Fix a crash in qemu-user when running
    cat /proc/self/maps
in a chroot, where /proc isn't mounted.
The problem was introduced by commit 3ce3dd8ca965 ("util/selfmap:
Rewrite using qemu/interval-tree.h") where in open_self_maps_1() the
function read_self_maps() is called and which returns NULL if it can't
read the hosts /proc/self/maps file. Afterwards that NULL is fed into
interval_tree_iter_first() which doesn't check if the root node is NULL.
Fix it by adding a check if root is NULL and return NULL in that case.
Signed-off-by: Helge Deller <deller@gmx.de>
Fixes: 3ce3dd8ca965 ("util/selfmap: Rewrite using qemu/interval-tree.h")
Message-Id: <ZNOsq6Z7t/eyIG/9@p100>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
	
			
		
			
				
	
	
		
			900 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			900 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* SPDX-License-Identifier: GPL-2.0-or-later */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/interval-tree.h"
 | 
						|
#include "qemu/atomic.h"
 | 
						|
 | 
						|
/*
 | 
						|
 * Red Black Trees.
 | 
						|
 *
 | 
						|
 * For now, don't expose Linux Red-Black Trees separately, but retain the
 | 
						|
 * separate type definitions to keep the implementation sane, and allow
 | 
						|
 * the possibility of separating them later.
 | 
						|
 *
 | 
						|
 * Derived from include/linux/rbtree_augmented.h and its dependencies.
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * red-black trees properties:  https://en.wikipedia.org/wiki/Rbtree
 | 
						|
 *
 | 
						|
 *  1) A node is either red or black
 | 
						|
 *  2) The root is black
 | 
						|
 *  3) All leaves (NULL) are black
 | 
						|
 *  4) Both children of every red node are black
 | 
						|
 *  5) Every simple path from root to leaves contains the same number
 | 
						|
 *     of black nodes.
 | 
						|
 *
 | 
						|
 *  4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
 | 
						|
 *  consecutive red nodes in a path and every red node is therefore followed by
 | 
						|
 *  a black. So if B is the number of black nodes on every simple path (as per
 | 
						|
 *  5), then the longest possible path due to 4 is 2B.
 | 
						|
 *
 | 
						|
 *  We shall indicate color with case, where black nodes are uppercase and red
 | 
						|
 *  nodes will be lowercase. Unknown color nodes shall be drawn as red within
 | 
						|
 *  parentheses and have some accompanying text comment.
 | 
						|
 *
 | 
						|
 * Notes on lockless lookups:
 | 
						|
 *
 | 
						|
 * All stores to the tree structure (rb_left and rb_right) must be done using
 | 
						|
 * WRITE_ONCE [qatomic_set for QEMU]. And we must not inadvertently cause
 | 
						|
 * (temporary) loops in the tree structure as seen in program order.
 | 
						|
 *
 | 
						|
 * These two requirements will allow lockless iteration of the tree -- not
 | 
						|
 * correct iteration mind you, tree rotations are not atomic so a lookup might
 | 
						|
 * miss entire subtrees.
 | 
						|
 *
 | 
						|
 * But they do guarantee that any such traversal will only see valid elements
 | 
						|
 * and that it will indeed complete -- does not get stuck in a loop.
 | 
						|
 *
 | 
						|
 * It also guarantees that if the lookup returns an element it is the 'correct'
 | 
						|
 * one. But not returning an element does _NOT_ mean it's not present.
 | 
						|
 */
 | 
						|
 | 
						|
typedef enum RBColor
 | 
						|
{
 | 
						|
    RB_RED,
 | 
						|
    RB_BLACK,
 | 
						|
} RBColor;
 | 
						|
 | 
						|
typedef struct RBAugmentCallbacks {
 | 
						|
    void (*propagate)(RBNode *node, RBNode *stop);
 | 
						|
    void (*copy)(RBNode *old, RBNode *new);
 | 
						|
    void (*rotate)(RBNode *old, RBNode *new);
 | 
						|
} RBAugmentCallbacks;
 | 
						|
 | 
						|
static inline uintptr_t rb_pc(const RBNode *n)
 | 
						|
{
 | 
						|
    return qatomic_read(&n->rb_parent_color);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_set_pc(RBNode *n, uintptr_t pc)
 | 
						|
{
 | 
						|
    qatomic_set(&n->rb_parent_color, pc);
 | 
						|
}
 | 
						|
 | 
						|
static inline RBNode *pc_parent(uintptr_t pc)
 | 
						|
{
 | 
						|
    return (RBNode *)(pc & ~1);
 | 
						|
}
 | 
						|
 | 
						|
static inline RBNode *rb_parent(const RBNode *n)
 | 
						|
{
 | 
						|
    return pc_parent(rb_pc(n));
 | 
						|
}
 | 
						|
 | 
						|
static inline RBNode *rb_red_parent(const RBNode *n)
 | 
						|
{
 | 
						|
    return (RBNode *)rb_pc(n);
 | 
						|
}
 | 
						|
 | 
						|
static inline RBColor pc_color(uintptr_t pc)
 | 
						|
{
 | 
						|
    return (RBColor)(pc & 1);
 | 
						|
}
 | 
