 028e2a7b87
			
		
	
	
		028e2a7b87
		
	
	
	
	
		
			
			Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20180516223007.10256-8-richard.henderson@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			2983 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2983 lines
		
	
	
		
			104 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM virtual CPU header
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #ifndef ARM_CPU_H
 | |
| #define ARM_CPU_H
 | |
| 
 | |
| #include "kvm-consts.h"
 | |
| #include "hw/registerfields.h"
 | |
| 
 | |
| #if defined(TARGET_AARCH64)
 | |
|   /* AArch64 definitions */
 | |
| #  define TARGET_LONG_BITS 64
 | |
| #else
 | |
| #  define TARGET_LONG_BITS 32
 | |
| #endif
 | |
| 
 | |
| /* ARM processors have a weak memory model */
 | |
| #define TCG_GUEST_DEFAULT_MO      (0)
 | |
| 
 | |
| #define CPUArchState struct CPUARMState
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #include "cpu-qom.h"
 | |
| #include "exec/cpu-defs.h"
 | |
| 
 | |
| #define EXCP_UDEF            1   /* undefined instruction */
 | |
| #define EXCP_SWI             2   /* software interrupt */
 | |
| #define EXCP_PREFETCH_ABORT  3
 | |
| #define EXCP_DATA_ABORT      4
 | |
| #define EXCP_IRQ             5
 | |
| #define EXCP_FIQ             6
 | |
| #define EXCP_BKPT            7
 | |
| #define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
 | |
| #define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
 | |
| #define EXCP_HVC            11   /* HyperVisor Call */
 | |
| #define EXCP_HYP_TRAP       12
 | |
| #define EXCP_SMC            13   /* Secure Monitor Call */
 | |
| #define EXCP_VIRQ           14
 | |
| #define EXCP_VFIQ           15
 | |
| #define EXCP_SEMIHOST       16   /* semihosting call */
 | |
| #define EXCP_NOCP           17   /* v7M NOCP UsageFault */
 | |
| #define EXCP_INVSTATE       18   /* v7M INVSTATE UsageFault */
 | |
| /* NB: add new EXCP_ defines to the array in arm_log_exception() too */
 | |
| 
 | |
| #define ARMV7M_EXCP_RESET   1
 | |
| #define ARMV7M_EXCP_NMI     2
 | |
| #define ARMV7M_EXCP_HARD    3
 | |
| #define ARMV7M_EXCP_MEM     4
 | |
| #define ARMV7M_EXCP_BUS     5
 | |
| #define ARMV7M_EXCP_USAGE   6
 | |
| #define ARMV7M_EXCP_SECURE  7
 | |
| #define ARMV7M_EXCP_SVC     11
 | |
| #define ARMV7M_EXCP_DEBUG   12
 | |
| #define ARMV7M_EXCP_PENDSV  14
 | |
| #define ARMV7M_EXCP_SYSTICK 15
 | |
| 
 | |
| /* For M profile, some registers are banked secure vs non-secure;
 | |
|  * these are represented as a 2-element array where the first element
 | |
|  * is the non-secure copy and the second is the secure copy.
 | |
|  * When the CPU does not have implement the security extension then
 | |
|  * only the first element is used.
 | |
|  * This means that the copy for the current security state can be
 | |
|  * accessed via env->registerfield[env->v7m.secure] (whether the security
 | |
|  * extension is implemented or not).
 | |
|  */
 | |
| enum {
 | |
|     M_REG_NS = 0,
 | |
|     M_REG_S = 1,
 | |
|     M_REG_NUM_BANKS = 2,
 | |
| };
 | |
| 
 | |
| /* ARM-specific interrupt pending bits.  */
 | |
| #define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
 | |
| #define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
 | |
| #define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
 | |
| 
 | |
| /* The usual mapping for an AArch64 system register to its AArch32
 | |
|  * counterpart is for the 32 bit world to have access to the lower
 | |
|  * half only (with writes leaving the upper half untouched). It's
 | |
|  * therefore useful to be able to pass TCG the offset of the least
 | |
|  * significant half of a uint64_t struct member.
 | |
|  */
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
| #define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 | |
| #define offsetofhigh32(S, M) offsetof(S, M)
 | |
| #else
 | |
| #define offsetoflow32(S, M) offsetof(S, M)
 | |
| #define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
 | |
| #endif
 | |
| 
 | |
| /* Meanings of the ARMCPU object's four inbound GPIO lines */
 | |
| #define ARM_CPU_IRQ 0
 | |
| #define ARM_CPU_FIQ 1
 | |
| #define ARM_CPU_VIRQ 2
 | |
| #define ARM_CPU_VFIQ 3
 | |
| 
 | |
| #define NB_MMU_MODES 8
 | |
| /* ARM-specific extra insn start words:
 | |
|  * 1: Conditional execution bits
 | |
|  * 2: Partial exception syndrome for data aborts
 | |
|  */
 | |
| #define TARGET_INSN_START_EXTRA_WORDS 2
 | |
| 
 | |
| /* The 2nd extra word holding syndrome info for data aborts does not use
 | |
|  * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
 | |
|  * help the sleb128 encoder do a better job.
 | |
|  * When restoring the CPU state, we shift it back up.
 | |
|  */
 | |
| #define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
 | |
| #define ARM_INSN_START_WORD2_SHIFT 14
 | |
| 
 | |
| /* We currently assume float and double are IEEE single and double
 | |
|    precision respectively.
 | |
|    Doing runtime conversions is tricky because VFP registers may contain
 | |
|    integer values (eg. as the result of a FTOSI instruction).
 | |
|    s<2n> maps to the least significant half of d<n>
 | |
|    s<2n+1> maps to the most significant half of d<n>
 | |
|  */
 | |
| 
 | |
| /**
 | |
|  * DynamicGDBXMLInfo:
 | |
|  * @desc: Contains the XML descriptions.
 | |
|  * @num_cpregs: Number of the Coprocessor registers seen by GDB.
 | |
|  * @cpregs_keys: Array that contains the corresponding Key of
 | |
|  * a given cpreg with the same order of the cpreg in the XML description.
 | |
|  */
 | |
| typedef struct DynamicGDBXMLInfo {
 | |
|     char *desc;
 | |
|     int num_cpregs;
 | |
|     uint32_t *cpregs_keys;
 | |
| } DynamicGDBXMLInfo;
 | |
| 
 | |
| /* CPU state for each instance of a generic timer (in cp15 c14) */
 | |
| typedef struct ARMGenericTimer {
 | |
|     uint64_t cval; /* Timer CompareValue register */
 | |
|     uint64_t ctl; /* Timer Control register */
 | |
| } ARMGenericTimer;
 | |
| 
 | |
| #define GTIMER_PHYS 0
 | |
| #define GTIMER_VIRT 1
 | |
| #define GTIMER_HYP  2
 | |
| #define GTIMER_SEC  3
 | |
| #define NUM_GTIMERS 4
 | |
| 
 | |
| typedef struct {
 | |
|     uint64_t raw_tcr;
 | |
|     uint32_t mask;
 | |
|     uint32_t base_mask;
 | |
| } TCR;
 | |
| 
 | |
| /* Define a maximum sized vector register.
 | |
|  * For 32-bit, this is a 128-bit NEON/AdvSIMD register.
 | |
|  * For 64-bit, this is a 2048-bit SVE register.
 | |
|  *
 | |
|  * Note that the mapping between S, D, and Q views of the register bank
 | |
|  * differs between AArch64 and AArch32.
 | |
|  * In AArch32:
 | |
|  *  Qn = regs[n].d[1]:regs[n].d[0]
 | |
|  *  Dn = regs[n / 2].d[n & 1]
 | |
|  *  Sn = regs[n / 4].d[n % 4 / 2],
 | |
|  *       bits 31..0 for even n, and bits 63..32 for odd n
 | |
|  *       (and regs[16] to regs[31] are inaccessible)
 | |
|  * In AArch64:
 | |
|  *  Zn = regs[n].d[*]
 | |
|  *  Qn = regs[n].d[1]:regs[n].d[0]
 | |
|  *  Dn = regs[n].d[0]
 | |
|  *  Sn = regs[n].d[0] bits 31..0
 | |
|  *  Hn = regs[n].d[0] bits 15..0
 | |
|  *
 | |
|  * This corresponds to the architecturally defined mapping between
 | |
|  * the two execution states, and means we do not need to explicitly
 | |
|  * map these registers when changing states.
 | |
|  *
 | |
|  * Align the data for use with TCG host vector operations.
 | |
|  */
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| # define ARM_MAX_VQ    16
 | |
| #else
 | |
| # define ARM_MAX_VQ    1
 | |
| #endif
 | |
| 
 | |
| typedef struct ARMVectorReg {
 | |
|     uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
 | |
| } ARMVectorReg;
 | |
| 
 | |
| /* In AArch32 mode, predicate registers do not exist at all.  */
 | |
| #ifdef TARGET_AARCH64
 | |
| typedef struct ARMPredicateReg {
 | |
|     uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
 | |
| } ARMPredicateReg;
 | |
| #endif
 | |
| 
 | |
| 
 | |
| typedef struct CPUARMState {
 | |
|     /* Regs for current mode.  */
 | |
|     uint32_t regs[16];
 | |
| 
 | |
|     /* 32/64 switch only happens when taking and returning from
 | |
|      * exceptions so the overlap semantics are taken care of then
 | |
|      * instead of having a complicated union.
 | |
|      */
 | |
|     /* Regs for A64 mode.  */
 | |
|     uint64_t xregs[32];
 | |
|     uint64_t pc;
 | |
|     /* PSTATE isn't an architectural register for ARMv8. However, it is
 | |
|      * convenient for us to assemble the underlying state into a 32 bit format
 | |
|      * identical to the architectural format used for the SPSR. (This is also
 | |
|      * what the Linux kernel's 'pstate' field in signal handlers and KVM's
 | |
|      * 'pstate' register are.) Of the PSTATE bits:
 | |
|      *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
 | |
|      *    semantics as for AArch32, as described in the comments on each field)
 | |
|      *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
 | |
|      *  DAIF (exception masks) are kept in env->daif
 | |
|      *  all other bits are stored in their correct places in env->pstate
 | |
|      */
 | |
|     uint32_t pstate;
 | |
|     uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
 | |
| 
 | |
|     /* Frequently accessed CPSR bits are stored separately for efficiency.
 | |
|        This contains all the other bits.  Use cpsr_{read,write} to access
 | |
|        the whole CPSR.  */
 | |
|     uint32_t uncached_cpsr;
 | |
|     uint32_t spsr;
 | |
| 
 | |
|     /* Banked registers.  */
 | |
|     uint64_t banked_spsr[8];
 | |
|     uint32_t banked_r13[8];
 | |
|     uint32_t banked_r14[8];
 | |
| 
 | |
|     /* These hold r8-r12.  */
 | |
|     uint32_t usr_regs[5];
 | |
|     uint32_t fiq_regs[5];
 | |
| 
 | |
|     /* cpsr flag cache for faster execution */
 | |
|     uint32_t CF; /* 0 or 1 */
 | |
|     uint32_t VF; /* V is the bit 31. All other bits are undefined */
 | |
|     uint32_t NF; /* N is bit 31. All other bits are undefined.  */
 | |
|     uint32_t ZF; /* Z set if zero.  */
 | |
|     uint32_t QF; /* 0 or 1 */
 | |
|     uint32_t GE; /* cpsr[19:16] */
 | |
|     uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
 | |
|     uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
 | |
|     uint64_t daif; /* exception masks, in the bits they are in PSTATE */
 | |
| 
 | |
|     uint64_t elr_el[4]; /* AArch64 exception link regs  */
 | |
|     uint64_t sp_el[4]; /* AArch64 banked stack pointers */
 | |
| 
 | |
|     /* System control coprocessor (cp15) */
 | |
|     struct {
 | |
|         uint32_t c0_cpuid;
 | |
|         union { /* Cache size selection */
 | |
|             struct {
 | |
|                 uint64_t _unused_csselr0;
 | |
|                 uint64_t csselr_ns;
 | |
|                 uint64_t _unused_csselr1;
 | |
|                 uint64_t csselr_s;
 | |
|             };
 | |
|             uint64_t csselr_el[4];
 | |
|         };
 | |
|         union { /* System control register. */
 | |
|             struct {
 | |
|                 uint64_t _unused_sctlr;
 | |
|                 uint64_t sctlr_ns;
 | |
|                 uint64_t hsctlr;
 | |
|                 uint64_t sctlr_s;
 | |
|             };
 | |
|             uint64_t sctlr_el[4];
 | |
|         };
 | |
|         uint64_t cpacr_el1; /* Architectural feature access control register */
 | |
|         uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
 | |
|         uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
 | |
|         uint64_t sder; /* Secure debug enable register. */
 | |
|         uint32_t nsacr; /* Non-secure access control register. */
 | |
|         union { /* MMU translation table base 0. */
 | |
|             struct {
 | |
|                 uint64_t _unused_ttbr0_0;
 | |
|                 uint64_t ttbr0_ns;
 | |
|                 uint64_t _unused_ttbr0_1;
 | |
|                 uint64_t ttbr0_s;
 | |
|             };
 | |
|             uint64_t ttbr0_el[4];
 | |
|         };
 | |
|         union { /* MMU translation table base 1. */
 | |
|             struct {
 | |
|                 uint64_t _unused_ttbr1_0;
 | |
|                 uint64_t ttbr1_ns;
 | |
|                 uint64_t _unused_ttbr1_1;
 | |
|                 uint64_t ttbr1_s;
 | |
|             };
 | |
|             uint64_t ttbr1_el[4];
 | |
|         };
 | |
|         uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
 | |
|         /* MMU translation table base control. */
 | |
|         TCR tcr_el[4];
 | |
|         TCR vtcr_el2; /* Virtualization Translation Control.  */
 | |
|         uint32_t c2_data; /* MPU data cacheable bits.  */
 | |
|         uint32_t c2_insn; /* MPU instruction cacheable bits.  */
 | |
|         union { /* MMU domain access control register
 | |
|                  * MPU write buffer control.
