 ddc3e74d9c
			
		
	
	
		ddc3e74d9c
		
	
	
	
	
		
			
			In most cases we were already passing get_sp_from_cpustate directly to the function. In other cases, we were passing a local variable which already contained the same value. In the rest of the cases, we were passing the stack pointer out of env directly. Reviewed by: Warner Losh <imp@bsdimp.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20210426025334.1168495-5-richard.henderson@linaro.org> Signed-off-by: Laurent Vivier <laurent@vivier.eu>
		
			
				
	
	
		
			1072 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1072 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Emulation of Linux signals
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu/bitops.h"
 | |
| #include <sys/ucontext.h>
 | |
| #include <sys/resource.h>
 | |
| 
 | |
| #include "qemu.h"
 | |
| #include "trace.h"
 | |
| #include "signal-common.h"
 | |
| 
 | |
| static struct target_sigaction sigact_table[TARGET_NSIG];
 | |
| 
 | |
| static void host_signal_handler(int host_signum, siginfo_t *info,
 | |
|                                 void *puc);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * System includes define _NSIG as SIGRTMAX + 1,
 | |
|  * but qemu (like the kernel) defines TARGET_NSIG as TARGET_SIGRTMAX
 | |
|  * and the first signal is SIGHUP defined as 1
 | |
|  * Signal number 0 is reserved for use as kill(pid, 0), to test whether
 | |
|  * a process exists without sending it a signal.
 | |
|  */
 | |
| QEMU_BUILD_BUG_ON(__SIGRTMAX + 1 != _NSIG);
 | |
| static uint8_t host_to_target_signal_table[_NSIG] = {
 | |
|     [SIGHUP] = TARGET_SIGHUP,
 | |
|     [SIGINT] = TARGET_SIGINT,
 | |
|     [SIGQUIT] = TARGET_SIGQUIT,
 | |
|     [SIGILL] = TARGET_SIGILL,
 | |
|     [SIGTRAP] = TARGET_SIGTRAP,
 | |
|     [SIGABRT] = TARGET_SIGABRT,
 | |
| /*    [SIGIOT] = TARGET_SIGIOT,*/
 | |
|     [SIGBUS] = TARGET_SIGBUS,
 | |
|     [SIGFPE] = TARGET_SIGFPE,
 | |
|     [SIGKILL] = TARGET_SIGKILL,
 | |
|     [SIGUSR1] = TARGET_SIGUSR1,
 | |
|     [SIGSEGV] = TARGET_SIGSEGV,
 | |
|     [SIGUSR2] = TARGET_SIGUSR2,
 | |
|     [SIGPIPE] = TARGET_SIGPIPE,
 | |
|     [SIGALRM] = TARGET_SIGALRM,
 | |
|     [SIGTERM] = TARGET_SIGTERM,
 | |
| #ifdef SIGSTKFLT
 | |
|     [SIGSTKFLT] = TARGET_SIGSTKFLT,
 | |
| #endif
 | |
|     [SIGCHLD] = TARGET_SIGCHLD,
 | |
|     [SIGCONT] = TARGET_SIGCONT,
 | |
|     [SIGSTOP] = TARGET_SIGSTOP,
 | |
|     [SIGTSTP] = TARGET_SIGTSTP,
 | |
|     [SIGTTIN] = TARGET_SIGTTIN,
 | |
|     [SIGTTOU] = TARGET_SIGTTOU,
 | |
|     [SIGURG] = TARGET_SIGURG,
 | |
|     [SIGXCPU] = TARGET_SIGXCPU,
 | |
|     [SIGXFSZ] = TARGET_SIGXFSZ,
 | |
|     [SIGVTALRM] = TARGET_SIGVTALRM,
 | |
|     [SIGPROF] = TARGET_SIGPROF,
 | |
|     [SIGWINCH] = TARGET_SIGWINCH,
 | |
|     [SIGIO] = TARGET_SIGIO,
 | |
|     [SIGPWR] = TARGET_SIGPWR,
 | |
|     [SIGSYS] = TARGET_SIGSYS,
 | |
|     /* next signals stay the same */
 | |
| };
 | |
| 
 | |
| static uint8_t target_to_host_signal_table[TARGET_NSIG + 1];
 | |
| 
 | |
| /* valid sig is between 1 and _NSIG - 1 */
 | |
| int host_to_target_signal(int sig)
 | |
| {
 | |
|     if (sig < 1 || sig >= _NSIG) {
 | |
|         return sig;
 | |
|     }
 | |
|     return host_to_target_signal_table[sig];
 | |
| }
 | |
| 
 | |
| /* valid sig is between 1 and TARGET_NSIG */
 | |
| int target_to_host_signal(int sig)
 | |
| {
 | |
|     if (sig < 1 || sig > TARGET_NSIG) {
 | |
|         return sig;
 | |
|     }
 | |
|     return target_to_host_signal_table[sig];
 | |
| }
 | |
| 
 | |
| static inline void target_sigaddset(target_sigset_t *set, int signum)
 | |
| {
 | |
|     signum--;
 | |
|     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
 | |
|     set->sig[signum / TARGET_NSIG_BPW] |= mask;
 | |
| }
 | |
| 
 | |
| static inline int target_sigismember(const target_sigset_t *set, int signum)
 | |
| {
 | |
|     signum--;
 | |
|     abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW);
 | |
|     return ((set->sig[signum / TARGET_NSIG_BPW] & mask) != 0);
 | |
| }
 | |
| 
 | |
| void host_to_target_sigset_internal(target_sigset_t *d,
 | |
|                                     const sigset_t *s)
 | |
| {
 | |
|     int host_sig, target_sig;
 | |
|     target_sigemptyset(d);
 | |
|     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
 | |
|         target_sig = host_to_target_signal(host_sig);
 | |
|         if (target_sig < 1 || target_sig > TARGET_NSIG) {
 | |
|             continue;
 | |
|         }
 | |
|         if (sigismember(s, host_sig)) {
 | |
|             target_sigaddset(d, target_sig);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void host_to_target_sigset(target_sigset_t *d, const sigset_t *s)
 | |
| {
 | |
|     target_sigset_t d1;
 | |
|     int i;
 | |
