end) {
 | |
|             discard_length = end - one;
 | |
|         } else {
 | |
|             discard_length = zero - one;
 | |
|         }
 | |
|         postcopy_discard_send_range(ms, one, discard_length);
 | |
|         current = one + discard_length;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_each_ram_send_discard: discard all RAMBlocks
 | |
|  *
 | |
|  * Returns 0 for success or negative for error
 | |
|  *
 | |
|  * Utility for the outgoing postcopy code.
 | |
|  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
 | |
|  *   passing it bitmap indexes and name.
 | |
|  * (qemu_ram_foreach_block ends up passing unscaled lengths
 | |
|  *  which would mean postcopy code would have to deal with target page)
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  */
 | |
| static int postcopy_each_ram_send_discard(MigrationState *ms)
 | |
| {
 | |
|     struct RAMBlock *block;
 | |
|     int ret;
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         postcopy_discard_send_init(ms, block->idstr);
 | |
| 
 | |
|         /*
 | |
|          * Postcopy sends chunks of bitmap over the wire, but it
 | |
|          * just needs indexes at this point, avoids it having
 | |
|          * target page specific code.
 | |
|          */
 | |
|         ret = postcopy_send_discard_bm_ram(ms, block);
 | |
|         postcopy_discard_send_finish(ms);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
 | |
|  *
 | |
|  * Helper for postcopy_chunk_hostpages; it's called twice to
 | |
|  * canonicalize the two bitmaps, that are similar, but one is
 | |
|  * inverted.
 | |
|  *
 | |
|  * Postcopy requires that all target pages in a hostpage are dirty or
 | |
|  * clean, not a mix.  This function canonicalizes the bitmaps.
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  * @block: block that contains the page we want to canonicalize
 | |
|  */
 | |
| static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     unsigned long *bitmap = block->bmap;
 | |
|     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
 | |
|     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
 | |
|     unsigned long run_start;
 | |
| 
 | |
|     if (block->page_size == TARGET_PAGE_SIZE) {
 | |
|         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Find a dirty page */
 | |
|     run_start = find_next_bit(bitmap, pages, 0);
 | |
| 
 | |
|     while (run_start < pages) {
 | |
| 
 | |
|         /*
 | |
|          * If the start of this run of pages is in the middle of a host
 | |
|          * page, then we need to fixup this host page.
 | |
|          */
 | |
|         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
 | |
|             /* Find the end of this run */
 | |
|             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
 | |
|             /*
 | |
|              * If the end isn't at the start of a host page, then the
 | |
|              * run doesn't finish at the end of a host page
 | |
|              * and we need to discard.
 | |
|              */
 | |
|         }
 | |
| 
 | |
|         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
 | |
|             unsigned long page;
 | |
|             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
 | |
|                                                              host_ratio);
 | |
|             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
 | |
| 
 | |
|             /* Clean up the bitmap */
 | |
|             for (page = fixup_start_addr;
 | |
|                  page < fixup_start_addr + host_ratio; page++) {
 | |
|                 /*
 | |
|                  * Remark them as dirty, updating the count for any pages
 | |
|                  * that weren't previously dirty.
 | |
|                  */
 | |
|                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* Find the next dirty page for the next iteration */
 | |
|         run_start = find_next_bit(bitmap, pages, run_start);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * postcopy_chunk_hostpages: discard any partially sent host page
 | |
|  *
 | |
|  * Utility for the outgoing postcopy code.
 | |
|  *
 | |
|  * Discard any partially sent host-page size chunks, mark any partially
 | |
|  * dirty host-page size chunks as all dirty.  In this case the host-page
 | |
|  * is the host-page for the particular RAMBlock, i.e. it might be a huge page
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  * @block: block we want to work with
 | |
|  */
 | |
| static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
 | |
| {
 | |
|     postcopy_discard_send_init(ms, block->idstr);
 | |
| 
 | |
|     /*
 | |
|      * Ensure that all partially dirty host pages are made fully dirty.
 | |
|      */
 | |
|     postcopy_chunk_hostpages_pass(ms, block);
 | |
| 
 | |
|     postcopy_discard_send_finish(ms);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * Transmit the set of pages to be discarded after precopy to the target
 | |
|  * these are pages that:
 | |
|  *     a) Have been previously transmitted but are now dirty again
 | |
|  *     b) Pages that have never been transmitted, this ensures that
 | |
|  *        any pages on the destination that have been mapped by background
 | |
|  *        tasks get discarded (transparent huge pages is the specific concern)
 | |
|  * Hopefully this is pretty sparse
 | |
|  *
 | |
|  * @ms: current migration state
 | |
|  */
 | |
| int ram_postcopy_send_discard_bitmap(MigrationState *ms)
 | |
| {
 | |
|     RAMState *rs = ram_state;
 | |
|     RAMBlock *block;
 | |
|     int ret;
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
| 
 | |
|     /* This should be our last sync, the src is now paused */
 | |
|     migration_bitmap_sync(rs);
 | |
| 
 | |
|     /* Easiest way to make sure we don't resume in the middle of a host-page */
 | |
|     rs->last_seen_block = NULL;
 | |
|     rs->last_sent_block = NULL;
 | |
|     rs->last_page = 0;
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         /* Deal with TPS != HPS and huge pages */
 | |
|         ret = postcopy_chunk_hostpages(ms, block);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
| 
 | |
| #ifdef DEBUG_POSTCOPY
 | |
|         ram_debug_dump_bitmap(block->bmap, true,
 | |
|                               block->used_length >> TARGET_PAGE_BITS);
 | |
| #endif
 | |
|     }
 | |
|     trace_ram_postcopy_send_discard_bitmap();
 | |
| 
 | |
|     return postcopy_each_ram_send_discard(ms);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_discard_range: discard dirtied pages at the beginning of postcopy
 | |
|  *
 | |
|  * Returns zero on success
 | |
|  *
 | |
|  * @rbname: name of the RAMBlock of the request. NULL means the
 | |
|  *          same that last one.
 | |
|  * @start: RAMBlock starting page
 | |
|  * @length: RAMBlock size
 | |
|  */
 | |
| int ram_discard_range(const char *rbname, uint64_t start, size_t length)
 | |
| {
 | |
|     trace_ram_discard_range(rbname, start, length);
 | |
| 
 | |
|     RCU_READ_LOCK_GUARD();
 | |
|     RAMBlock *rb = qemu_ram_block_by_name(rbname);
 | |
| 
 | |
|     if (!rb) {
 | |
|         error_report("ram_discard_range: Failed to find block '%s'", rbname);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * On source VM, we don't need to update the received bitmap since
 | |
|      * we don't even have one.
 | |
|      */
 | |
|     if (rb->receivedmap) {
 | |
|         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
 | |
|                      length >> qemu_target_page_bits());
 | |
|     }
 | |
| 
 | |
|     return ram_block_discard_range(rb, start, length);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For every allocation, we will try not to crash the VM if the
 | |
|  * allocation failed.