 | |
|                  */
 | |
|             struct {
 | |
|                 uint64_t dacr_ns;
 | |
|                 uint64_t dacr_s;
 | |
|             };
 | |
|             struct {
 | |
|                 uint64_t dacr32_el2;
 | |
|             };
 | |
|         };
 | |
|         uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
 | |
|         uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
 | |
|         uint64_t hcr_el2; /* Hypervisor configuration register */
 | |
|         uint64_t scr_el3; /* Secure configuration register.  */
 | |
|         union { /* Fault status registers.  */
 | |
|             struct {
 | |
|                 uint64_t ifsr_ns;
 | |
|                 uint64_t ifsr_s;
 | |
|             };
 | |
|             struct {
 | |
|                 uint64_t ifsr32_el2;
 | |
|             };
 | |
|         };
 | |
|         union {
 | |
|             struct {
 | |
|                 uint64_t _unused_dfsr;
 | |
|                 uint64_t dfsr_ns;
 | |
|                 uint64_t hsr;
 | |
|                 uint64_t dfsr_s;
 | |
|             };
 | |
|             uint64_t esr_el[4];
 | |
|         };
 | |
|         uint32_t c6_region[8]; /* MPU base/size registers.  */
 | |
|         union { /* Fault address registers. */
 | |
|             struct {
 | |
|                 uint64_t _unused_far0;
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|                 uint32_t ifar_ns;
 | |
|                 uint32_t dfar_ns;
 | |
|                 uint32_t ifar_s;
 | |
|                 uint32_t dfar_s;
 | |
| #else
 | |
|                 uint32_t dfar_ns;
 | |
|                 uint32_t ifar_ns;
 | |
|                 uint32_t dfar_s;
 | |
|                 uint32_t ifar_s;
 | |
| #endif
 | |
|                 uint64_t _unused_far3;
 | |
|             };
 | |
|             uint64_t far_el[4];
 | |
|         };
 | |
|         uint64_t hpfar_el2;
 | |
|         uint64_t hstr_el2;
 | |
|         union { /* Translation result. */
 | |
|             struct {
 | |
|                 uint64_t _unused_par_0;
 | |
|                 uint64_t par_ns;
 | |
|                 uint64_t _unused_par_1;
 | |
|                 uint64_t par_s;
 | |
|             };
 | |
|             uint64_t par_el[4];
 | |
|         };
 | |
| 
 | |
|         uint32_t c9_insn; /* Cache lockdown registers.  */
 | |
|         uint32_t c9_data;
 | |
|         uint64_t c9_pmcr; /* performance monitor control register */
 | |
|         uint64_t c9_pmcnten; /* perf monitor counter enables */
 | |
|         uint64_t c9_pmovsr; /* perf monitor overflow status */
 | |
|         uint64_t c9_pmuserenr; /* perf monitor user enable */
 | |
|         uint64_t c9_pmselr; /* perf monitor counter selection register */
 | |
|         uint64_t c9_pminten; /* perf monitor interrupt enables */
 | |
|         union { /* Memory attribute redirection */
 | |
|             struct {
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|                 uint64_t _unused_mair_0;
 | |
|                 uint32_t mair1_ns;
 | |
|                 uint32_t mair0_ns;
 | |
|                 uint64_t _unused_mair_1;
 | |
|                 uint32_t mair1_s;
 | |
|                 uint32_t mair0_s;
 | |
| #else
 | |
|                 uint64_t _unused_mair_0;
 | |
|                 uint32_t mair0_ns;
 | |
|                 uint32_t mair1_ns;
 | |
|                 uint64_t _unused_mair_1;
 | |
|                 uint32_t mair0_s;
 | |
|                 uint32_t mair1_s;
 | |
| #endif
 | |
|             };
 | |
|             uint64_t mair_el[4];
 | |
|         };
 | |
|         union { /* vector base address register */
 | |
|             struct {
 | |
|                 uint64_t _unused_vbar;
 | |
|                 uint64_t vbar_ns;
 | |
|                 uint64_t hvbar;
 | |
|                 uint64_t vbar_s;
 | |
|             };
 | |
|             uint64_t vbar_el[4];
 | |
|         };
 | |
|         uint32_t mvbar; /* (monitor) vector base address register */
 | |
|         struct { /* FCSE PID. */
 | |
|             uint32_t fcseidr_ns;
 | |
|             uint32_t fcseidr_s;
 | |
|         };
 | |
|         union { /* Context ID. */
 | |
|             struct {
 | |
|                 uint64_t _unused_contextidr_0;
 | |
|                 uint64_t contextidr_ns;
 | |
|                 uint64_t _unused_contextidr_1;
 | |
|                 uint64_t contextidr_s;
 | |
|             };
 | |
|             uint64_t contextidr_el[4];
 | |
|         };
 | |
|         union { /* User RW Thread register. */
 | |
|             struct {
 | |
|                 uint64_t tpidrurw_ns;
 | |
|                 uint64_t tpidrprw_ns;
 | |
|                 uint64_t htpidr;
 | |
|                 uint64_t _tpidr_el3;
 | |
|             };
 | |
|             uint64_t tpidr_el[4];
 | |
|         };
 | |
|         /* The secure banks of these registers don't map anywhere */
 | |
|         uint64_t tpidrurw_s;
 | |
|         uint64_t tpidrprw_s;
 | |
|         uint64_t tpidruro_s;
 | |
| 
 | |
|         union { /* User RO Thread register. */
 | |
|             uint64_t tpidruro_ns;
 | |
|             uint64_t tpidrro_el[1];
 | |
|         };
 | |
|         uint64_t c14_cntfrq; /* Counter Frequency register */
 | |
|         uint64_t c14_cntkctl; /* Timer Control register */
 | |
|         uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
 | |
|         uint64_t cntvoff_el2; /* Counter Virtual Offset register */
 | |
|         ARMGenericTimer c14_timer[NUM_GTIMERS];
 | |
|         uint32_t c15_cpar; /* XScale Coprocessor Access Register */
 | |
|         uint32_t c15_ticonfig; /* TI925T configuration byte.  */
 | |
|         uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
 | |
|         uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
 | |
|         uint32_t c15_threadid; /* TI debugger thread-ID.  */
 | |
|         uint32_t c15_config_base_address; /* SCU base address.  */
 | |
|         uint32_t c15_diagnostic; /* diagnostic register */
 | |
|         uint32_t c15_power_diagnostic;
 | |
|         uint32_t c15_power_control; /* power control */
 | |
|         uint64_t dbgbvr[16]; /* breakpoint value registers */
 | |
|         uint64_t dbgbcr[16]; /* breakpoint control registers */
 | |
|         uint64_t dbgwvr[16]; /* watchpoint value registers */
 | |
|         uint64_t dbgwcr[16]; /* watchpoint control registers */
 | |
|         uint64_t mdscr_el1;
 | |
|         uint64_t oslsr_el1; /* OS Lock Status */
 | |
|         uint64_t mdcr_el2;
 | |
|         uint64_t mdcr_el3;
 | |
|         /* If the counter is enabled, this stores the last time the counter
 | |
|          * was reset. Otherwise it stores the counter value
 | |
|          */
 | |
|         uint64_t c15_ccnt;
 | |
|         uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
 | |
|         uint64_t vpidr_el2; /* Virtualization Processor ID Register */
 | |
|         uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
 | |
|     } cp15;
 | |
| 
 | |
|     struct {
 | |
|         /* M profile has up to 4 stack pointers:
 | |
|          * a Main Stack Pointer and a Process Stack Pointer for each
 | |
|          * of the Secure and Non-Secure states. (If the CPU doesn't support
 | |
|          * the security extension then it has only two SPs.)
 | |
|          * In QEMU we always store the currently active SP in regs[13],
 | |
|          * and the non-active SP for the current security state in
 | |
|          * v7m.other_sp. The stack pointers for the inactive security state
 | |
|          * are stored in other_ss_msp and other_ss_psp.
 | |
|          * switch_v7m_security_state() is responsible for rearranging them
 | |
|          * when we change security state.
 | |
|          */
 | |
|         uint32_t other_sp;
 | |
|         uint32_t other_ss_msp;
 | |
|         uint32_t other_ss_psp;
 | |
|         uint32_t vecbase[M_REG_NUM_BANKS];
 | |
|         uint32_t basepri[M_REG_NUM_BANKS];
 | |
|         uint32_t control[M_REG_NUM_BANKS];
 | |
|         uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
 | |
|         uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
 | |
|         uint32_t hfsr; /* HardFault Status */
 | |
|         uint32_t dfsr; /* Debug Fault Status Register */
 | |
|         uint32_t sfsr; /* Secure Fault Status Register */
 | |
|         uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
 | |
|         uint32_t bfar; /* BusFault Address */
 | |
|         uint32_t sfar; /* Secure Fault Address Register */
 | |
|         unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
 | |
|         int exception;
 | |
|         uint32_t primask[M_REG_NUM_BANKS];
 | |
|         uint32_t faultmask[M_REG_NUM_BANKS];
 | |
|         uint32_t aircr; /* only holds r/w state if security extn implemented */
 | |
|         uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
 | |
|         uint32_t csselr[M_REG_NUM_BANKS];
 | |
|         uint32_t scr[M_REG_NUM_BANKS];
 | |
|         uint32_t msplim[M_REG_NUM_BANKS];
 | |
|         uint32_t psplim[M_REG_NUM_BANKS];
 | |
|     } v7m;
 | |
| 
 | |
|     /* Information associated with an exception about to be taken:
 | |
|      * code which raises an exception must set cs->exception_index and
 | |
|      * the relevant parts of this structure; the cpu_do_interrupt function
 | |
|      * will then set the guest-visible registers as part of the exception
 | |
|      * entry process.
 | |
|      */
 | |
|     struct {
 | |
|         uint32_t syndrome; /* AArch64 format syndrome register */
 | |
|         uint32_t fsr; /* AArch32 format fault status register info */
 | |
|         uint64_t vaddress; /* virtual addr associated with exception, if any */
 | |
|         uint32_t target_el; /* EL the exception should be targeted for */
 | |
|         /* If we implement EL2 we will also need to store information
 | |
|          * about the intermediate physical address for stage 2 faults.
 | |
|          */
 | |
|     } exception;
 | |
| 
 | |
|     /* Thumb-2 EE state.  */
 | |
|     uint32_t teecr;
 | |
|     uint32_t teehbr;
 | |
| 
 | |
|     /* VFP coprocessor state.  */
 | |
|     struct {
 | |
|         ARMVectorReg zregs[32];
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
|         /* Store FFR as pregs[16] to make it easier to treat as any other.  */
 | |
| #define FFR_PRED_NUM 16
 | |
|         ARMPredicateReg pregs[17];
 | |
|         /* Scratch space for aa64 sve predicate temporary.  */
 | |
|         ARMPredicateReg preg_tmp;
 | |
| #endif
 | |
| 
 | |
|         uint32_t xregs[16];
 | |
|         /* We store these fpcsr fields separately for convenience.  */
 | |
|         int vec_len;
 | |
|         int vec_stride;
 | |
| 
 | |
|         /* Scratch space for aa32 neon expansion.  */
 | |
|         uint32_t scratch[8];
 | |
| 
 | |
|         /* There are a number of distinct float control structures:
 | |
|          *
 | |
|          *  fp_status: is the "normal" fp status.
 | |
|          *  fp_status_fp16: used for half-precision calculations
 | |
|          *  standard_fp_status : the ARM "Standard FPSCR Value"
 | |
|          *
 | |
|          * Half-precision operations are governed by a separate
 | |
|          * flush-to-zero control bit in FPSCR:FZ16. We pass a separate
 | |
|          * status structure to control this.
 | |
|          *
 | |
|          * The "Standard FPSCR", ie default-NaN, flush-to-zero,
 | |
|          * round-to-nearest and is used by any operations (generally
 | |
|          * Neon) which the architecture defines as controlled by the
 | |
|          * standard FPSCR value rather than the FPSCR.
 | |
|          *
 | |
|          * To avoid having to transfer exception bits around, we simply
 | |
|          * say that the FPSCR cumulative exception flags are the logical
 | |
|          * OR of the flags in the three fp statuses. This relies on the
 | |
|          * only thing which needs to read the exception flags being
 | |
|          * an explicit FPSCR read.