| 
 | |
|     host_to_target_sigset_internal(&d1, s);
 | |
|     for(i = 0;i < TARGET_NSIG_WORDS; i++)
 | |
|         d->sig[i] = tswapal(d1.sig[i]);
 | |
| }
 | |
| 
 | |
| void target_to_host_sigset_internal(sigset_t *d,
 | |
|                                     const target_sigset_t *s)
 | |
| {
 | |
|     int host_sig, target_sig;
 | |
|     sigemptyset(d);
 | |
|     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
 | |
|         host_sig = target_to_host_signal(target_sig);
 | |
|         if (host_sig < 1 || host_sig >= _NSIG) {
 | |
|             continue;
 | |
|         }
 | |
|         if (target_sigismember(s, target_sig)) {
 | |
|             sigaddset(d, host_sig);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void target_to_host_sigset(sigset_t *d, const target_sigset_t *s)
 | |
| {
 | |
|     target_sigset_t s1;
 | |
|     int i;
 | |
| 
 | |
|     for(i = 0;i < TARGET_NSIG_WORDS; i++)
 | |
|         s1.sig[i] = tswapal(s->sig[i]);
 | |
|     target_to_host_sigset_internal(d, &s1);
 | |
| }
 | |
| 
 | |
| void host_to_target_old_sigset(abi_ulong *old_sigset,
 | |
|                                const sigset_t *sigset)
 | |
| {
 | |
|     target_sigset_t d;
 | |
|     host_to_target_sigset(&d, sigset);
 | |
|     *old_sigset = d.sig[0];
 | |
| }
 | |
| 
 | |
| void target_to_host_old_sigset(sigset_t *sigset,
 | |
|                                const abi_ulong *old_sigset)
 | |
| {
 | |
|     target_sigset_t d;
 | |
|     int i;
 | |
| 
 | |
|     d.sig[0] = *old_sigset;
 | |
|     for(i = 1;i < TARGET_NSIG_WORDS; i++)
 | |
|         d.sig[i] = 0;
 | |
|     target_to_host_sigset(sigset, &d);
 | |
| }
 | |
| 
 | |
| int block_signals(void)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
|     sigset_t set;
 | |
| 
 | |
|     /* It's OK to block everything including SIGSEGV, because we won't
 | |
|      * run any further guest code before unblocking signals in
 | |
|      * process_pending_signals().
 | |
|      */
 | |
|     sigfillset(&set);
 | |
|     sigprocmask(SIG_SETMASK, &set, 0);
 | |
| 
 | |
|     return qatomic_xchg(&ts->signal_pending, 1);
 | |
| }
 | |
| 
 | |
| /* Wrapper for sigprocmask function
 | |
|  * Emulates a sigprocmask in a safe way for the guest. Note that set and oldset
 | |
|  * are host signal set, not guest ones. Returns -TARGET_ERESTARTSYS if
 | |
|  * a signal was already pending and the syscall must be restarted, or
 | |
|  * 0 on success.
 | |
|  * If set is NULL, this is guaranteed not to fail.
 | |
|  */
 | |
| int do_sigprocmask(int how, const sigset_t *set, sigset_t *oldset)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
| 
 | |
|     if (oldset) {
 | |
|         *oldset = ts->signal_mask;
 | |
|     }
 | |
| 
 | |
|     if (set) {
 | |
|         int i;
 | |
| 
 | |
|         if (block_signals()) {
 | |
|             return -TARGET_ERESTARTSYS;
 | |
|         }
 | |
| 
 | |
|         switch (how) {
 | |
|         case SIG_BLOCK:
 | |
|             sigorset(&ts->signal_mask, &ts->signal_mask, set);
 | |
|             break;
 | |
|         case SIG_UNBLOCK:
 | |
|             for (i = 1; i <= NSIG; ++i) {
 | |
|                 if (sigismember(set, i)) {
 | |
|                     sigdelset(&ts->signal_mask, i);
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case SIG_SETMASK:
 | |
|             ts->signal_mask = *set;
 | |
|             break;
 | |
|         default:
 | |
|             g_assert_not_reached();
 | |
|         }
 | |
| 
 | |
|         /* Silently ignore attempts to change blocking status of KILL or STOP */
 | |
|         sigdelset(&ts->signal_mask, SIGKILL);
 | |
|         sigdelset(&ts->signal_mask, SIGSTOP);
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| #if !defined(TARGET_NIOS2)
 | |
| /* Just set the guest's signal mask to the specified value; the
 | |
|  * caller is assumed to have called block_signals() already.
 | |
|  */
 | |
| void set_sigmask(const sigset_t *set)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
| 
 | |
|     ts->signal_mask = *set;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* sigaltstack management */
 | |
| 
 | |
| int on_sig_stack(unsigned long sp)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
| 
 | |
|     return (sp - ts->sigaltstack_used.ss_sp
 | |
|             < ts->sigaltstack_used.ss_size);
 | |
| }
 | |
| 
 | |
| int sas_ss_flags(unsigned long sp)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
| 
 | |
|     return (ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE
 | |
|             : on_sig_stack(sp) ? SS_ONSTACK : 0);
 | |
| }
 | |
| 
 | |
| abi_ulong target_sigsp(abi_ulong sp, struct target_sigaction *ka)
 | |
| {
 | |
|     /*
 | |
|      * This is the X/Open sanctioned signal stack switching.