 | |
|  */
 | |
| static int xbzrle_init(void)
 | |
| {
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     if (!migrate_use_xbzrle()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     XBZRLE_cache_lock();
 | |
| 
 | |
|     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
 | |
|     if (!XBZRLE.zero_target_page) {
 | |
|         error_report("%s: Error allocating zero page", __func__);
 | |
|         goto err_out;
 | |
|     }
 | |
| 
 | |
|     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
 | |
|                               TARGET_PAGE_SIZE, &local_err);
 | |
|     if (!XBZRLE.cache) {
 | |
|         error_report_err(local_err);
 | |
|         goto free_zero_page;
 | |
|     }
 | |
| 
 | |
|     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
 | |
|     if (!XBZRLE.encoded_buf) {
 | |
|         error_report("%s: Error allocating encoded_buf", __func__);
 | |
|         goto free_cache;
 | |
|     }
 | |
| 
 | |
|     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
 | |
|     if (!XBZRLE.current_buf) {
 | |
|         error_report("%s: Error allocating current_buf", __func__);
 | |
|         goto free_encoded_buf;
 | |
|     }
 | |
| 
 | |
|     /* We are all good */
 | |
|     XBZRLE_cache_unlock();
 | |
|     return 0;
 | |
| 
 | |
| free_encoded_buf:
 | |
|     g_free(XBZRLE.encoded_buf);
 | |
|     XBZRLE.encoded_buf = NULL;
 | |
| free_cache:
 | |
|     cache_fini(XBZRLE.cache);
 | |
|     XBZRLE.cache = NULL;
 | |
| free_zero_page:
 | |
|     g_free(XBZRLE.zero_target_page);
 | |
|     XBZRLE.zero_target_page = NULL;
 | |
| err_out:
 | |
|     XBZRLE_cache_unlock();
 | |
|     return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static int ram_state_init(RAMState **rsp)
 | |
| {
 | |
|     *rsp = g_try_new0(RAMState, 1);
 | |
| 
 | |
|     if (!*rsp) {
 | |
|         error_report("%s: Init ramstate fail", __func__);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     qemu_mutex_init(&(*rsp)->bitmap_mutex);
 | |
|     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
 | |
|     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
 | |
| 
 | |
|     /*
 | |
|      * Count the total number of pages used by ram blocks not including any
 | |
|      * gaps due to alignment or unplugs.
 | |
|      * This must match with the initial values of dirty bitmap.
 | |
|      */
 | |
|     (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
 | |
|     ram_state_reset(*rsp);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ram_list_init_bitmaps(void)
 | |
| {
 | |
|     MigrationState *ms = migrate_get_current();
 | |
|     RAMBlock *block;
 | |
|     unsigned long pages;
 | |
|     uint8_t shift;
 | |
| 
 | |
|     /* Skip setting bitmap if there is no RAM */
 | |
|     if (ram_bytes_total()) {
 | |
|         shift = ms->clear_bitmap_shift;
 | |
|         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
 | |
|             error_report("clear_bitmap_shift (%u) too big, using "
 | |
|                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
 | |
|             shift = CLEAR_BITMAP_SHIFT_MAX;
 | |
|         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
 | |
|             error_report("clear_bitmap_shift (%u) too small, using "
 | |
|                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
 | |
|             shift = CLEAR_BITMAP_SHIFT_MIN;
 | |
|         }
 | |
| 
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             pages = block->max_length >> TARGET_PAGE_BITS;
 | |
|             /*
 | |
|              * The initial dirty bitmap for migration must be set with all
 | |
|              * ones to make sure we'll migrate every guest RAM page to
 | |
|              * destination.
 | |
|              * Here we set RAMBlock.bmap all to 1 because when rebegin a
 | |
|              * new migration after a failed migration, ram_list.
 | |
|              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
 | |
|              * guest memory.
 | |
|              */
 | |
|             block->bmap = bitmap_new(pages);
 | |
|             bitmap_set(block->bmap, 0, pages);
 | |
|             block->clear_bmap_shift = shift;
 | |
|             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void ram_init_bitmaps(RAMState *rs)
 | |
| {
 | |
|     /* For memory_global_dirty_log_start below.  */
 | |
|     qemu_mutex_lock_iothread();
 | |
|     qemu_mutex_lock_ramlist();
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         ram_list_init_bitmaps();
 | |
|         /* We don't use dirty log with background snapshots */
 | |
|         if (!migrate_background_snapshot()) {
 | |
|             memory_global_dirty_log_start();
 | |
|             migration_bitmap_sync_precopy(rs);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock_ramlist();
 | |
|     qemu_mutex_unlock_iothread();
 | |
| }
 | |
| 
 | |
| static int ram_init_all(RAMState **rsp)
 | |
| {
 | |
|     if (ram_state_init(rsp)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (xbzrle_init()) {
 | |
|         ram_state_cleanup(rsp);
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     ram_init_bitmaps(*rsp);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     uint64_t pages = 0;
 | |
| 
 | |
|     /*
 | |
|      * Postcopy is not using xbzrle/compression, so no need for that.
 | |
|      * Also, since source are already halted, we don't need to care
 | |
|      * about dirty page logging as well.
 | |
|      */
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         pages += bitmap_count_one(block->bmap,
 | |
|                                   block->used_length >> TARGET_PAGE_BITS);
 | |
|     }
 | |
| 
 | |
|     /* This may not be aligned with current bitmaps. Recalculate. */
 | |
|     rs->migration_dirty_pages = pages;
 | |
| 
 | |
|     ram_state_reset(rs);
 | |
| 
 | |
|     /* Update RAMState cache of output QEMUFile */
 | |
|     rs->f = out;
 | |
| 
 | |
|     trace_ram_state_resume_prepare(pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This function clears bits of the free pages reported by the caller from the
 | |
|  * migration dirty bitmap. @addr is the host address corresponding to the
 | |
|  * start of the continuous guest free pages, and @len is the total bytes of
 | |
|  * those pages.
 | |
|  */
 | |
| void qemu_guest_free_page_hint(void *addr, size_t len)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     ram_addr_t offset;
 | |
|     size_t used_len, start, npages;
 | |
|     MigrationState *s = migrate_get_current();
 | |
| 
 | |
|     /* This function is currently expected to be used during live migration */
 | |
|     if (!migration_is_setup_or_active(s->state)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (; len > 0; len -= used_len, addr += used_len) {
 | |
|         block = qemu_ram_block_from_host(addr, false, &offset);
 | |
|         if (unlikely(!block || offset >= block->used_length)) {
 | |
|             /*
 | |
|              * The implementation might not support RAMBlock resize during
 | |
|              * live migration, but it could happen in theory with future
 | |
|              * updates. So we add a check here to capture that case.
 | |
|              */
 | |
|             error_report_once("%s unexpected error", __func__);
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (len <= block->used_length - offset) {
 | |
|             used_len = len;
 | |
|         } else {
 | |
|             used_len = block->used_length - offset;
 | |
|         }
 | |
| 
 | |
|         start = offset >> TARGET_PAGE_BITS;
 | |
|         npages = used_len >> TARGET_PAGE_BITS;
 | |
| 
 | |
|         qemu_mutex_lock(&ram_state->bitmap_mutex);
 | |
|         ram_state->migration_dirty_pages -=
 | |
|                       bitmap_count_one_with_offset(block->bmap, start, npages);
 | |
|         bitmap_clear(block->bmap, start, npages);
 | |
|         qemu_mutex_unlock(&ram_state->bitmap_mutex);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
 | |
|  * long-running RCU critical section.  When rcu-reclaims in the code
 | |
|  * start to become numerous it will be necessary to reduce the
 | |
|  * granularity of these critical sections.