 | |
|          */
 | |
|         float_status fp_status;
 | |
|         float_status fp_status_f16;
 | |
|         float_status standard_fp_status;
 | |
| 
 | |
|         /* ZCR_EL[1-3] */
 | |
|         uint64_t zcr_el[4];
 | |
|     } vfp;
 | |
|     uint64_t exclusive_addr;
 | |
|     uint64_t exclusive_val;
 | |
|     uint64_t exclusive_high;
 | |
| 
 | |
|     /* iwMMXt coprocessor state.  */
 | |
|     struct {
 | |
|         uint64_t regs[16];
 | |
|         uint64_t val;
 | |
| 
 | |
|         uint32_t cregs[16];
 | |
|     } iwmmxt;
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     /* For usermode syscall translation.  */
 | |
|     int eabi;
 | |
| #endif
 | |
| 
 | |
|     struct CPUBreakpoint *cpu_breakpoint[16];
 | |
|     struct CPUWatchpoint *cpu_watchpoint[16];
 | |
| 
 | |
|     /* Fields up to this point are cleared by a CPU reset */
 | |
|     struct {} end_reset_fields;
 | |
| 
 | |
|     CPU_COMMON
 | |
| 
 | |
|     /* Fields after CPU_COMMON are preserved across CPU reset. */
 | |
| 
 | |
|     /* Internal CPU feature flags.  */
 | |
|     uint64_t features;
 | |
| 
 | |
|     /* PMSAv7 MPU */
 | |
|     struct {
 | |
|         uint32_t *drbar;
 | |
|         uint32_t *drsr;
 | |
|         uint32_t *dracr;
 | |
|         uint32_t rnr[M_REG_NUM_BANKS];
 | |
|     } pmsav7;
 | |
| 
 | |
|     /* PMSAv8 MPU */
 | |
|     struct {
 | |
|         /* The PMSAv8 implementation also shares some PMSAv7 config
 | |
|          * and state:
 | |
|          *  pmsav7.rnr (region number register)
 | |
|          *  pmsav7_dregion (number of configured regions)
 | |
|          */
 | |
|         uint32_t *rbar[M_REG_NUM_BANKS];
 | |
|         uint32_t *rlar[M_REG_NUM_BANKS];
 | |
|         uint32_t mair0[M_REG_NUM_BANKS];
 | |
|         uint32_t mair1[M_REG_NUM_BANKS];
 | |
|     } pmsav8;
 | |
| 
 | |
|     /* v8M SAU */
 | |
|     struct {
 | |
|         uint32_t *rbar;
 | |
|         uint32_t *rlar;
 | |
|         uint32_t rnr;
 | |
|         uint32_t ctrl;
 | |
|     } sau;
 | |
| 
 | |
|     void *nvic;
 | |
|     const struct arm_boot_info *boot_info;
 | |
|     /* Store GICv3CPUState to access from this struct */
 | |
|     void *gicv3state;
 | |
| } CPUARMState;
 | |
| 
 | |
| /**
 | |
|  * ARMELChangeHookFn:
 | |
|  * type of a function which can be registered via arm_register_el_change_hook()
 | |
|  * to get callbacks when the CPU changes its exception level or mode.
 | |
|  */
 | |
| typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
 | |
| typedef struct ARMELChangeHook ARMELChangeHook;
 | |
| struct ARMELChangeHook {
 | |
|     ARMELChangeHookFn *hook;
 | |
|     void *opaque;
 | |
|     QLIST_ENTRY(ARMELChangeHook) node;
 | |
| };
 | |
| 
 | |
| /* These values map onto the return values for
 | |
|  * QEMU_PSCI_0_2_FN_AFFINITY_INFO */
 | |
| typedef enum ARMPSCIState {
 | |
|     PSCI_ON = 0,
 | |
|     PSCI_OFF = 1,
 | |
|     PSCI_ON_PENDING = 2
 | |
| } ARMPSCIState;
 | |
| 
 | |
| /**
 | |
|  * ARMCPU:
 | |
|  * @env: #CPUARMState
 | |
|  *
 | |
|  * An ARM CPU core.
 | |
|  */
 | |
| struct ARMCPU {
 | |
|     /*< private >*/
 | |
|     CPUState parent_obj;
 | |
|     /*< public >*/
 | |
| 
 | |
|     CPUARMState env;
 | |
| 
 | |
|     /* Coprocessor information */
 | |
|     GHashTable *cp_regs;
 | |
|     /* For marshalling (mostly coprocessor) register state between the
 | |
|      * kernel and QEMU (for KVM) and between two QEMUs (for migration),
 | |
|      * we use these arrays.
 | |
|      */
 | |
|     /* List of register indexes managed via these arrays; (full KVM style
 | |
|      * 64 bit indexes, not CPRegInfo 32 bit indexes)
 | |
|      */
 | |
|     uint64_t *cpreg_indexes;
 | |
|     /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
 | |
|     uint64_t *cpreg_values;
 | |
|     /* Length of the indexes, values, reset_values arrays */
 | |
|     int32_t cpreg_array_len;
 | |
|     /* These are used only for migration: incoming data arrives in
 | |
|      * these fields and is sanity checked in post_load before copying
 | |
|      * to the working data structures above.
 | |
|      */
 | |
|     uint64_t *cpreg_vmstate_indexes;
 | |
|     uint64_t *cpreg_vmstate_values;
 | |
|     int32_t cpreg_vmstate_array_len;
 | |
| 
 | |
|     DynamicGDBXMLInfo dyn_xml;
 | |
| 
 | |
|     /* Timers used by the generic (architected) timer */
 | |
|     QEMUTimer *gt_timer[NUM_GTIMERS];
 | |
|     /* GPIO outputs for generic timer */
 | |
|     qemu_irq gt_timer_outputs[NUM_GTIMERS];
 | |
|     /* GPIO output for GICv3 maintenance interrupt signal */
 | |
|     qemu_irq gicv3_maintenance_interrupt;
 | |
|     /* GPIO output for the PMU interrupt */
 | |
|     qemu_irq pmu_interrupt;
 | |
| 
 | |
|     /* MemoryRegion to use for secure physical accesses */
 | |
|     MemoryRegion *secure_memory;
 | |
| 
 | |
|     /* For v8M, pointer to the IDAU interface provided by board/SoC */
 | |
|     Object *idau;
 | |
| 
 | |
|     /* 'compatible' string for this CPU for Linux device trees */
 | |
|     const char *dtb_compatible;
 | |
| 
 | |
|     /* PSCI version for this CPU
 | |
|      * Bits[31:16] = Major Version
 | |
|      * Bits[15:0] = Minor Version
 | |
|      */
 | |
|     uint32_t psci_version;
 | |
| 
 | |
|     /* Should CPU start in PSCI powered-off state? */
 | |
|     bool start_powered_off;
 | |
| 
 | |
|     /* Current power state, access guarded by BQL */
 | |
|     ARMPSCIState power_state;
 | |
| 
 | |
|     /* CPU has virtualization extension */
 | |
|     bool has_el2;
 | |
|     /* CPU has security extension */
 | |
|     bool has_el3;
 | |
|     /* CPU has PMU (Performance Monitor Unit) */
 | |
|     bool has_pmu;
 | |
| 
 | |
|     /* CPU has memory protection unit */
 | |
|     bool has_mpu;
 | |
|     /* PMSAv7 MPU number of supported regions */
 | |
|     uint32_t pmsav7_dregion;
 | |
|     /* v8M SAU number of supported regions */
 | |
|     uint32_t sau_sregion;
 | |
| 
 | |
|     /* PSCI conduit used to invoke PSCI methods
 | |
|      * 0 - disabled, 1 - smc, 2 - hvc
 | |
|      */
 | |
|     uint32_t psci_conduit;
 | |
| 
 | |
|     /* For v8M, initial value of the Secure VTOR */
 | |
|     uint32_t init_svtor;
 | |
| 
 | |
|     /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
 | |
|      * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
 | |
|      */
 | |
|     uint32_t kvm_target;
 | |
| 
 | |
|     /* KVM init features for this CPU */
 | |
|     uint32_t kvm_init_features[7];
 | |
| 
 | |
|     /* Uniprocessor system with MP extensions */
 | |
|     bool mp_is_up;
 | |
| 
 | |
|     /* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
 | |
|      * and the probe failed (so we need to report the error in realize)
 | |
|      */
 | |
|     bool host_cpu_probe_failed;
 | |
| 
 | |
|     /* Specify the number of cores in this CPU cluster. Used for the L2CTLR
 | |
|      * register.
 | |
|      */
 | |
|     int32_t core_count;
 | |
| 
 | |
|     /* The instance init functions for implementation-specific subclasses
 | |
|      * set these fields to specify the implementation-dependent values of
 | |
|      * various constant registers and reset values of non-constant
 | |
|      * registers.
 | |
|      * Some of these might become QOM properties eventually.
 | |
|      * Field names match the official register names as defined in the
 | |
|      * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
 | |
|      * is used for reset values of non-constant registers; no reset_
 | |
|      * prefix means a constant register.
 | |
|      */
 | |
|     uint32_t midr;
 | |
|     uint32_t revidr;
 | |
|     uint32_t reset_fpsid;
 | |
|     uint32_t mvfr0;
 | |
|     uint32_t mvfr1;
 | |
|     uint32_t mvfr2;
 | |
|     uint32_t ctr;
 | |
|     uint32_t reset_sctlr;
 | |
|     uint32_t id_pfr0;
 | |
|     uint32_t id_pfr1;
 | |
|     uint32_t id_dfr0;
 | |
|     uint32_t pmceid0;
 | |
|     uint32_t pmceid1;
 | |
|     uint32_t id_afr0;
 | |
|     uint32_t id_mmfr0;
 | |
|     uint32_t id_mmfr1;
 | |
|     uint32_t id_mmfr2;
 | |
|     uint32_t id_mmfr3;
 | |
|     uint32_t id_mmfr4;
 | |
|     uint32_t id_isar0;
 | |
|     uint32_t id_isar1;
 | |
|     uint32_t id_isar2;
 | |
|     uint32_t id_isar3;
 | |
|     uint32_t id_isar4;
 | |
|     uint32_t id_isar5;
 | |
|     uint64_t id_aa64pfr0;
 | |
|     uint64_t id_aa64pfr1;
 | |
|     uint64_t id_aa64dfr0;
 | |
|     uint64_t id_aa64dfr1;
 | |
|     uint64_t id_aa64afr0;
 | |
|     uint64_t id_aa64afr1;
 | |
|     uint64_t id_aa64isar0;
 | |
|     uint64_t id_aa64isar1;
 | |
|     uint64_t id_aa64mmfr0;
 | |
|     uint64_t id_aa64mmfr1;
 | |
|     uint32_t dbgdidr;
 | |
|     uint32_t clidr;
 | |
|     uint64_t mp_affinity; /* MP ID without feature bits */
 | |
|     /* The elements of this array are the CCSIDR values for each cache,
 | |
|      * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
 | |
|      */
 | |
|     uint32_t ccsidr[16];
 | |
|     uint64_t reset_cbar;
 | |
|     uint32_t reset_auxcr;
 | |
|     bool reset_hivecs;
 | |
|     /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
 | |
|     uint32_t dcz_blocksize;
 | |
|     uint64_t rvbar;
 | |
| 
 | |
|     /* Configurable aspects of GIC cpu interface (which is part of the CPU) */
 | |
|     int gic_num_lrs; /* number of list registers */
 | |
|     int gic_vpribits; /* number of virtual priority bits */
 | |
|     int gic_vprebits; /* number of virtual preemption bits */
 | |
| 
 | |
|     /* Whether the cfgend input is high (i.e. this CPU should reset into
 | |
|      * big-endian mode).  This setting isn't used directly: instead it modifies
 | |
|      * the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
 | |
|      * architecture version.
 | |
|      */
 | |
|     bool cfgend;
 | |
| 
 | |
|     QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
 | |
|     QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
 | |
| 
 | |
|     int32_t node_id; /* NUMA node this CPU belongs to */
 | |
| 
 | |
|     /* Used to synchronize KVM and QEMU in-kernel device levels */
 | |
|     uint8_t device_irq_level;
 | |
| };
 | |
| 
 | |
| static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
 | |
| {
 | |
|     return container_of(env, ARMCPU, env);
 | |
| }
 | |
| 
 | |
| uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
 | |
| 
 | |
| #define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
 | |
| 
 | |
| #define ENV_OFFSET offsetof(ARMCPU, env)
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| extern const struct VMStateDescription vmstate_arm_cpu;
 | |
| #endif
 | |
| 
 | |
| void arm_cpu_do_interrupt(CPUState *cpu);
 | |
| void arm_v7m_cpu_do_interrupt(CPUState *cpu);
 | |
| bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
 | |
| 
 | |
| void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
 | |
|                         int flags);
 | |
| 
 | |
| hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
 | |
|                                          MemTxAttrs *attrs);
 | |
| 
 | |
| int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 | |
| int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 | |
| 
 | |
| /* Dynamically generates for gdb stub an XML description of the sysregs from
 | |
|  * the cp_regs hashtable. Returns the registered sysregs number.
 | |
|  */
 | |
| int arm_gen_dynamic_xml(CPUState *cpu);
 | |
| 
 | |
| /* Returns the dynamically generated XML for the gdb stub.
 | |
|  * Returns a pointer to the XML contents for the specified XML file or NULL
 | |
|  * if the XML name doesn't match the predefined one.
 | |
|  */
 | |
| const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
 | |
| 
 | |
| int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
 | |
|                              int cpuid, void *opaque);
 | |
| int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
 | |
|                              int cpuid, void *opaque);
 | |
| 
 | |
| #ifdef TARGET_AARCH64
 | |
| int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
 | |
| int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
 | |
| void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
 | |
| #endif
 | |
| 
 | |
| target_ulong do_arm_semihosting(CPUARMState *env);
 | |
| void aarch64_sync_32_to_64(CPUARMState *env);
 | |
| void aarch64_sync_64_to_32(CPUARMState *env);
 | |
| 
 | |
| static inline bool is_a64(CPUARMState *env)
 | |
| {
 | |
|     return env->aarch64;
 | |
| }
 | |
| 
 | |
| /* you can call this signal handler from your SIGBUS and SIGSEGV
 | |
|    signal handlers to inform the virtual CPU of exceptions. non zero
 | |
|    is returned if the signal was handled by the virtual CPU.  */
 | |
| int cpu_arm_signal_handler(int host_signum, void *pinfo,
 | |
|                            void *puc);
 | |
| 
 | |
| /**
 | |
|  * pmccntr_sync
 | |
|  * @env: CPUARMState
 | |
|  *
 | |
|  * Synchronises the counter in the PMCCNTR. This must always be called twice,
 | |
|  * once before any action that might affect the timer and again afterwards.