 | |
|      */
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
| 
 | |
|     if ((ka->sa_flags & TARGET_SA_ONSTACK) && !sas_ss_flags(sp)) {
 | |
|         return ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size;
 | |
|     }
 | |
|     return sp;
 | |
| }
 | |
| 
 | |
| void target_save_altstack(target_stack_t *uss, CPUArchState *env)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
| 
 | |
|     __put_user(ts->sigaltstack_used.ss_sp, &uss->ss_sp);
 | |
|     __put_user(sas_ss_flags(get_sp_from_cpustate(env)), &uss->ss_flags);
 | |
|     __put_user(ts->sigaltstack_used.ss_size, &uss->ss_size);
 | |
| }
 | |
| 
 | |
| abi_long target_restore_altstack(target_stack_t *uss, CPUArchState *env)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
|     size_t minstacksize = TARGET_MINSIGSTKSZ;
 | |
|     target_stack_t ss;
 | |
| 
 | |
| #if defined(TARGET_PPC64)
 | |
|     /* ELF V2 for PPC64 has a 4K minimum stack size for signal handlers */
 | |
|     struct image_info *image = ts->info;
 | |
|     if (get_ppc64_abi(image) > 1) {
 | |
|         minstacksize = 4096;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     __get_user(ss.ss_sp, &uss->ss_sp);
 | |
|     __get_user(ss.ss_size, &uss->ss_size);
 | |
|     __get_user(ss.ss_flags, &uss->ss_flags);
 | |
| 
 | |
|     if (on_sig_stack(get_sp_from_cpustate(env))) {
 | |
|         return -TARGET_EPERM;
 | |
|     }
 | |
| 
 | |
|     switch (ss.ss_flags) {
 | |
|     default:
 | |
|         return -TARGET_EINVAL;
 | |
| 
 | |
|     case TARGET_SS_DISABLE:
 | |
|         ss.ss_size = 0;
 | |
|         ss.ss_sp = 0;
 | |
|         break;
 | |
| 
 | |
|     case TARGET_SS_ONSTACK:
 | |
|     case 0:
 | |
|         if (ss.ss_size < minstacksize) {
 | |
|             return -TARGET_ENOMEM;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     ts->sigaltstack_used.ss_sp = ss.ss_sp;
 | |
|     ts->sigaltstack_used.ss_size = ss.ss_size;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* siginfo conversion */
 | |
| 
 | |
| static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo,
 | |
|                                                  const siginfo_t *info)
 | |
| {
 | |
|     int sig = host_to_target_signal(info->si_signo);
 | |
|     int si_code = info->si_code;
 | |
|     int si_type;
 | |
|     tinfo->si_signo = sig;
 | |
|     tinfo->si_errno = 0;
 | |
|     tinfo->si_code = info->si_code;
 | |
| 
 | |
|     /* This memset serves two purposes:
 | |
|      * (1) ensure we don't leak random junk to the guest later
 | |
|      * (2) placate false positives from gcc about fields
 | |
|      *     being used uninitialized if it chooses to inline both this
 | |
|      *     function and tswap_siginfo() into host_to_target_siginfo().
 | |
|      */
 | |
|     memset(tinfo->_sifields._pad, 0, sizeof(tinfo->_sifields._pad));
 | |
| 
 | |
|     /* This is awkward, because we have to use a combination of
 | |
|      * the si_code and si_signo to figure out which of the union's
 | |
|      * members are valid. (Within the host kernel it is always possible
 | |
|      * to tell, but the kernel carefully avoids giving userspace the
 | |
|      * high 16 bits of si_code, so we don't have the information to
 | |
|      * do this the easy way...) We therefore make our best guess,
 | |
|      * bearing in mind that a guest can spoof most of the si_codes
 | |
|      * via rt_sigqueueinfo() if it likes.
 | |
|      *
 | |
|      * Once we have made our guess, we record it in the top 16 bits of
 | |
|      * the si_code, so that tswap_siginfo() later can use it.
 | |
|      * tswap_siginfo() will strip these top bits out before writing
 | |
|      * si_code to the guest (sign-extending the lower bits).
 | |
|      */
 | |
| 
 | |
|     switch (si_code) {
 | |
|     case SI_USER:
 | |
|     case SI_TKILL:
 | |
|     case SI_KERNEL:
 | |
|         /* Sent via kill(), tkill() or tgkill(), or direct from the kernel.
 | |
|          * These are the only unspoofable si_code values.
 | |
|          */
 | |
|         tinfo->_sifields._kill._pid = info->si_pid;
 | |
|         tinfo->_sifields._kill._uid = info->si_uid;
 | |
|         si_type = QEMU_SI_KILL;
 | |
|         break;
 | |
|     default:
 | |
|         /* Everything else is spoofable. Make best guess based on signal */
 | |
|         switch (sig) {
 | |
|         case TARGET_SIGCHLD:
 | |
|             tinfo->_sifields._sigchld._pid = info->si_pid;
 | |
|             tinfo->_sifields._sigchld._uid = info->si_uid;
 | |
|             tinfo->_sifields._sigchld._status = info->si_status;
 | |
|             tinfo->_sifields._sigchld._utime = info->si_utime;
 | |
|             tinfo->_sifields._sigchld._stime = info->si_stime;
 | |
|             si_type = QEMU_SI_CHLD;
 | |
|             break;
 | |
|         case TARGET_SIGIO:
 | |
|             tinfo->_sifields._sigpoll._band = info->si_band;
 | |
|             tinfo->_sifields._sigpoll._fd = info->si_fd;
 | |
|             si_type = QEMU_SI_POLL;
 | |
|             break;
 | |
|         default:
 | |
|             /* Assume a sigqueue()/mq_notify()/rt_sigqueueinfo() source. */
 | |
|             tinfo->_sifields._rt._pid = info->si_pid;
 | |
|             tinfo->_sifields._rt._uid = info->si_uid;
 | |
|             /* XXX: potential problem if 64 bit */
 | |
|             tinfo->_sifields._rt._sigval.sival_ptr
 | |
|                 = (abi_ulong)(unsigned long)info->si_value.sival_ptr;
 | |
|             si_type = QEMU_SI_RT;
 | |
|             break;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     tinfo->si_code = deposit32(si_code, 16, 16, si_type);
 | |
| }
 | |
| 
 | |
| void tswap_siginfo(target_siginfo_t *tinfo,
 | |
|                    const target_siginfo_t *info)
 | |
| {
 | |
|     int si_type = extract32(info->si_code, 16, 16);
 | |
|     int si_code = sextract32(info->si_code, 0, 16);
 | |
| 
 | |
|     __put_user(info->si_signo, &tinfo->si_signo);
 | |
|     __put_user(info->si_errno, &tinfo->si_errno);
 | |
|     __put_user(si_code, &tinfo->si_code);
 | |
| 
 | |
|     /* We can use our internal marker of which fields in the structure
 | |
|      * are valid, rather than duplicating the guesswork of
 | |
|      * host_to_target_siginfo_noswap() here.