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * ram_save_setup: Setup RAM for migration
 | |
|  *
 | |
|  * Returns zero to indicate success and negative for error
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_save_setup(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RAMState **rsp = opaque;
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     if (compress_threads_save_setup()) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* migration has already setup the bitmap, reuse it. */
 | |
|     if (!migration_in_colo_state()) {
 | |
|         if (ram_init_all(rsp) != 0) {
 | |
|             compress_threads_save_cleanup();
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
|     (*rsp)->f = f;
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
 | |
| 
 | |
|         RAMBLOCK_FOREACH_MIGRATABLE(block) {
 | |
|             qemu_put_byte(f, strlen(block->idstr));
 | |
|             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
 | |
|             qemu_put_be64(f, block->used_length);
 | |
|             if (migrate_postcopy_ram() && block->page_size !=
 | |
|                                           qemu_host_page_size) {
 | |
|                 qemu_put_be64(f, block->page_size);
 | |
|             }
 | |
|             if (migrate_ignore_shared()) {
 | |
|                 qemu_put_be64(f, block->mr->addr);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
 | |
|     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
 | |
| 
 | |
|     multifd_send_sync_main(f);
 | |
|     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | |
|     qemu_fflush(f);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_iterate: iterative stage for migration
 | |
|  *
 | |
|  * Returns zero to indicate success and negative for error
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_save_iterate(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RAMState **temp = opaque;
 | |
|     RAMState *rs = *temp;
 | |
|     int ret = 0;
 | |
|     int i;
 | |
|     int64_t t0;
 | |
|     int done = 0;
 | |
| 
 | |
|     if (blk_mig_bulk_active()) {
 | |
|         /* Avoid transferring ram during bulk phase of block migration as
 | |
|          * the bulk phase will usually take a long time and transferring
 | |
|          * ram updates during that time is pointless. */
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         if (ram_list.version != rs->last_version) {
 | |
|             ram_state_reset(rs);
 | |
|         }
 | |
| 
 | |
|         /* Read version before ram_list.blocks */
 | |
|         smp_rmb();
 | |
| 
 | |
|         ram_control_before_iterate(f, RAM_CONTROL_ROUND);
 | |
| 
 | |
|         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | |
|         i = 0;
 | |
|         while ((ret = qemu_file_rate_limit(f)) == 0 ||
 | |
|                 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
 | |
|             int pages;
 | |
| 
 | |
|             if (qemu_file_get_error(f)) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             pages = ram_find_and_save_block(rs, false);
 | |
|             /* no more pages to sent */
 | |
|             if (pages == 0) {
 | |
|                 done = 1;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             if (pages < 0) {
 | |
|                 qemu_file_set_error(f, pages);
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             rs->target_page_count += pages;
 | |
| 
 | |
|             /*
 | |
|              * During postcopy, it is necessary to make sure one whole host
 | |
|              * page is sent in one chunk.
 | |
|              */
 | |
|             if (migrate_postcopy_ram()) {
 | |
|                 flush_compressed_data(rs);
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * we want to check in the 1st loop, just in case it was the 1st
 | |
|              * time and we had to sync the dirty bitmap.
 | |
|              * qemu_clock_get_ns() is a bit expensive, so we only check each
 | |
|              * some iterations
 | |
|              */
 | |
|             if ((i & 63) == 0) {
 | |
|                 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
 | |
|                               1000000;
 | |
|                 if (t1 > MAX_WAIT) {
 | |
|                     trace_ram_save_iterate_big_wait(t1, i);
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             i++;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Must occur before EOS (or any QEMUFile operation)
 | |
|      * because of RDMA protocol.
 | |
|      */
 | |
|     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
 | |
| 
 | |
| out:
 | |
|     if (ret >= 0
 | |
|         && migration_is_setup_or_active(migrate_get_current()->state)) {
 | |
|         multifd_send_sync_main(rs->f);
 | |
|         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | |
|         qemu_fflush(f);
 | |
|         ram_counters.transferred += 8;
 | |
| 
 | |
|         ret = qemu_file_get_error(f);
 | |
|     }
 | |
|     if (ret < 0) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     return done;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_save_complete: function called to send the remaining amount of ram
 | |
|  *
 | |
|  * Returns zero to indicate success or negative on error
 | |
|  *
 | |
|  * Called with iothread lock
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_save_complete(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     RAMState **temp = opaque;
 | |
|     RAMState *rs = *temp;
 | |
|     int ret = 0;
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         if (!migration_in_postcopy()) {
 | |
|             migration_bitmap_sync_precopy(rs);
 | |
|         }
 | |
| 
 | |
|         ram_control_before_iterate(f, RAM_CONTROL_FINISH);
 | |
| 
 | |
|         /* try transferring iterative blocks of memory */
 | |
| 
 | |
|         /* flush all remaining blocks regardless of rate limiting */
 | |
|         while (true) {
 | |
|             int pages;
 | |
| 
 | |
|             pages = ram_find_and_save_block(rs, !migration_in_colo_state());
 | |
|             /* no more blocks to sent */
 | |
|             if (pages == 0) {
 | |
|                 break;
 | |
|             }
 | |
|             if (pages < 0) {
 | |
|                 ret = pages;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         flush_compressed_data(rs);
 | |
|         ram_control_after_iterate(f, RAM_CONTROL_FINISH);
 | |
|     }
 | |
| 
 | |
|     if (ret >= 0) {
 | |
|         multifd_send_sync_main(rs->f);
 | |
|         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | |
|         qemu_fflush(f);
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
 | |
|                              uint64_t *res_precopy_only,
 | |
|                              uint64_t *res_compatible,
 | |
|                              uint64_t *res_postcopy_only)
 | |
| {
 | |
|     RAMState **temp = opaque;
 | |
|     RAMState *rs = *temp;
 | |
|     uint64_t remaining_size;
 | |
| 
 | |
|     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
 | |
| 
 | |
|     if (!migration_in_postcopy() &&
 | |
|         remaining_size < max_size) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         WITH_RCU_READ_LOCK_GUARD() {
 | |
|             migration_bitmap_sync_precopy(rs);
 | |
|         }
 | |
|         qemu_mutex_unlock_iothread();
 | |
|         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
 | |
|     }
 | |
| 
 | |
|     if (migrate_postcopy_ram()) {
 | |
|         /* We can do postcopy, and all the data is postcopiable */
 | |
|         *res_compatible += remaining_size;
 | |
|     } else {
 | |
|         *res_precopy_only += remaining_size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
 | |
| {
 | |
|     unsigned int xh_len;
 | |
|     int xh_flags;
 | |
|     uint8_t *loaded_data;
 | |
| 
 | |
|     /* extract RLE header */
 | |
|     xh_flags = qemu_get_byte(f);
 | |
|     xh_len = qemu_get_be16(f);
 | |
| 
 | |
|     if (xh_flags != ENCODING_FLAG_XBZRLE) {
 | |
|         error_report("Failed to load XBZRLE page - wrong compression!");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     if (xh_len > TARGET_PAGE_SIZE) {
 | |
|         error_report("Failed to load XBZRLE page - len overflow!");
 | |
|         return -1;
 | |
|     }
 | |
|     loaded_data = XBZRLE.decoded_buf;
 | |
|     /* load data and decode */
 | |
|     /* it can change loaded_data to point to an internal buffer */
 | |
|     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
 | |
| 
 | |
|     /* decode RLE */
 | |
|     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
 | |
|                              TARGET_PAGE_SIZE) == -1) {
 | |
|         error_report("Failed to load XBZRLE page - decode error!");
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_block_from_stream: read a RAMBlock id from the migration stream
 | |
|  *
 | |
|  * Must be called from within a rcu critical section.
 | |
|  *
 | |
|  * Returns a pointer from within the RCU-protected ram_list.