						|
 | 
						|
static inline bool pc_is_red(uintptr_t pc)
 | 
						|
{
 | 
						|
    return pc_color(pc) == RB_RED;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool pc_is_black(uintptr_t pc)
 | 
						|
{
 | 
						|
    return !pc_is_red(pc);
 | 
						|
}
 | 
						|
 | 
						|
static inline RBColor rb_color(const RBNode *n)
 | 
						|
{
 | 
						|
    return pc_color(rb_pc(n));
 | 
						|
}
 | 
						|
 | 
						|
static inline bool rb_is_red(const RBNode *n)
 | 
						|
{
 | 
						|
    return pc_is_red(rb_pc(n));
 | 
						|
}
 | 
						|
 | 
						|
static inline bool rb_is_black(const RBNode *n)
 | 
						|
{
 | 
						|
    return pc_is_black(rb_pc(n));
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_set_black(RBNode *n)
 | 
						|
{
 | 
						|
    rb_set_pc(n, rb_pc(n) | RB_BLACK);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_set_parent_color(RBNode *n, RBNode *p, RBColor color)
 | 
						|
{
 | 
						|
    rb_set_pc(n, (uintptr_t)p | color);
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_set_parent(RBNode *n, RBNode *p)
 | 
						|
{
 | 
						|
    rb_set_parent_color(n, p, rb_color(n));
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_link_node(RBNode *node, RBNode *parent, RBNode **rb_link)
 | 
						|
{
 | 
						|
    node->rb_parent_color = (uintptr_t)parent;
 | 
						|
    node->rb_left = node->rb_right = NULL;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Ensure that node is initialized before insertion,
 | 
						|
     * as viewed by a concurrent search.
 | 
						|
     */
 | 
						|
    qatomic_set_mb(rb_link, node);
 | 
						|
}
 | 
						|
 | 
						|
static RBNode *rb_next(RBNode *node)
 | 
						|
{
 | 
						|
    RBNode *parent;
 | 
						|
 | 
						|
    /* OMIT: if empty node, return null. */
 | 
						|
 | 
						|
    /*
 | 
						|
     * If we have a right-hand child, go down and then left as far as we can.
 | 
						|
     */
 | 
						|
    if (node->rb_right) {
 | 
						|
        node = node->rb_right;
 | 
						|
        while (node->rb_left) {
 | 
						|
            node = node->rb_left;
 | 
						|
        }
 | 
						|
        return node;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * No right-hand children. Everything down and left is smaller than us,
 | 
						|
     * so any 'next' node must be in the general direction of our parent.
 | 
						|
     * Go up the tree; any time the ancestor is a right-hand child of its
 | 
						|
     * parent, keep going up. First time it's a left-hand child of its
 | 
						|
     * parent, said parent is our 'next' node.
 | 
						|
     */
 | 
						|
    while ((parent = rb_parent(node)) && node == parent->rb_right) {
 | 
						|
        node = parent;
 | 
						|
    }
 | 
						|
 | 
						|
    return parent;
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_change_child(RBNode *old, RBNode *new,
 | 
						|
                                   RBNode *parent, RBRoot *root)
 | 
						|
{
 | 
						|
    if (!parent) {
 | 
						|
        qatomic_set(&root->rb_node, new);
 | 
						|
    } else if (parent->rb_left == old) {
 | 
						|
        qatomic_set(&parent->rb_left, new);
 | 
						|
    } else {
 | 
						|
        qatomic_set(&parent->rb_right, new);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline void rb_rotate_set_parents(RBNode *old, RBNode *new,
 | 
						|
                                         RBRoot *root, RBColor color)
 | 
						|
{
 | 
						|
    uintptr_t pc = rb_pc(old);
 | 
						|
    RBNode *parent = pc_parent(pc);
 | 
						|
 | 
						|
    rb_set_pc(new, pc);
 | 
						|
    rb_set_parent_color(old, new, color);
 | 
						|
    rb_change_child(old, new, parent, root);
 | 
						|
}
 | 
						|
 | 
						|
static void rb_insert_augmented(RBNode *node, RBRoot *root,
 | 
						|
                                const RBAugmentCallbacks *augment)
 | 
						|
{
 | 
						|
    RBNode *parent = rb_red_parent(node), *gparent, *tmp;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        /*
 | 
						|
         * Loop invariant: node is red.
 | 
						|
         */
 | 
						|
        if (unlikely(!parent)) {
 | 
						|
            /*
 | 
						|
             * The inserted node is root. Either this is the first node, or
 | 
						|
             * we recursed at Case 1 below and are no longer violating 4).
 | 
						|
             */
 | 
						|
            rb_set_parent_color(node, NULL, RB_BLACK);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * If there is a black parent, we are done.  Otherwise, take some
 | 
						|
         * corrective action as, per 4), we don't want a red root or two
 | 
						|
         * consecutive red nodes.