 | |
|      */
 | |
|     switch (si_type) {
 | |
|     case QEMU_SI_KILL:
 | |
|         __put_user(info->_sifields._kill._pid, &tinfo->_sifields._kill._pid);
 | |
|         __put_user(info->_sifields._kill._uid, &tinfo->_sifields._kill._uid);
 | |
|         break;
 | |
|     case QEMU_SI_TIMER:
 | |
|         __put_user(info->_sifields._timer._timer1,
 | |
|                    &tinfo->_sifields._timer._timer1);
 | |
|         __put_user(info->_sifields._timer._timer2,
 | |
|                    &tinfo->_sifields._timer._timer2);
 | |
|         break;
 | |
|     case QEMU_SI_POLL:
 | |
|         __put_user(info->_sifields._sigpoll._band,
 | |
|                    &tinfo->_sifields._sigpoll._band);
 | |
|         __put_user(info->_sifields._sigpoll._fd,
 | |
|                    &tinfo->_sifields._sigpoll._fd);
 | |
|         break;
 | |
|     case QEMU_SI_FAULT:
 | |
|         __put_user(info->_sifields._sigfault._addr,
 | |
|                    &tinfo->_sifields._sigfault._addr);
 | |
|         break;
 | |
|     case QEMU_SI_CHLD:
 | |
|         __put_user(info->_sifields._sigchld._pid,
 | |
|                    &tinfo->_sifields._sigchld._pid);
 | |
|         __put_user(info->_sifields._sigchld._uid,
 | |
|                    &tinfo->_sifields._sigchld._uid);
 | |
|         __put_user(info->_sifields._sigchld._status,
 | |
|                    &tinfo->_sifields._sigchld._status);
 | |
|         __put_user(info->_sifields._sigchld._utime,
 | |
|                    &tinfo->_sifields._sigchld._utime);
 | |
|         __put_user(info->_sifields._sigchld._stime,
 | |
|                    &tinfo->_sifields._sigchld._stime);
 | |
|         break;
 | |
|     case QEMU_SI_RT:
 | |
|         __put_user(info->_sifields._rt._pid, &tinfo->_sifields._rt._pid);
 | |
|         __put_user(info->_sifields._rt._uid, &tinfo->_sifields._rt._uid);
 | |
|         __put_user(info->_sifields._rt._sigval.sival_ptr,
 | |
|                    &tinfo->_sifields._rt._sigval.sival_ptr);
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info)
 | |
| {
 | |
|     target_siginfo_t tgt_tmp;
 | |
|     host_to_target_siginfo_noswap(&tgt_tmp, info);
 | |
|     tswap_siginfo(tinfo, &tgt_tmp);
 | |
| }
 | |
| 
 | |
| /* XXX: we support only POSIX RT signals are used. */
 | |
| /* XXX: find a solution for 64 bit (additional malloced data is needed) */
 | |
| void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo)
 | |
| {
 | |
|     /* This conversion is used only for the rt_sigqueueinfo syscall,
 | |
|      * and so we know that the _rt fields are the valid ones.
 | |
|      */
 | |
|     abi_ulong sival_ptr;
 | |
| 
 | |
|     __get_user(info->si_signo, &tinfo->si_signo);
 | |
|     __get_user(info->si_errno, &tinfo->si_errno);
 | |
|     __get_user(info->si_code, &tinfo->si_code);
 | |
|     __get_user(info->si_pid, &tinfo->_sifields._rt._pid);
 | |
|     __get_user(info->si_uid, &tinfo->_sifields._rt._uid);
 | |
|     __get_user(sival_ptr, &tinfo->_sifields._rt._sigval.sival_ptr);
 | |
|     info->si_value.sival_ptr = (void *)(long)sival_ptr;
 | |
| }
 | |
| 
 | |
| static int fatal_signal (int sig)
 | |
| {
 | |
|     switch (sig) {
 | |
|     case TARGET_SIGCHLD:
 | |
|     case TARGET_SIGURG:
 | |
|     case TARGET_SIGWINCH:
 | |
|         /* Ignored by default.  */
 | |
|         return 0;
 | |
|     case TARGET_SIGCONT:
 | |
|     case TARGET_SIGSTOP:
 | |
|     case TARGET_SIGTSTP:
 | |
|     case TARGET_SIGTTIN:
 | |
|     case TARGET_SIGTTOU:
 | |
|         /* Job control signals.  */
 | |
|         return 0;
 | |
|     default:
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* returns 1 if given signal should dump core if not handled */
 | |
| static int core_dump_signal(int sig)
 | |
| {
 | |
|     switch (sig) {
 | |
|     case TARGET_SIGABRT:
 | |
|     case TARGET_SIGFPE:
 | |
|     case TARGET_SIGILL:
 | |
|     case TARGET_SIGQUIT:
 | |
|     case TARGET_SIGSEGV:
 | |
|     case TARGET_SIGTRAP:
 | |
|     case TARGET_SIGBUS:
 | |
|         return (1);
 | |
|     default:
 | |
|         return (0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void signal_table_init(void)
 | |
| {
 | |
|     int host_sig, target_sig, count;
 | |
| 
 | |
|     /*
 | |
|      * Signals are supported starting from TARGET_SIGRTMIN and going up
 | |
|      * until we run out of host realtime signals.
 | |
|      * glibc at least uses only the lower 2 rt signals and probably
 | |
|      * nobody's using the upper ones.