 | |
|  * The function is used to swap the state of the register if required.
 | |
|  * This only happens when not in user mode (!CONFIG_USER_ONLY)
 | |
|  */
 | |
| void pmccntr_sync(CPUARMState *env);
 | |
| 
 | |
| /* SCTLR bit meanings. Several bits have been reused in newer
 | |
|  * versions of the architecture; in that case we define constants
 | |
|  * for both old and new bit meanings. Code which tests against those
 | |
|  * bits should probably check or otherwise arrange that the CPU
 | |
|  * is the architectural version it expects.
 | |
|  */
 | |
| #define SCTLR_M       (1U << 0)
 | |
| #define SCTLR_A       (1U << 1)
 | |
| #define SCTLR_C       (1U << 2)
 | |
| #define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
 | |
| #define SCTLR_SA      (1U << 3)
 | |
| #define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
 | |
| #define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
 | |
| #define SCTLR_CP15BEN (1U << 5) /* v7 onward */
 | |
| #define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
 | |
| #define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_ITD     (1U << 7) /* v8 onward */
 | |
| #define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_SED     (1U << 8) /* v8 onward */
 | |
| #define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_F       (1U << 10) /* up to v6 */
 | |
| #define SCTLR_SW      (1U << 10) /* v7 onward */
 | |
| #define SCTLR_Z       (1U << 11)
 | |
| #define SCTLR_I       (1U << 12)
 | |
| #define SCTLR_V       (1U << 13)
 | |
| #define SCTLR_RR      (1U << 14) /* up to v7 */
 | |
| #define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
 | |
| #define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
 | |
| #define SCTLR_nTWI    (1U << 16) /* v8 onward */
 | |
| #define SCTLR_HA      (1U << 17)
 | |
| #define SCTLR_BR      (1U << 17) /* PMSA only */
 | |
| #define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
 | |
| #define SCTLR_nTWE    (1U << 18) /* v8 onward */
 | |
| #define SCTLR_WXN     (1U << 19)
 | |
| #define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
 | |
| #define SCTLR_UWXN    (1U << 20) /* v7 onward */
 | |
| #define SCTLR_FI      (1U << 21)
 | |
| #define SCTLR_U       (1U << 22)
 | |
| #define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
 | |
| #define SCTLR_VE      (1U << 24) /* up to v7 */
 | |
| #define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_EE      (1U << 25)
 | |
| #define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
 | |
| #define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
 | |
| #define SCTLR_NMFI    (1U << 27)
 | |
| #define SCTLR_TRE     (1U << 28)
 | |
| #define SCTLR_AFE     (1U << 29)
 | |
| #define SCTLR_TE      (1U << 30)
 | |
| 
 | |
| #define CPTR_TCPAC    (1U << 31)
 | |
| #define CPTR_TTA      (1U << 20)
 | |
| #define CPTR_TFP      (1U << 10)
 | |
| #define CPTR_TZ       (1U << 8)   /* CPTR_EL2 */
 | |
| #define CPTR_EZ       (1U << 8)   /* CPTR_EL3 */
 | |
| 
 | |
| #define MDCR_EPMAD    (1U << 21)
 | |
| #define MDCR_EDAD     (1U << 20)
 | |
| #define MDCR_SPME     (1U << 17)
 | |
| #define MDCR_SDD      (1U << 16)
 | |
| #define MDCR_SPD      (3U << 14)
 | |
| #define MDCR_TDRA     (1U << 11)
 | |
| #define MDCR_TDOSA    (1U << 10)
 | |
| #define MDCR_TDA      (1U << 9)
 | |
| #define MDCR_TDE      (1U << 8)
 | |
| #define MDCR_HPME     (1U << 7)
 | |
| #define MDCR_TPM      (1U << 6)
 | |
| #define MDCR_TPMCR    (1U << 5)
 | |
| 
 | |
| /* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
 | |
| #define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
 | |
| 
 | |
| #define CPSR_M (0x1fU)
 | |
| #define CPSR_T (1U << 5)
 | |
| #define CPSR_F (1U << 6)
 | |
| #define CPSR_I (1U << 7)
 | |
| #define CPSR_A (1U << 8)
 | |
| #define CPSR_E (1U << 9)
 | |
| #define CPSR_IT_2_7 (0xfc00U)
 | |
| #define CPSR_GE (0xfU << 16)
 | |
| #define CPSR_IL (1U << 20)
 | |
| /* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
 | |
|  * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
 | |
|  * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
 | |
|  * where it is live state but not accessible to the AArch32 code.
 | |
|  */
 | |
| #define CPSR_RESERVED (0x7U << 21)
 | |
| #define CPSR_J (1U << 24)
 | |
| #define CPSR_IT_0_1 (3U << 25)
 | |
| #define CPSR_Q (1U << 27)
 | |
| #define CPSR_V (1U << 28)
 | |
| #define CPSR_C (1U << 29)
 | |
| #define CPSR_Z (1U << 30)
 | |
| #define CPSR_N (1U << 31)
 | |
| #define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
 | |
| #define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
 | |
| 
 | |
| #define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
 | |
| #define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
 | |
|     | CPSR_NZCV)
 | |
| /* Bits writable in user mode.  */
 | |
| #define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
 | |
| /* Execution state bits.  MRS read as zero, MSR writes ignored.  */
 | |
| #define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
 | |
| /* Mask of bits which may be set by exception return copying them from SPSR */
 | |
| #define CPSR_ERET_MASK (~CPSR_RESERVED)
 | |
| 
 | |
| /* Bit definitions for M profile XPSR. Most are the same as CPSR. */
 | |
| #define XPSR_EXCP 0x1ffU
 | |
| #define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
 | |
| #define XPSR_IT_2_7 CPSR_IT_2_7
 | |
| #define XPSR_GE CPSR_GE
 | |
| #define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
 | |
| #define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
 | |
| #define XPSR_IT_0_1 CPSR_IT_0_1
 | |
| #define XPSR_Q CPSR_Q
 | |
| #define XPSR_V CPSR_V
 | |
| #define XPSR_C CPSR_C
 | |
| #define XPSR_Z CPSR_Z
 | |
| #define XPSR_N CPSR_N
 | |
| #define XPSR_NZCV CPSR_NZCV
 | |
| #define XPSR_IT CPSR_IT
 | |
| 
 | |
| #define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
 | |
| #define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
 | |
| #define TTBCR_PD0    (1U << 4)
 | |
| #define TTBCR_PD1    (1U << 5)
 | |
| #define TTBCR_EPD0   (1U << 7)
 | |
| #define TTBCR_IRGN0  (3U << 8)
 | |
| #define TTBCR_ORGN0  (3U << 10)
 | |
| #define TTBCR_SH0    (3U << 12)
 | |
| #define TTBCR_T1SZ   (3U << 16)
 | |
| #define TTBCR_A1     (1U << 22)
 | |
| #define TTBCR_EPD1   (1U << 23)
 | |
| #define TTBCR_IRGN1  (3U << 24)
 | |
| #define TTBCR_ORGN1  (3U << 26)
 | |
| #define TTBCR_SH1    (1U << 28)
 | |
| #define TTBCR_EAE    (1U << 31)
 | |
| 
 | |
| /* Bit definitions for ARMv8 SPSR (PSTATE) format.
 | |
|  * Only these are valid when in AArch64 mode; in
 | |
|  * AArch32 mode SPSRs are basically CPSR-format.
 | |
|  */
 | |
| #define PSTATE_SP (1U)
 | |
| #define PSTATE_M (0xFU)
 | |
| #define PSTATE_nRW (1U << 4)
 | |
| #define PSTATE_F (1U << 6)
 | |
| #define PSTATE_I (1U << 7)
 | |
| #define PSTATE_A (1U << 8)
 | |
| #define PSTATE_D (1U << 9)
 | |
| #define PSTATE_IL (1U << 20)
 | |
| #define PSTATE_SS (1U << 21)
 | |
| #define PSTATE_V (1U << 28)
 | |
| #define PSTATE_C (1U << 29)
 | |
| #define PSTATE_Z (1U << 30)
 | |
| #define PSTATE_N (1U << 31)
 | |
| #define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
 | |
| #define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
 | |
| #define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
 | |
| /* Mode values for AArch64 */
 | |
| #define PSTATE_MODE_EL3h 13
 | |
| #define PSTATE_MODE_EL3t 12
 | |
| #define PSTATE_MODE_EL2h 9
 | |
| #define PSTATE_MODE_EL2t 8
 | |
| #define PSTATE_MODE_EL1h 5
 | |
| #define PSTATE_MODE_EL1t 4
 | |
| #define PSTATE_MODE_EL0t 0
 | |
| 
 | |
| /* Write a new value to v7m.exception, thus transitioning into or out
 | |
|  * of Handler mode; this may result in a change of active stack pointer.
 | |
|  */
 | |
| void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
 | |
| 
 | |
| /* Map EL and handler into a PSTATE_MODE.  */
 | |
| static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
 | |
| {
 | |
|     return (el << 2) | handler;
 | |
| }
 | |
| 
 | |
| /* Return the current PSTATE value. For the moment we don't support 32<->64 bit
 | |
|  * interprocessing, so we don't attempt to sync with the cpsr state used by
 | |
|  * the 32 bit decoder.
 | |
|  */
 | |
| static inline uint32_t pstate_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
| 
 | |
|     ZF = (env->ZF == 0);
 | |
|     return (env->NF & 0x80000000) | (ZF << 30)
 | |
|         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
 | |
|         | env->pstate | env->daif;
 | |
| }
 | |
| 
 | |
| static inline void pstate_write(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     env->ZF = (~val) & PSTATE_Z;
 | |
|     env->NF = val;
 | |
|     env->CF = (val >> 29) & 1;
 | |
|     env->VF = (val << 3) & 0x80000000;
 | |
|     env->daif = val & PSTATE_DAIF;
 | |
|     env->pstate = val & ~CACHED_PSTATE_BITS;
 | |
| }
 | |
| 
 | |
| /* Return the current CPSR value.  */
 | |
| uint32_t cpsr_read(CPUARMState *env);
 | |
| 
 | |
| typedef enum CPSRWriteType {
 | |
|     CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
 | |
|     CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
 | |
|     CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
 | |
|     CPSRWriteByGDBStub = 3,       /* from the GDB stub */
 | |
| } CPSRWriteType;
 | |
| 
 | |
| /* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
 | |
| void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
 | |
|                 CPSRWriteType write_type);
 | |
| 
 | |
| /* Return the current xPSR value.  */
 | |
| static inline uint32_t xpsr_read(CPUARMState *env)
 | |
| {
 | |
|     int ZF;
 | |
|     ZF = (env->ZF == 0);
 | |
|     return (env->NF & 0x80000000) | (ZF << 30)
 | |
|         | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
 | |
|         | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
 | |
|         | ((env->condexec_bits & 0xfc) << 8)
 | |
|         | env->v7m.exception;
 | |
| }
 | |
| 
 | |
| /* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
 | |
| static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     if (mask & XPSR_NZCV) {
 | |
|         env->ZF = (~val) & XPSR_Z;
 | |
|         env->NF = val;
 | |
|         env->CF = (val >> 29) & 1;
 | |
|         env->VF = (val << 3) & 0x80000000;
 | |
|     }
 | |
|     if (mask & XPSR_Q) {
 | |
|         env->QF = ((val & XPSR_Q) != 0);
 | |
|     }
 | |
|     if (mask & XPSR_T) {
 | |
|         env->thumb = ((val & XPSR_T) != 0);
 | |
|     }
 | |
|     if (mask & XPSR_IT_0_1) {
 | |
|         env->condexec_bits &= ~3;
 | |
|         env->condexec_bits |= (val >> 25) & 3;
 | |
|     }
 | |
|     if (mask & XPSR_IT_2_7) {
 | |
|         env->condexec_bits &= 3;
 | |
|         env->condexec_bits |= (val >> 8) & 0xfc;
 | |
|     }
 | |
|     if (mask & XPSR_EXCP) {
 | |
|         /* Note that this only happens on exception exit */
 | |
|         write_v7m_exception(env, val & XPSR_EXCP);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define HCR_VM        (1ULL << 0)
 | |
| #define HCR_SWIO      (1ULL << 1)
 | |
| #define HCR_PTW       (1ULL << 2)
 | |
| #define HCR_FMO       (1ULL << 3)
 | |
| #define HCR_IMO       (1ULL << 4)
 | |
| #define HCR_AMO       (1ULL << 5)
 | |
| #define HCR_VF        (1ULL << 6)
 | |
| #define HCR_VI        (1ULL << 7)
 | |
| #define HCR_VSE       (1ULL << 8)
 | |
| #define HCR_FB        (1ULL << 9)
 | |
| #define HCR_BSU_MASK  (3ULL << 10)
 | |
| #define HCR_DC        (1ULL << 12)
 | |
| #define HCR_TWI       (1ULL << 13)
 | |
| #define HCR_TWE       (1ULL << 14)
 | |
| #define HCR_TID0      (1ULL << 15)
 | |
| #define HCR_TID1      (1ULL << 16)
 | |
| #define HCR_TID2      (1ULL << 17)
 | |
| #define HCR_TID3      (1ULL << 18)
 | |
| #define HCR_TSC       (1ULL << 19)
 | |
| #define HCR_TIDCP     (1ULL << 20)
 | |
| #define HCR_TACR      (1ULL << 21)
 | |
| #define HCR_TSW       (1ULL << 22)
 | |
| #define HCR_TPC       (1ULL << 23)
 | |
| #define HCR_TPU       (1ULL << 24)
 | |
| #define HCR_TTLB      (1ULL << 25)
 | |
| #define HCR_TVM       (1ULL << 26)
 | |
| #define HCR_TGE       (1ULL << 27)
 | |
| #define HCR_TDZ       (1ULL << 28)
 | |
| #define HCR_HCD       (1ULL << 29)
 | |
| #define HCR_TRVM      (1ULL << 30)
 | |
| #define HCR_RW        (1ULL << 31)
 | |
| #define HCR_CD        (1ULL << 32)
 | |
| #define HCR_ID        (1ULL << 33)
 | |
| #define HCR_MASK      ((1ULL << 34) - 1)
 | |
| 
 | |
| #define SCR_NS                (1U << 0)
 | |
| #define SCR_IRQ               (1U << 1)
 | |
| #define SCR_FIQ               (1U << 2)
 | |
| #define SCR_EA                (1U << 3)
 | |
| #define SCR_FW                (1U << 4)
 | |
| #define SCR_AW                (1U << 5)
 | |
| #define SCR_NET               (1U << 6)
 | |
| #define SCR_SMD               (1U << 7)
 | |
| #define SCR_HCE               (1U << 8)
 | |
| #define SCR_SIF               (1U << 9)
 | |
| #define SCR_RW                (1U << 10)
 | |
| #define SCR_ST                (1U << 11)
 | |
| #define SCR_TWI               (1U << 12)
 | |
| #define SCR_TWE               (1U << 13)
 | |
| #define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
 | |
| #define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
 | |
| 
 | |
| /* Return the current FPSCR value.  */
 | |
| uint32_t vfp_get_fpscr(CPUARMState *env);
 | |
| void vfp_set_fpscr(CPUARMState *env, uint32_t val);
 | |
| 
 | |
| /* FPCR, Floating Point Control Register
 | |
|  * FPSR, Floating Poiht Status Register
 | |
|  *
 | |
|  * For A64 the FPSCR is split into two logically distinct registers,
 | |
|  * FPCR and FPSR. However since they still use non-overlapping bits
 | |
|  * we store the underlying state in fpscr and just mask on read/write.
