 206a583d13
			
		
	
	
		206a583d13
		
	
	
	
	
		
			
			Rename to match tlb_flush_range_locked. Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Message-id: 20210509151618.2331764-9-f4bug@amsat.org Message-Id: <20210508201640.1045808-1-richard.henderson@linaro.org> [PMD: Split from bigger patch] Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			2770 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2770 lines
		
	
	
		
			89 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Common CPU TLB handling
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2.1 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "hw/core/tcg-cpu-ops.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| #include "exec/cputlb.h"
 | |
| #include "exec/tb-hash.h"
 | |
| #include "exec/memory-internal.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "tcg/tcg.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "exec/log.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "qemu/atomic.h"
 | |
| #include "qemu/atomic128.h"
 | |
| #include "exec/translate-all.h"
 | |
| #include "trace/trace-root.h"
 | |
| #include "trace/mem.h"
 | |
| #include "internal.h"
 | |
| #ifdef CONFIG_PLUGIN
 | |
| #include "qemu/plugin-memory.h"
 | |
| #endif
 | |
| 
 | |
| /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
 | |
| /* #define DEBUG_TLB */
 | |
| /* #define DEBUG_TLB_LOG */
 | |
| 
 | |
| #ifdef DEBUG_TLB
 | |
| # define DEBUG_TLB_GATE 1
 | |
| # ifdef DEBUG_TLB_LOG
 | |
| #  define DEBUG_TLB_LOG_GATE 1
 | |
| # else
 | |
| #  define DEBUG_TLB_LOG_GATE 0
 | |
| # endif
 | |
| #else
 | |
| # define DEBUG_TLB_GATE 0
 | |
| # define DEBUG_TLB_LOG_GATE 0
 | |
| #endif
 | |
| 
 | |
| #define tlb_debug(fmt, ...) do { \
 | |
|     if (DEBUG_TLB_LOG_GATE) { \
 | |
|         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
 | |
|                       ## __VA_ARGS__); \
 | |
|     } else if (DEBUG_TLB_GATE) { \
 | |
|         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
 | |
|     } \
 | |
| } while (0)
 | |
| 
 | |
| #define assert_cpu_is_self(cpu) do {                              \
 | |
|         if (DEBUG_TLB_GATE) {                                     \
 | |
|             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
 | |
|         }                                                         \
 | |
|     } while (0)
 | |
| 
 | |
| /* run_on_cpu_data.target_ptr should always be big enough for a
 | |
|  * target_ulong even on 32 bit builds */
 | |
| QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
 | |
| 
 | |
| /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
 | |
|  */
 | |
| QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
 | |
| #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
 | |
| 
 | |
| static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
 | |
| {
 | |
|     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
 | |
| }
 | |
| 
 | |
| static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
 | |
| {
 | |
|     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
 | |
| }
 | |
| 
 | |
| static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
 | |
|                              size_t max_entries)
 | |
| {
 | |
|     desc->window_begin_ns = ns;
 | |
|     desc->window_max_entries = max_entries;
 | |
| }
 | |
| 
 | |
| static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
 | |
| {
 | |
|     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
 | |
| 
 | |
|     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
 | |
|         qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
 | |
| {
 | |
|     /* Discard jump cache entries for any tb which might potentially
 | |
|        overlap the flushed page.  */
 | |
|     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
 | |
|     tb_jmp_cache_clear_page(cpu, addr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
 | |
|  * @desc: The CPUTLBDesc portion of the TLB
 | |
|  * @fast: The CPUTLBDescFast portion of the same TLB
 | |
|  *
 | |
|  * Called with tlb_lock_held.
 | |
|  *
 | |
|  * We have two main constraints when resizing a TLB: (1) we only resize it
 | |
|  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
 | |
|  * the array or unnecessarily flushing it), which means we do not control how
 | |
|  * frequently the resizing can occur; (2) we don't have access to the guest's
 | |
|  * future scheduling decisions, and therefore have to decide the magnitude of
 | |
|  * the resize based on past observations.
 | |
|  *
 | |
|  * In general, a memory-hungry process can benefit greatly from an appropriately
 | |
|  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
 | |
|  * we just have to make the TLB as large as possible; while an oversized TLB
 | |
|  * results in minimal TLB miss rates, it also takes longer to be flushed
 | |
|  * (flushes can be _very_ frequent), and the reduced locality can also hurt
 | |
|  * performance.
 | |
|  *
 | |
|  * To achieve near-optimal performance for all kinds of workloads, we:
 | |
|  *
 | |
|  * 1. Aggressively increase the size of the TLB when the use rate of the
 | |
|  * TLB being flushed is high, since it is likely that in the near future this
 | |
|  * memory-hungry process will execute again, and its memory hungriness will
 | |
|  * probably be similar.
 | |
|  *
 | |
|  * 2. Slowly reduce the size of the TLB as the use rate declines over a
 | |
|  * reasonably large time window. The rationale is that if in such a time window
 | |
|  * we have not observed a high TLB use rate, it is likely that we won't observe
 | |
|  * it in the near future. In that case, once a time window expires we downsize
 | |
|  * the TLB to match the maximum use rate observed in the window.
 | |
|  *
 | |
|  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
 | |
|  * since in that range performance is likely near-optimal. Recall that the TLB
 | |
|  * is direct mapped, so we want the use rate to be low (or at least not too
 | |
|  * high), since otherwise we are likely to have a significant amount of
 | |
|  * conflict misses.
 | |
|  */
 | |
| static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
 | |
|                                   int64_t now)
 | |
| {
 | |
|     size_t old_size = tlb_n_entries(fast);
 | |
|     size_t rate;
 | |
|     size_t new_size = old_size;
 | |
|     int64_t window_len_ms = 100;
 | |
|     int64_t window_len_ns = window_len_ms * 1000 * 1000;
 | |
|     bool window_expired = now > desc->window_begin_ns + window_len_ns;
 | |
| 
 | |
|     if (desc->n_used_entries > desc->window_max_entries) {
 | |
|         desc->window_max_entries = desc->n_used_entries;
 | |
|     }
 | |
|     rate = desc->window_max_entries * 100 / old_size;
 | |
| 
 | |
|     if (rate > 70) {
 | |
|         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
 | |
|     } else if (rate < 30 && window_expired) {
 | |
|         size_t ceil = pow2ceil(desc->window_max_entries);
 | |
|         size_t expected_rate = desc->window_max_entries * 100 / ceil;
 | |
| 
 | |
|         /*
 | |
|          * Avoid undersizing when the max number of entries seen is just below
 | |
|          * a pow2. For instance, if max_entries == 1025, the expected use rate
 | |
|          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
 | |
|          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
 | |
|          * later. Thus, make sure that the expected use rate remains below 70%.
 | |
|          * (and since we double the size, that means the lowest rate we'd
 | |
|          * expect to get is 35%, which is still in the 30-70% range where
 | |
|          * we consider that the size is appropriate.)
 | |
|          */
 | |
|         if (expected_rate > 70) {
 | |
|             ceil *= 2;
 | |
|         }
 | |
|         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
 | |
|     }
 | |
| 
 | |
|     if (new_size == old_size) {
 | |
|         if (window_expired) {
 | |
|             tlb_window_reset(desc, now, desc->n_used_entries);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     g_free(fast->table);
 | |
|     g_free(desc->iotlb);
 | |
| 
 | |
|     tlb_window_reset(desc, now, 0);
 | |
|     /* desc->n_used_entries is cleared by the caller */
 | |
|     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | |
|     fast->table = g_try_new(CPUTLBEntry, new_size);
 | |
|     desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
 | |
| 
 | |
|     /*
 | |
|      * If the allocations fail, try smaller sizes. We just freed some
 | |
|      * memory, so going back to half of new_size has a good chance of working.
 | |
|      * Increased memory pressure elsewhere in the system might cause the
 | |
|      * allocations to fail though, so we progressively reduce the allocation
 | |
|      * size, aborting if we cannot even allocate the smallest TLB we support.
 | |
|      */
 | |
|     while (fast->table == NULL || desc->iotlb == NULL) {
 | |
|         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
 | |
|             error_report("%s: %s", __func__, strerror(errno));
 | |
|             abort();
 | |
|         }
 | |
|         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
 | |
|         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
 | |
| 
 | |
|         g_free(fast->table);
 | |
|         g_free(desc->iotlb);
 | |
|         fast->table = g_try_new(CPUTLBEntry, new_size);
 | |
|         desc->iotlb = g_try_new(CPUIOTLBEntry, new_size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
 | |
| {
 | |
|     desc->n_used_entries = 0;
 | |
|     desc->large_page_addr = -1;
 | |
|     desc->large_page_mask = -1;
 | |
|     desc->vindex = 0;
 | |
|     memset(fast->table, -1, sizeof_tlb(fast));
 | |
|     memset(desc->vtable, -1, sizeof(desc->vtable));
 | |
| }
 | |
| 
 | |
| static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
 | |
|                                         int64_t now)
 | |
| {
 | |
|     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
 | |
|     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
 | |
| 
 | |
|     tlb_mmu_resize_locked(desc, fast, now);
 | |
|     tlb_mmu_flush_locked(desc, fast);
 | |
| }
 | |
| 
 | |
| static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
 | |
| {
 | |
|     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
 | |
| 
 | |
|     tlb_window_reset(desc, now, 0);
 | |
|     desc->n_used_entries = 0;
 | |
|     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
 | |
|     fast->table = g_new(CPUTLBEntry, n_entries);
 | |
|     desc->iotlb = g_new(CPUIOTLBEntry, n_entries);
 | |
|     tlb_mmu_flush_locked(desc, fast);
 | |
| }
 | |
| 
 | |
| static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
 | |
| {
 | |
|     env_tlb(env)->d[mmu_idx].n_used_entries++;
 | |
| }
 | |
| 
 | |
| static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
 | |
| {
 | |
|     env_tlb(env)->d[mmu_idx].n_used_entries--;
 | |
| }
 | |
| 
 | |
| void tlb_init(CPUState *cpu)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     int64_t now = get_clock_realtime();
 | |
|     int i;
 | |
| 
 | |
|     qemu_spin_init(&env_tlb(env)->c.lock);
 | |
| 
 | |
|     /* All tlbs are initialized flushed. */
 | |
|     env_tlb(env)->c.dirty = 0;
 | |
| 
 | |
|     for (i = 0; i < NB_MMU_MODES; i++) {
 | |
|         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_destroy(CPUState *cpu)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     int i;
 | |
| 
 | |
|     qemu_spin_destroy(&env_tlb(env)->c.lock);
 | |
|     for (i = 0; i < NB_MMU_MODES; i++) {
 | |
|         CPUTLBDesc *desc = &env_tlb(env)->d[i];
 | |
|         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
 | |
| 
 | |
|         g_free(fast->table);
 | |
|         g_free(desc->iotlb);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* flush_all_helper: run fn across all cpus
 | |
|  *
 | |
|  * If the wait flag is set then the src cpu's helper will be queued as
 | |
|  * "safe" work and the loop exited creating a synchronisation point
 | |
|  * where all queued work will be finished before execution starts
 | |
|  * again.