 | |
|      * it's why SIGRTMIN (34) is generally greater than __SIGRTMIN (32)
 | |
|      * To fix this properly we need to do manual signal delivery multiplexed
 | |
|      * over a single host signal.
 | |
|      * Attempts for configure "missing" signals via sigaction will be
 | |
|      * silently ignored.
 | |
|      */
 | |
|     for (host_sig = SIGRTMIN; host_sig <= SIGRTMAX; host_sig++) {
 | |
|         target_sig = host_sig - SIGRTMIN + TARGET_SIGRTMIN;
 | |
|         if (target_sig <= TARGET_NSIG) {
 | |
|             host_to_target_signal_table[host_sig] = target_sig;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* generate signal conversion tables */
 | |
|     for (target_sig = 1; target_sig <= TARGET_NSIG; target_sig++) {
 | |
|         target_to_host_signal_table[target_sig] = _NSIG; /* poison */
 | |
|     }
 | |
|     for (host_sig = 1; host_sig < _NSIG; host_sig++) {
 | |
|         if (host_to_target_signal_table[host_sig] == 0) {
 | |
|             host_to_target_signal_table[host_sig] = host_sig;
 | |
|         }
 | |
|         target_sig = host_to_target_signal_table[host_sig];
 | |
|         if (target_sig <= TARGET_NSIG) {
 | |
|             target_to_host_signal_table[target_sig] = host_sig;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (trace_event_get_state_backends(TRACE_SIGNAL_TABLE_INIT)) {
 | |
|         for (target_sig = 1, count = 0; target_sig <= TARGET_NSIG; target_sig++) {
 | |
|             if (target_to_host_signal_table[target_sig] == _NSIG) {
 | |
|                 count++;
 | |
|             }
 | |
|         }
 | |
|         trace_signal_table_init(count);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void signal_init(void)
 | |
| {
 | |
|     TaskState *ts = (TaskState *)thread_cpu->opaque;
 | |
|     struct sigaction act;
 | |
|     struct sigaction oact;
 | |
|     int i;
 | |
|     int host_sig;
 | |
| 
 | |
|     /* initialize signal conversion tables */
 | |
|     signal_table_init();
 | |
| 
 | |
|     /* Set the signal mask from the host mask. */
 | |
|     sigprocmask(0, 0, &ts->signal_mask);
 | |
| 
 | |
|     sigfillset(&act.sa_mask);
 | |
|     act.sa_flags = SA_SIGINFO;
 | |
|     act.sa_sigaction = host_signal_handler;
 | |
|     for(i = 1; i <= TARGET_NSIG; i++) {
 | |
| #ifdef CONFIG_GPROF
 | |
|         if (i == TARGET_SIGPROF) {
 | |
|             continue;
 | |
|         }
 | |
| #endif
 | |
|         host_sig = target_to_host_signal(i);
 | |
|         sigaction(host_sig, NULL, &oact);
 | |
|         if (oact.sa_sigaction == (void *)SIG_IGN) {
 | |
|             sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN;
 | |
|         } else if (oact.sa_sigaction == (void *)SIG_DFL) {
 | |
|             sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL;
 | |
|         }
 | |
|         /* If there's already a handler installed then something has
 | |
|            gone horribly wrong, so don't even try to handle that case.  */
 | |
|         /* Install some handlers for our own use.  We need at least
 | |
|            SIGSEGV and SIGBUS, to detect exceptions.  We can not just
 | |
|            trap all signals because it affects syscall interrupt
 | |
|            behavior.  But do trap all default-fatal signals.  */
 | |
|         if (fatal_signal (i))
 | |
|             sigaction(host_sig, &act, NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Force a synchronously taken signal. The kernel force_sig() function
 | |
|  * also forces the signal to "not blocked, not ignored", but for QEMU
 | |
|  * that work is done in process_pending_signals().
 | |
|  */
 | |
| void force_sig(int sig)
 | |
| {
 | |
|     CPUState *cpu = thread_cpu;
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     target_siginfo_t info;
 | |
| 
 | |
|     info.si_signo = sig;
 | |
|     info.si_errno = 0;
 | |
|     info.si_code = TARGET_SI_KERNEL;
 | |
|     info._sifields._kill._pid = 0;
 | |
|     info._sifields._kill._uid = 0;
 | |
|     queue_signal(env, info.si_signo, QEMU_SI_KILL, &info);
 | |
| }
 | |
| 
 | |
| /* Force a SIGSEGV if we couldn't write to memory trying to set
 | |
|  * up the signal frame. oldsig is the signal we were trying to handle
 | |
|  * at the point of failure.
 | |
|  */
 | |
| #if !defined(TARGET_RISCV)
 | |
| void force_sigsegv(int oldsig)
 | |
| {
 | |
|     if (oldsig == SIGSEGV) {
 | |
|         /* Make sure we don't try to deliver the signal again; this will
 | |
|          * end up with handle_pending_signal() calling dump_core_and_abort().