 | 
						|
         */
 | 
						|
        if (rb_is_black(parent)) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        gparent = rb_red_parent(parent);
 | 
						|
 | 
						|
        tmp = gparent->rb_right;
 | 
						|
        if (parent != tmp) {    /* parent == gparent->rb_left */
 | 
						|
            if (tmp && rb_is_red(tmp)) {
 | 
						|
                /*
 | 
						|
                 * Case 1 - node's uncle is red (color flips).
 | 
						|
                 *
 | 
						|
                 *       G            g
 | 
						|
                 *      / \          / \
 | 
						|
                 *     p   u  -->   P   U
 | 
						|
                 *    /            /
 | 
						|
                 *   n            n
 | 
						|
                 *
 | 
						|
                 * However, since g's parent might be red, and 4) does not
 | 
						|
                 * allow this, we need to recurse at g.
 | 
						|
                 */
 | 
						|
                rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
                rb_set_parent_color(parent, gparent, RB_BLACK);
 | 
						|
                node = gparent;
 | 
						|
                parent = rb_parent(node);
 | 
						|
                rb_set_parent_color(node, parent, RB_RED);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            tmp = parent->rb_right;
 | 
						|
            if (node == tmp) {
 | 
						|
                /*
 | 
						|
                 * Case 2 - node's uncle is black and node is
 | 
						|
                 * the parent's right child (left rotate at parent).
 | 
						|
                 *
 | 
						|
                 *      G             G
 | 
						|
                 *     / \           / \
 | 
						|
                 *    p   U  -->    n   U
 | 
						|
                 *     \           /
 | 
						|
                 *      n         p
 | 
						|
                 *
 | 
						|
                 * This still leaves us in violation of 4), the
 | 
						|
                 * continuation into Case 3 will fix that.
 | 
						|
                 */
 | 
						|
                tmp = node->rb_left;
 | 
						|
                qatomic_set(&parent->rb_right, tmp);
 | 
						|
                qatomic_set(&node->rb_left, parent);
 | 
						|
                if (tmp) {
 | 
						|
                    rb_set_parent_color(tmp, parent, RB_BLACK);
 | 
						|
                }
 | 
						|
                rb_set_parent_color(parent, node, RB_RED);
 | 
						|
                augment->rotate(parent, node);
 | 
						|
                parent = node;
 | 
						|
                tmp = node->rb_right;
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             * Case 3 - node's uncle is black and node is
 | 
						|
             * the parent's left child (right rotate at gparent).
 | 
						|
             *
 | 
						|
             *        G           P
 | 
						|
             *       / \         / \
 | 
						|
             *      p   U  -->  n   g
 | 
						|
             *     /                 \
 | 
						|
             *    n                   U
 | 
						|
             */
 | 
						|
            qatomic_set(&gparent->rb_left, tmp); /* == parent->rb_right */
 | 
						|
            qatomic_set(&parent->rb_right, gparent);
 | 
						|
            if (tmp) {
 | 
						|
                rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
            }
 | 
						|
            rb_rotate_set_parents(gparent, parent, root, RB_RED);
 | 
						|
            augment->rotate(gparent, parent);
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
            tmp = gparent->rb_left;
 | 
						|
            if (tmp && rb_is_red(tmp)) {
 | 
						|
                /* Case 1 - color flips */
 | 
						|
                rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
                rb_set_parent_color(parent, gparent, RB_BLACK);
 | 
						|
                node = gparent;
 | 
						|
                parent = rb_parent(node);
 | 
						|
                rb_set_parent_color(node, parent, RB_RED);
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
 | 
						|
            tmp = parent->rb_left;
 | 
						|
            if (node == tmp) {
 | 
						|
                /* Case 2 - right rotate at parent */
 | 
						|
                tmp = node->rb_right;
 | 
						|
                qatomic_set(&parent->rb_left, tmp);
 | 
						|
                qatomic_set(&node->rb_right, parent);
 | 
						|
                if (tmp) {
 | 
						|
                    rb_set_parent_color(tmp, parent, RB_BLACK);
 | 
						|
                }
 | 
						|
                rb_set_parent_color(parent, node, RB_RED);
 | 
						|
                augment->rotate(parent, node);
 | 
						|
                parent = node;
 | 
						|
                tmp = node->rb_left;
 | 
						|
            }
 | 
						|
 | 
						|
            /* Case 3 - left rotate at gparent */
 | 
						|
            qatomic_set(&gparent->rb_right, tmp); /* == parent->rb_left */
 | 
						|
            qatomic_set(&parent->rb_left, gparent);
 | 
						|
            if (tmp) {
 | 
						|
                rb_set_parent_color(tmp, gparent, RB_BLACK);
 | 
						|
            }
 | 
						|
            rb_rotate_set_parents(gparent, parent, root, RB_RED);
 | 
						|
            augment->rotate(gparent, parent);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rb_insert_augmented_cached(RBNode *node,
 | 
						|
                                       RBRootLeftCached *root, bool newleft,
 | 
						|
                                       const RBAugmentCallbacks *augment)
 | 
						|
{
 | 
						|
    if (newleft) {
 | 
						|
        root->rb_leftmost = node;
 | 
						|
    }
 | 
						|
    rb_insert_augmented(node, &root->rb_root, augment);
 | 
						|
}
 | 
						|
 | 
						|
static void rb_erase_color(RBNode *parent, RBRoot *root,
 | 
						|
                           const RBAugmentCallbacks *augment)
 | 
						|
{
 | 
						|
    RBNode *node = NULL, *sibling, *tmp1, *tmp2;
 | 
						|
 | 
						|
    while (true) {
 | 
						|
        /*
 | 
						|
         * Loop invariants:
 | 
						|
         * - node is black (or NULL on first iteration)
 | 
						|
         * - node is not the root (parent is not NULL)
 | 
						|
         * - All leaf paths going through parent and node have a
 | 
						|
         *   black node count that is 1 lower than other leaf paths.