 | |
|  */
 | |
| static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
 | |
|                              run_on_cpu_data d)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (cpu != src) {
 | |
|             async_run_on_cpu(cpu, fn, d);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     size_t full = 0, part = 0, elide = 0;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         CPUArchState *env = cpu->env_ptr;
 | |
| 
 | |
|         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
 | |
|         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
 | |
|         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
 | |
|     }
 | |
|     *pfull = full;
 | |
|     *ppart = part;
 | |
|     *pelide = elide;
 | |
| }
 | |
| 
 | |
| static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     uint16_t asked = data.host_int;
 | |
|     uint16_t all_dirty, work, to_clean;
 | |
|     int64_t now = get_clock_realtime();
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
 | |
| 
 | |
|     qemu_spin_lock(&env_tlb(env)->c.lock);
 | |
| 
 | |
|     all_dirty = env_tlb(env)->c.dirty;
 | |
|     to_clean = asked & all_dirty;
 | |
|     all_dirty &= ~to_clean;
 | |
|     env_tlb(env)->c.dirty = all_dirty;
 | |
| 
 | |
|     for (work = to_clean; work != 0; work &= work - 1) {
 | |
|         int mmu_idx = ctz32(work);
 | |
|         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
 | |
|     }
 | |
| 
 | |
|     qemu_spin_unlock(&env_tlb(env)->c.lock);
 | |
| 
 | |
|     cpu_tb_jmp_cache_clear(cpu);
 | |
| 
 | |
|     if (to_clean == ALL_MMUIDX_BITS) {
 | |
|         qatomic_set(&env_tlb(env)->c.full_flush_count,
 | |
|                    env_tlb(env)->c.full_flush_count + 1);
 | |
|     } else {
 | |
|         qatomic_set(&env_tlb(env)->c.part_flush_count,
 | |
|                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
 | |
|         if (to_clean != asked) {
 | |
|             qatomic_set(&env_tlb(env)->c.elide_flush_count,
 | |
|                        env_tlb(env)->c.elide_flush_count +
 | |
|                        ctpop16(asked & ~to_clean));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
 | |
| 
 | |
|     if (cpu->created && !qemu_cpu_is_self(cpu)) {
 | |
|         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
 | |
|                          RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     } else {
 | |
|         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush(CPUState *cpu)
 | |
| {
 | |
|     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
 | |
| {
 | |
|     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | |
| 
 | |
|     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | |
| 
 | |
|     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
 | |
| }
 | |
| 
 | |
| void tlb_flush_all_cpus(CPUState *src_cpu)
 | |
| {
 | |
|     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
 | |
| {
 | |
|     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
 | |
| 
 | |
|     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
 | |
| 
 | |
|     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | |
|     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
 | |
| }
 | |
| 
 | |
| void tlb_flush_all_cpus_synced(CPUState *src_cpu)
 | |
| {
 | |
|     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
 | |
|                                       target_ulong page, target_ulong mask)
 | |
| {
 | |
|     page &= mask;
 | |
|     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
 | |
| 
 | |
|     return (page == (tlb_entry->addr_read & mask) ||
 | |
|             page == (tlb_addr_write(tlb_entry) & mask) ||
 | |
|             page == (tlb_entry->addr_code & mask));
 | |
| }
 | |
| 
 | |
| static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
 | |
|                                         target_ulong page)
 | |
| {
 | |
|     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_entry_is_empty - return true if the entry is not in use
 | |
|  * @te: pointer to CPUTLBEntry
 | |
|  */
 | |
| static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
 | |
| {
 | |
|     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
 | |
| }
 | |
| 
 | |
| /* Called with tlb_c.lock held */
 | |
| static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
 | |
|                                         target_ulong page,
 | |
|                                         target_ulong mask)
 | |
| {
 | |
|     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
 | |
|         memset(tlb_entry, -1, sizeof(*tlb_entry));
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
 | |
|                                           target_ulong page)
 | |
| {
 | |
|     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
 | |
| }
 | |
| 
 | |
| /* Called with tlb_c.lock held */
 | |
| static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
 | |
|                                             target_ulong page,
 | |
|                                             target_ulong mask)
 | |
| {
 | |
|     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
 | |
|     int k;
 | |
| 
 | |
|     assert_cpu_is_self(env_cpu(env));
 | |
|     for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | |
|         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
 | |
|             tlb_n_used_entries_dec(env, mmu_idx);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
 | |
|                                               target_ulong page)
 | |
| {
 | |
|     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
 | |
| }
 | |
| 
 | |
| static void tlb_flush_page_locked(CPUArchState *env, int midx,
 | |
|                                   target_ulong page)
 | |
| {
 | |
|     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
 | |
|     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
 | |
| 
 | |
|     /* Check if we need to flush due to large pages.  */
 | |
|     if ((page & lp_mask) == lp_addr) {
 | |
|         tlb_debug("forcing full flush midx %d ("
 | |
|                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | |
|                   midx, lp_addr, lp_mask);
 | |
|         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 | |
|     } else {
 | |
|         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
 | |
|             tlb_n_used_entries_dec(env, midx);
 | |
|         }
 | |
|         tlb_flush_vtlb_page_locked(env, midx, page);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_flush_page_by_mmuidx_async_0:
 | |
|  * @cpu: cpu on which to flush
 | |
|  * @addr: page of virtual address to flush
 | |
|  * @idxmap: set of mmu_idx to flush
 | |
|  *
 | |
|  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
 | |
|  * at @addr from the tlbs indicated by @idxmap from @cpu.
 | |
|  */
 | |
| static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
 | |
|                                              target_ulong addr,
 | |
|                                              uint16_t idxmap)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     int mmu_idx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
 | |
| 
 | |
|     qemu_spin_lock(&env_tlb(env)->c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         if ((idxmap >> mmu_idx) & 1) {
 | |
|             tlb_flush_page_locked(env, mmu_idx, addr);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&env_tlb(env)->c.lock);
 | |
| 
 | |
|     tb_flush_jmp_cache(cpu, addr);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * tlb_flush_page_by_mmuidx_async_1:
 | |
|  * @cpu: cpu on which to flush
 | |
|  * @data: encoded addr + idxmap
 | |
|  *
 | |
|  * Helper for tlb_flush_page_by_mmuidx and friends, called through
 | |
|  * async_run_on_cpu.  The idxmap parameter is encoded in the page
 | |
|  * offset of the target_ptr field.  This limits the set of mmu_idx
 | |
|  * that can be passed via this method.
 | |
|  */
 | |
| static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
 | |
|                                              run_on_cpu_data data)
 | |
| {
 | |
|     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
 | |
|     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
 | |
|     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     target_ulong addr;
 | |
|     uint16_t idxmap;
 | |
| } TLBFlushPageByMMUIdxData;
 | |
| 
 | |
| /**
 | |
|  * tlb_flush_page_by_mmuidx_async_2:
 | |
|  * @cpu: cpu on which to flush
 | |
|  * @data: allocated addr + idxmap
 | |
|  *
 | |
|  * Helper for tlb_flush_page_by_mmuidx and friends, called through
 | |
|  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
 | |
|  * TLBFlushPageByMMUIdxData structure that has been allocated
 | |
|  * specifically for this helper.  Free the structure when done.
 | |
|  */
 | |
| static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
 | |
|                                              run_on_cpu_data data)
 | |
| {
 | |
|     TLBFlushPageByMMUIdxData *d = data.host_ptr;
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
 | |
|     g_free(d);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     if (qemu_cpu_is_self(cpu)) {
 | |
|         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
 | |
|     } else if (idxmap < TARGET_PAGE_SIZE) {
 | |
|         /*
 | |
|          * Most targets have only a few mmu_idx.  In the case where
 | |
|          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
 | |
|          * allocating memory for this operation.
 | |
|          */
 | |
|         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|     } else {
 | |
|         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
| 
 | |
|         /* Otherwise allocate a structure, freed by the worker.  */
 | |
|         d->addr = addr;
 | |
|         d->idxmap = idxmap;
 | |
|         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                          RUN_ON_CPU_HOST_PTR(d));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *cpu, target_ulong addr)
 | |
| {
 | |
|     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
 | |
|                                        uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     /*
 | |
|      * Allocate memory to hold addr+idxmap only when needed.
 | |
|      * See tlb_flush_page_by_mmuidx for details.
 | |
|      */
 | |
|     if (idxmap < TARGET_PAGE_SIZE) {
 | |
|         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|     } else {
 | |
|         CPUState *dst_cpu;
 | |
| 
 | |
|         /* Allocate a separate data block for each destination cpu.  */
 | |
|         CPU_FOREACH(dst_cpu) {
 | |
|             if (dst_cpu != src_cpu) {
 | |
|                 TLBFlushPageByMMUIdxData *d
 | |
|                     = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
| 
 | |
|                 d->addr = addr;
 | |
|                 d->idxmap = idxmap;
 | |
|                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                                  RUN_ON_CPU_HOST_PTR(d));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
 | |
| {
 | |
|     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | |
|                                               target_ulong addr,
 | |
|                                               uint16_t idxmap)
 | |
| {
 | |
|     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
| 
 | |
|     /*
 | |
|      * Allocate memory to hold addr+idxmap only when needed.
 | |
|      * See tlb_flush_page_by_mmuidx for details.