 | |
|          */
 | |
|         sigact_table[oldsig - 1]._sa_handler = TARGET_SIG_DFL;
 | |
|     }
 | |
|     force_sig(TARGET_SIGSEGV);
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /* abort execution with signal */
 | |
| static void QEMU_NORETURN dump_core_and_abort(int target_sig)
 | |
| {
 | |
|     CPUState *cpu = thread_cpu;
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     TaskState *ts = (TaskState *)cpu->opaque;
 | |
|     int host_sig, core_dumped = 0;
 | |
|     struct sigaction act;
 | |
| 
 | |
|     host_sig = target_to_host_signal(target_sig);
 | |
|     trace_user_force_sig(env, target_sig, host_sig);
 | |
|     gdb_signalled(env, target_sig);
 | |
| 
 | |
|     /* dump core if supported by target binary format */
 | |
|     if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) {
 | |
|         stop_all_tasks();
 | |
|         core_dumped =
 | |
|             ((*ts->bprm->core_dump)(target_sig, env) == 0);
 | |
|     }
 | |
|     if (core_dumped) {
 | |
|         /* we already dumped the core of target process, we don't want
 | |
|          * a coredump of qemu itself */
 | |
|         struct rlimit nodump;
 | |
|         getrlimit(RLIMIT_CORE, &nodump);
 | |
|         nodump.rlim_cur=0;
 | |
|         setrlimit(RLIMIT_CORE, &nodump);
 | |
|         (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) - %s\n",
 | |
|             target_sig, strsignal(host_sig), "core dumped" );
 | |
|     }
 | |
| 
 | |
|     /* The proper exit code for dying from an uncaught signal is
 | |
|      * -<signal>.  The kernel doesn't allow exit() or _exit() to pass
 | |
|      * a negative value.  To get the proper exit code we need to
 | |
|      * actually die from an uncaught signal.  Here the default signal
 | |
|      * handler is installed, we send ourself a signal and we wait for
 | |
|      * it to arrive. */
 | |
|     sigfillset(&act.sa_mask);
 | |
|     act.sa_handler = SIG_DFL;
 | |
|     act.sa_flags = 0;
 | |
|     sigaction(host_sig, &act, NULL);
 | |
| 
 | |
|     /* For some reason raise(host_sig) doesn't send the signal when
 | |
|      * statically linked on x86-64. */
 | |
|     kill(getpid(), host_sig);
 | |
| 
 | |
|     /* Make sure the signal isn't masked (just reuse the mask inside
 | |
|     of act) */
 | |
|     sigdelset(&act.sa_mask, host_sig);
 | |
|     sigsuspend(&act.sa_mask);
 | |
| 
 | |
|     /* unreachable */
 | |
|     abort();
 | |
| }
 | |
| 
 | |
| /* queue a signal so that it will be send to the virtual CPU as soon
 | |
|    as possible */
 | |
| int queue_signal(CPUArchState *env, int sig, int si_type,
 | |
|                  target_siginfo_t *info)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     TaskState *ts = cpu->opaque;
 | |
| 
 | |
|     trace_user_queue_signal(env, sig);
 | |
| 
 | |
|     info->si_code = deposit32(info->si_code, 16, 16, si_type);
 | |
| 
 | |
|     ts->sync_signal.info = *info;
 | |
|     ts->sync_signal.pending = sig;
 | |
|     /* signal that a new signal is pending */
 | |
|     qatomic_set(&ts->signal_pending, 1);
 | |
|     return 1; /* indicates that the signal was queued */
 | |
| }
 | |
| 
 | |
| #ifndef HAVE_SAFE_SYSCALL
 | |
| static inline void rewind_if_in_safe_syscall(void *puc)
 | |
| {
 | |
|     /* Default version: never rewind */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void host_signal_handler(int host_signum, siginfo_t *info,
 | |
|                                 void *puc)
 | |
| {
 | |
|     CPUArchState *env = thread_cpu->env_ptr;
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     TaskState *ts = cpu->opaque;
 | |
| 
 | |
|     int sig;
 | |
|     target_siginfo_t tinfo;
 | |
|     ucontext_t *uc = puc;
 | |
|     struct emulated_sigtable *k;
 | |
| 
 | |
|     /* the CPU emulator uses some host signals to detect exceptions,
 | |
|        we forward to it some signals */
 | |
|     if ((host_signum == SIGSEGV || host_signum == SIGBUS)
 | |
|         && info->si_code > 0) {
 | |
|         if (cpu_signal_handler(host_signum, info, puc))
 | |
|             return;
 | |
|     }
 | |
| 
 | |
|     /* get target signal number */
 | |
|     sig = host_to_target_signal(host_signum);
 | |
|     if (sig < 1 || sig > TARGET_NSIG)
 | |
|         return;
 | |
|     trace_user_host_signal(env, host_signum, sig);
 | |
| 
 | |
|     rewind_if_in_safe_syscall(puc);
 | |
| 
 | |
|     host_to_target_siginfo_noswap(&tinfo, info);
 | |
|     k = &ts->sigtab[sig - 1];
 | |
|     k->info = tinfo;
 | |
|     k->pending = sig;
 | |
|     ts->signal_pending = 1;
 | |
| 
 | |
|     /* Block host signals until target signal handler entered. We
 | |
|      * can't block SIGSEGV or SIGBUS while we're executing guest
 | |
|      * code in case the guest code provokes one in the window between
 | |
|      * now and it getting out to the main loop. Signals will be
 | |
|      * unblocked again in process_pending_signals().
 | |
|      *
 | |
|      * WARNING: we cannot use sigfillset() here because the uc_sigmask
 | |
|      * field is a kernel sigset_t, which is much smaller than the
 | |
|      * libc sigset_t which sigfillset() operates on. Using sigfillset()
 | |
|      * would write 0xff bytes off the end of the structure and trash
 | |
|      * data on the struct.
 | |
|      * We can't use sizeof(uc->uc_sigmask) either, because the libc
 | |
|      * headers define the struct field with the wrong (too large) type.