 | |
|  *
 | |
|  * @f: QEMUFile where to read the data from
 | |
|  * @flags: Page flags (mostly to see if it's a continuation of previous block)
 | |
|  */
 | |
| static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
 | |
| {
 | |
|     static RAMBlock *block;
 | |
|     char id[256];
 | |
|     uint8_t len;
 | |
| 
 | |
|     if (flags & RAM_SAVE_FLAG_CONTINUE) {
 | |
|         if (!block) {
 | |
|             error_report("Ack, bad migration stream!");
 | |
|             return NULL;
 | |
|         }
 | |
|         return block;
 | |
|     }
 | |
| 
 | |
|     len = qemu_get_byte(f);
 | |
|     qemu_get_buffer(f, (uint8_t *)id, len);
 | |
|     id[len] = 0;
 | |
| 
 | |
|     block = qemu_ram_block_by_name(id);
 | |
|     if (!block) {
 | |
|         error_report("Can't find block %s", id);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (ramblock_is_ignored(block)) {
 | |
|         error_report("block %s should not be migrated !", id);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return block;
 | |
| }
 | |
| 
 | |
| static inline void *host_from_ram_block_offset(RAMBlock *block,
 | |
|                                                ram_addr_t offset)
 | |
| {
 | |
|     if (!offset_in_ramblock(block, offset)) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     return block->host + offset;
 | |
| }
 | |
| 
 | |
| static void *host_page_from_ram_block_offset(RAMBlock *block,
 | |
|                                              ram_addr_t offset)
 | |
| {
 | |
|     /* Note: Explicitly no check against offset_in_ramblock(). */
 | |
|     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
 | |
|                                    block->page_size);
 | |
| }
 | |
| 
 | |
| static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
 | |
|                                                          ram_addr_t offset)
 | |
| {
 | |
|     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
 | |
| }
 | |
| 
 | |
| static inline void *colo_cache_from_block_offset(RAMBlock *block,
 | |
|                              ram_addr_t offset, bool record_bitmap)
 | |
| {
 | |
|     if (!offset_in_ramblock(block, offset)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     if (!block->colo_cache) {
 | |
|         error_report("%s: colo_cache is NULL in block :%s",
 | |
|                      __func__, block->idstr);
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     * During colo checkpoint, we need bitmap of these migrated pages.
 | |
|     * It help us to decide which pages in ram cache should be flushed
 | |
|     * into VM's RAM later.
 | |
|     */
 | |
|     if (record_bitmap &&
 | |
|         !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
 | |
|         ram_state->migration_dirty_pages++;
 | |
|     }
 | |
|     return block->colo_cache + offset;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_handle_compressed: handle the zero page case
 | |
|  *
 | |
|  * If a page (or a whole RDMA chunk) has been
 | |
|  * determined to be zero, then zap it.
 | |
|  *
 | |
|  * @host: host address for the zero page
 | |
|  * @ch: what the page is filled from.  We only support zero
 | |
|  * @size: size of the zero page
 | |
|  */
 | |
| void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
 | |
| {
 | |
|     if (ch != 0 || !is_zero_range(host, size)) {
 | |
|         memset(host, ch, size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* return the size after decompression, or negative value on error */
 | |
| static int
 | |
| qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
 | |
|                      const uint8_t *source, size_t source_len)
 | |
| {
 | |
|     int err;
 | |
| 
 | |
|     err = inflateReset(stream);
 | |
|     if (err != Z_OK) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     stream->avail_in = source_len;
 | |
|     stream->next_in = (uint8_t *)source;
 | |
|     stream->avail_out = dest_len;
 | |
|     stream->next_out = dest;
 | |
| 
 | |
|     err = inflate(stream, Z_NO_FLUSH);
 | |
|     if (err != Z_STREAM_END) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     return stream->total_out;
 | |
| }
 | |
| 
 | |
| static void *do_data_decompress(void *opaque)
 | |
| {
 | |
|     DecompressParam *param = opaque;
 | |
|     unsigned long pagesize;
 | |
|     uint8_t *des;
 | |
|     int len, ret;
 | |
| 
 | |
|     qemu_mutex_lock(¶m->mutex);
 | |
|     while (!param->quit) {
 | |
|         if (param->des) {
 | |
|             des = param->des;
 | |
|             len = param->len;
 | |
|             param->des = 0;
 | |
|             qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|             pagesize = TARGET_PAGE_SIZE;
 | |
| 
 | |
|             ret = qemu_uncompress_data(¶m->stream, des, pagesize,
 | |
|                                        param->compbuf, len);
 | |
|             if (ret < 0 && migrate_get_current()->decompress_error_check) {
 | |
|                 error_report("decompress data failed");
 | |
|                 qemu_file_set_error(decomp_file, ret);
 | |
|             }
 | |
| 
 | |
|             qemu_mutex_lock(&decomp_done_lock);
 | |
|             param->done = true;
 | |
|             qemu_cond_signal(&decomp_done_cond);
 | |
|             qemu_mutex_unlock(&decomp_done_lock);
 | |
| 
 | |
|             qemu_mutex_lock(¶m->mutex);
 | |
|         } else {
 | |
|             qemu_cond_wait(¶m->cond, ¶m->mutex);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(¶m->mutex);
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| static int wait_for_decompress_done(void)
 | |
| {
 | |
|     int idx, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     qemu_mutex_lock(&decomp_done_lock);
 | |
|     for (idx = 0; idx < thread_count; idx++) {
 | |
|         while (!decomp_param[idx].done) {
 | |
|             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
 | |
|         }
 | |
|     }
 | |
|     qemu_mutex_unlock(&decomp_done_lock);
 | |
|     return qemu_file_get_error(decomp_file);
 | |
| }
 | |
| 
 | |
| static void compress_threads_load_cleanup(void)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return;
 | |
|     }
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         /*
 | |
|          * we use it as a indicator which shows if the thread is
 | |
|          * properly init'd or not
 | |
|          */
 | |
|         if (!decomp_param[i].compbuf) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         qemu_mutex_lock(&decomp_param[i].mutex);
 | |
|         decomp_param[i].quit = true;
 | |
|         qemu_cond_signal(&decomp_param[i].cond);
 | |
|         qemu_mutex_unlock(&decomp_param[i].mutex);
 | |
|     }
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         if (!decomp_param[i].compbuf) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         qemu_thread_join(decompress_threads + i);
 | |
|         qemu_mutex_destroy(&decomp_param[i].mutex);
 | |
|         qemu_cond_destroy(&decomp_param[i].cond);
 | |
|         inflateEnd(&decomp_param[i].stream);
 | |
|         g_free(decomp_param[i].compbuf);
 | |
|         decomp_param[i].compbuf = NULL;
 | |
|     }
 | |
|     g_free(decompress_threads);
 | |
|     g_free(decomp_param);
 | |
|     decompress_threads = NULL;
 | |
|     decomp_param = NULL;
 | |
|     decomp_file = NULL;
 | |
| }
 | |
| 
 | |
| static int compress_threads_load_setup(QEMUFile *f)
 | |
| {
 | |
|     int i, thread_count;
 | |
| 
 | |
|     if (!migrate_use_compression()) {
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     decompress_threads = g_new0(QemuThread, thread_count);
 | |
|     decomp_param = g_new0(DecompressParam, thread_count);
 | |
|     qemu_mutex_init(&decomp_done_lock);
 | |
|     qemu_cond_init(&decomp_done_cond);
 | |
|     decomp_file = f;
 | |
|     for (i = 0; i < thread_count; i++) {
 | |
|         if (inflateInit(&decomp_param[i].stream) != Z_OK) {
 | |
|             goto exit;
 | |
|         }
 | |
| 
 | |
|         decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
 | |
|         qemu_mutex_init(&decomp_param[i].mutex);
 | |
|         qemu_cond_init(&decomp_param[i].cond);
 | |
|         decomp_param[i].done = true;
 | |
|         decomp_param[i].quit = false;
 | |
|         qemu_thread_create(decompress_threads + i, "decompress",
 | |
|                            do_data_decompress, decomp_param + i,
 | |
|                            QEMU_THREAD_JOINABLE);
 | |
|     }
 | |
|     return 0;
 | |
| exit:
 | |
|     compress_threads_load_cleanup();
 | |
|     return -1;
 | |
| }
 | |
| 
 | |
| static void decompress_data_with_multi_threads(QEMUFile *f,
 | |
|                                                void *host, int len)
 | |
| {
 | |
|     int idx, thread_count;
 | |
| 
 | |
|     thread_count = migrate_decompress_threads();
 | |
|     QEMU_LOCK_GUARD(&decomp_done_lock);
 | |
|     while (true) {
 | |
|         for (idx = 0; idx < thread_count; idx++) {
 | |
|             if (decomp_param[idx].done) {
 | |
|                 decomp_param[idx].done = false;
 | |
|                 qemu_mutex_lock(&decomp_param[idx].mutex);
 | |
|                 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
 | |
|                 decomp_param[idx].des = host;
 | |
|                 decomp_param[idx].len = len;
 | |
|                 qemu_cond_signal(&decomp_param[idx].cond);
 | |
|                 qemu_mutex_unlock(&decomp_param[idx].mutex);
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         if (idx < thread_count) {
 | |
|             break;
 | |
|         } else {
 | |
|             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void colo_init_ram_state(void)
 | |
| {
 | |
|     ram_state_init(&ram_state);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * colo cache: this is for secondary VM, we cache the whole
 | |
|  * memory of the secondary VM, it is need to hold the global lock
 | |
|  * to call this helper.