 | |
|      */
 | |
|     if (idxmap < TARGET_PAGE_SIZE) {
 | |
|         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
 | |
|                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
 | |
|     } else {
 | |
|         CPUState *dst_cpu;
 | |
|         TLBFlushPageByMMUIdxData *d;
 | |
| 
 | |
|         /* Allocate a separate data block for each destination cpu.  */
 | |
|         CPU_FOREACH(dst_cpu) {
 | |
|             if (dst_cpu != src_cpu) {
 | |
|                 d = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
|                 d->addr = addr;
 | |
|                 d->idxmap = idxmap;
 | |
|                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                                  RUN_ON_CPU_HOST_PTR(d));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         d = g_new(TLBFlushPageByMMUIdxData, 1);
 | |
|         d->addr = addr;
 | |
|         d->idxmap = idxmap;
 | |
|         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
 | |
|                               RUN_ON_CPU_HOST_PTR(d));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
 | |
| {
 | |
|     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
 | |
| }
 | |
| 
 | |
| static void tlb_flush_range_locked(CPUArchState *env, int midx,
 | |
|                                    target_ulong addr, target_ulong len,
 | |
|                                    unsigned bits)
 | |
| {
 | |
|     CPUTLBDesc *d = &env_tlb(env)->d[midx];
 | |
|     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
 | |
|     target_ulong mask = MAKE_64BIT_MASK(0, bits);
 | |
| 
 | |
|     /*
 | |
|      * If @bits is smaller than the tlb size, there may be multiple entries
 | |
|      * within the TLB; otherwise all addresses that match under @mask hit
 | |
|      * the same TLB entry.
 | |
|      * TODO: Perhaps allow bits to be a few bits less than the size.
 | |
|      * For now, just flush the entire TLB.
 | |
|      *
 | |
|      * If @len is larger than the tlb size, then it will take longer to
 | |
|      * test all of the entries in the TLB than it will to flush it all.
 | |
|      */
 | |
|     if (mask < f->mask || len > f->mask) {
 | |
|         tlb_debug("forcing full flush midx %d ("
 | |
|                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
 | |
|                   midx, addr, mask, len);
 | |
|         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Check if we need to flush due to large pages.
 | |
|      * Because large_page_mask contains all 1's from the msb,
 | |
|      * we only need to test the end of the range.
 | |
|      */
 | |
|     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
 | |
|         tlb_debug("forcing full flush midx %d ("
 | |
|                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | |
|                   midx, d->large_page_addr, d->large_page_mask);
 | |
|         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
 | |
|         target_ulong page = addr + i;
 | |
|         CPUTLBEntry *entry = tlb_entry(env, midx, page);
 | |
| 
 | |
|         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
 | |
|             tlb_n_used_entries_dec(env, midx);
 | |
|         }
 | |
|         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct {
 | |
|     target_ulong addr;
 | |
|     target_ulong len;
 | |
|     uint16_t idxmap;
 | |
|     uint16_t bits;
 | |
| } TLBFlushRangeData;
 | |
| 
 | |
| static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
 | |
|                                               TLBFlushRangeData d)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     int mmu_idx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
 | |
|               d.addr, d.bits, d.len, d.idxmap);
 | |
| 
 | |
|     qemu_spin_lock(&env_tlb(env)->c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         if ((d.idxmap >> mmu_idx) & 1) {
 | |
|             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&env_tlb(env)->c.lock);
 | |
| 
 | |
|     for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) {
 | |
|         tb_flush_jmp_cache(cpu, d.addr + i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
 | |
|                                               run_on_cpu_data data)
 | |
| {
 | |
|     TLBFlushRangeData *d = data.host_ptr;
 | |
|     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
 | |
|     g_free(d);
 | |
| }
 | |
| 
 | |
| void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
 | |
|                                target_ulong len, uint16_t idxmap,
 | |
|                                unsigned bits)
 | |
| {
 | |
|     TLBFlushRangeData d;
 | |
| 
 | |
|     /*
 | |
|      * If all bits are significant, and len is small,
 | |
|      * this devolves to tlb_flush_page.
 | |
|      */
 | |
|     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | |
|         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
 | |
|         return;
 | |
|     }
 | |
|     /* If no page bits are significant, this devolves to tlb_flush. */
 | |
|     if (bits < TARGET_PAGE_BITS) {
 | |
|         tlb_flush_by_mmuidx(cpu, idxmap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     d.addr = addr & TARGET_PAGE_MASK;
 | |
|     d.len = len;
 | |
|     d.idxmap = idxmap;
 | |
|     d.bits = bits;
 | |
| 
 | |
|     if (qemu_cpu_is_self(cpu)) {
 | |
|         tlb_flush_range_by_mmuidx_async_0(cpu, d);
 | |
|     } else {
 | |
|         /* Otherwise allocate a structure, freed by the worker.  */
 | |
|         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 | |
|         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
 | |
|                          RUN_ON_CPU_HOST_PTR(p));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
 | |
|                                    uint16_t idxmap, unsigned bits)
 | |
| {
 | |
|     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
 | |
| }
 | |
| 
 | |
| void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
 | |
|                                         target_ulong addr, target_ulong len,
 | |
|                                         uint16_t idxmap, unsigned bits)
 | |
| {
 | |
|     TLBFlushRangeData d;
 | |
|     CPUState *dst_cpu;
 | |
| 
 | |
|     /*
 | |
|      * If all bits are significant, and len is small,
 | |
|      * this devolves to tlb_flush_page.
 | |
|      */
 | |
|     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | |
|         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
 | |
|         return;
 | |
|     }
 | |
|     /* If no page bits are significant, this devolves to tlb_flush. */
 | |
|     if (bits < TARGET_PAGE_BITS) {
 | |
|         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     d.addr = addr & TARGET_PAGE_MASK;
 | |
|     d.len = len;
 | |
|     d.idxmap = idxmap;
 | |
|     d.bits = bits;
 | |
| 
 | |
|     /* Allocate a separate data block for each destination cpu.  */
 | |
|     CPU_FOREACH(dst_cpu) {
 | |
|         if (dst_cpu != src_cpu) {
 | |
|             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
 | |
|             async_run_on_cpu(dst_cpu,
 | |
|                              tlb_flush_range_by_mmuidx_async_1,
 | |
|                              RUN_ON_CPU_HOST_PTR(p));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
 | |
|                                             target_ulong addr,
 | |
|                                             uint16_t idxmap, unsigned bits)
 | |
| {
 | |
|     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
 | |
|                                        idxmap, bits);
 | |
| }
 | |
| 
 | |
| void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | |
|                                                target_ulong addr,
 | |
|                                                target_ulong len,
 | |
|                                                uint16_t idxmap,
 | |
|                                                unsigned bits)
 | |
| {
 | |
|     TLBFlushRangeData d, *p;
 | |
|     CPUState *dst_cpu;
 | |
| 
 | |
|     /*
 | |
|      * If all bits are significant, and len is small,
 | |
|      * this devolves to tlb_flush_page.
 | |
|      */
 | |
|     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
 | |
|         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
 | |
|         return;
 | |
|     }
 | |
|     /* If no page bits are significant, this devolves to tlb_flush. */
 | |
|     if (bits < TARGET_PAGE_BITS) {
 | |
|         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This should already be page aligned */
 | |
|     d.addr = addr & TARGET_PAGE_MASK;
 | |
|     d.len = len;
 | |
|     d.idxmap = idxmap;
 | |
|     d.bits = bits;
 | |
| 
 | |
|     /* Allocate a separate data block for each destination cpu.  */
 | |
|     CPU_FOREACH(dst_cpu) {
 | |
|         if (dst_cpu != src_cpu) {
 | |
|             p = g_memdup(&d, sizeof(d));
 | |
|             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
 | |
|                              RUN_ON_CPU_HOST_PTR(p));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     p = g_memdup(&d, sizeof(d));
 | |
|     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
 | |
|                           RUN_ON_CPU_HOST_PTR(p));
 | |
| }
 | |
| 
 | |
| void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
 | |
|                                                    target_ulong addr,
 | |
|                                                    uint16_t idxmap,
 | |
|                                                    unsigned bits)
 | |
| {
 | |
|     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
 | |
|                                               idxmap, bits);
 | |
| }
 | |
| 
 | |
| /* update the TLBs so that writes to code in the virtual page 'addr'
 | |
|    can be detected */
 | |
| void tlb_protect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
 | |
|                                              DIRTY_MEMORY_CODE);
 | |
| }
 | |
| 
 | |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer
 | |
|    tested for self modifying code */
 | |
| void tlb_unprotect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Dirty write flag handling
 | |
|  *
 | |
|  * When the TCG code writes to a location it looks up the address in
 | |
|  * the TLB and uses that data to compute the final address. If any of
 | |
|  * the lower bits of the address are set then the slow path is forced.
 | |
|  * There are a number of reasons to do this but for normal RAM the
 | |
|  * most usual is detecting writes to code regions which may invalidate
 | |
|  * generated code.
 | |
|  *
 | |
|  * Other vCPUs might be reading their TLBs during guest execution, so we update
 | |
|  * te->addr_write with qatomic_set. We don't need to worry about this for
 | |
|  * oversized guests as MTTCG is disabled for them.
 | |
|  *
 | |
|  * Called with tlb_c.lock held.
 | |
|  */
 | |
| static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
 | |
|                                          uintptr_t start, uintptr_t length)
 | |
| {
 | |
|     uintptr_t addr = tlb_entry->addr_write;
 | |
| 
 | |
|     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
 | |
|                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
 | |
|         addr &= TARGET_PAGE_MASK;
 | |
|         addr += tlb_entry->addend;
 | |
|         if ((addr - start) < length) {
 | |
| #if TCG_OVERSIZED_GUEST
 | |
|             tlb_entry->addr_write |= TLB_NOTDIRTY;
 | |
| #else
 | |
|             qatomic_set(&tlb_entry->addr_write,
 | |
|                        tlb_entry->addr_write | TLB_NOTDIRTY);
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called with tlb_c.lock held.
 | |
|  * Called only from the vCPU context, i.e. the TLB's owner thread.
 | |
|  */
 | |
| static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
 | |
| {
 | |
|     *d = *s;
 | |
| }
 | |
| 
 | |
| /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
 | |
|  * the target vCPU).
 | |
|  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
 | |
|  * thing actually updated is the target TLB entry ->addr_write flags.