 | |
|      */
 | |
|     memset(&uc->uc_sigmask, 0xff, SIGSET_T_SIZE);
 | |
|     sigdelset(&uc->uc_sigmask, SIGSEGV);
 | |
|     sigdelset(&uc->uc_sigmask, SIGBUS);
 | |
| 
 | |
|     /* interrupt the virtual CPU as soon as possible */
 | |
|     cpu_exit(thread_cpu);
 | |
| }
 | |
| 
 | |
| /* do_sigaltstack() returns target values and errnos. */
 | |
| /* compare linux/kernel/signal.c:do_sigaltstack() */
 | |
| abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr,
 | |
|                         CPUArchState *env)
 | |
| {
 | |
|     target_stack_t oss, *uoss = NULL;
 | |
|     abi_long ret = -TARGET_EFAULT;
 | |
| 
 | |
|     if (uoss_addr) {
 | |
|         /* Verify writability now, but do not alter user memory yet. */
 | |
|         if (!lock_user_struct(VERIFY_WRITE, uoss, uoss_addr, 0)) {
 | |
|             goto out;
 | |
|         }
 | |
|         target_save_altstack(&oss, env);
 | |
|     }
 | |
| 
 | |
|     if (uss_addr) {
 | |
|         target_stack_t *uss;
 | |
| 
 | |
|         if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) {
 | |
|             goto out;
 | |
|         }
 | |
|         ret = target_restore_altstack(uss, env);
 | |
|         if (ret) {
 | |
|             goto out;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (uoss_addr) {
 | |
|         memcpy(uoss, &oss, sizeof(oss));
 | |
|         unlock_user_struct(uoss, uoss_addr, 1);
 | |
|         uoss = NULL;
 | |
|     }
 | |
|     ret = 0;
 | |
| 
 | |
|  out:
 | |
|     if (uoss) {
 | |
|         unlock_user_struct(uoss, uoss_addr, 0);
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* do_sigaction() return target values and host errnos */
 | |
| int do_sigaction(int sig, const struct target_sigaction *act,
 | |
|                  struct target_sigaction *oact)
 | |
| {
 | |
|     struct target_sigaction *k;
 | |
|     struct sigaction act1;
 | |
|     int host_sig;
 | |
|     int ret = 0;
 | |
| 
 | |
|     trace_signal_do_sigaction_guest(sig, TARGET_NSIG);
 | |
| 
 | |
|     if (sig < 1 || sig > TARGET_NSIG || sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) {
 | |
|         return -TARGET_EINVAL;
 | |
|     }
 | |
| 
 | |
|     if (block_signals()) {
 | |
|         return -TARGET_ERESTARTSYS;
 | |
|     }
 | |
| 
 | |
|     k = &sigact_table[sig - 1];
 | |
|     if (oact) {
 | |
|         __put_user(k->_sa_handler, &oact->_sa_handler);
 | |
|         __put_user(k->sa_flags, &oact->sa_flags);
 | |
| #ifdef TARGET_ARCH_HAS_SA_RESTORER
 | |
|         __put_user(k->sa_restorer, &oact->sa_restorer);
 | |
| #endif
 | |
|         /* Not swapped.  */
 | |
|         oact->sa_mask = k->sa_mask;
 | |
|     }
 | |
|     if (act) {
 | |
|         /* FIXME: This is not threadsafe.  */
 | |
|         __get_user(k->_sa_handler, &act->_sa_handler);
 | |
|         __get_user(k->sa_flags, &act->sa_flags);
 | |
| #ifdef TARGET_ARCH_HAS_SA_RESTORER
 | |
|         __get_user(k->sa_restorer, &act->sa_restorer);
 | |
| #endif
 | |
|         /* To be swapped in target_to_host_sigset.  */
 | |
|         k->sa_mask = act->sa_mask;
 | |
| 
 | |
|         /* we update the host linux signal state */
 | |
|         host_sig = target_to_host_signal(sig);
 | |
|         trace_signal_do_sigaction_host(host_sig, TARGET_NSIG);
 | |
|         if (host_sig > SIGRTMAX) {
 | |
|             /* we don't have enough host signals to map all target signals */
 | |
|             qemu_log_mask(LOG_UNIMP, "Unsupported target signal #%d, ignored\n",
 | |
|                           sig);
 | |
|             /*
 | |
|              * we don't return an error here because some programs try to
 | |
|              * register an handler for all possible rt signals even if they
 | |
|              * don't need it.
 | |
|              * An error here can abort them whereas there can be no problem
 | |
|              * to not have the signal available later.
 | |
|              * This is the case for golang,
 | |
|              *   See https://github.com/golang/go/issues/33746
 | |
|              * So we silently ignore the error.
 | |
|              */
 | |
|             return 0;
 | |
|         }
 | |
|         if (host_sig != SIGSEGV && host_sig != SIGBUS) {
 | |
|             sigfillset(&act1.sa_mask);
 | |
|             act1.sa_flags = SA_SIGINFO;
 | |
|             if (k->sa_flags & TARGET_SA_RESTART)
 | |
|                 act1.sa_flags |= SA_RESTART;
 | |
|             /* NOTE: it is important to update the host kernel signal
 | |
|                ignore state to avoid getting unexpected interrupted
 | |
|                syscalls */
 | |
|             if (k->_sa_handler == TARGET_SIG_IGN) {
 | |
|                 act1.sa_sigaction = (void *)SIG_IGN;
 | |
|             } else if (k->_sa_handler == TARGET_SIG_DFL) {
 | |
|                 if (fatal_signal (sig))
 | |
|                     act1.sa_sigaction = host_signal_handler;
 | |
|                 else
 | |
|                     act1.sa_sigaction = (void *)SIG_DFL;
 | |
|             } else {
 | |
|                 act1.sa_sigaction = host_signal_handler;
 | |
|             }
 | |
|             ret = sigaction(host_sig, &act1, NULL);
 | |
|         }
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void handle_pending_signal(CPUArchState *cpu_env, int sig,
 | |
|                                   struct emulated_sigtable *k)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(cpu_env);
 | |
|     abi_ulong handler;
 | |
|     sigset_t set;
 | |
|     target_sigset_t target_old_set;
 | |
|     struct target_sigaction *sa;
 | |
|     TaskState *ts = cpu->opaque;
 | |
| 
 | |
|     trace_user_handle_signal(cpu_env, sig);
 | |
|     /* dequeue signal */
 | |
|     k->pending = 0;
 | |
| 
 | |
|     sig = gdb_handlesig(cpu, sig);
 | |
|     if (!sig) {
 | |
|         sa = NULL;
 | |
|         handler = TARGET_SIG_IGN;
 | |
|     } else {
 | |
|         sa = &sigact_table[sig - 1];
 | |
|         handler = sa->_sa_handler;
 | |
|     }
 | |
| 
 | |
|     if (unlikely(qemu_loglevel_mask(LOG_STRACE))) {
 | |
|         print_taken_signal(sig, &k->info);
 | |
|     }
 | |
| 
 | |
|     if (handler == TARGET_SIG_DFL) {
 | |
|         /* default handler : ignore some signal. The other are job control or fatal */
 | |
|         if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || sig == TARGET_SIGTTOU) {
 | |
|             kill(getpid(),SIGSTOP);
 | |
|         } else if (sig != TARGET_SIGCHLD &&
 | |
|                    sig != TARGET_SIGURG &&
 | |
|                    sig != TARGET_SIGWINCH &&
 | |
|                    sig != TARGET_SIGCONT) {
 | |
|             dump_core_and_abort(sig);
 | |
|         }
 | |
|     } else if (handler == TARGET_SIG_IGN) {
 | |
|         /* ignore sig */
 | |
|     } else if (handler == TARGET_SIG_ERR) {
 | |
|         dump_core_and_abort(sig);
 | |
|     } else {
 | |
|         /* compute the blocked signals during the handler execution */
 | |
|         sigset_t *blocked_set;
 | |
| 
 | |
|         target_to_host_sigset(&set, &sa->sa_mask);
 | |
|         /* SA_NODEFER indicates that the current signal should not be
 | |
|            blocked during the handler */
 | |
|         if (!(sa->sa_flags & TARGET_SA_NODEFER))
 | |
|             sigaddset(&set, target_to_host_signal(sig));
 | |
| 
 | |
|         /* save the previous blocked signal state to restore it at the
 | |
|            end of the signal execution (see do_sigreturn) */
 | |
|         host_to_target_sigset_internal(&target_old_set, &ts->signal_mask);
 | |
| 
 | |
|         /* block signals in the handler */
 | |
|         blocked_set = ts->in_sigsuspend ?