 | 
						|
         */
 | 
						|
        sibling = parent->rb_right;
 | 
						|
        if (node != sibling) {  /* node == parent->rb_left */
 | 
						|
            if (rb_is_red(sibling)) {
 | 
						|
                /*
 | 
						|
                 * Case 1 - left rotate at parent
 | 
						|
                 *
 | 
						|
                 *     P               S
 | 
						|
                 *    / \             / \ 
 | 
						|
                 *   N   s    -->    p   Sr
 | 
						|
                 *      / \         / \ 
 | 
						|
                 *     Sl  Sr      N   Sl
 | 
						|
                 */
 | 
						|
                tmp1 = sibling->rb_left;
 | 
						|
                qatomic_set(&parent->rb_right, tmp1);
 | 
						|
                qatomic_set(&sibling->rb_left, parent);
 | 
						|
                rb_set_parent_color(tmp1, parent, RB_BLACK);
 | 
						|
                rb_rotate_set_parents(parent, sibling, root, RB_RED);
 | 
						|
                augment->rotate(parent, sibling);
 | 
						|
                sibling = tmp1;
 | 
						|
            }
 | 
						|
            tmp1 = sibling->rb_right;
 | 
						|
            if (!tmp1 || rb_is_black(tmp1)) {
 | 
						|
                tmp2 = sibling->rb_left;
 | 
						|
                if (!tmp2 || rb_is_black(tmp2)) {
 | 
						|
                    /*
 | 
						|
                     * Case 2 - sibling color flip
 | 
						|
                     * (p could be either color here)
 | 
						|
                     *
 | 
						|
                     *    (p)           (p)
 | 
						|
                     *    / \           / \ 
 | 
						|
                     *   N   S    -->  N   s
 | 
						|
                     *      / \           / \ 
 | 
						|
                     *     Sl  Sr        Sl  Sr
 | 
						|
                     *
 | 
						|
                     * This leaves us violating 5) which
 | 
						|
                     * can be fixed by flipping p to black
 | 
						|
                     * if it was red, or by recursing at p.
 | 
						|
                     * p is red when coming from Case 1.
 | 
						|
                     */
 | 
						|
                    rb_set_parent_color(sibling, parent, RB_RED);
 | 
						|
                    if (rb_is_red(parent)) {
 | 
						|
                        rb_set_black(parent);
 | 
						|
                    } else {
 | 
						|
                        node = parent;
 | 
						|
                        parent = rb_parent(node);
 | 
						|
                        if (parent) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                /*
 | 
						|
                 * Case 3 - right rotate at sibling
 | 
						|
                 * (p could be either color here)
 | 
						|
                 *
 | 
						|
                 *   (p)           (p)
 | 
						|
                 *   / \           / \
 | 
						|
                 *  N   S    -->  N   sl
 | 
						|
                 *     / \             \
 | 
						|
                 *    sl  Sr            S
 | 
						|
                 *                       \
 | 
						|
                 *                        Sr
 | 
						|
                 *
 | 
						|
                 * Note: p might be red, and then bot
 | 
						|
                 * p and sl are red after rotation (which
 | 
						|
                 * breaks property 4). This is fixed in
 | 
						|
                 * Case 4 (in rb_rotate_set_parents()
 | 
						|
                 *         which set sl the color of p
 | 
						|
                 *         and set p RB_BLACK)
 | 
						|
                 *
 | 
						|
                 *   (p)            (sl)
 | 
						|
                 *   / \            /  \
 | 
						|
                 *  N   sl   -->   P    S
 | 
						|
                 *       \        /      \
 | 
						|
                 *        S      N        Sr
 | 
						|
                 *         \
 | 
						|
                 *          Sr
 | 
						|
                 */
 | 
						|
                tmp1 = tmp2->rb_right;
 | 
						|
                qatomic_set(&sibling->rb_left, tmp1);
 | 
						|
                qatomic_set(&tmp2->rb_right, sibling);
 | 
						|
                qatomic_set(&parent->rb_right, tmp2);
 | 
						|
                if (tmp1) {
 | 
						|
                    rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | 
						|
                }
 | 
						|
                augment->rotate(sibling, tmp2);
 | 
						|
                tmp1 = sibling;
 | 
						|
                sibling = tmp2;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
             * Case 4 - left rotate at parent + color flips
 | 
						|
             * (p and sl could be either color here.