 | |
|  */
 | |
| #define FPSR_MASK 0xf800009f
 | |
| #define FPCR_MASK 0x07f79f00
 | |
| 
 | |
| #define FPCR_FZ16   (1 << 19)   /* ARMv8.2+, FP16 flush-to-zero */
 | |
| #define FPCR_FZ     (1 << 24)   /* Flush-to-zero enable bit */
 | |
| #define FPCR_DN     (1 << 25)   /* Default NaN enable bit */
 | |
| 
 | |
| static inline uint32_t vfp_get_fpsr(CPUARMState *env)
 | |
| {
 | |
|     return vfp_get_fpscr(env) & FPSR_MASK;
 | |
| }
 | |
| 
 | |
| static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
 | |
|     vfp_set_fpscr(env, new_fpscr);
 | |
| }
 | |
| 
 | |
| static inline uint32_t vfp_get_fpcr(CPUARMState *env)
 | |
| {
 | |
|     return vfp_get_fpscr(env) & FPCR_MASK;
 | |
| }
 | |
| 
 | |
| static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
 | |
| {
 | |
|     uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
 | |
|     vfp_set_fpscr(env, new_fpscr);
 | |
| }
 | |
| 
 | |
| enum arm_cpu_mode {
 | |
|   ARM_CPU_MODE_USR = 0x10,
 | |
|   ARM_CPU_MODE_FIQ = 0x11,
 | |
|   ARM_CPU_MODE_IRQ = 0x12,
 | |
|   ARM_CPU_MODE_SVC = 0x13,
 | |
|   ARM_CPU_MODE_MON = 0x16,
 | |
|   ARM_CPU_MODE_ABT = 0x17,
 | |
|   ARM_CPU_MODE_HYP = 0x1a,
 | |
|   ARM_CPU_MODE_UND = 0x1b,
 | |
|   ARM_CPU_MODE_SYS = 0x1f
 | |
| };
 | |
| 
 | |
| /* VFP system registers.  */
 | |
| #define ARM_VFP_FPSID   0
 | |
| #define ARM_VFP_FPSCR   1
 | |
| #define ARM_VFP_MVFR2   5
 | |
| #define ARM_VFP_MVFR1   6
 | |
| #define ARM_VFP_MVFR0   7
 | |
| #define ARM_VFP_FPEXC   8
 | |
| #define ARM_VFP_FPINST  9
 | |
| #define ARM_VFP_FPINST2 10
 | |
| 
 | |
| /* iwMMXt coprocessor control registers.  */
 | |
| #define ARM_IWMMXT_wCID		0
 | |
| #define ARM_IWMMXT_wCon		1
 | |
| #define ARM_IWMMXT_wCSSF	2
 | |
| #define ARM_IWMMXT_wCASF	3
 | |
| #define ARM_IWMMXT_wCGR0	8
 | |
| #define ARM_IWMMXT_wCGR1	9
 | |
| #define ARM_IWMMXT_wCGR2	10
 | |
| #define ARM_IWMMXT_wCGR3	11
 | |
| 
 | |
| /* V7M CCR bits */
 | |
| FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
 | |
| FIELD(V7M_CCR, USERSETMPEND, 1, 1)
 | |
| FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
 | |
| FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
 | |
| FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
 | |
| FIELD(V7M_CCR, STKALIGN, 9, 1)
 | |
| FIELD(V7M_CCR, DC, 16, 1)
 | |
| FIELD(V7M_CCR, IC, 17, 1)
 | |
| 
 | |
| /* V7M SCR bits */
 | |
| FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
 | |
| FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
 | |
| FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
 | |
| FIELD(V7M_SCR, SEVONPEND, 4, 1)
 | |
| 
 | |
| /* V7M AIRCR bits */
 | |
| FIELD(V7M_AIRCR, VECTRESET, 0, 1)
 | |
| FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
 | |
| FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
 | |
| FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
 | |
| FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
 | |
| FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
 | |
| FIELD(V7M_AIRCR, PRIS, 14, 1)
 | |
| FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
 | |
| FIELD(V7M_AIRCR, VECTKEY, 16, 16)
 | |
| 
 | |
| /* V7M CFSR bits for MMFSR */
 | |
| FIELD(V7M_CFSR, IACCVIOL, 0, 1)
 | |
| FIELD(V7M_CFSR, DACCVIOL, 1, 1)
 | |
| FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
 | |
| FIELD(V7M_CFSR, MSTKERR, 4, 1)
 | |
| FIELD(V7M_CFSR, MLSPERR, 5, 1)
 | |
| FIELD(V7M_CFSR, MMARVALID, 7, 1)
 | |
| 
 | |
| /* V7M CFSR bits for BFSR */
 | |
| FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
 | |
| FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
 | |
| FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
 | |
| FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
 | |
| FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
 | |
| FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
 | |
| FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
 | |
| 
 | |
| /* V7M CFSR bits for UFSR */
 | |
| FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
 | |
| FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
 | |
| FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
 | |
| FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
 | |
| FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
 | |
| FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
 | |
| 
 | |
| /* V7M CFSR bit masks covering all of the subregister bits */
 | |
| FIELD(V7M_CFSR, MMFSR, 0, 8)
 | |
| FIELD(V7M_CFSR, BFSR, 8, 8)
 | |
| FIELD(V7M_CFSR, UFSR, 16, 16)
 | |
| 
 | |
| /* V7M HFSR bits */
 | |
| FIELD(V7M_HFSR, VECTTBL, 1, 1)
 | |
| FIELD(V7M_HFSR, FORCED, 30, 1)
 | |
| FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
 | |
| 
 | |
| /* V7M DFSR bits */
 | |
| FIELD(V7M_DFSR, HALTED, 0, 1)
 | |
| FIELD(V7M_DFSR, BKPT, 1, 1)
 | |
| FIELD(V7M_DFSR, DWTTRAP, 2, 1)
 | |
| FIELD(V7M_DFSR, VCATCH, 3, 1)
 | |
| FIELD(V7M_DFSR, EXTERNAL, 4, 1)
 | |
| 
 | |
| /* V7M SFSR bits */
 | |
| FIELD(V7M_SFSR, INVEP, 0, 1)
 | |
| FIELD(V7M_SFSR, INVIS, 1, 1)
 | |
| FIELD(V7M_SFSR, INVER, 2, 1)
 | |
| FIELD(V7M_SFSR, AUVIOL, 3, 1)
 | |
| FIELD(V7M_SFSR, INVTRAN, 4, 1)
 | |
| FIELD(V7M_SFSR, LSPERR, 5, 1)
 | |
| FIELD(V7M_SFSR, SFARVALID, 6, 1)
 | |
| FIELD(V7M_SFSR, LSERR, 7, 1)
 | |
| 
 | |
| /* v7M MPU_CTRL bits */
 | |
| FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
 | |
| FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
 | |
| FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
 | |
| 
 | |
| /* v7M CLIDR bits */
 | |
| FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
 | |
| FIELD(V7M_CLIDR, LOUIS, 21, 3)
 | |
| FIELD(V7M_CLIDR, LOC, 24, 3)
 | |
| FIELD(V7M_CLIDR, LOUU, 27, 3)
 | |
| FIELD(V7M_CLIDR, ICB, 30, 2)
 | |
| 
 | |
| FIELD(V7M_CSSELR, IND, 0, 1)
 | |
| FIELD(V7M_CSSELR, LEVEL, 1, 3)
 | |
| /* We use the combination of InD and Level to index into cpu->ccsidr[];
 | |
|  * define a mask for this and check that it doesn't permit running off
 | |
|  * the end of the array.
 | |
|  */
 | |
| FIELD(V7M_CSSELR, INDEX, 0, 4)
 | |
| 
 | |
| QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
 | |
| 
 | |
| /* If adding a feature bit which corresponds to a Linux ELF
 | |
|  * HWCAP bit, remember to update the feature-bit-to-hwcap
 | |
|  * mapping in linux-user/elfload.c:get_elf_hwcap().
 | |
|  */
 | |
| enum arm_features {
 | |
|     ARM_FEATURE_VFP,
 | |
|     ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
 | |
|     ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
 | |
|     ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
 | |
|     ARM_FEATURE_V6,
 | |
|     ARM_FEATURE_V6K,
 | |
|     ARM_FEATURE_V7,
 | |
|     ARM_FEATURE_THUMB2,
 | |
|     ARM_FEATURE_PMSA,   /* no MMU; may have Memory Protection Unit */
 | |
|     ARM_FEATURE_VFP3,
 | |
|     ARM_FEATURE_VFP_FP16,
 | |
|     ARM_FEATURE_NEON,
 | |
|     ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
 | |
|     ARM_FEATURE_M, /* Microcontroller profile.  */
 | |
|     ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
 | |
|     ARM_FEATURE_THUMB2EE,
 | |
|     ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
 | |
|     ARM_FEATURE_V4T,
 | |
|     ARM_FEATURE_V5,
 | |
|     ARM_FEATURE_STRONGARM,
 | |
|     ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
 | |
|     ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
 | |
|     ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
 | |
|     ARM_FEATURE_GENERIC_TIMER,
 | |
|     ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
 | |
|     ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
 | |
|     ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
 | |
|     ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
 | |
|     ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
 | |
|     ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
 | |
|     ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
 | |
|     ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
 | |
|     ARM_FEATURE_V8,
 | |
|     ARM_FEATURE_AARCH64, /* supports 64 bit mode */
 | |
|     ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_CBAR, /* has cp15 CBAR */
 | |
|     ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
 | |
|     ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
 | |
|     ARM_FEATURE_EL2, /* has EL2 Virtualization support */
 | |
|     ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
 | |
|     ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
 | |
|     ARM_FEATURE_PMU, /* has PMU support */
 | |
|     ARM_FEATURE_VBAR, /* has cp15 VBAR */
 | |
|     ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
 | |
|     ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
 | |
|     ARM_FEATURE_SVE, /* has Scalable Vector Extension */
 | |
|     ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
 | |
|     ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
 | |
|     ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
 | |
|     ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
 | |
|     ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions.  */
 | |
| };
 | |
| 
 | |
| static inline int arm_feature(CPUARMState *env, int feature)
 | |
| {
 | |
|     return (env->features & (1ULL << feature)) != 0;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* Return true if exception levels below EL3 are in secure state,
 | |
|  * or would be following an exception return to that level.
 | |
|  * Unlike arm_is_secure() (which is always a question about the
 | |
|  * _current_ state of the CPU) this doesn't care about the current
 | |
|  * EL or mode.
 | |
|  */
 | |
| static inline bool arm_is_secure_below_el3(CPUARMState *env)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         return !(env->cp15.scr_el3 & SCR_NS);
 | |
|     } else {
 | |
|         /* If EL3 is not supported then the secure state is implementation
 | |
|          * defined, in which case QEMU defaults to non-secure.
 | |
|          */
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
 | |
| static inline bool arm_is_el3_or_mon(CPUARMState *env)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
 | |
|             /* CPU currently in AArch64 state and EL3 */
 | |
|             return true;
 | |
|         } else if (!is_a64(env) &&
 | |
|                 (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
 | |
|             /* CPU currently in AArch32 state and monitor mode */
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* Return true if the processor is in secure state */
 | |
| static inline bool arm_is_secure(CPUARMState *env)
 | |
| {
 | |
|     if (arm_is_el3_or_mon(env)) {
 | |
|         return true;
 | |
|     }
 | |
|     return arm_is_secure_below_el3(env);
 | |
| }
 | |
| 
 | |
| #else
 | |
| static inline bool arm_is_secure_below_el3(CPUARMState *env)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static inline bool arm_is_secure(CPUARMState *env)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Return true if the specified exception level is running in AArch64 state. */
 | |
| static inline bool arm_el_is_aa64(CPUARMState *env, int el)
 | |
| {
 | |
|     /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
 | |
|      * and if we're not in EL0 then the state of EL0 isn't well defined.)