 | |
|  */
 | |
| void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
 | |
| {
 | |
|     CPUArchState *env;
 | |
| 
 | |
|     int mmu_idx;
 | |
| 
 | |
|     env = cpu->env_ptr;
 | |
|     qemu_spin_lock(&env_tlb(env)->c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         unsigned int i;
 | |
|         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
 | |
| 
 | |
|         for (i = 0; i < n; i++) {
 | |
|             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
 | |
|                                          start1, length);
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | |
|             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
 | |
|                                          start1, length);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&env_tlb(env)->c.lock);
 | |
| }
 | |
| 
 | |
| /* Called with tlb_c.lock held */
 | |
| static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
 | |
|                                          target_ulong vaddr)
 | |
| {
 | |
|     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 | |
|         tlb_entry->addr_write = vaddr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB corresponding to virtual page vaddr
 | |
|    so that it is no longer dirty */
 | |
| void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     int mmu_idx;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     vaddr &= TARGET_PAGE_MASK;
 | |
|     qemu_spin_lock(&env_tlb(env)->c.lock);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
 | |
|     }
 | |
| 
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         int k;
 | |
|         for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | |
|             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
 | |
|         }
 | |
|     }
 | |
|     qemu_spin_unlock(&env_tlb(env)->c.lock);
 | |
| }
 | |
| 
 | |
| /* Our TLB does not support large pages, so remember the area covered by
 | |
|    large pages and trigger a full TLB flush if these are invalidated.  */
 | |
| static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
 | |
|                                target_ulong vaddr, target_ulong size)
 | |
| {
 | |
|     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
 | |
|     target_ulong lp_mask = ~(size - 1);
 | |
| 
 | |
|     if (lp_addr == (target_ulong)-1) {
 | |
|         /* No previous large page.  */
 | |
|         lp_addr = vaddr;
 | |
|     } else {
 | |
|         /* Extend the existing region to include the new page.
 | |
|            This is a compromise between unnecessary flushes and
 | |
|            the cost of maintaining a full variable size TLB.  */
 | |
|         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
 | |
|         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
 | |
|             lp_mask <<= 1;
 | |
|         }
 | |
|     }
 | |
|     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
 | |
|     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
 | |
| }
 | |
| 
 | |
| /* Add a new TLB entry. At most one entry for a given virtual address
 | |
|  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | |
|  * supplied size is only used by tlb_flush_page.
 | |
|  *
 | |
|  * Called from TCG-generated code, which is under an RCU read-side
 | |
|  * critical section.
 | |
|  */
 | |
| void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
 | |
|                              hwaddr paddr, MemTxAttrs attrs, int prot,
 | |
|                              int mmu_idx, target_ulong size)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     CPUTLB *tlb = env_tlb(env);
 | |
|     CPUTLBDesc *desc = &tlb->d[mmu_idx];
 | |
|     MemoryRegionSection *section;
 | |
|     unsigned int index;
 | |
|     target_ulong address;
 | |
|     target_ulong write_address;
 | |
|     uintptr_t addend;
 | |
|     CPUTLBEntry *te, tn;
 | |
|     hwaddr iotlb, xlat, sz, paddr_page;
 | |
|     target_ulong vaddr_page;
 | |
|     int asidx = cpu_asidx_from_attrs(cpu, attrs);
 | |
|     int wp_flags;
 | |
|     bool is_ram, is_romd;
 | |
| 
 | |
|     assert_cpu_is_self(cpu);
 | |
| 
 | |
|     if (size <= TARGET_PAGE_SIZE) {
 | |
|         sz = TARGET_PAGE_SIZE;
 | |
|     } else {
 | |
|         tlb_add_large_page(env, mmu_idx, vaddr, size);
 | |
|         sz = size;
 | |
|     }
 | |
|     vaddr_page = vaddr & TARGET_PAGE_MASK;
 | |
|     paddr_page = paddr & TARGET_PAGE_MASK;
 | |
| 
 | |
|     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
 | |
|                                                 &xlat, &sz, attrs, &prot);
 | |
|     assert(sz >= TARGET_PAGE_SIZE);
 | |
| 
 | |
|     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | |
|               " prot=%x idx=%d\n",
 | |
|               vaddr, paddr, prot, mmu_idx);
 | |
| 
 | |
|     address = vaddr_page;
 | |
|     if (size < TARGET_PAGE_SIZE) {
 | |
|         /* Repeat the MMU check and TLB fill on every access.  */
 | |
|         address |= TLB_INVALID_MASK;
 | |
|     }
 | |
|     if (attrs.byte_swap) {
 | |
|         address |= TLB_BSWAP;
 | |
|     }
 | |
| 
 | |
|     is_ram = memory_region_is_ram(section->mr);
 | |
|     is_romd = memory_region_is_romd(section->mr);
 | |
| 
 | |
|     if (is_ram || is_romd) {
 | |
|         /* RAM and ROMD both have associated host memory. */
 | |
|         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | |
|     } else {
 | |
|         /* I/O does not; force the host address to NULL. */
 | |
|         addend = 0;
 | |
|     }
 | |
| 
 | |
|     write_address = address;
 | |
|     if (is_ram) {
 | |
|         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
 | |
|         /*
 | |
|          * Computing is_clean is expensive; avoid all that unless
 | |
|          * the page is actually writable.
 | |
|          */
 | |
|         if (prot & PAGE_WRITE) {
 | |
|             if (section->readonly) {
 | |
|                 write_address |= TLB_DISCARD_WRITE;
 | |
|             } else if (cpu_physical_memory_is_clean(iotlb)) {
 | |
|                 write_address |= TLB_NOTDIRTY;
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         /* I/O or ROMD */
 | |
|         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
 | |
|         /*
 | |
|          * Writes to romd devices must go through MMIO to enable write.
 | |
|          * Reads to romd devices go through the ram_ptr found above,
 | |
|          * but of course reads to I/O must go through MMIO.
 | |
|          */
 | |
|         write_address |= TLB_MMIO;
 | |
|         if (!is_romd) {
 | |
|             address = write_address;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
 | |
|                                               TARGET_PAGE_SIZE);
 | |
| 
 | |
|     index = tlb_index(env, mmu_idx, vaddr_page);
 | |
|     te = tlb_entry(env, mmu_idx, vaddr_page);
 | |
| 
 | |
|     /*
 | |
|      * Hold the TLB lock for the rest of the function. We could acquire/release
 | |
|      * the lock several times in the function, but it is faster to amortize the
 | |
|      * acquisition cost by acquiring it just once. Note that this leads to
 | |
|      * a longer critical section, but this is not a concern since the TLB lock
 | |
|      * is unlikely to be contended.
 | |
|      */
 | |
|     qemu_spin_lock(&tlb->c.lock);
 | |
| 
 | |
|     /* Note that the tlb is no longer clean.  */
 | |
|     tlb->c.dirty |= 1 << mmu_idx;
 | |
| 
 | |
|     /* Make sure there's no cached translation for the new page.  */
 | |
|     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
 | |
| 
 | |
|     /*
 | |
|      * Only evict the old entry to the victim tlb if it's for a
 | |
|      * different page; otherwise just overwrite the stale data.
 | |
|      */
 | |
|     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
 | |
|         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
 | |
|         CPUTLBEntry *tv = &desc->vtable[vidx];
 | |
| 
 | |
|         /* Evict the old entry into the victim tlb.  */
 | |
|         copy_tlb_helper_locked(tv, te);
 | |
|         desc->viotlb[vidx] = desc->iotlb[index];
 | |
|         tlb_n_used_entries_dec(env, mmu_idx);
 | |
|     }
 | |
| 
 | |
|     /* refill the tlb */
 | |
|     /*
 | |
|      * At this point iotlb contains a physical section number in the lower
 | |
|      * TARGET_PAGE_BITS, and either
 | |
|      *  + the ram_addr_t of the page base of the target RAM (RAM)
 | |
|      *  + the offset within section->mr of the page base (I/O, ROMD)
 | |
|      * We subtract the vaddr_page (which is page aligned and thus won't
 | |
|      * disturb the low bits) to give an offset which can be added to the
 | |
|      * (non-page-aligned) vaddr of the eventual memory access to get
 | |
|      * the MemoryRegion offset for the access. Note that the vaddr we
 | |
|      * subtract here is that of the page base, and not the same as the
 | |
|      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
 | |
|      */
 | |
|     desc->iotlb[index].addr = iotlb - vaddr_page;
 | |
|     desc->iotlb[index].attrs = attrs;
 | |
| 
 | |
|     /* Now calculate the new entry */
 | |
|     tn.addend = addend - vaddr_page;
 | |
|     if (prot & PAGE_READ) {
 | |
|         tn.addr_read = address;
 | |
|         if (wp_flags & BP_MEM_READ) {
 | |
|             tn.addr_read |= TLB_WATCHPOINT;
 | |
|         }
 | |
|     } else {
 | |
|         tn.addr_read = -1;
 | |
|     }
 | |
| 
 | |
|     if (prot & PAGE_EXEC) {
 | |
|         tn.addr_code = address;
 | |
|     } else {
 | |
|         tn.addr_code = -1;
 | |
|     }
 | |
| 
 | |
|     tn.addr_write = -1;
 | |
|     if (prot & PAGE_WRITE) {
 | |
|         tn.addr_write = write_address;
 | |
|         if (prot & PAGE_WRITE_INV) {
 | |
|             tn.addr_write |= TLB_INVALID_MASK;
 | |
|         }
 | |
|         if (wp_flags & BP_MEM_WRITE) {
 | |
|             tn.addr_write |= TLB_WATCHPOINT;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     copy_tlb_helper_locked(te, &tn);
 | |
|     tlb_n_used_entries_inc(env, mmu_idx);
 | |
|     qemu_spin_unlock(&tlb->c.lock);
 | |
| }
 | |
| 
 | |
| /* Add a new TLB entry, but without specifying the memory
 | |
|  * transaction attributes to be used.
 | |
|  */
 | |
| void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 | |
|                   hwaddr paddr, int prot,
 | |
|                   int mmu_idx, target_ulong size)
 | |
| {
 | |
|     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
 | |
|                             prot, mmu_idx, size);
 | |
| }
 | |
| 
 | |
| static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     ram_addr = qemu_ram_addr_from_host(ptr);
 | |
|     if (ram_addr == RAM_ADDR_INVALID) {
 | |
|         error_report("Bad ram pointer %p", ptr);
 | |
|         abort();
 | |
|     }
 | |
|     return ram_addr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
 | |
|  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
 | |
|  * be discarded and looked up again (e.g. via tlb_entry()).
 | |
|  */
 | |
| static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
 | |
|                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
|     bool ok;
 | |
| 
 | |
|     /*
 | |
|      * This is not a probe, so only valid return is success; failure
 | |
|      * should result in exception + longjmp to the cpu loop.