 | 
						|
             *  After rotation, p becomes black, s acquires
 | 
						|
             *  p's color, and sl keeps its color)
 | 
						|
             *
 | 
						|
             *      (p)             (s)
 | 
						|
             *      / \             / \
 | 
						|
             *     N   S     -->   P   Sr
 | 
						|
             *        / \         / \
 | 
						|
             *      (sl) sr      N  (sl)
 | 
						|
             */
 | 
						|
            tmp2 = sibling->rb_left;
 | 
						|
            qatomic_set(&parent->rb_right, tmp2);
 | 
						|
            qatomic_set(&sibling->rb_left, parent);
 | 
						|
            rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | 
						|
            if (tmp2) {
 | 
						|
                rb_set_parent(tmp2, parent);
 | 
						|
            }
 | 
						|
            rb_rotate_set_parents(parent, sibling, root, RB_BLACK);
 | 
						|
            augment->rotate(parent, sibling);
 | 
						|
            break;
 | 
						|
        } else {
 | 
						|
            sibling = parent->rb_left;
 | 
						|
            if (rb_is_red(sibling)) {
 | 
						|
                /* Case 1 - right rotate at parent */
 | 
						|
                tmp1 = sibling->rb_right;
 | 
						|
                qatomic_set(&parent->rb_left, tmp1);
 | 
						|
                qatomic_set(&sibling->rb_right, parent);
 | 
						|
                rb_set_parent_color(tmp1, parent, RB_BLACK);
 | 
						|
                rb_rotate_set_parents(parent, sibling, root, RB_RED);
 | 
						|
                augment->rotate(parent, sibling);
 | 
						|
                sibling = tmp1;
 | 
						|
            }
 | 
						|
            tmp1 = sibling->rb_left;
 | 
						|
            if (!tmp1 || rb_is_black(tmp1)) {
 | 
						|
                tmp2 = sibling->rb_right;
 | 
						|
                if (!tmp2 || rb_is_black(tmp2)) {
 | 
						|
                    /* Case 2 - sibling color flip */
 | 
						|
                    rb_set_parent_color(sibling, parent, RB_RED);
 | 
						|
                    if (rb_is_red(parent)) {
 | 
						|
                        rb_set_black(parent);
 | 
						|
                    } else {
 | 
						|
                        node = parent;
 | 
						|
                        parent = rb_parent(node);
 | 
						|
                        if (parent) {
 | 
						|
                            continue;
 | 
						|
                        }
 | 
						|
                    }
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
                /* Case 3 - left rotate at sibling */
 | 
						|
                tmp1 = tmp2->rb_left;
 | 
						|
                qatomic_set(&sibling->rb_right, tmp1);
 | 
						|
                qatomic_set(&tmp2->rb_left, sibling);
 | 
						|
                qatomic_set(&parent->rb_left, tmp2);
 | 
						|
                if (tmp1) {
 | 
						|
                    rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | 
						|
                }
 | 
						|
                augment->rotate(sibling, tmp2);
 | 
						|
                tmp1 = sibling;
 | 
						|
                sibling = tmp2;
 | 
						|
            }
 | 
						|
            /* Case 4 - right rotate at parent + color flips */
 | 
						|
            tmp2 = sibling->rb_right;
 | 
						|
            qatomic_set(&parent->rb_left, tmp2);
 | 
						|
            qatomic_set(&sibling->rb_right, parent);
 | 
						|
            rb_set_parent_color(tmp1, sibling, RB_BLACK);
 | 
						|
            if (tmp2) {
 | 
						|
                rb_set_parent(tmp2, parent);
 | 
						|
            }
 | 
						|
            rb_rotate_set_parents(parent, sibling, root, RB_BLACK);
 | 
						|
            augment->rotate(parent, sibling);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rb_erase_augmented(RBNode *node, RBRoot *root,
 | 
						|
                               const RBAugmentCallbacks *augment)
 | 
						|
{
 | 
						|
    RBNode *child = node->rb_right;
 | 
						|
    RBNode *tmp = node->rb_left;
 | 
						|
    RBNode *parent, *rebalance;
 | 
						|
    uintptr_t pc;
 | 
						|
 | 
						|
    if (!tmp) {
 | 
						|
        /*
 | 
						|
         * Case 1: node to erase has no more than 1 child (easy!)
 | 
						|
         *
 | 
						|
         * Note that if there is one child it must be red due to 5)
 | 
						|
         * and node must be black due to 4). We adjust colors locally
 | 
						|
         * so as to bypass rb_erase_color() later on.