 | |
|  */
 | |
| int colo_init_ram_cache(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
 | |
|                                                     NULL,
 | |
|                                                     false);
 | |
|             if (!block->colo_cache) {
 | |
|                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
 | |
|                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
 | |
|                              block->used_length);
 | |
|                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|                     if (block->colo_cache) {
 | |
|                         qemu_anon_ram_free(block->colo_cache, block->used_length);
 | |
|                         block->colo_cache = NULL;
 | |
|                     }
 | |
|                 }
 | |
|                 return -errno;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
 | |
|     * with to decide which page in cache should be flushed into SVM's RAM. Here
 | |
|     * we use the same name 'ram_bitmap' as for migration.
 | |
|     */
 | |
|     if (ram_bytes_total()) {
 | |
|         RAMBlock *block;
 | |
| 
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
 | |
|             block->bmap = bitmap_new(pages);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     colo_init_ram_state();
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* TODO: duplicated with ram_init_bitmaps */
 | |
| void colo_incoming_start_dirty_log(void)
 | |
| {
 | |
|     RAMBlock *block = NULL;
 | |
|     /* For memory_global_dirty_log_start below. */
 | |
|     qemu_mutex_lock_iothread();
 | |
|     qemu_mutex_lock_ramlist();
 | |
| 
 | |
|     memory_global_dirty_log_sync();
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             ramblock_sync_dirty_bitmap(ram_state, block);
 | |
|             /* Discard this dirty bitmap record */
 | |
|             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
 | |
|         }
 | |
|         memory_global_dirty_log_start();
 | |
|     }
 | |
|     ram_state->migration_dirty_pages = 0;
 | |
|     qemu_mutex_unlock_ramlist();
 | |
|     qemu_mutex_unlock_iothread();
 | |
| }
 | |
| 
 | |
| /* It is need to hold the global lock to call this helper */
 | |
| void colo_release_ram_cache(void)
 | |
| {
 | |
|     RAMBlock *block;
 | |
| 
 | |
|     memory_global_dirty_log_stop();
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         g_free(block->bmap);
 | |
|         block->bmap = NULL;
 | |
|     }
 | |
| 
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             if (block->colo_cache) {
 | |
|                 qemu_anon_ram_free(block->colo_cache, block->used_length);
 | |
|                 block->colo_cache = NULL;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     ram_state_cleanup(&ram_state);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_load_setup: Setup RAM for migration incoming side
 | |
|  *
 | |
|  * Returns zero to indicate success and negative for error
 | |
|  *
 | |
|  * @f: QEMUFile where to receive the data
 | |
|  * @opaque: RAMState pointer
 | |
|  */
 | |
| static int ram_load_setup(QEMUFile *f, void *opaque)
 | |
| {
 | |
|     if (compress_threads_load_setup(f)) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     xbzrle_load_setup();
 | |
|     ramblock_recv_map_init();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int ram_load_cleanup(void *opaque)
 | |
| {
 | |
|     RAMBlock *rb;
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | |
|         qemu_ram_block_writeback(rb);
 | |
|     }
 | |
| 
 | |
|     xbzrle_load_cleanup();
 | |
|     compress_threads_load_cleanup();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | |
|         g_free(rb->receivedmap);
 | |
|         rb->receivedmap = NULL;
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_postcopy_incoming_init: allocate postcopy data structures
 | |
|  *
 | |
|  * Returns 0 for success and negative if there was one error
 | |
|  *
 | |
|  * @mis: current migration incoming state
 | |
|  *
 | |
|  * Allocate data structures etc needed by incoming migration with
 | |
|  * postcopy-ram. postcopy-ram's similarly names
 | |
|  * postcopy_ram_incoming_init does the work.
 | |
|  */
 | |
| int ram_postcopy_incoming_init(MigrationIncomingState *mis)
 | |
| {
 | |
|     return postcopy_ram_incoming_init(mis);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_load_postcopy: load a page in postcopy case
 | |
|  *
 | |
|  * Returns 0 for success or -errno in case of error
 | |
|  *
 | |
|  * Called in postcopy mode by ram_load().
 | |
|  * rcu_read_lock is taken prior to this being called.
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  */
 | |
| static int ram_load_postcopy(QEMUFile *f)
 | |
| {
 | |
|     int flags = 0, ret = 0;
 | |
|     bool place_needed = false;
 | |
|     bool matches_target_page_size = false;
 | |
|     MigrationIncomingState *mis = migration_incoming_get_current();
 | |
|     /* Temporary page that is later 'placed' */
 | |
|     void *postcopy_host_page = mis->postcopy_tmp_page;
 | |
|     void *host_page = NULL;
 | |
|     bool all_zero = true;
 | |
|     int target_pages = 0;
 | |
| 
 | |
|     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
 | |
|         ram_addr_t addr;
 | |
|         void *page_buffer = NULL;
 | |
|         void *place_source = NULL;
 | |
|         RAMBlock *block = NULL;
 | |
|         uint8_t ch;
 | |
|         int len;
 | |
| 
 | |
|         addr = qemu_get_be64(f);
 | |
| 
 | |
|         /*
 | |
|          * If qemu file error, we should stop here, and then "addr"
 | |
|          * may be invalid
 | |
|          */
 | |
|         ret = qemu_file_get_error(f);
 | |
|         if (ret) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         flags = addr & ~TARGET_PAGE_MASK;
 | |
|         addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|         trace_ram_load_postcopy_loop((uint64_t)addr, flags);
 | |
|         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
 | |
|                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
 | |
|             block = ram_block_from_stream(f, flags);
 | |
|             if (!block) {
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * Relying on used_length is racy and can result in false positives.