 | |
|      */
 | |
|     ok = cc->tcg_ops->tlb_fill(cpu, addr, size,
 | |
|                                access_type, mmu_idx, false, retaddr);
 | |
|     assert(ok);
 | |
| }
 | |
| 
 | |
| static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
 | |
|                                         MMUAccessType access_type,
 | |
|                                         int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
 | |
| }
 | |
| 
 | |
| static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
 | |
|                                           vaddr addr, unsigned size,
 | |
|                                           MMUAccessType access_type,
 | |
|                                           int mmu_idx, MemTxAttrs attrs,
 | |
|                                           MemTxResult response,
 | |
|                                           uintptr_t retaddr)
 | |
| {
 | |
|     CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|     if (!cpu->ignore_memory_transaction_failures &&
 | |
|         cc->tcg_ops->do_transaction_failed) {
 | |
|         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
 | |
|                                            access_type, mmu_idx, attrs,
 | |
|                                            response, retaddr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | |
|                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
 | |
|                          MMUAccessType access_type, MemOp op)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     hwaddr mr_offset;
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     uint64_t val;
 | |
|     bool locked = false;
 | |
|     MemTxResult r;
 | |
| 
 | |
|     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | |
|     mr = section->mr;
 | |
|     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | |
|     cpu->mem_io_pc = retaddr;
 | |
|     if (!cpu->can_do_io) {
 | |
|         cpu_io_recompile(cpu, retaddr);
 | |
|     }
 | |
| 
 | |
|     if (!qemu_mutex_iothread_locked()) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         locked = true;
 | |
|     }
 | |
|     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
 | |
|     if (r != MEMTX_OK) {
 | |
|         hwaddr physaddr = mr_offset +
 | |
|             section->offset_within_address_space -
 | |
|             section->offset_within_region;
 | |
| 
 | |
|         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
 | |
|                                mmu_idx, iotlbentry->attrs, r, retaddr);
 | |
|     }
 | |
|     if (locked) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
| 
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Save a potentially trashed IOTLB entry for later lookup by plugin.
 | |
|  * This is read by tlb_plugin_lookup if the iotlb entry doesn't match
 | |
|  * because of the side effect of io_writex changing memory layout.
 | |
|  */
 | |
| static void save_iotlb_data(CPUState *cs, hwaddr addr,
 | |
|                             MemoryRegionSection *section, hwaddr mr_offset)
 | |
| {
 | |
| #ifdef CONFIG_PLUGIN
 | |
|     SavedIOTLB *saved = &cs->saved_iotlb;
 | |
|     saved->addr = addr;
 | |
|     saved->section = section;
 | |
|     saved->mr_offset = mr_offset;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
 | |
|                       int mmu_idx, uint64_t val, target_ulong addr,
 | |
|                       uintptr_t retaddr, MemOp op)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     hwaddr mr_offset;
 | |
|     MemoryRegionSection *section;
 | |
|     MemoryRegion *mr;
 | |
|     bool locked = false;
 | |
|     MemTxResult r;
 | |
| 
 | |
|     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | |
|     mr = section->mr;
 | |
|     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | |
|     if (!cpu->can_do_io) {
 | |
|         cpu_io_recompile(cpu, retaddr);
 | |
|     }
 | |
|     cpu->mem_io_pc = retaddr;
 | |
| 
 | |
|     /*
 | |
|      * The memory_region_dispatch may trigger a flush/resize
 | |
|      * so for plugins we save the iotlb_data just in case.
 | |
|      */
 | |
|     save_iotlb_data(cpu, iotlbentry->addr, section, mr_offset);
 | |
| 
 | |
|     if (!qemu_mutex_iothread_locked()) {
 | |
|         qemu_mutex_lock_iothread();
 | |
|         locked = true;
 | |
|     }
 | |
|     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
 | |
|     if (r != MEMTX_OK) {
 | |
|         hwaddr physaddr = mr_offset +
 | |
|             section->offset_within_address_space -
 | |
|             section->offset_within_region;
 | |
| 
 | |
|         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
 | |
|                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
 | |
|                                retaddr);
 | |
|     }
 | |
|     if (locked) {
 | |
|         qemu_mutex_unlock_iothread();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
 | |
| {
 | |
| #if TCG_OVERSIZED_GUEST
 | |
|     return *(target_ulong *)((uintptr_t)entry + ofs);
 | |
| #else
 | |
|     /* ofs might correspond to .addr_write, so use qatomic_read */
 | |
|     return qatomic_read((target_ulong *)((uintptr_t)entry + ofs));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Return true if ADDR is present in the victim tlb, and has been copied
 | |
|    back to the main tlb.  */
 | |
| static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
 | |
|                            size_t elt_ofs, target_ulong page)
 | |
| {
 | |
|     size_t vidx;
 | |
| 
 | |
|     assert_cpu_is_self(env_cpu(env));
 | |
|     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
 | |
|         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
 | |
|         target_ulong cmp;
 | |
| 
 | |
|         /* elt_ofs might correspond to .addr_write, so use qatomic_read */
 | |
| #if TCG_OVERSIZED_GUEST
 | |
|         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
 | |
| #else
 | |
|         cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
 | |
| #endif
 | |
| 
 | |
|         if (cmp == page) {
 | |
|             /* Found entry in victim tlb, swap tlb and iotlb.  */
 | |
|             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
 | |
| 
 | |
|             qemu_spin_lock(&env_tlb(env)->c.lock);
 | |
|             copy_tlb_helper_locked(&tmptlb, tlb);
 | |
|             copy_tlb_helper_locked(tlb, vtlb);
 | |
|             copy_tlb_helper_locked(vtlb, &tmptlb);
 | |
|             qemu_spin_unlock(&env_tlb(env)->c.lock);
 | |
| 
 | |
|             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | |
|             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
 | |
|             tmpio = *io; *io = *vio; *vio = tmpio;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Macro to call the above, with local variables from the use context.  */
 | |
| #define VICTIM_TLB_HIT(TY, ADDR) \
 | |
|   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
 | |
|                  (ADDR) & TARGET_PAGE_MASK)
 | |
| 
 | |
| /*
 | |
|  * Return a ram_addr_t for the virtual address for execution.
 | |
|  *
 | |
|  * Return -1 if we can't translate and execute from an entire page
 | |
|  * of RAM.  This will force us to execute by loading and translating
 | |
|  * one insn at a time, without caching.
 | |
|  *
 | |
|  * NOTE: This function will trigger an exception if the page is
 | |
|  * not executable.
 | |
|  */
 | |
| tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
 | |
|                                         void **hostp)
 | |
| {
 | |
|     uintptr_t mmu_idx = cpu_mmu_index(env, true);
 | |
|     uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | |
|     void *p;
 | |
| 
 | |
|     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
 | |
|         if (!VICTIM_TLB_HIT(addr_code, addr)) {
 | |
|             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
 | |
|             index = tlb_index(env, mmu_idx, addr);
 | |
|             entry = tlb_entry(env, mmu_idx, addr);
 | |
| 
 | |
|             if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
 | |
|                 /*
 | |
|                  * The MMU protection covers a smaller range than a target
 | |
|                  * page, so we must redo the MMU check for every insn.
 | |
|                  */
 | |
|                 return -1;
 | |
|             }
 | |
|         }
 | |
|         assert(tlb_hit(entry->addr_code, addr));
 | |
|     }
 | |
| 
 | |
|     if (unlikely(entry->addr_code & TLB_MMIO)) {
 | |
|         /* The region is not backed by RAM.  */
 | |
|         if (hostp) {
 | |
|             *hostp = NULL;
 | |
|         }
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     p = (void *)((uintptr_t)addr + entry->addend);
 | |
|     if (hostp) {
 | |
|         *hostp = p;
 | |
|     }
 | |
|     return qemu_ram_addr_from_host_nofail(p);
 | |
| }
 | |
| 
 | |
| tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
 | |
| {
 | |
|     return get_page_addr_code_hostp(env, addr, NULL);
 | |
| }
 | |
| 
 | |
| static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
 | |
|                            CPUIOTLBEntry *iotlbentry, uintptr_t retaddr)
 | |
| {
 | |
|     ram_addr_t ram_addr = mem_vaddr + iotlbentry->addr;
 | |
| 
 | |
|     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
 | |
| 
 | |
|     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
 | |
|         struct page_collection *pages
 | |
|             = page_collection_lock(ram_addr, ram_addr + size);
 | |
|         tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr);
 | |
|         page_collection_unlock(pages);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Set both VGA and migration bits for simplicity and to remove
 | |
|      * the notdirty callback faster.