 | 
						|
         */
 | 
						|
        pc = rb_pc(node);
 | 
						|
        parent = pc_parent(pc);
 | 
						|
        rb_change_child(node, child, parent, root);
 | 
						|
        if (child) {
 | 
						|
            rb_set_pc(child, pc);
 | 
						|
            rebalance = NULL;
 | 
						|
        } else {
 | 
						|
            rebalance = pc_is_black(pc) ? parent : NULL;
 | 
						|
        }
 | 
						|
        tmp = parent;
 | 
						|
    } else if (!child) {
 | 
						|
        /* Still case 1, but this time the child is node->rb_left */
 | 
						|
        pc = rb_pc(node);
 | 
						|
        parent = pc_parent(pc);
 | 
						|
        rb_set_pc(tmp, pc);
 | 
						|
        rb_change_child(node, tmp, parent, root);
 | 
						|
        rebalance = NULL;
 | 
						|
        tmp = parent;
 | 
						|
    } else {
 | 
						|
        RBNode *successor = child, *child2;
 | 
						|
        tmp = child->rb_left;
 | 
						|
        if (!tmp) {
 | 
						|
            /*
 | 
						|
             * Case 2: node's successor is its right child
 | 
						|
             *
 | 
						|
             *    (n)          (s)
 | 
						|
             *    / \          / \
 | 
						|
             *  (x) (s)  ->  (x) (c)
 | 
						|
             *        \
 | 
						|
             *        (c)
 | 
						|
             */
 | 
						|
            parent = successor;
 | 
						|
            child2 = successor->rb_right;
 | 
						|
 | 
						|
            augment->copy(node, successor);
 | 
						|
        } else {
 | 
						|
            /*
 | 
						|
             * Case 3: node's successor is leftmost under
 | 
						|
             * node's right child subtree
 | 
						|
             *
 | 
						|
             *    (n)          (s)
 | 
						|
             *    / \          / \
 | 
						|
             *  (x) (y)  ->  (x) (y)
 | 
						|
             *      /            /
 | 
						|
             *    (p)          (p)
 | 
						|
             *    /            /
 | 
						|
             *  (s)          (c)
 | 
						|
             *    \
 | 
						|
             *    (c)
 | 
						|
             */
 | 
						|
            do {
 | 
						|
                parent = successor;
 | 
						|
                successor = tmp;
 | 
						|
                tmp = tmp->rb_left;
 | 
						|
            } while (tmp);
 | 
						|
            child2 = successor->rb_right;
 | 
						|
            qatomic_set(&parent->rb_left, child2);
 | 
						|
            qatomic_set(&successor->rb_right, child);
 | 
						|
            rb_set_parent(child, successor);
 | 
						|
 | 
						|
            augment->copy(node, successor);
 | 
						|
            augment->propagate(parent, successor);
 | 
						|
        }
 | 
						|
 | 
						|
        tmp = node->rb_left;
 | 
						|
        qatomic_set(&successor->rb_left, tmp);
 | 
						|
        rb_set_parent(tmp, successor);
 | 
						|
 | 
						|
        pc = rb_pc(node);
 | 
						|
        tmp = pc_parent(pc);
 | 
						|
        rb_change_child(node, successor, tmp, root);
 | 
						|
 | 
						|
        if (child2) {
 | 
						|
            rb_set_parent_color(child2, parent, RB_BLACK);
 | 
						|
            rebalance = NULL;
 | 
						|
        } else {
 | 
						|
            rebalance = rb_is_black(successor) ? parent : NULL;
 | 
						|
        }
 | 
						|
        rb_set_pc(successor, pc);
 | 
						|
        tmp = successor;
 | 
						|
    }
 | 
						|
 | 
						|
    augment->propagate(tmp, NULL);
 | 
						|
 | 
						|
    if (rebalance) {
 | 
						|
        rb_erase_color(rebalance, root, augment);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void rb_erase_augmented_cached(RBNode *node, RBRootLeftCached *root,
 | 
						|
                                      const RBAugmentCallbacks *augment)
 | 
						|
{
 | 
						|
    if (root->rb_leftmost == node) {
 | 
						|
        root->rb_leftmost = rb_next(node);
 | 
						|
    }
 | 
						|
    rb_erase_augmented(node, &root->rb_root, augment);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Interval trees.
 | 
						|
 *
 | 
						|
 * Derived from lib/interval_tree.c and its dependencies,
 | 
						|
 * especially include/linux/interval_tree_generic.h.