 | |
|              * We might place pages beyond used_length in case RAM was shrunk
 | |
|              * while in postcopy, which is fine - trying to place via
 | |
|              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
 | |
|              */
 | |
|             if (!block->host || addr >= block->postcopy_length) {
 | |
|                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             target_pages++;
 | |
|             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
 | |
|             /*
 | |
|              * Postcopy requires that we place whole host pages atomically;
 | |
|              * these may be huge pages for RAMBlocks that are backed by
 | |
|              * hugetlbfs.
 | |
|              * To make it atomic, the data is read into a temporary page
 | |
|              * that's moved into place later.
 | |
|              * The migration protocol uses,  possibly smaller, target-pages
 | |
|              * however the source ensures it always sends all the components
 | |
|              * of a host page in one chunk.
 | |
|              */
 | |
|             page_buffer = postcopy_host_page +
 | |
|                           host_page_offset_from_ram_block_offset(block, addr);
 | |
|             /* If all TP are zero then we can optimise the place */
 | |
|             if (target_pages == 1) {
 | |
|                 host_page = host_page_from_ram_block_offset(block, addr);
 | |
|             } else if (host_page != host_page_from_ram_block_offset(block,
 | |
|                                                                     addr)) {
 | |
|                 /* not the 1st TP within the HP */
 | |
|                 error_report("Non-same host page %p/%p", host_page,
 | |
|                              host_page_from_ram_block_offset(block, addr));
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             /*
 | |
|              * If it's the last part of a host page then we place the host
 | |
|              * page
 | |
|              */
 | |
|             if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
 | |
|                 place_needed = true;
 | |
|             }
 | |
|             place_source = postcopy_host_page;
 | |
|         }
 | |
| 
 | |
|         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
 | |
|         case RAM_SAVE_FLAG_ZERO:
 | |
|             ch = qemu_get_byte(f);
 | |
|             /*
 | |
|              * Can skip to set page_buffer when
 | |
|              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
 | |
|              */
 | |
|             if (ch || !matches_target_page_size) {
 | |
|                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
 | |
|             }
 | |
|             if (ch) {
 | |
|                 all_zero = false;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_PAGE:
 | |
|             all_zero = false;
 | |
|             if (!matches_target_page_size) {
 | |
|                 /* For huge pages, we always use temporary buffer */
 | |
|                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
 | |
|             } else {
 | |
|                 /*
 | |
|                  * For small pages that matches target page size, we
 | |
|                  * avoid the qemu_file copy.  Instead we directly use
 | |
|                  * the buffer of QEMUFile to place the page.  Note: we
 | |
|                  * cannot do any QEMUFile operation before using that
 | |
|                  * buffer to make sure the buffer is valid when
 | |
|                  * placing the page.
 | |
|                  */
 | |
|                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
 | |
|                                          TARGET_PAGE_SIZE);
 | |
|             }
 | |
|             break;
 | |
|         case RAM_SAVE_FLAG_COMPRESS_PAGE:
 | |
|             all_zero = false;
 | |
|             len = qemu_get_be32(f);
 | |
|             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
 | |
|                 error_report("Invalid compressed data length: %d", len);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             decompress_data_with_multi_threads(f, page_buffer, len);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_EOS:
 | |
|             /* normal exit */
 | |
|             multifd_recv_sync_main();
 | |
|             break;
 | |
|         default:
 | |
|             error_report("Unknown combination of migration flags: 0x%x"
 | |
|                          " (postcopy mode)", flags);
 | |
|             ret = -EINVAL;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         /* Got the whole host page, wait for decompress before placing. */
 | |
|         if (place_needed) {
 | |
|             ret |= wait_for_decompress_done();
 | |
|         }
 | |
| 
 | |
|         /* Detect for any possible file errors */
 | |
|         if (!ret && qemu_file_get_error(f)) {
 | |
|             ret = qemu_file_get_error(f);
 | |
|         }
 | |
| 
 | |
|         if (!ret && place_needed) {
 | |
|             if (all_zero) {
 | |
|                 ret = postcopy_place_page_zero(mis, host_page, block);
 | |
|             } else {
 | |
|                 ret = postcopy_place_page(mis, host_page, place_source,
 | |
|                                           block);
 | |
|             }
 | |
|             place_needed = false;
 | |
|             target_pages = 0;
 | |
|             /* Assume we have a zero page until we detect something different */
 | |
|             all_zero = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static bool postcopy_is_advised(void)
 | |
| {
 | |
|     PostcopyState ps = postcopy_state_get();
 | |
|     return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
 | |
| }
 | |
| 
 | |
| static bool postcopy_is_running(void)
 | |
| {
 | |
|     PostcopyState ps = postcopy_state_get();
 | |
|     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Flush content of RAM cache into SVM's memory.
 | |
|  * Only flush the pages that be dirtied by PVM or SVM or both.
 | |
|  */
 | |
| void colo_flush_ram_cache(void)
 | |
| {
 | |
|     RAMBlock *block = NULL;
 | |
|     void *dst_host;
 | |
|     void *src_host;
 | |
|     unsigned long offset = 0;
 | |
| 
 | |
|     memory_global_dirty_log_sync();
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|             ramblock_sync_dirty_bitmap(ram_state, block);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         block = QLIST_FIRST_RCU(&ram_list.blocks);
 | |
| 
 | |
|         while (block) {
 | |
|             offset = migration_bitmap_find_dirty(ram_state, block, offset);
 | |
| 
 | |
|             if (!offset_in_ramblock(block,
 | |
|                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
 | |
|                 offset = 0;
 | |
|                 block = QLIST_NEXT_RCU(block, next);
 | |
|             } else {
 | |
|                 migration_bitmap_clear_dirty(ram_state, block, offset);
 | |
|                 dst_host = block->host
 | |
|                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
 | |
|                 src_host = block->colo_cache
 | |
|                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
 | |
|                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     trace_colo_flush_ram_cache_end();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * ram_load_precopy: load pages in precopy case
 | |
|  *
 | |
|  * Returns 0 for success or -errno in case of error
 | |
|  *
 | |
|  * Called in precopy mode by ram_load().
 | |
|  * rcu_read_lock is taken prior to this being called.
 | |
|  *
 | |
|  * @f: QEMUFile where to send the data
 | |
|  */
 | |
| static int ram_load_precopy(QEMUFile *f)
 | |
| {
 | |
|     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
 | |
|     /* ADVISE is earlier, it shows the source has the postcopy capability on */
 | |
|     bool postcopy_advised = postcopy_is_advised();
 | |
|     if (!migrate_use_compression()) {
 | |
|         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
 | |
|     }
 | |
| 
 | |
|     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
 | |
|         ram_addr_t addr, total_ram_bytes;
 | |
|         void *host = NULL, *host_bak = NULL;
 | |
|         uint8_t ch;
 | |
| 
 | |
|         /*
 | |
|          * Yield periodically to let main loop run, but an iteration of
 | |
|          * the main loop is expensive, so do it each some iterations
 | |
|          */
 | |
|         if ((i & 32767) == 0 && qemu_in_coroutine()) {
 | |
|             aio_co_schedule(qemu_get_current_aio_context(),
 | |
|                             qemu_coroutine_self());
 | |
|             qemu_coroutine_yield();
 | |
|         }
 | |
|         i++;
 | |
| 
 | |
|         addr = qemu_get_be64(f);
 | |
|         flags = addr & ~TARGET_PAGE_MASK;
 | |
|         addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|         if (flags & invalid_flags) {
 | |
|             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
 | |
|                 error_report("Received an unexpected compressed page");
 | |
|             }
 | |
| 
 | |
|             ret = -EINVAL;
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
 | |
|                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
 | |
|             RAMBlock *block = ram_block_from_stream(f, flags);
 | |
| 
 | |
|             host = host_from_ram_block_offset(block, addr);
 | |
|             /*
 | |
|              * After going into COLO stage, we should not load the page
 | |
|              * into SVM's memory directly, we put them into colo_cache firstly.