 | |
|      */
 | |
|     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
 | |
| 
 | |
|     /* We remove the notdirty callback only if the code has been flushed. */
 | |
|     if (!cpu_physical_memory_is_clean(ram_addr)) {
 | |
|         trace_memory_notdirty_set_dirty(mem_vaddr);
 | |
|         tlb_set_dirty(cpu, mem_vaddr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static int probe_access_internal(CPUArchState *env, target_ulong addr,
 | |
|                                  int fault_size, MMUAccessType access_type,
 | |
|                                  int mmu_idx, bool nonfault,
 | |
|                                  void **phost, uintptr_t retaddr)
 | |
| {
 | |
|     uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | |
|     target_ulong tlb_addr, page_addr;
 | |
|     size_t elt_ofs;
 | |
|     int flags;
 | |
| 
 | |
|     switch (access_type) {
 | |
|     case MMU_DATA_LOAD:
 | |
|         elt_ofs = offsetof(CPUTLBEntry, addr_read);
 | |
|         break;
 | |
|     case MMU_DATA_STORE:
 | |
|         elt_ofs = offsetof(CPUTLBEntry, addr_write);
 | |
|         break;
 | |
|     case MMU_INST_FETCH:
 | |
|         elt_ofs = offsetof(CPUTLBEntry, addr_code);
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     tlb_addr = tlb_read_ofs(entry, elt_ofs);
 | |
| 
 | |
|     page_addr = addr & TARGET_PAGE_MASK;
 | |
|     if (!tlb_hit_page(tlb_addr, page_addr)) {
 | |
|         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) {
 | |
|             CPUState *cs = env_cpu(env);
 | |
|             CPUClass *cc = CPU_GET_CLASS(cs);
 | |
| 
 | |
|             if (!cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
 | |
|                                        mmu_idx, nonfault, retaddr)) {
 | |
|                 /* Non-faulting page table read failed.  */
 | |
|                 *phost = NULL;
 | |
|                 return TLB_INVALID_MASK;
 | |
|             }
 | |
| 
 | |
|             /* TLB resize via tlb_fill may have moved the entry.  */
 | |
|             entry = tlb_entry(env, mmu_idx, addr);
 | |
|         }
 | |
|         tlb_addr = tlb_read_ofs(entry, elt_ofs);
 | |
|     }
 | |
|     flags = tlb_addr & TLB_FLAGS_MASK;
 | |
| 
 | |
|     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
 | |
|     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
 | |
|         *phost = NULL;
 | |
|         return TLB_MMIO;
 | |
|     }
 | |
| 
 | |
|     /* Everything else is RAM. */
 | |
|     *phost = (void *)((uintptr_t)addr + entry->addend);
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| int probe_access_flags(CPUArchState *env, target_ulong addr,
 | |
|                        MMUAccessType access_type, int mmu_idx,
 | |
|                        bool nonfault, void **phost, uintptr_t retaddr)
 | |
| {
 | |
|     int flags;
 | |
| 
 | |
|     flags = probe_access_internal(env, addr, 0, access_type, mmu_idx,
 | |
|                                   nonfault, phost, retaddr);
 | |
| 
 | |
|     /* Handle clean RAM pages.  */
 | |
|     if (unlikely(flags & TLB_NOTDIRTY)) {
 | |
|         uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | |
| 
 | |
|         notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
 | |
|         flags &= ~TLB_NOTDIRTY;
 | |
|     }
 | |
| 
 | |
|     return flags;
 | |
| }
 | |
| 
 | |
| void *probe_access(CPUArchState *env, target_ulong addr, int size,
 | |
|                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     void *host;
 | |
|     int flags;
 | |
| 
 | |
|     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
 | |
| 
 | |
|     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
 | |
|                                   false, &host, retaddr);
 | |
| 
 | |
|     /* Per the interface, size == 0 merely faults the access. */
 | |
|     if (size == 0) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
 | |
|         uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|         CPUIOTLBEntry *iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | |
| 
 | |
|         /* Handle watchpoints.  */
 | |
|         if (flags & TLB_WATCHPOINT) {
 | |
|             int wp_access = (access_type == MMU_DATA_STORE
 | |
|                              ? BP_MEM_WRITE : BP_MEM_READ);
 | |
|             cpu_check_watchpoint(env_cpu(env), addr, size,
 | |
|                                  iotlbentry->attrs, wp_access, retaddr);
 | |
|         }
 | |
| 
 | |
|         /* Handle clean RAM pages.  */
 | |
|         if (flags & TLB_NOTDIRTY) {
 | |
|             notdirty_write(env_cpu(env), addr, 1, iotlbentry, retaddr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return host;
 | |
| }
 | |
| 
 | |
| void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
 | |
|                         MMUAccessType access_type, int mmu_idx)
 | |
| {
 | |
|     void *host;
 | |
|     int flags;
 | |
| 
 | |
|     flags = probe_access_internal(env, addr, 0, access_type,
 | |
|                                   mmu_idx, true, &host, 0);
 | |
| 
 | |
|     /* No combination of flags are expected by the caller. */
 | |
|     return flags ? NULL : host;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PLUGIN
 | |
| /*
 | |
|  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
 | |
|  * This should be a hot path as we will have just looked this path up
 | |
|  * in the softmmu lookup code (or helper). We don't handle re-fills or
 | |
|  * checking the victim table. This is purely informational.
 | |
|  *
 | |
|  * This almost never fails as the memory access being instrumented
 | |
|  * should have just filled the TLB. The one corner case is io_writex
 | |
|  * which can cause TLB flushes and potential resizing of the TLBs
 | |
|  * losing the information we need. In those cases we need to recover
 | |
|  * data from a copy of the iotlbentry. As long as this always occurs
 | |
|  * from the same thread (which a mem callback will be) this is safe.
 | |
|  */
 | |
| 
 | |
| bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
 | |
|                        bool is_store, struct qemu_plugin_hwaddr *data)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
 | |
|     uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
 | |
| 
 | |
|     if (likely(tlb_hit(tlb_addr, addr))) {
 | |
|         /* We must have an iotlb entry for MMIO */
 | |
|         if (tlb_addr & TLB_MMIO) {
 | |
|             CPUIOTLBEntry *iotlbentry;
 | |
|             iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | |
|             data->is_io = true;
 | |
|             data->v.io.section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
 | |
|             data->v.io.offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
 | |
|         } else {
 | |
|             data->is_io = false;
 | |
|             data->v.ram.hostaddr = addr + tlbe->addend;
 | |
|         }
 | |
|         return true;
 | |
|     } else {
 | |
|         SavedIOTLB *saved = &cpu->saved_iotlb;
 | |
|         data->is_io = true;
 | |
|         data->v.io.section = saved->section;
 | |
|         data->v.io.offset = saved->mr_offset;
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
 | |
|  * operations, or io operations to proceed.  Return the host address.  */
 | |
| static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
 | |
|                                TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     size_t mmu_idx = get_mmuidx(oi);
 | |
|     uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
 | |
|     target_ulong tlb_addr = tlb_addr_write(tlbe);
 | |
|     MemOp mop = get_memop(oi);
 | |
|     int a_bits = get_alignment_bits(mop);
 | |
|     int s_bits = mop & MO_SIZE;
 | |
|     void *hostaddr;
 | |
| 
 | |
|     /* Adjust the given return address.  */
 | |
|     retaddr -= GETPC_ADJ;
 | |
| 
 | |
|     /* Enforce guest required alignment.  */
 | |
|     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
 | |
|         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
 | |
|         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* Enforce qemu required alignment.  */
 | |
|     if (unlikely(addr & ((1 << s_bits) - 1))) {
 | |
|         /* We get here if guest alignment was not requested,
 | |
|            or was not enforced by cpu_unaligned_access above.
 | |
|            We might widen the access and emulate, but for now
 | |
|            mark an exception and exit the cpu loop.  */
 | |
|         goto stop_the_world;
 | |
|     }
 | |
| 
 | |
|     /* Check TLB entry and enforce page permissions.  */
 | |
|     if (!tlb_hit(tlb_addr, addr)) {
 | |
|         if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | |
|             tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
 | |
|                      mmu_idx, retaddr);
 | |
|             index = tlb_index(env, mmu_idx, addr);
 | |
|             tlbe = tlb_entry(env, mmu_idx, addr);
 | |
|         }
 | |
|         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
 | |
|     }
 | |
| 
 | |
|     /* Notice an IO access or a needs-MMU-lookup access */
 | |
|     if (unlikely(tlb_addr & TLB_MMIO)) {
 | |
|         /* There's really nothing that can be done to
 | |
|            support this apart from stop-the-world.  */
 | |
|         goto stop_the_world;
 | |
|     }
 | |
| 
 | |
|     /* Let the guest notice RMW on a write-only page.  */
 | |
|     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
 | |
|         tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
 | |
|                  mmu_idx, retaddr);
 | |
|         /* Since we don't support reads and writes to different addresses,
 | |
|            and we do have the proper page loaded for write, this shouldn't
 | |
|            ever return.  But just in case, handle via stop-the-world.  */
 | |
|         goto stop_the_world;
 | |
|     }
 | |
| 
 | |
|     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
 | |
| 
 | |
|     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
 | |
|         notdirty_write(env_cpu(env), addr, 1 << s_bits,
 | |
|                        &env_tlb(env)->d[mmu_idx].iotlb[index], retaddr);
 | |
|     }
 | |
| 
 | |
|     return hostaddr;
 | |
| 
 | |
|  stop_the_world:
 | |
|     cpu_loop_exit_atomic(env_cpu(env), retaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load Helpers
 | |
|  *
 | |
|  * We support two different access types. SOFTMMU_CODE_ACCESS is
 | |
|  * specifically for reading instructions from system memory. It is
 | |
|  * called by the translation loop and in some helpers where the code
 | |
|  * is disassembled. It shouldn't be called directly by guest code.
 | |
|  */
 | |
| 
 | |
| typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
 | |
|                                 TCGMemOpIdx oi, uintptr_t retaddr);
 | |
| 
 | |
| static inline uint64_t QEMU_ALWAYS_INLINE
 | |
| load_memop(const void *haddr, MemOp op)
 | |
| {
 | |
|     switch (op) {
 | |
|     case MO_UB:
 | |
|         return ldub_p(haddr);
 | |
|     case MO_BEUW:
 | |
|         return lduw_be_p(haddr);
 | |
|     case MO_LEUW:
 | |
|         return lduw_le_p(haddr);
 | |
|     case MO_BEUL:
 | |
|         return (uint32_t)ldl_be_p(haddr);
 | |
|     case MO_LEUL:
 | |
|         return (uint32_t)ldl_le_p(haddr);
 | |
|     case MO_BEQ:
 | |
|         return ldq_be_p(haddr);
 | |
|     case MO_LEQ:
 | |
|         return ldq_le_p(haddr);
 | |
|     default:
 | |
|         qemu_build_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint64_t QEMU_ALWAYS_INLINE
 | |
| load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
 | |
|             uintptr_t retaddr, MemOp op, bool code_read,
 | |
|             FullLoadHelper *full_load)
 | |
| {
 | |
|     uintptr_t mmu_idx = get_mmuidx(oi);
 | |
|     uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | |
|     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
 | |
|     const size_t tlb_off = code_read ?
 | |
|         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
 | |
|     const MMUAccessType access_type =
 | |
|         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
 | |
|     unsigned a_bits = get_alignment_bits(get_memop(oi));
 | |
|     void *haddr;
 | |
|     uint64_t res;
 | |
|     size_t size = memop_size(op);
 | |
| 
 | |
|     /* Handle CPU specific unaligned behaviour */
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(env_cpu(env), addr, access_type,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if (!tlb_hit(tlb_addr, addr)) {
 | |
|         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
 | |
|                             addr & TARGET_PAGE_MASK)) {
 | |
|             tlb_fill(env_cpu(env), addr, size,
 | |
|                      access_type, mmu_idx, retaddr);
 | |
|             index = tlb_index(env, mmu_idx, addr);
 | |
|             entry = tlb_entry(env, mmu_idx, addr);
 | |
|         }
 | |
|         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
 | |
|         tlb_addr &= ~TLB_INVALID_MASK;
 | |
|     }
 | |
| 
 | |
|     /* Handle anything that isn't just a straight memory access.  */
 | |
|     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | |
|         CPUIOTLBEntry *iotlbentry;
 | |
|         bool need_swap;
 | |
| 
 | |
|         /* For anything that is unaligned, recurse through full_load.  */
 | |
|         if ((addr & (size - 1)) != 0) {
 | |
|             goto do_unaligned_access;
 | |
|         }
 | |
| 
 | |
|         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | |
| 
 | |
|         /* Handle watchpoints.  */
 | |
|         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
 | |
|             /* On watchpoint hit, this will longjmp out.  */
 | |
|             cpu_check_watchpoint(env_cpu(env), addr, size,
 | |
|                                  iotlbentry->attrs, BP_MEM_READ, retaddr);
 | |
|         }
 | |
| 
 | |
|         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
 | |
| 
 | |
|         /* Handle I/O access.  */
 | |
|         if (likely(tlb_addr & TLB_MMIO)) {
 | |
|             return io_readx(env, iotlbentry, mmu_idx, addr, retaddr,
 | |
|                             access_type, op ^ (need_swap * MO_BSWAP));
 | |
|         }
 | |
| 
 | |
|         haddr = (void *)((uintptr_t)addr + entry->addend);
 | |
| 
 | |
|         /*
 | |
|          * Keep these two load_memop separate to ensure that the compiler
 | |
|          * is able to fold the entire function to a single instruction.