 | 
						|
 */
 | 
						|
 | 
						|
#define rb_to_itree(N)  container_of(N, IntervalTreeNode, rb)
 | 
						|
 | 
						|
static bool interval_tree_compute_max(IntervalTreeNode *node, bool exit)
 | 
						|
{
 | 
						|
    IntervalTreeNode *child;
 | 
						|
    uint64_t max = node->last;
 | 
						|
 | 
						|
    if (node->rb.rb_left) {
 | 
						|
        child = rb_to_itree(node->rb.rb_left);
 | 
						|
        if (child->subtree_last > max) {
 | 
						|
            max = child->subtree_last;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (node->rb.rb_right) {
 | 
						|
        child = rb_to_itree(node->rb.rb_right);
 | 
						|
        if (child->subtree_last > max) {
 | 
						|
            max = child->subtree_last;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (exit && node->subtree_last == max) {
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    node->subtree_last = max;
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static void interval_tree_propagate(RBNode *rb, RBNode *stop)
 | 
						|
{
 | 
						|
    while (rb != stop) {
 | 
						|
        IntervalTreeNode *node = rb_to_itree(rb);
 | 
						|
        if (interval_tree_compute_max(node, true)) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
        rb = rb_parent(&node->rb);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void interval_tree_copy(RBNode *rb_old, RBNode *rb_new)
 | 
						|
{
 | 
						|
    IntervalTreeNode *old = rb_to_itree(rb_old);
 | 
						|
    IntervalTreeNode *new = rb_to_itree(rb_new);
 | 
						|
 | 
						|
    new->subtree_last = old->subtree_last;
 | 
						|
}
 | 
						|
 | 
						|
static void interval_tree_rotate(RBNode *rb_old, RBNode *rb_new)
 | 
						|
{
 | 
						|
    IntervalTreeNode *old = rb_to_itree(rb_old);
 | 
						|
    IntervalTreeNode *new = rb_to_itree(rb_new);
 | 
						|
 | 
						|
    new->subtree_last = old->subtree_last;
 | 
						|
    interval_tree_compute_max(old, false);
 | 
						|
}
 | 
						|
 | 
						|
static const RBAugmentCallbacks interval_tree_augment = {
 | 
						|
    .propagate = interval_tree_propagate,
 | 
						|
    .copy = interval_tree_copy,
 | 
						|
    .rotate = interval_tree_rotate,
 | 
						|
};
 | 
						|
 | 
						|
/* Insert / remove interval nodes from the tree */
 | 
						|
void interval_tree_insert(IntervalTreeNode *node, IntervalTreeRoot *root)
 | 
						|
{
 | 
						|
    RBNode **link = &root->rb_root.rb_node, *rb_parent = NULL;
 | 
						|
    uint64_t start = node->start, last = node->last;
 | 
						|
    IntervalTreeNode *parent;
 | 
						|
    bool leftmost = true;
 | 
						|
 | 
						|
    while (*link) {
 | 
						|
        rb_parent = *link;
 | 
						|
        parent = rb_to_itree(rb_parent);
 | 
						|
 | 
						|
        if (parent->subtree_last < last) {
 | 
						|
            parent->subtree_last = last;
 | 
						|
        }
 | 
						|
        if (start < parent->start) {
 | 
						|
            link = &parent->rb.rb_left;
 | 
						|
        } else {
 | 
						|
            link = &parent->rb.rb_right;
 | 
						|
            leftmost = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    node->subtree_last = last;
 | 
						|
    rb_link_node(&node->rb, rb_parent, link);
 | 
						|
    rb_insert_augmented_cached(&node->rb, root, leftmost,
 | 
						|
                               &interval_tree_augment);
 | 
						|
}
 | 
						|
 | 
						|
void interval_tree_remove(IntervalTreeNode *node, IntervalTreeRoot *root)
 | 
						|
{
 | 
						|
    rb_erase_augmented_cached(&node->rb, root, &interval_tree_augment);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Iterate over intervals intersecting [start;last]
 | 
						|
 *
 | 
						|
 * Note that a node's interval intersects [start;last] iff:
 | 
						|
 *   Cond1: node->start <= last
 | 
						|
 * and
 | 
						|
 *   Cond2: start <= node->last
 | 
						|
 */
 | 
						|
 | 
						|
static IntervalTreeNode *interval_tree_subtree_search(IntervalTreeNode *node,
 | 
						|
                                                      uint64_t start,
 | 
						|
                                                      uint64_t last)
 | 
						|
{
 | 
						|
    while (true) {
 | 
						|
        /*
 | 
						|
         * Loop invariant: start <= node->subtree_last
 | 
						|
         * (Cond2 is satisfied by one of the subtree nodes)
 | 
						|
         */
 | 
						|
        RBNode *tmp = qatomic_read(&node->rb.rb_left);
 | 
						|
        if (tmp) {
 | 
						|
            IntervalTreeNode *left = rb_to_itree(tmp);
 | 
						|
 | 
						|
            if (start <= left->subtree_last) {
 | 
						|
                /*
 | 
						|
                 * Some nodes in left subtree satisfy Cond2.
 | 
						|
                 * Iterate to find the leftmost such node N.
 | 
						|
                 * If it also satisfies Cond1, that's the
 | 
						|
                 * match we are looking for. Otherwise, there
 | 
						|
                 * is no matching interval as nodes to the
 | 
						|
                 * right of N can't satisfy Cond1 either.