 | |
|              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
 | |
|              * Previously, we copied all these memory in preparing stage of COLO
 | |
|              * while we need to stop VM, which is a time-consuming process.
 | |
|              * Here we optimize it by a trick, back-up every page while in
 | |
|              * migration process while COLO is enabled, though it affects the
 | |
|              * speed of the migration, but it obviously reduce the downtime of
 | |
|              * back-up all SVM'S memory in COLO preparing stage.
 | |
|              */
 | |
|             if (migration_incoming_colo_enabled()) {
 | |
|                 if (migration_incoming_in_colo_state()) {
 | |
|                     /* In COLO stage, put all pages into cache temporarily */
 | |
|                     host = colo_cache_from_block_offset(block, addr, true);
 | |
|                 } else {
 | |
|                    /*
 | |
|                     * In migration stage but before COLO stage,
 | |
|                     * Put all pages into both cache and SVM's memory.
 | |
|                     */
 | |
|                     host_bak = colo_cache_from_block_offset(block, addr, false);
 | |
|                 }
 | |
|             }
 | |
|             if (!host) {
 | |
|                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             if (!migration_incoming_in_colo_state()) {
 | |
|                 ramblock_recv_bitmap_set(block, host);
 | |
|             }
 | |
| 
 | |
|             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
 | |
|         }
 | |
| 
 | |
|         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
 | |
|         case RAM_SAVE_FLAG_MEM_SIZE:
 | |
|             /* Synchronize RAM block list */
 | |
|             total_ram_bytes = addr;
 | |
|             while (!ret && total_ram_bytes) {
 | |
|                 RAMBlock *block;
 | |
|                 char id[256];
 | |
|                 ram_addr_t length;
 | |
| 
 | |
|                 len = qemu_get_byte(f);
 | |
|                 qemu_get_buffer(f, (uint8_t *)id, len);
 | |
|                 id[len] = 0;
 | |
|                 length = qemu_get_be64(f);
 | |
| 
 | |
|                 block = qemu_ram_block_by_name(id);
 | |
|                 if (block && !qemu_ram_is_migratable(block)) {
 | |
|                     error_report("block %s should not be migrated !", id);
 | |
|                     ret = -EINVAL;
 | |
|                 } else if (block) {
 | |
|                     if (length != block->used_length) {
 | |
|                         Error *local_err = NULL;
 | |
| 
 | |
|                         ret = qemu_ram_resize(block, length,
 | |
|                                               &local_err);
 | |
|                         if (local_err) {
 | |
|                             error_report_err(local_err);
 | |
|                         }
 | |
|                     }
 | |
|                     /* For postcopy we need to check hugepage sizes match */
 | |
|                     if (postcopy_advised && migrate_postcopy_ram() &&
 | |
|                         block->page_size != qemu_host_page_size) {
 | |
|                         uint64_t remote_page_size = qemu_get_be64(f);
 | |
|                         if (remote_page_size != block->page_size) {
 | |
|                             error_report("Mismatched RAM page size %s "
 | |
|                                          "(local) %zd != %" PRId64,
 | |
|                                          id, block->page_size,
 | |
|                                          remote_page_size);
 | |
|                             ret = -EINVAL;
 | |
|                         }
 | |
|                     }
 | |
|                     if (migrate_ignore_shared()) {
 | |
|                         hwaddr addr = qemu_get_be64(f);
 | |
|                         if (ramblock_is_ignored(block) &&
 | |
|                             block->mr->addr != addr) {
 | |
|                             error_report("Mismatched GPAs for block %s "
 | |
|                                          "%" PRId64 "!= %" PRId64,
 | |
|                                          id, (uint64_t)addr,
 | |
|                                          (uint64_t)block->mr->addr);
 | |
|                             ret = -EINVAL;
 | |
|                         }
 | |
|                     }
 | |
|                     ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
 | |
|                                           block->idstr);
 | |
|                 } else {
 | |
|                     error_report("Unknown ramblock \"%s\", cannot "
 | |
|                                  "accept migration", id);
 | |
|                     ret = -EINVAL;
 | |
|                 }
 | |
| 
 | |
|                 total_ram_bytes -= length;
 | |
|             }
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_ZERO:
 | |
|             ch = qemu_get_byte(f);
 | |
|             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_PAGE:
 | |
|             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_COMPRESS_PAGE:
 | |
|             len = qemu_get_be32(f);
 | |
|             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
 | |
|                 error_report("Invalid compressed data length: %d", len);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             decompress_data_with_multi_threads(f, host, len);
 | |
|             break;
 | |
| 
 | |
|         case RAM_SAVE_FLAG_XBZRLE:
 | |
|             if (load_xbzrle(f, addr, host) < 0) {
 | |
|                 error_report("Failed to decompress XBZRLE page at "
 | |
|                              RAM_ADDR_FMT, addr);
 | |
|                 ret = -EINVAL;
 | |
|                 break;
 | |
|             }
 | |
|             break;
 | |
|         case RAM_SAVE_FLAG_EOS:
 | |
|             /* normal exit */
 | |
|             multifd_recv_sync_main();
 | |
|             break;
 | |
|         default:
 | |
|             if (flags & RAM_SAVE_FLAG_HOOK) {
 | |
|                 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
 | |
|             } else {
 | |
|                 error_report("Unknown combination of migration flags: 0x%x",
 | |
|                              flags);
 | |
|                 ret = -EINVAL;
 | |
|             }
 | |
|         }
 | |
|         if (!ret) {
 | |
|             ret = qemu_file_get_error(f);
 | |
|         }
 | |
|         if (!ret && host_bak) {
 | |
|             memcpy(host_bak, host, TARGET_PAGE_SIZE);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     ret |= wait_for_decompress_done();
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int ram_load(QEMUFile *f, void *opaque, int version_id)
 | |
| {
 | |
|     int ret = 0;
 | |
|     static uint64_t seq_iter;
 | |
|     /*
 | |
|      * If system is running in postcopy mode, page inserts to host memory must
 | |
|      * be atomic
 | |
|      */
 | |
|     bool postcopy_running = postcopy_is_running();
 | |
| 
 | |
|     seq_iter++;
 | |
| 
 | |
|     if (version_id != 4) {
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * This RCU critical section can be very long running.
 | |
|      * When RCU reclaims in the code start to become numerous,
 | |
|      * it will be necessary to reduce the granularity of this
 | |
|      * critical section.