 | |
|      */
 | |
|     assert(el >= 1 && el <= 3);
 | |
|     bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
 | |
| 
 | |
|     /* The highest exception level is always at the maximum supported
 | |
|      * register width, and then lower levels have a register width controlled
 | |
|      * by bits in the SCR or HCR registers.
 | |
|      */
 | |
|     if (el == 3) {
 | |
|         return aa64;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
 | |
|     }
 | |
| 
 | |
|     if (el == 2) {
 | |
|         return aa64;
 | |
|     }
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
 | |
|         aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
 | |
|     }
 | |
| 
 | |
|     return aa64;
 | |
| }
 | |
| 
 | |
| /* Function for determing whether guest cp register reads and writes should
 | |
|  * access the secure or non-secure bank of a cp register.  When EL3 is
 | |
|  * operating in AArch32 state, the NS-bit determines whether the secure
 | |
|  * instance of a cp register should be used. When EL3 is AArch64 (or if
 | |
|  * it doesn't exist at all) then there is no register banking, and all
 | |
|  * accesses are to the non-secure version.
 | |
|  */
 | |
| static inline bool access_secure_reg(CPUARMState *env)
 | |
| {
 | |
|     bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|                 !arm_el_is_aa64(env, 3) &&
 | |
|                 !(env->cp15.scr_el3 & SCR_NS));
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| /* Macros for accessing a specified CP register bank */
 | |
| #define A32_BANKED_REG_GET(_env, _regname, _secure)    \
 | |
|     ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
 | |
| 
 | |
| #define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
 | |
|     do {                                                \
 | |
|         if (_secure) {                                   \
 | |
|             (_env)->cp15._regname##_s = (_val);            \
 | |
|         } else {                                        \
 | |
|             (_env)->cp15._regname##_ns = (_val);           \
 | |
|         }                                               \
 | |
|     } while (0)
 | |
| 
 | |
| /* Macros for automatically accessing a specific CP register bank depending on
 | |
|  * the current secure state of the system.  These macros are not intended for
 | |
|  * supporting instruction translation reads/writes as these are dependent
 | |
|  * solely on the SCR.NS bit and not the mode.
 | |
|  */
 | |
| #define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
 | |
|     A32_BANKED_REG_GET((_env), _regname,                \
 | |
|                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
 | |
| 
 | |
| #define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
 | |
|     A32_BANKED_REG_SET((_env), _regname,                                    \
 | |
|                        (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
 | |
|                        (_val))
 | |
| 
 | |
| void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
 | |
| uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
 | |
|                                  uint32_t cur_el, bool secure);
 | |
| 
 | |
| /* Interface between CPU and Interrupt controller.  */
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| bool armv7m_nvic_can_take_pending_exception(void *opaque);
 | |
| #else
 | |
| static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
 | |
| {
 | |
|     return true;
 | |
| }
 | |
| #endif
 | |
| /**
 | |
|  * armv7m_nvic_set_pending: mark the specified exception as pending
 | |
|  * @opaque: the NVIC
 | |
|  * @irq: the exception number to mark pending
 | |
|  * @secure: false for non-banked exceptions or for the nonsecure
 | |
|  * version of a banked exception, true for the secure version of a banked
 | |
|  * exception.
 | |
|  *
 | |
|  * Marks the specified exception as pending. Note that we will assert()
 | |
|  * if @secure is true and @irq does not specify one of the fixed set
 | |
|  * of architecturally banked exceptions.
 | |
|  */
 | |
| void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
 | |
| /**
 | |
|  * armv7m_nvic_set_pending_derived: mark this derived exception as pending
 | |
|  * @opaque: the NVIC
 | |
|  * @irq: the exception number to mark pending
 | |
|  * @secure: false for non-banked exceptions or for the nonsecure
 | |
|  * version of a banked exception, true for the secure version of a banked
 | |
|  * exception.
 | |
|  *
 | |
|  * Similar to armv7m_nvic_set_pending(), but specifically for derived
 | |
|  * exceptions (exceptions generated in the course of trying to take
 | |
|  * a different exception).
 | |
|  */
 | |
| void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
 | |
| /**
 | |
|  * armv7m_nvic_get_pending_irq_info: return highest priority pending
 | |
|  *    exception, and whether it targets Secure state
 | |
|  * @opaque: the NVIC
 | |
|  * @pirq: set to pending exception number
 | |
|  * @ptargets_secure: set to whether pending exception targets Secure
 | |
|  *
 | |
|  * This function writes the number of the highest priority pending
 | |
|  * exception (the one which would be made active by
 | |
|  * armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
 | |
|  * to true if the current highest priority pending exception should
 | |
|  * be taken to Secure state, false for NS.
 | |
|  */
 | |
| void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
 | |
|                                       bool *ptargets_secure);
 | |
| /**
 | |
|  * armv7m_nvic_acknowledge_irq: make highest priority pending exception active
 | |
|  * @opaque: the NVIC
 | |
|  *
 | |
|  * Move the current highest priority pending exception from the pending
 | |
|  * state to the active state, and update v7m.exception to indicate that
 | |
|  * it is the exception currently being handled.
 | |
|  */
 | |
| void armv7m_nvic_acknowledge_irq(void *opaque);
 | |
| /**
 | |
|  * armv7m_nvic_complete_irq: complete specified interrupt or exception
 | |
|  * @opaque: the NVIC
 | |
|  * @irq: the exception number to complete
 | |
|  * @secure: true if this exception was secure
 | |
|  *
 | |
|  * Returns: -1 if the irq was not active
 | |
|  *           1 if completing this irq brought us back to base (no active irqs)
 | |
|  *           0 if there is still an irq active after this one was completed
 | |
|  * (Ignoring -1, this is the same as the RETTOBASE value before completion.)
 | |
|  */
 | |
| int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
 | |
| /**
 | |
|  * armv7m_nvic_raw_execution_priority: return the raw execution priority
 | |
|  * @opaque: the NVIC
 | |
|  *
 | |
|  * Returns: the raw execution priority as defined by the v8M architecture.
 | |
|  * This is the execution priority minus the effects of AIRCR.PRIS,
 | |
|  * and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
 | |
|  * (v8M ARM ARM I_PKLD.)
 | |
|  */
 | |
| int armv7m_nvic_raw_execution_priority(void *opaque);
 | |
| /**
 | |
|  * armv7m_nvic_neg_prio_requested: return true if the requested execution
 | |
|  * priority is negative for the specified security state.
 | |
|  * @opaque: the NVIC
 | |
|  * @secure: the security state to test
 | |
|  * This corresponds to the pseudocode IsReqExecPriNeg().
 | |
|  */
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
 | |
| #else
 | |
| static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
 | |
| {
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* Interface for defining coprocessor registers.
 | |
|  * Registers are defined in tables of arm_cp_reginfo structs
 | |
|  * which are passed to define_arm_cp_regs().
 | |
|  */
 | |
| 
 | |
| /* When looking up a coprocessor register we look for it
 | |
|  * via an integer which encodes all of:
 | |
|  *  coprocessor number
 | |
|  *  Crn, Crm, opc1, opc2 fields
 | |
|  *  32 or 64 bit register (ie is it accessed via MRC/MCR
 | |
|  *    or via MRRC/MCRR?)
 | |
|  *  non-secure/secure bank (AArch32 only)
 | |
|  * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
 | |
|  * (In this case crn and opc2 should be zero.)
 | |
|  * For AArch64, there is no 32/64 bit size distinction;
 | |
|  * instead all registers have a 2 bit op0, 3 bit op1 and op2,
 | |
|  * and 4 bit CRn and CRm. The encoding patterns are chosen
 | |
|  * to be easy to convert to and from the KVM encodings, and also
 | |
|  * so that the hashtable can contain both AArch32 and AArch64
 | |
|  * registers (to allow for interprocessing where we might run
 | |
|  * 32 bit code on a 64 bit core).
 | |
|  */
 | |
| /* This bit is private to our hashtable cpreg; in KVM register
 | |
|  * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
 | |
|  * in the upper bits of the 64 bit ID.
 | |
|  */
 | |
| #define CP_REG_AA64_SHIFT 28
 | |
| #define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
 | |
| 
 | |
| /* To enable banking of coprocessor registers depending on ns-bit we
 | |
|  * add a bit to distinguish between secure and non-secure cpregs in the
 | |
|  * hashtable.
 | |
|  */
 | |
| #define CP_REG_NS_SHIFT 29
 | |
| #define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
 | |
| 
 | |
| #define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
 | |
|     ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
 | |
|      ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
 | |
| 
 | |
| #define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
 | |
|     (CP_REG_AA64_MASK |                                 \
 | |
|      ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
 | |
|      ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
 | |
|      ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
 | |
|      ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
 | |
|      ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
 | |
|      ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
 | |
| 
 | |
| /* Convert a full 64 bit KVM register ID to the truncated 32 bit
 | |
|  * version used as a key for the coprocessor register hashtable
 | |
|  */
 | |
| static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
 | |
| {
 | |
|     uint32_t cpregid = kvmid;
 | |
|     if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
 | |
|         cpregid |= CP_REG_AA64_MASK;
 | |
|     } else {
 | |
|         if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
 | |
|             cpregid |= (1 << 15);
 | |
|         }
 | |
| 
 | |
|         /* KVM is always non-secure so add the NS flag on AArch32 register
 | |
|          * entries.
 | |
|          */
 | |
|          cpregid |= 1 << CP_REG_NS_SHIFT;
 | |
|     }
 | |
|     return cpregid;
 | |
| }
 | |
| 
 | |
| /* Convert a truncated 32 bit hashtable key into the full
 | |
|  * 64 bit KVM register ID.
 | |
|  */
 | |
| static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
 | |
| {
 | |
|     uint64_t kvmid;
 | |
| 
 | |
|     if (cpregid & CP_REG_AA64_MASK) {
 | |
|         kvmid = cpregid & ~CP_REG_AA64_MASK;
 | |
|         kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
 | |
|     } else {
 | |
|         kvmid = cpregid & ~(1 << 15);
 | |
|         if (cpregid & (1 << 15)) {
 | |
|             kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
 | |
|         } else {
 | |
|             kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
 | |
|         }
 | |
|     }
 | |
|     return kvmid;
 | |
| }
 | |
| 
 | |
| /* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
 | |
|  * special-behaviour cp reg and bits [11..8] indicate what behaviour
 | |
|  * it has. Otherwise it is a simple cp reg, where CONST indicates that
 | |
|  * TCG can assume the value to be constant (ie load at translate time)
 | |
|  * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
 | |
|  * indicates that the TB should not be ended after a write to this register
 | |
|  * (the default is that the TB ends after cp writes). OVERRIDE permits
 | |
|  * a register definition to override a previous definition for the
 | |
|  * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
 | |
|  * old must have the OVERRIDE bit set.
 | |
|  * ALIAS indicates that this register is an alias view of some underlying
 | |
|  * state which is also visible via another register, and that the other
 | |
|  * register is handling migration and reset; registers marked ALIAS will not be
 | |
|  * migrated but may have their state set by syncing of register state from KVM.
 | |
|  * NO_RAW indicates that this register has no underlying state and does not
 | |
|  * support raw access for state saving/loading; it will not be used for either
 | |
|  * migration or KVM state synchronization. (Typically this is for "registers"
 | |
|  * which are actually used as instructions for cache maintenance and so on.)
 | |
|  * IO indicates that this register does I/O and therefore its accesses
 | |
|  * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
 | |
|  * registers which implement clocks or timers require this.
 | |
|  */
 | |
| #define ARM_CP_SPECIAL           0x0001
 | |
| #define ARM_CP_CONST             0x0002
 | |
| #define ARM_CP_64BIT             0x0004
 | |
| #define ARM_CP_SUPPRESS_TB_END   0x0008
 | |
| #define ARM_CP_OVERRIDE          0x0010
 | |
| #define ARM_CP_ALIAS             0x0020
 | |
| #define ARM_CP_IO                0x0040
 | |
| #define ARM_CP_NO_RAW            0x0080
 | |
| #define ARM_CP_NOP               (ARM_CP_SPECIAL | 0x0100)
 | |
| #define ARM_CP_WFI               (ARM_CP_SPECIAL | 0x0200)
 | |
| #define ARM_CP_NZCV              (ARM_CP_SPECIAL | 0x0300)
 | |
| #define ARM_CP_CURRENTEL         (ARM_CP_SPECIAL | 0x0400)
 | |
| #define ARM_CP_DC_ZVA            (ARM_CP_SPECIAL | 0x0500)
 | |
| #define ARM_LAST_SPECIAL         ARM_CP_DC_ZVA
 | |
| #define ARM_CP_FPU               0x1000
 | |
| #define ARM_CP_SVE               0x2000
 | |
| #define ARM_CP_NO_GDB            0x4000
 | |
| /* Used only as a terminator for ARMCPRegInfo lists */
 | |
| #define ARM_CP_SENTINEL          0xffff
 | |
| /* Mask of only the flag bits in a type field */
 | |
| #define ARM_CP_FLAG_MASK         0x70ff
 | |
| 
 | |
| /* Valid values for ARMCPRegInfo state field, indicating which of
 | |
|  * the AArch32 and AArch64 execution states this register is visible in.
 | |
|  * If the reginfo doesn't explicitly specify then it is AArch32 only.