 | |
|             &ts->sigsuspend_mask : &ts->signal_mask;
 | |
|         sigorset(&ts->signal_mask, blocked_set, &set);
 | |
|         ts->in_sigsuspend = 0;
 | |
| 
 | |
|         /* if the CPU is in VM86 mode, we restore the 32 bit values */
 | |
| #if defined(TARGET_I386) && !defined(TARGET_X86_64)
 | |
|         {
 | |
|             CPUX86State *env = cpu_env;
 | |
|             if (env->eflags & VM_MASK)
 | |
|                 save_v86_state(env);
 | |
|         }
 | |
| #endif
 | |
|         /* prepare the stack frame of the virtual CPU */
 | |
| #if defined(TARGET_ARCH_HAS_SETUP_FRAME)
 | |
|         if (sa->sa_flags & TARGET_SA_SIGINFO) {
 | |
|             setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
 | |
|         } else {
 | |
|             setup_frame(sig, sa, &target_old_set, cpu_env);
 | |
|         }
 | |
| #else
 | |
|         /* These targets do not have traditional signals.  */
 | |
|         setup_rt_frame(sig, sa, &k->info, &target_old_set, cpu_env);
 | |
| #endif
 | |
|         if (sa->sa_flags & TARGET_SA_RESETHAND) {
 | |
|             sa->_sa_handler = TARGET_SIG_DFL;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void process_pending_signals(CPUArchState *cpu_env)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(cpu_env);
 | |
|     int sig;
 | |
|     TaskState *ts = cpu->opaque;
 | |
|     sigset_t set;
 | |
|     sigset_t *blocked_set;
 | |
| 
 | |
|     while (qatomic_read(&ts->signal_pending)) {
 | |
|         /* FIXME: This is not threadsafe.  */
 | |
|         sigfillset(&set);
 | |
|         sigprocmask(SIG_SETMASK, &set, 0);
 | |
| 
 | |
|     restart_scan:
 | |
|         sig = ts->sync_signal.pending;
 | |
|         if (sig) {
 | |
|             /* Synchronous signals are forced,
 | |
|              * see force_sig_info() and callers in Linux
 | |
|              * Note that not all of our queue_signal() calls in QEMU correspond
 | |
|              * to force_sig_info() calls in Linux (some are send_sig_info()).
 | |
|              * However it seems like a kernel bug to me to allow the process
 | |
|              * to block a synchronous signal since it could then just end up
 | |
|              * looping round and round indefinitely.
 | |
|              */
 | |
|             if (sigismember(&ts->signal_mask, target_to_host_signal_table[sig])
 | |
|                 || sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) {
 | |
|                 sigdelset(&ts->signal_mask, target_to_host_signal_table[sig]);
 | |
|                 sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL;
 | |
|             }
 | |
| 
 | |
|             handle_pending_signal(cpu_env, sig, &ts->sync_signal);
 | |
|         }
 | |
| 
 | |
|         for (sig = 1; sig <= TARGET_NSIG; sig++) {
 | |
|             blocked_set = ts->in_sigsuspend ?
 | |
|                 &ts->sigsuspend_mask : &ts->signal_mask;
 | |
| 
 | |
|             if (ts->sigtab[sig - 1].pending &&
 | |
|                 (!sigismember(blocked_set,
 | |
|                               target_to_host_signal_table[sig]))) {
 | |
|                 handle_pending_signal(cpu_env, sig, &ts->sigtab[sig - 1]);
 | |
|                 /* Restart scan from the beginning, as handle_pending_signal
 | |
|                  * might have resulted in a new synchronous signal (eg SIGSEGV).
 | |
|                  */
 | |
|                 goto restart_scan;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         /* if no signal is pending, unblock signals and recheck (the act
 | |
|          * of unblocking might cause us to take another host signal which
 | |
|          * will set signal_pending again).
 | |
|          */
 | |
|         qatomic_set(&ts->signal_pending, 0);
 | |
|         ts->in_sigsuspend = 0;
 | |
|         set = ts->signal_mask;
 | |
|         sigdelset(&set, SIGSEGV);
 | |
|         sigdelset(&set, SIGBUS);
 | |
|         sigprocmask(SIG_SETMASK, &set, 0);
 | |
|     }
 | |
|     ts->in_sigsuspend = 0;
 | |
| }
 |