 | |
|      */
 | |
|     WITH_RCU_READ_LOCK_GUARD() {
 | |
|         if (postcopy_running) {
 | |
|             ret = ram_load_postcopy(f);
 | |
|         } else {
 | |
|             ret = ram_load_precopy(f);
 | |
|         }
 | |
|     }
 | |
|     trace_ram_load_complete(ret, seq_iter);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static bool ram_has_postcopy(void *opaque)
 | |
| {
 | |
|     RAMBlock *rb;
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | |
|         if (ramblock_is_pmem(rb)) {
 | |
|             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
 | |
|                          "is not supported now!", rb->idstr, rb->host);
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return migrate_postcopy_ram();
 | |
| }
 | |
| 
 | |
| /* Sync all the dirty bitmap with destination VM.  */
 | |
| static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
 | |
| {
 | |
|     RAMBlock *block;
 | |
|     QEMUFile *file = s->to_dst_file;
 | |
|     int ramblock_count = 0;
 | |
| 
 | |
|     trace_ram_dirty_bitmap_sync_start();
 | |
| 
 | |
|     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | |
|         qemu_savevm_send_recv_bitmap(file, block->idstr);
 | |
|         trace_ram_dirty_bitmap_request(block->idstr);
 | |
|         ramblock_count++;
 | |
|     }
 | |
| 
 | |
|     trace_ram_dirty_bitmap_sync_wait();
 | |
| 
 | |
|     /* Wait until all the ramblocks' dirty bitmap synced */
 | |
|     while (ramblock_count--) {
 | |
|         qemu_sem_wait(&s->rp_state.rp_sem);
 | |
|     }
 | |
| 
 | |
|     trace_ram_dirty_bitmap_sync_complete();
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static void ram_dirty_bitmap_reload_notify(MigrationState *s)
 | |
| {
 | |
|     qemu_sem_post(&s->rp_state.rp_sem);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the received bitmap, revert it as the initial dirty bitmap.
 | |
|  * This is only used when the postcopy migration is paused but wants
 | |
|  * to resume from a middle point.
 | |
|  */
 | |
| int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
 | |
| {
 | |
|     int ret = -EINVAL;
 | |
|     QEMUFile *file = s->rp_state.from_dst_file;
 | |
|     unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
 | |
|     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
 | |
|     uint64_t size, end_mark;
 | |
| 
 | |
|     trace_ram_dirty_bitmap_reload_begin(block->idstr);
 | |
| 
 | |
|     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
 | |
|         error_report("%s: incorrect state %s", __func__,
 | |
|                      MigrationStatus_str(s->state));
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Note: see comments in ramblock_recv_bitmap_send() on why we
 | |
|      * need the endianness conversion, and the paddings.
 | |
|      */
 | |
|     local_size = ROUND_UP(local_size, 8);
 | |
| 
 | |
|     /* Add paddings */
 | |
|     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
 | |
| 
 | |
|     size = qemu_get_be64(file);
 | |
| 
 | |
|     /* The size of the bitmap should match with our ramblock */
 | |
|     if (size != local_size) {
 | |
|         error_report("%s: ramblock '%s' bitmap size mismatch "
 | |
|                      "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
 | |
|                      block->idstr, size, local_size);
 | |
|         ret = -EINVAL;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
 | |
|     end_mark = qemu_get_be64(file);
 | |
| 
 | |
|     ret = qemu_file_get_error(file);
 | |
|     if (ret || size != local_size) {
 | |
|         error_report("%s: read bitmap failed for ramblock '%s': %d"
 | |
|                      " (size 0x%"PRIx64", got: 0x%"PRIx64")",
 | |
|                      __func__, block->idstr, ret, local_size, size);
 | |
|         ret = -EIO;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
 | |
|         error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
 | |
|                      __func__, block->idstr, end_mark);
 | |
|         ret = -EINVAL;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Endianness conversion. We are during postcopy (though paused).
 | |
|      * The dirty bitmap won't change. We can directly modify it.
 | |
|      */
 | |
|     bitmap_from_le(block->bmap, le_bitmap, nbits);
 | |
| 
 | |
|     /*
 | |
|      * What we received is "received bitmap". Revert it as the initial
 | |
|      * dirty bitmap for this ramblock.
 | |
|      */
 | |
|     bitmap_complement(block->bmap, block->bmap, nbits);
 | |
| 
 | |
|     trace_ram_dirty_bitmap_reload_complete(block->idstr);
 | |
| 
 | |
|     /*
 | |
|      * We succeeded to sync bitmap for current ramblock. If this is
 | |
|      * the last one to sync, we need to notify the main send thread.
 | |
|      */
 | |
|     ram_dirty_bitmap_reload_notify(s);
 | |
| 
 | |
|     ret = 0;
 | |
| out:
 | |
|     g_free(le_bitmap);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static int ram_resume_prepare(MigrationState *s, void *opaque)
 | |
| {
 | |
|     RAMState *rs = *(RAMState **)opaque;
 | |
|     int ret;
 | |
| 
 | |
|     ret = ram_dirty_bitmap_sync_all(s, rs);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     ram_state_resume_prepare(rs, s->to_dst_file);
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static SaveVMHandlers savevm_ram_handlers = {
 | |
|     .save_setup = ram_save_setup,
 | |
|     .save_live_iterate = ram_save_iterate,
 | |
|     .save_live_complete_postcopy = ram_save_complete,
 | |
|     .save_live_complete_precopy = ram_save_complete,
 | |
|     .has_postcopy = ram_has_postcopy,
 | |
|     .save_live_pending = ram_save_pending,
 | |
|     .load_state = ram_load,
 | |
|     .save_cleanup = ram_save_cleanup,
 | |
|     .load_setup = ram_load_setup,
 | |
|     .load_cleanup = ram_load_cleanup,
 | |
|     .resume_prepare = ram_resume_prepare,
 | |
| };
 | |
| 
 | |
| static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
 | |
|                                       size_t old_size, size_t new_size)
 | |
| {
 | |
|     PostcopyState ps = postcopy_state_get();
 | |
|     ram_addr_t offset;
 | |
|     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
 | |
|     Error *err = NULL;
 | |
| 
 | |
|     if (ramblock_is_ignored(rb)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!migration_is_idle()) {
 | |
|         /*
 | |
|          * Precopy code on the source cannot deal with the size of RAM blocks
 | |
|          * changing at random points in time - especially after sending the
 | |
|          * RAM block sizes in the migration stream, they must no longer change.
 | |
|          * Abort and indicate a proper reason.
 | |
|          */
 | |
|         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
 | |
|         migrate_set_error(migrate_get_current(), err);
 | |
|         error_free(err);
 | |
|         migration_cancel();
 | |
|     }
 | |
| 
 | |
|     switch (ps) {
 | |
|     case POSTCOPY_INCOMING_ADVISE:
 | |
|         /*
 | |
|          * Update what ram_postcopy_incoming_init()->init_range() does at the
 | |
|          * time postcopy was advised. Syncing RAM blocks with the source will
 | |
|          * result in RAM resizes.
 | |
|          */
 | |
|         if (old_size < new_size) {
 | |
|             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
 | |
|                 error_report("RAM block '%s' discard of resized RAM failed",
 | |
|                              rb->idstr);
 | |
|             }
 | |
|         }
 | |
|         rb->postcopy_length = new_size;
 | |
|         break;
 | |
|     case POSTCOPY_INCOMING_NONE:
 | |
|     case POSTCOPY_INCOMING_RUNNING:
 | |
|     case POSTCOPY_INCOMING_END:
 | |
|         /*
 | |
|          * Once our guest is running, postcopy does no longer care about
 | |
|          * resizes. When growing, the new memory was not available on the
 | |
|          * source, no handler needed.
 | |
|          */
 | |
|         break;
 | |
|     default:
 | |
|         error_report("RAM block '%s' resized during postcopy state: %d",
 | |
|                      rb->idstr, ps);
 | |
|         exit(-1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static RAMBlockNotifier ram_mig_ram_notifier = {
 | |
|     .ram_block_resized = ram_mig_ram_block_resized,
 | |
| };
 | |
| 
 | |
| void ram_mig_init(void)
 | |
| {
 | |
|     qemu_mutex_init(&XBZRLE.lock);
 | |
|     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
 | |
|     ram_block_notifier_add(&ram_mig_ram_notifier);
 | |
| }
 |