 | |
|          * There is a build-time assert inside to remind you of this.  ;-)
 | |
|          */
 | |
|         if (unlikely(need_swap)) {
 | |
|             return load_memop(haddr, op ^ MO_BSWAP);
 | |
|         }
 | |
|         return load_memop(haddr, op);
 | |
|     }
 | |
| 
 | |
|     /* Handle slow unaligned access (it spans two pages or IO).  */
 | |
|     if (size > 1
 | |
|         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
 | |
|                     >= TARGET_PAGE_SIZE)) {
 | |
|         target_ulong addr1, addr2;
 | |
|         uint64_t r1, r2;
 | |
|         unsigned shift;
 | |
|     do_unaligned_access:
 | |
|         addr1 = addr & ~((target_ulong)size - 1);
 | |
|         addr2 = addr1 + size;
 | |
|         r1 = full_load(env, addr1, oi, retaddr);
 | |
|         r2 = full_load(env, addr2, oi, retaddr);
 | |
|         shift = (addr & (size - 1)) * 8;
 | |
| 
 | |
|         if (memop_big_endian(op)) {
 | |
|             /* Big-endian combine.  */
 | |
|             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
 | |
|         } else {
 | |
|             /* Little-endian combine.  */
 | |
|             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
 | |
|         }
 | |
|         return res & MAKE_64BIT_MASK(0, size * 8);
 | |
|     }
 | |
| 
 | |
|     haddr = (void *)((uintptr_t)addr + entry->addend);
 | |
|     return load_memop(haddr, op);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * For the benefit of TCG generated code, we want to avoid the
 | |
|  * complication of ABI-specific return type promotion and always
 | |
|  * return a value extended to the register size of the host. This is
 | |
|  * tcg_target_long, except in the case of a 32-bit host and 64-bit
 | |
|  * data, and for that we always have uint64_t.
 | |
|  *
 | |
|  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
 | |
|  */
 | |
| 
 | |
| static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
 | |
|                               TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                      TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return full_ldub_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
 | |
|                        full_le_lduw_mmu);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return full_le_lduw_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
 | |
|                        full_be_lduw_mmu);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return full_be_lduw_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
 | |
|                        full_le_ldul_mmu);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return full_le_ldul_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                  TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
 | |
|                        full_be_ldul_mmu);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return full_be_ldul_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
 | |
|                            TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
 | |
|                        helper_le_ldq_mmu);
 | |
| }
 | |
| 
 | |
| uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
 | |
|                            TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
 | |
|                        helper_be_ldq_mmu);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Provide signed versions of the load routines as well.  We can of course
 | |
|  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
 | |
|  */
 | |
| 
 | |
| 
 | |
| tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                      TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
 | |
|                                     TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Load helpers for cpu_ldst.h.
 | |
|  */
 | |
| 
 | |
| static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr,
 | |
|                                        int mmu_idx, uintptr_t retaddr,
 | |
|                                        MemOp op, FullLoadHelper *full_load)
 | |
| {
 | |
|     uint16_t meminfo;
 | |
|     TCGMemOpIdx oi;
 | |
|     uint64_t ret;
 | |
| 
 | |
|     meminfo = trace_mem_get_info(op, mmu_idx, false);
 | |
|     trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
 | |
| 
 | |
|     op &= ~MO_SIGN;
 | |
|     oi = make_memop_idx(op, mmu_idx);
 | |
|     ret = full_load(env, addr, oi, retaddr);
 | |
| 
 | |
|     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldub_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                             int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_UB, full_ldub_mmu);
 | |
| }
 | |
| 
 | |
| int cpu_ldsb_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                        int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return (int8_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_SB,
 | |
|                                    full_ldub_mmu);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                                int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUW, full_be_lduw_mmu);
 | |
| }
 | |
| 
 | |
| int cpu_ldsw_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                           int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_BESW,
 | |
|                                     full_be_lduw_mmu);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                               int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEUL, full_be_ldul_mmu);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_be_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                               int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_BEQ, helper_be_ldq_mmu);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                                int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUW, full_le_lduw_mmu);
 | |
| }
 | |
| 
 | |
| int cpu_ldsw_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                           int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return (int16_t)cpu_load_helper(env, addr, mmu_idx, ra, MO_LESW,
 | |
|                                     full_le_lduw_mmu);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                               int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEUL, full_le_ldul_mmu);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_le_mmuidx_ra(CPUArchState *env, abi_ptr addr,
 | |
|                               int mmu_idx, uintptr_t ra)
 | |
| {
 | |
|     return cpu_load_helper(env, addr, mmu_idx, ra, MO_LEQ, helper_le_ldq_mmu);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldub_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                           uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldub_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| int cpu_ldsb_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldsb_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_be_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                              uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_lduw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| int cpu_ldsw_be_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldsw_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_be_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                             uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldl_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_be_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                             uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldq_be_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_le_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                              uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_lduw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| int cpu_ldsw_le_data_ra(CPUArchState *env, target_ulong ptr, uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldsw_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_le_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                             uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldl_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_le_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                             uintptr_t retaddr)
 | |
| {
 | |
|     return cpu_ldq_le_mmuidx_ra(env, ptr, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldub_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldub_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| int cpu_ldsb_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldsb_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_be_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_lduw_be_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| int cpu_ldsw_be_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldsw_be_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_be_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldl_be_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_be_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldq_be_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_le_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_lduw_le_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| int cpu_ldsw_le_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldsw_le_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_le_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldl_le_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_le_data(CPUArchState *env, target_ulong ptr)
 | |
| {
 | |
|     return cpu_ldq_le_data_ra(env, ptr, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Store Helpers
 | |
|  */
 | |
| 
 | |
| static inline void QEMU_ALWAYS_INLINE
 | |
| store_memop(void *haddr, uint64_t val, MemOp op)
 | |
| {
 | |
|     switch (op) {
 | |
|     case MO_UB:
 | |
|         stb_p(haddr, val);
 | |
|         break;
 | |
|     case MO_BEUW:
 | |
|         stw_be_p(haddr, val);
 | |
|         break;
 | |
|     case MO_LEUW:
 | |
|         stw_le_p(haddr, val);
 | |
|         break;
 | |
|     case MO_BEUL:
 | |
|         stl_be_p(haddr, val);
 | |
|         break;
 | |
|     case MO_LEUL:
 | |
|         stl_le_p(haddr, val);
 | |
|         break;
 | |
|     case MO_BEQ:
 | |
|         stq_be_p(haddr, val);
 | |
|         break;
 | |
|     case MO_LEQ:
 | |
|         stq_le_p(haddr, val);
 | |
|         break;
 | |
|     default:
 | |
|         qemu_build_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void __attribute__((noinline))
 | |
| store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|                        uintptr_t retaddr, size_t size, uintptr_t mmu_idx,
 | |
|                        bool big_endian)
 | |
| {
 | |
|     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
 | |
|     uintptr_t index, index2;
 | |
|     CPUTLBEntry *entry, *entry2;
 | |
|     target_ulong page2, tlb_addr, tlb_addr2;
 | |
|     TCGMemOpIdx oi;
 | |
|     size_t size2;
 | |
|     int i;
 | |
| 
 | |
|     /*
 | |
|      * Ensure the second page is in the TLB.  Note that the first page
 | |
|      * is already guaranteed to be filled, and that the second page
 | |
|      * cannot evict the first.
 | |
|      */
 | |
|     page2 = (addr + size) & TARGET_PAGE_MASK;
 | |
|     size2 = (addr + size) & ~TARGET_PAGE_MASK;
 | |
|     index2 = tlb_index(env, mmu_idx, page2);
 | |
|     entry2 = tlb_entry(env, mmu_idx, page2);
 | |
| 
 | |
|     tlb_addr2 = tlb_addr_write(entry2);
 | |
|     if (!tlb_hit_page(tlb_addr2, page2)) {
 | |
|         if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
 | |
|             tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
 | |
|                      mmu_idx, retaddr);
 | |
|             index2 = tlb_index(env, mmu_idx, page2);
 | |
|             entry2 = tlb_entry(env, mmu_idx, page2);
 | |
|         }
 | |
|         tlb_addr2 = tlb_addr_write(entry2);
 | |
|     }
 | |
| 
 | |
|     index = tlb_index(env, mmu_idx, addr);
 | |
|     entry = tlb_entry(env, mmu_idx, addr);
 | |
|     tlb_addr = tlb_addr_write(entry);
 | |
| 
 | |
|     /*
 | |
|      * Handle watchpoints.  Since this may trap, all checks
 | |
|      * must happen before any store.
 | |
|      */
 | |
|     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
 | |
|         cpu_check_watchpoint(env_cpu(env), addr, size - size2,
 | |
|                              env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
 | |
|                              BP_MEM_WRITE, retaddr);
 | |
|     }
 | |
|     if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
 | |
|         cpu_check_watchpoint(env_cpu(env), page2, size2,
 | |
|                              env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
 | |
|                              BP_MEM_WRITE, retaddr);
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * XXX: not efficient, but simple.
 | |
|      * This loop must go in the forward direction to avoid issues
 | |
|      * with self-modifying code in Windows 64-bit.