 | 
						|
                 */
 | 
						|
                node = left;
 | 
						|
                continue;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (node->start <= last) {         /* Cond1 */
 | 
						|
            if (start <= node->last) {     /* Cond2 */
 | 
						|
                return node; /* node is leftmost match */
 | 
						|
            }
 | 
						|
            tmp = qatomic_read(&node->rb.rb_right);
 | 
						|
            if (tmp) {
 | 
						|
                node = rb_to_itree(tmp);
 | 
						|
                if (start <= node->subtree_last) {
 | 
						|
                    continue;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return NULL; /* no match */
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
IntervalTreeNode *interval_tree_iter_first(IntervalTreeRoot *root,
 | 
						|
                                           uint64_t start, uint64_t last)
 | 
						|
{
 | 
						|
    IntervalTreeNode *node, *leftmost;
 | 
						|
 | 
						|
    if (!root || !root->rb_root.rb_node) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Fastpath range intersection/overlap between A: [a0, a1] and
 | 
						|
     * B: [b0, b1] is given by:
 | 
						|
     *
 | 
						|
     *         a0 <= b1 && b0 <= a1
 | 
						|
     *
 | 
						|
     *  ... where A holds the lock range and B holds the smallest
 | 
						|
     * 'start' and largest 'last' in the tree. For the later, we
 | 
						|
     * rely on the root node, which by augmented interval tree
 | 
						|
     * property, holds the largest value in its last-in-subtree.
 | 
						|
     * This allows mitigating some of the tree walk overhead for
 | 
						|
     * for non-intersecting ranges, maintained and consulted in O(1).
 | 
						|
     */
 | 
						|
    node = rb_to_itree(root->rb_root.rb_node);
 | 
						|
    if (node->subtree_last < start) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    leftmost = rb_to_itree(root->rb_leftmost);
 | 
						|
    if (leftmost->start > last) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return interval_tree_subtree_search(node, start, last);
 | 
						|
}
 | 
						|
 | 
						|
IntervalTreeNode *interval_tree_iter_next(IntervalTreeNode *node,
 | 
						|
                                          uint64_t start, uint64_t last)
 | 
						|
{
 | 
						|
    RBNode *rb, *prev;
 | 
						|
 | 
						|
    rb = qatomic_read(&node->rb.rb_right);
 | 
						|
    while (true) {
 | 
						|
        /*
 | 
						|
         * Loop invariants:
 | 
						|
         *   Cond1: node->start <= last
 | 
						|
         *   rb == node->rb.rb_right
 | 
						|
         *
 | 
						|
         * First, search right subtree if suitable
 | 
						|
         */
 | 
						|
        if (rb) {
 | 
						|
            IntervalTreeNode *right = rb_to_itree(rb);
 | 
						|
 | 
						|
            if (start <= right->subtree_last) {
 | 
						|
                return interval_tree_subtree_search(right, start, last);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Move up the tree until we come from a node's left child */
 | 
						|
        do {
 | 
						|
            rb = rb_parent(&node->rb);
 | 
						|
            if (!rb) {
 | 
						|
                return NULL;
 | 
						|
            }
 | 
						|
            prev = &node->rb;
 | 
						|
            node = rb_to_itree(rb);
 | 
						|
            rb = qatomic_read(&node->rb.rb_right);
 | 
						|
        } while (prev == rb);
 | 
						|
 | 
						|
        /* Check if the node intersects [start;last] */
 | 
						|
        if (last < node->start) {  /* !Cond1 */
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        if (start <= node->last) { /* Cond2 */
 | 
						|
            return node;
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/* Occasionally useful for calling from within the debugger. */
 | 
						|
#if 0
 | 
						|
static void debug_interval_tree_int(IntervalTreeNode *node,
 | 
						|
                                    const char *dir, int level)
 | 
						|
{
 | 
						|
    printf("%4d %*s %s [%" PRIu64 ",%" PRIu64 "] subtree_last:%" PRIu64 "\n",
 | 
						|
           level, level + 1, dir, rb_is_red(&node->rb) ? "r" : "b",
 | 
						|
           node->start, node->last, node->subtree_last);
 | 
						|
 | 
						|
    if (node->rb.rb_left) {
 | 
						|
        debug_interval_tree_int(rb_to_itree(node->rb.rb_left), "<", level + 1);
 | 
						|
    }
 | 
						|
    if (node->rb.rb_right) {
 | 
						|
        debug_interval_tree_int(rb_to_itree(node->rb.rb_right), ">", level + 1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void debug_interval_tree(IntervalTreeNode *node);
 | 
						|
void debug_interval_tree(IntervalTreeNode *node)
 | 
						|
{
 | 
						|
    if (node) {
 | 
						|
        debug_interval_tree_int(node, "*", 0);
 | 
						|
    } else {
 | 
						|
        printf("null\n");
 | 
						|
    }
 | 
						|
}
 | 
						|
#endif
 |