 | |
|  * If the reginfo is declared to be visible in both states then a second
 | |
|  * reginfo is synthesised for the AArch32 view of the AArch64 register,
 | |
|  * such that the AArch32 view is the lower 32 bits of the AArch64 one.
 | |
|  * Note that we rely on the values of these enums as we iterate through
 | |
|  * the various states in some places.
 | |
|  */
 | |
| enum {
 | |
|     ARM_CP_STATE_AA32 = 0,
 | |
|     ARM_CP_STATE_AA64 = 1,
 | |
|     ARM_CP_STATE_BOTH = 2,
 | |
| };
 | |
| 
 | |
| /* ARM CP register secure state flags.  These flags identify security state
 | |
|  * attributes for a given CP register entry.
 | |
|  * The existence of both or neither secure and non-secure flags indicates that
 | |
|  * the register has both a secure and non-secure hash entry.  A single one of
 | |
|  * these flags causes the register to only be hashed for the specified
 | |
|  * security state.
 | |
|  * Although definitions may have any combination of the S/NS bits, each
 | |
|  * registered entry will only have one to identify whether the entry is secure
 | |
|  * or non-secure.
 | |
|  */
 | |
| enum {
 | |
|     ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
 | |
|     ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
 | |
| };
 | |
| 
 | |
| /* Return true if cptype is a valid type field. This is used to try to
 | |
|  * catch errors where the sentinel has been accidentally left off the end
 | |
|  * of a list of registers.
 | |
|  */
 | |
| static inline bool cptype_valid(int cptype)
 | |
| {
 | |
|     return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
 | |
|         || ((cptype & ARM_CP_SPECIAL) &&
 | |
|             ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
 | |
| }
 | |
| 
 | |
| /* Access rights:
 | |
|  * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
 | |
|  * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
 | |
|  * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
 | |
|  * (ie any of the privileged modes in Secure state, or Monitor mode).
 | |
|  * If a register is accessible in one privilege level it's always accessible
 | |
|  * in higher privilege levels too. Since "Secure PL1" also follows this rule
 | |
|  * (ie anything visible in PL2 is visible in S-PL1, some things are only
 | |
|  * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
 | |
|  * terminology a little and call this PL3.
 | |
|  * In AArch64 things are somewhat simpler as the PLx bits line up exactly
 | |
|  * with the ELx exception levels.
 | |
|  *
 | |
|  * If access permissions for a register are more complex than can be
 | |
|  * described with these bits, then use a laxer set of restrictions, and
 | |
|  * do the more restrictive/complex check inside a helper function.
 | |
|  */
 | |
| #define PL3_R 0x80
 | |
| #define PL3_W 0x40
 | |
| #define PL2_R (0x20 | PL3_R)
 | |
| #define PL2_W (0x10 | PL3_W)
 | |
| #define PL1_R (0x08 | PL2_R)
 | |
| #define PL1_W (0x04 | PL2_W)
 | |
| #define PL0_R (0x02 | PL1_R)
 | |
| #define PL0_W (0x01 | PL1_W)
 | |
| 
 | |
| #define PL3_RW (PL3_R | PL3_W)
 | |
| #define PL2_RW (PL2_R | PL2_W)
 | |
| #define PL1_RW (PL1_R | PL1_W)
 | |
| #define PL0_RW (PL0_R | PL0_W)
 | |
| 
 | |
| /* Return the highest implemented Exception Level */
 | |
| static inline int arm_highest_el(CPUARMState *env)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         return 3;
 | |
|     }
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         return 2;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /* Return true if a v7M CPU is in Handler mode */
 | |
| static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
 | |
| {
 | |
|     return env->v7m.exception != 0;
 | |
| }
 | |
| 
 | |
| /* Return the current Exception Level (as per ARMv8; note that this differs
 | |
|  * from the ARMv7 Privilege Level).
 | |
|  */
 | |
| static inline int arm_current_el(CPUARMState *env)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         return arm_v7m_is_handler_mode(env) ||
 | |
|             !(env->v7m.control[env->v7m.secure] & 1);
 | |
|     }
 | |
| 
 | |
|     if (is_a64(env)) {
 | |
|         return extract32(env->pstate, 2, 2);
 | |
|     }
 | |
| 
 | |
|     switch (env->uncached_cpsr & 0x1f) {
 | |
|     case ARM_CPU_MODE_USR:
 | |
|         return 0;
 | |
|     case ARM_CPU_MODE_HYP:
 | |
|         return 2;
 | |
|     case ARM_CPU_MODE_MON:
 | |
|         return 3;
 | |
|     default:
 | |
|         if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
 | |
|             /* If EL3 is 32-bit then all secure privileged modes run in
 | |
|              * EL3
 | |
|              */
 | |
|             return 3;
 | |
|         }
 | |
| 
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct ARMCPRegInfo ARMCPRegInfo;
 | |
| 
 | |
| typedef enum CPAccessResult {
 | |
|     /* Access is permitted */
 | |
|     CP_ACCESS_OK = 0,
 | |
|     /* Access fails due to a configurable trap or enable which would
 | |
|      * result in a categorized exception syndrome giving information about
 | |
|      * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
 | |
|      * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
 | |
|      * PL1 if in EL0, otherwise to the current EL).
 | |
|      */
 | |
|     CP_ACCESS_TRAP = 1,
 | |
|     /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
 | |
|      * Note that this is not a catch-all case -- the set of cases which may
 | |
|      * result in this failure is specifically defined by the architecture.
 | |
|      */
 | |
|     CP_ACCESS_TRAP_UNCATEGORIZED = 2,
 | |
|     /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
 | |
|     CP_ACCESS_TRAP_EL2 = 3,
 | |
|     CP_ACCESS_TRAP_EL3 = 4,
 | |
|     /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
 | |
|     CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
 | |
|     CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
 | |
|     /* Access fails and results in an exception syndrome for an FP access,
 | |
|      * trapped directly to EL2 or EL3
 | |
|      */
 | |
|     CP_ACCESS_TRAP_FP_EL2 = 7,
 | |
|     CP_ACCESS_TRAP_FP_EL3 = 8,
 | |
| } CPAccessResult;
 | |
| 
 | |
| /* Access functions for coprocessor registers. These cannot fail and
 | |
|  * may not raise exceptions.
 | |
|  */
 | |
| typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
 | |
|                        uint64_t value);
 | |
| /* Access permission check functions for coprocessor registers. */
 | |
| typedef CPAccessResult CPAccessFn(CPUARMState *env,
 | |
|                                   const ARMCPRegInfo *opaque,
 | |
|                                   bool isread);
 | |
| /* Hook function for register reset */
 | |
| typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| 
 | |
| #define CP_ANY 0xff
 | |
| 
 | |
| /* Definition of an ARM coprocessor register */
 | |
| struct ARMCPRegInfo {
 | |
|     /* Name of register (useful mainly for debugging, need not be unique) */
 | |
|     const char *name;
 | |
|     /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
 | |
|      * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
 | |
|      * 'wildcard' field -- any value of that field in the MRC/MCR insn
 | |
|      * will be decoded to this register. The register read and write
 | |
|      * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
 | |
|      * used by the program, so it is possible to register a wildcard and
 | |
|      * then behave differently on read/write if necessary.
 | |
|      * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
 | |
|      * must both be zero.
 | |
|      * For AArch64-visible registers, opc0 is also used.
 | |
|      * Since there are no "coprocessors" in AArch64, cp is purely used as a
 | |
|      * way to distinguish (for KVM's benefit) guest-visible system registers
 | |
|      * from demuxed ones provided to preserve the "no side effects on
 | |
|      * KVM register read/write from QEMU" semantics. cp==0x13 is guest
 | |
|      * visible (to match KVM's encoding); cp==0 will be converted to
 | |
|      * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
 | |
|      */
 | |
|     uint8_t cp;
 | |
|     uint8_t crn;
 | |
|     uint8_t crm;
 | |
|     uint8_t opc0;
 | |
|     uint8_t opc1;
 | |
|     uint8_t opc2;
 | |
|     /* Execution state in which this register is visible: ARM_CP_STATE_* */
 | |
|     int state;
 | |
|     /* Register type: ARM_CP_* bits/values */
 | |
|     int type;
 | |
|     /* Access rights: PL*_[RW] */
 | |
|     int access;
 | |
|     /* Security state: ARM_CP_SECSTATE_* bits/values */
 | |
|     int secure;
 | |
|     /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
 | |
|      * this register was defined: can be used to hand data through to the
 | |
|      * register read/write functions, since they are passed the ARMCPRegInfo*.
 | |
|      */
 | |
|     void *opaque;
 | |
|     /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
 | |
|      * fieldoffset is non-zero, the reset value of the register.
 | |
|      */
 | |
|     uint64_t resetvalue;
 | |
|     /* Offset of the field in CPUARMState for this register.
 | |
|      *
 | |
|      * This is not needed if either:
 | |
|      *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
 | |
|      *  2. both readfn and writefn are specified
 | |
|      */
 | |
|     ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
 | |
| 
 | |
|     /* Offsets of the secure and non-secure fields in CPUARMState for the
 | |
|      * register if it is banked.  These fields are only used during the static
 | |
|      * registration of a register.  During hashing the bank associated
 | |
|      * with a given security state is copied to fieldoffset which is used from
 | |
|      * there on out.
 | |
|      *
 | |
|      * It is expected that register definitions use either fieldoffset or
 | |
|      * bank_fieldoffsets in the definition but not both.  It is also expected
 | |
|      * that both bank offsets are set when defining a banked register.  This
 | |
|      * use indicates that a register is banked.
 | |
|      */
 | |
|     ptrdiff_t bank_fieldoffsets[2];
 | |
| 
 | |
|     /* Function for making any access checks for this register in addition to
 | |
|      * those specified by the 'access' permissions bits. If NULL, no extra
 | |
|      * checks required. The access check is performed at runtime, not at
 | |
|      * translate time.
 | |
|      */
 | |
|     CPAccessFn *accessfn;
 | |
|     /* Function for handling reads of this register. If NULL, then reads
 | |
|      * will be done by loading from the offset into CPUARMState specified
 | |
|      * by fieldoffset.
 | |
|      */
 | |
|     CPReadFn *readfn;
 | |
|     /* Function for handling writes of this register. If NULL, then writes
 | |
|      * will be done by writing to the offset into CPUARMState specified
 | |
|      * by fieldoffset.
 | |
|      */
 | |
|     CPWriteFn *writefn;
 | |
|     /* Function for doing a "raw" read; used when we need to copy
 | |
|      * coprocessor state to the kernel for KVM or out for
 | |
|      * migration. This only needs to be provided if there is also a
 | |
|      * readfn and it has side effects (for instance clear-on-read bits).
 | |
|      */
 | |
|     CPReadFn *raw_readfn;
 | |
|     /* Function for doing a "raw" write; used when we need to copy KVM
 | |
|      * kernel coprocessor state into userspace, or for inbound
 | |
|      * migration. This only needs to be provided if there is also a
 | |
|      * writefn and it masks out "unwritable" bits or has write-one-to-clear
 | |
|      * or similar behaviour.
 | |
|      */
 | |
|     CPWriteFn *raw_writefn;
 | |
|     /* Function for resetting the register. If NULL, then reset will be done
 | |
|      * by writing resetvalue to the field specified in fieldoffset. If
 | |
|      * fieldoffset is 0 then no reset will be done.
 | |
|      */
 | |
|     CPResetFn *resetfn;
 | |
| };
 | |
| 
 | |
| /* Macros which are lvalues for the field in CPUARMState for the
 | |
|  * ARMCPRegInfo *ri.
 | |
|  */
 | |
| #define CPREG_FIELD32(env, ri) \
 | |
|     (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
 | |
| #define CPREG_FIELD64(env, ri) \
 | |
|     (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
 | |
| 
 | |
| #define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
 | |
| 
 | |
| void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
 | |
|                                     const ARMCPRegInfo *regs, void *opaque);
 | |
| void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
 | |
|                                        const ARMCPRegInfo *regs, void *opaque);
 | |
| static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
 | |
| {
 | |
|     define_arm_cp_regs_with_opaque(cpu, regs, 0);
 | |
| }
 | |
| static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
 | |
| {
 | |
|     define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
 | |
| }
 | |
| const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
 | |
| 
 | |
| /* CPWriteFn that can be used to implement writes-ignored behaviour */
 | |
| void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
 | |
|                          uint64_t value);
 | |
| /* CPReadFn that can be used for read-as-zero behaviour */
 | |
| uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
 | |
| 
 | |
| /* CPResetFn that does nothing, for use if no reset is required even
 | |
|  * if fieldoffset is non zero.
 | |
|  */
 | |
| void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
 | |
| 
 | |
| /* Return true if this reginfo struct's field in the cpu state struct
 | |
|  * is 64 bits wide.
 | |
|  */
 | |
| static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
 | |
| {
 | |
|     return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
 | |
| }
 | |
| 
 | |
| static inline bool cp_access_ok(int current_el,
 | |
|                                 const ARMCPRegInfo *ri, int isread)
 | |
| {
 | |
|     return (ri->access >> ((current_el * 2) + isread)) & 1;
 | |
| }
 | |
| 
 | |
| /* Raw read of a coprocessor register (as needed for migration, etc) */
 | |
| uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
 | |
| 
 | |
| /**
 | |
|  * write_list_to_cpustate
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * For each register listed in the ARMCPU cpreg_indexes list, write
 | |
|  * its value from the cpreg_values list into the ARMCPUState structure.
 | |
|  * This updates TCG's working data structures from KVM data or
 | |
|  * from incoming migration state.
 | |
|  *
 | |
|  * Returns: true if all register values were updated correctly,
 | |
|  * false if some register was unknown or could not be written.