 | |
|      */
 | |
|     oi = make_memop_idx(MO_UB, mmu_idx);
 | |
|     if (big_endian) {
 | |
|         for (i = 0; i < size; ++i) {
 | |
|             /* Big-endian extract.  */
 | |
|             uint8_t val8 = val >> (((size - 1) * 8) - (i * 8));
 | |
|             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
 | |
|         }
 | |
|     } else {
 | |
|         for (i = 0; i < size; ++i) {
 | |
|             /* Little-endian extract.  */
 | |
|             uint8_t val8 = val >> (i * 8);
 | |
|             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void QEMU_ALWAYS_INLINE
 | |
| store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|              TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
 | |
| {
 | |
|     uintptr_t mmu_idx = get_mmuidx(oi);
 | |
|     uintptr_t index = tlb_index(env, mmu_idx, addr);
 | |
|     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
 | |
|     target_ulong tlb_addr = tlb_addr_write(entry);
 | |
|     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
 | |
|     unsigned a_bits = get_alignment_bits(get_memop(oi));
 | |
|     void *haddr;
 | |
|     size_t size = memop_size(op);
 | |
| 
 | |
|     /* Handle CPU specific unaligned behaviour */
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if (!tlb_hit(tlb_addr, addr)) {
 | |
|         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
 | |
|             addr & TARGET_PAGE_MASK)) {
 | |
|             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
 | |
|                      mmu_idx, retaddr);
 | |
|             index = tlb_index(env, mmu_idx, addr);
 | |
|             entry = tlb_entry(env, mmu_idx, addr);
 | |
|         }
 | |
|         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
 | |
|     }
 | |
| 
 | |
|     /* Handle anything that isn't just a straight memory access.  */
 | |
|     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | |
|         CPUIOTLBEntry *iotlbentry;
 | |
|         bool need_swap;
 | |
| 
 | |
|         /* For anything that is unaligned, recurse through byte stores.  */
 | |
|         if ((addr & (size - 1)) != 0) {
 | |
|             goto do_unaligned_access;
 | |
|         }
 | |
| 
 | |
|         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
 | |
| 
 | |
|         /* Handle watchpoints.  */
 | |
|         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
 | |
|             /* On watchpoint hit, this will longjmp out.  */
 | |
|             cpu_check_watchpoint(env_cpu(env), addr, size,
 | |
|                                  iotlbentry->attrs, BP_MEM_WRITE, retaddr);
 | |
|         }
 | |
| 
 | |
|         need_swap = size > 1 && (tlb_addr & TLB_BSWAP);
 | |
| 
 | |
|         /* Handle I/O access.  */
 | |
|         if (tlb_addr & TLB_MMIO) {
 | |
|             io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr,
 | |
|                       op ^ (need_swap * MO_BSWAP));
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /* Ignore writes to ROM.  */
 | |
|         if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         /* Handle clean RAM pages.  */
 | |
|         if (tlb_addr & TLB_NOTDIRTY) {
 | |
|             notdirty_write(env_cpu(env), addr, size, iotlbentry, retaddr);
 | |
|         }
 | |
| 
 | |
|         haddr = (void *)((uintptr_t)addr + entry->addend);
 | |
| 
 | |
|         /*
 | |
|          * Keep these two store_memop separate to ensure that the compiler
 | |
|          * is able to fold the entire function to a single instruction.
 | |
|          * There is a build-time assert inside to remind you of this.  ;-)
 | |
|          */
 | |
|         if (unlikely(need_swap)) {
 | |
|             store_memop(haddr, val, op ^ MO_BSWAP);
 | |
|         } else {
 | |
|             store_memop(haddr, val, op);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Handle slow unaligned access (it spans two pages or IO).  */
 | |
|     if (size > 1
 | |
|         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
 | |
|                      >= TARGET_PAGE_SIZE)) {
 | |
|     do_unaligned_access:
 | |
|         store_helper_unaligned(env, addr, val, retaddr, size,
 | |
|                                mmu_idx, memop_big_endian(op));
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     haddr = (void *)((uintptr_t)addr + entry->addend);
 | |
|     store_memop(haddr, val, op);
 | |
| }
 | |
| 
 | |
| void __attribute__((noinline))
 | |
| helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
 | |
|                    TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_UB);
 | |
| }
 | |
| 
 | |
| void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
 | |
| }
 | |
| 
 | |
| void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
 | |
| }
 | |
| 
 | |
| void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
 | |
| }
 | |
| 
 | |
| void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
 | |
| }
 | |
| 
 | |
| void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_LEQ);
 | |
| }
 | |
| 
 | |
| void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     store_helper(env, addr, val, oi, retaddr, MO_BEQ);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Store Helpers for cpu_ldst.h
 | |
|  */
 | |
| 
 | |
| static inline void QEMU_ALWAYS_INLINE
 | |
| cpu_store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|                  int mmu_idx, uintptr_t retaddr, MemOp op)
 | |
| {
 | |
|     TCGMemOpIdx oi;
 | |
|     uint16_t meminfo;
 | |
| 
 | |
|     meminfo = trace_mem_get_info(op, mmu_idx, true);
 | |
|     trace_guest_mem_before_exec(env_cpu(env), addr, meminfo);
 | |
| 
 | |
|     oi = make_memop_idx(op, mmu_idx);
 | |
|     store_helper(env, addr, val, oi, retaddr, op);
 | |
| 
 | |
|     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, meminfo);
 | |
| }
 | |
| 
 | |
| void cpu_stb_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                        int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_UB);
 | |
| }
 | |
| 
 | |
| void cpu_stw_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                           int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUW);
 | |
| }
 | |
| 
 | |
| void cpu_stl_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                           int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEUL);
 | |
| }
 | |
| 
 | |
| void cpu_stq_be_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|                           int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_BEQ);
 | |
| }
 | |
| 
 | |
| void cpu_stw_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                           int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUW);
 | |
| }
 | |
| 
 | |
| void cpu_stl_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint32_t val,
 | |
|                           int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEUL);
 | |
| }
 | |
| 
 | |
| void cpu_stq_le_mmuidx_ra(CPUArchState *env, target_ulong addr, uint64_t val,
 | |
|                           int mmu_idx, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_store_helper(env, addr, val, mmu_idx, retaddr, MO_LEQ);
 | |
| }
 | |
| 
 | |
| void cpu_stb_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                      uint32_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stb_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stw_be_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                         uint32_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stw_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stl_be_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                         uint32_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stl_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stq_be_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                         uint64_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stq_be_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stw_le_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                         uint32_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stw_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stl_le_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                         uint32_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stl_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stq_le_data_ra(CPUArchState *env, target_ulong ptr,
 | |
|                         uint64_t val, uintptr_t retaddr)
 | |
| {
 | |
|     cpu_stq_le_mmuidx_ra(env, ptr, val, cpu_mmu_index(env, false), retaddr);
 | |
| }
 | |
| 
 | |
| void cpu_stb_data(CPUArchState *env, target_ulong ptr, uint32_t val)
 | |
| {
 | |
|     cpu_stb_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| void cpu_stw_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
 | |
| {
 | |
|     cpu_stw_be_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| void cpu_stl_be_data(CPUArchState *env, target_ulong ptr, uint32_t val)
 | |
| {
 | |
|     cpu_stl_be_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| void cpu_stq_be_data(CPUArchState *env, target_ulong ptr, uint64_t val)
 | |
| {
 | |
|     cpu_stq_be_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| void cpu_stw_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
 | |
| {
 | |
|     cpu_stw_le_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| void cpu_stl_le_data(CPUArchState *env, target_ulong ptr, uint32_t val)
 | |
| {
 | |
|     cpu_stl_le_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| void cpu_stq_le_data(CPUArchState *env, target_ulong ptr, uint64_t val)
 | |
| {
 | |
|     cpu_stq_le_data_ra(env, ptr, val, 0);
 | |
| }
 | |
| 
 | |
| /* First set of helpers allows passing in of OI and RETADDR.  This makes
 | |
|    them callable from other helpers.  */
 | |
| 
 | |
| #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
 | |
| #define ATOMIC_NAME(X) \
 | |
|     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
 | |
| #define ATOMIC_MMU_DECLS
 | |
| #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
 | |
| #define ATOMIC_MMU_CLEANUP
 | |
| #define ATOMIC_MMU_IDX   get_mmuidx(oi)
 | |
| 
 | |
| #include "atomic_common.c.inc"
 | |
| 
 | |
| #define DATA_SIZE 1
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #define DATA_SIZE 2
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #define DATA_SIZE 4
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #ifdef CONFIG_ATOMIC64
 | |
| #define DATA_SIZE 8
 | |
| #include "atomic_template.h"
 | |
| #endif
 | |
| 
 | |
| #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
 | |
| #define DATA_SIZE 16
 | |
| #include "atomic_template.h"
 | |
| #endif
 | |
| 
 | |
| /* Second set of helpers are directly callable from TCG as helpers.  */
 | |
| 
 | |
| #undef EXTRA_ARGS
 | |
| #undef ATOMIC_NAME
 | |
| #undef ATOMIC_MMU_LOOKUP
 | |
| #define EXTRA_ARGS         , TCGMemOpIdx oi
 | |
| #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
 | |
| #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC())
 | |
| 
 | |
| #define DATA_SIZE 1
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #define DATA_SIZE 2
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #define DATA_SIZE 4
 | |
| #include "atomic_template.h"
 | |
| 
 | |
| #ifdef CONFIG_ATOMIC64
 | |
| #define DATA_SIZE 8
 | |
| #include "atomic_template.h"
 | |
| #endif
 | |
| #undef ATOMIC_MMU_IDX
 | |
| 
 | |
| /* Code access functions.  */
 | |
| 
 | |
| static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr,
 | |
|                                TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     TCGMemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
 | |
|     return full_ldub_code(env, addr, oi, 0);
 | |
| }
 | |
| 
 | |
| static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr,
 | |
|                                TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     TCGMemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
 | |
|     return full_lduw_code(env, addr, oi, 0);
 | |
| }
 | |
| 
 | |
| static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr,
 | |
|                               TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code);
 | |
| }
 | |
| 
 | |
| uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     TCGMemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
 | |
|     return full_ldl_code(env, addr, oi, 0);
 | |
| }
 | |
| 
 | |
| static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr,
 | |
|                               TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return load_helper(env, addr, oi, retaddr, MO_TEQ, true, full_ldq_code);
 | |
| }
 | |
| 
 | |
| uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
 | |
| {
 | |
|     TCGMemOpIdx oi = make_memop_idx(MO_TEQ, cpu_mmu_index(env, true));
 | |
|     return full_ldq_code(env, addr, oi, 0);
 | |
| }
 |