 | |
|  * Note that we do not stop early on failure -- we will attempt
 | |
|  * writing all registers in the list.
 | |
|  */
 | |
| bool write_list_to_cpustate(ARMCPU *cpu);
 | |
| 
 | |
| /**
 | |
|  * write_cpustate_to_list:
 | |
|  * @cpu: ARMCPU
 | |
|  *
 | |
|  * For each register listed in the ARMCPU cpreg_indexes list, write
 | |
|  * its value from the ARMCPUState structure into the cpreg_values list.
 | |
|  * This is used to copy info from TCG's working data structures into
 | |
|  * KVM or for outbound migration.
 | |
|  *
 | |
|  * Returns: true if all register values were read correctly,
 | |
|  * false if some register was unknown or could not be read.
 | |
|  * Note that we do not stop early on failure -- we will attempt
 | |
|  * reading all registers in the list.
 | |
|  */
 | |
| bool write_cpustate_to_list(ARMCPU *cpu);
 | |
| 
 | |
| #define ARM_CPUID_TI915T      0x54029152
 | |
| #define ARM_CPUID_TI925T      0x54029252
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #define TARGET_PAGE_BITS 12
 | |
| #else
 | |
| /* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
 | |
|  * have to support 1K tiny pages.
 | |
|  */
 | |
| #define TARGET_PAGE_BITS_VARY
 | |
| #define TARGET_PAGE_BITS_MIN 10
 | |
| #endif
 | |
| 
 | |
| #if defined(TARGET_AARCH64)
 | |
| #  define TARGET_PHYS_ADDR_SPACE_BITS 48
 | |
| #  define TARGET_VIRT_ADDR_SPACE_BITS 64
 | |
| #else
 | |
| #  define TARGET_PHYS_ADDR_SPACE_BITS 40
 | |
| #  define TARGET_VIRT_ADDR_SPACE_BITS 32
 | |
| #endif
 | |
| 
 | |
| static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
 | |
|                                      unsigned int target_el)
 | |
| {
 | |
|     CPUARMState *env = cs->env_ptr;
 | |
|     unsigned int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     bool pstate_unmasked;
 | |
|     int8_t unmasked = 0;
 | |
| 
 | |
|     /* Don't take exceptions if they target a lower EL.
 | |
|      * This check should catch any exceptions that would not be taken but left
 | |
|      * pending.
 | |
|      */
 | |
|     if (cur_el > target_el) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     switch (excp_idx) {
 | |
|     case EXCP_FIQ:
 | |
|         pstate_unmasked = !(env->daif & PSTATE_F);
 | |
|         break;
 | |
| 
 | |
|     case EXCP_IRQ:
 | |
|         pstate_unmasked = !(env->daif & PSTATE_I);
 | |
|         break;
 | |
| 
 | |
|     case EXCP_VFIQ:
 | |
|         if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
 | |
|             /* VFIQs are only taken when hypervized and non-secure.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_F);
 | |
|     case EXCP_VIRQ:
 | |
|         if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
 | |
|             /* VIRQs are only taken when hypervized and non-secure.  */
 | |
|             return false;
 | |
|         }
 | |
|         return !(env->daif & PSTATE_I);
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     /* Use the target EL, current execution state and SCR/HCR settings to
 | |
|      * determine whether the corresponding CPSR bit is used to mask the
 | |
|      * interrupt.
 | |
|      */
 | |
|     if ((target_el > cur_el) && (target_el != 1)) {
 | |
|         /* Exceptions targeting a higher EL may not be maskable */
 | |
|         if (arm_feature(env, ARM_FEATURE_AARCH64)) {
 | |
|             /* 64-bit masking rules are simple: exceptions to EL3
 | |
|              * can't be masked, and exceptions to EL2 can only be
 | |
|              * masked from Secure state. The HCR and SCR settings
 | |
|              * don't affect the masking logic, only the interrupt routing.
 | |
|              */
 | |
|             if (target_el == 3 || !secure) {
 | |
|                 unmasked = 1;
 | |
|             }
 | |
|         } else {
 | |
|             /* The old 32-bit-only environment has a more complicated
 | |
|              * masking setup. HCR and SCR bits not only affect interrupt
 | |
|              * routing but also change the behaviour of masking.
 | |
|              */
 | |
|             bool hcr, scr;
 | |
| 
 | |
|             switch (excp_idx) {
 | |
|             case EXCP_FIQ:
 | |
|                 /* If FIQs are routed to EL3 or EL2 then there are cases where
 | |
|                  * we override the CPSR.F in determining if the exception is
 | |
|                  * masked or not. If neither of these are set then we fall back
 | |
|                  * to the CPSR.F setting otherwise we further assess the state
 | |
|                  * below.
 | |
|                  */
 | |
|                 hcr = (env->cp15.hcr_el2 & HCR_FMO);
 | |
|                 scr = (env->cp15.scr_el3 & SCR_FIQ);
 | |
| 
 | |
|                 /* When EL3 is 32-bit, the SCR.FW bit controls whether the
 | |
|                  * CPSR.F bit masks FIQ interrupts when taken in non-secure
 | |
|                  * state. If SCR.FW is set then FIQs can be masked by CPSR.F
 | |
|                  * when non-secure but only when FIQs are only routed to EL3.
 | |
|                  */
 | |
|                 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
 | |
|                 break;
 | |
|             case EXCP_IRQ:
 | |
|                 /* When EL3 execution state is 32-bit, if HCR.IMO is set then
 | |
|                  * we may override the CPSR.I masking when in non-secure state.
 | |
|                  * The SCR.IRQ setting has already been taken into consideration
 | |
|                  * when setting the target EL, so it does not have a further
 | |
|                  * affect here.
 | |
|                  */
 | |
|                 hcr = (env->cp15.hcr_el2 & HCR_IMO);
 | |
|                 scr = false;
 | |
|                 break;
 | |
|             default:
 | |
|                 g_assert_not_reached();
 | |
|             }
 | |
| 
 | |
|             if ((scr || hcr) && !secure) {
 | |
|                 unmasked = 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* The PSTATE bits only mask the interrupt if we have not overriden the
 | |
|      * ability above.
 | |
|      */
 | |
|     return unmasked || pstate_unmasked;
 | |
| }
 | |
| 
 | |
| #define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
 | |
| #define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
 | |
| #define CPU_RESOLVING_TYPE TYPE_ARM_CPU
 | |
| 
 | |
| #define cpu_signal_handler cpu_arm_signal_handler
 | |
| #define cpu_list arm_cpu_list
 | |
| 
 | |
| /* ARM has the following "translation regimes" (as the ARM ARM calls them):
 | |
|  *
 | |
|  * If EL3 is 64-bit:
 | |
|  *  + NonSecure EL1 & 0 stage 1
 | |
|  *  + NonSecure EL1 & 0 stage 2
 | |
|  *  + NonSecure EL2
 | |
|  *  + Secure EL1 & EL0
 | |
|  *  + Secure EL3
 | |
|  * If EL3 is 32-bit:
 | |
|  *  + NonSecure PL1 & 0 stage 1
 | |
|  *  + NonSecure PL1 & 0 stage 2
 | |
|  *  + NonSecure PL2
 | |
|  *  + Secure PL0 & PL1
 | |
|  * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
 | |
|  *
 | |
|  * For QEMU, an mmu_idx is not quite the same as a translation regime because:
 | |
|  *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
 | |
|  *     may differ in access permissions even if the VA->PA map is the same
 | |
|  *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
 | |
|  *     translation, which means that we have one mmu_idx that deals with two
 | |
|  *     concatenated translation regimes [this sort of combined s1+2 TLB is
 | |
|  *     architecturally permitted]
 | |
|  *  3. we don't need to allocate an mmu_idx to translations that we won't be
 | |
|  *     handling via the TLB. The only way to do a stage 1 translation without
 | |
|  *     the immediate stage 2 translation is via the ATS or AT system insns,
 | |
|  *     which can be slow-pathed and always do a page table walk.
 | |
|  *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
 | |
|  *     translation regimes, because they map reasonably well to each other
 | |
|  *     and they can't both be active at the same time.
 | |
|  * This gives us the following list of mmu_idx values:
 | |
|  *
 | |
|  * NS EL0 (aka NS PL0) stage 1+2
 | |
|  * NS EL1 (aka NS PL1) stage 1+2
 | |
|  * NS EL2 (aka NS PL2)
 | |
|  * S EL3 (aka S PL1)
 | |
|  * S EL0 (aka S PL0)
 | |
|  * S EL1 (not used if EL3 is 32 bit)
 | |
|  * NS EL0+1 stage 2
 | |
|  *
 | |
|  * (The last of these is an mmu_idx because we want to be able to use the TLB
 | |
|  * for the accesses done as part of a stage 1 page table walk, rather than
 | |
|  * having to walk the stage 2 page table over and over.)
 | |
|  *
 | |
|  * R profile CPUs have an MPU, but can use the same set of MMU indexes
 | |
|  * as A profile. They only need to distinguish NS EL0 and NS EL1 (and
 | |
|  * NS EL2 if we ever model a Cortex-R52).
 | |
|  *
 | |
|  * M profile CPUs are rather different as they do not have a true MMU.
 | |
|  * They have the following different MMU indexes:
 | |
|  *  User
 | |
|  *  Privileged
 | |
|  *  User, execution priority negative (ie the MPU HFNMIENA bit may apply)
 | |
|  *  Privileged, execution priority negative (ditto)
 | |
|  * If the CPU supports the v8M Security Extension then there are also:
 | |
|  *  Secure User
 | |
|  *  Secure Privileged
 | |
|  *  Secure User, execution priority negative
 | |
|  *  Secure Privileged, execution priority negative
 | |
|  *
 | |
|  * The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
 | |
|  * are not quite the same -- different CPU types (most notably M profile
 | |
|  * vs A/R profile) would like to use MMU indexes with different semantics,
 | |
|  * but since we don't ever need to use all of those in a single CPU we
 | |
|  * can avoid setting NB_MMU_MODES to more than 8. The lower bits of
 | |
|  * ARMMMUIdx are the core TLB mmu index, and the higher bits are always
 | |
|  * the same for any particular CPU.
 | |
|  * Variables of type ARMMUIdx are always full values, and the core
 | |
|  * index values are in variables of type 'int'.
 | |
|  *
 | |
|  * Our enumeration includes at the end some entries which are not "true"
 | |
|  * mmu_idx values in that they don't have corresponding TLBs and are only
 | |
|  * valid for doing slow path page table walks.
 | |
|  *
 | |
|  * The constant names here are patterned after the general style of the names
 | |
|  * of the AT/ATS operations.
 | |
|  * The values used are carefully arranged to make mmu_idx => EL lookup easy.
 | |
|  * For M profile we arrange them to have a bit for priv, a bit for negpri
 | |
|  * and a bit for secure.
 | |
|  */
 | |
| #define ARM_MMU_IDX_A 0x10 /* A profile */
 | |
| #define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
 | |
| #define ARM_MMU_IDX_M 0x40 /* M profile */
 | |
| 
 | |
| /* meanings of the bits for M profile mmu idx values */
 | |
| #define ARM_MMU_IDX_M_PRIV 0x1
 | |
| #define ARM_MMU_IDX_M_NEGPRI 0x2
 | |
| #define ARM_MMU_IDX_M_S 0x4
 | |
| 
 | |
| #define ARM_MMU_IDX_TYPE_MASK (~0x7)
 | |
| #define ARM_MMU_IDX_COREIDX_MASK 0x7
 | |
| 
 | |
| typedef enum ARMMMUIdx {
 | |
|     ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
 | |
|     ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
 | |
|     ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
 | |
|     /* Indexes below here don't have TLBs and are used only for AT system
 | |
|      * instructions or for the first stage of an S12 page table walk.
 | |
|      */
 | |
|     ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
 | |
|     ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
 | |
| } ARMMMUIdx;
 | |
| 
 | |
| /* Bit macros for the core-mmu-index values for each index,
 | |
|  * for use when calling tlb_flush_by_mmuidx() and friends.
 | |
|  */
 | |
| typedef enum ARMMMUIdxBit {
 | |
|     ARMMMUIdxBit_S12NSE0 = 1 << 0,
 | |
|     ARMMMUIdxBit_S12NSE1 = 1 << 1,
 | |
|     ARMMMUIdxBit_S1E2 = 1 << 2,
 | |
|     ARMMMUIdxBit_S1E3 = 1 << 3,
 | |
|     ARMMMUIdxBit_S1SE0 = 1 << 4,
 | |
|     ARMMMUIdxBit_S1SE1 = 1 << 5,
 | |
|     ARMMMUIdxBit_S2NS = 1 << 6,
 | |
|     ARMMMUIdxBit_MUser = 1 << 0,
 | |
|     ARMMMUIdxBit_MPriv = 1 << 1,
 | |
|     ARMMMUIdxBit_MUserNegPri = 1 << 2,
 | |
|     ARMMMUIdxBit_MPrivNegPri = 1 << 3,
 | |
|     ARMMMUIdxBit_MSUser = 1 << 4,
 | |
|     ARMMMUIdxBit_MSPriv = 1 << 5,
 | |
|     ARMMMUIdxBit_MSUserNegPri = 1 << 6,
 | |
|     ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
 | |
| } ARMMMUIdxBit;
 | |
| 
 | |
| #define MMU_USER_IDX 0
 | |
| 
 | |
| static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
 | |
| }
 | |
| 
 | |
| static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
 | |
| {
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         return mmu_idx | ARM_MMU_IDX_M;
 | |
|     } else {
 | |
|         return mmu_idx | ARM_MMU_IDX_A;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the exception level we're running at if this is our mmu_idx */
 | |
| static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
 | |
|     case ARM_MMU_IDX_A:
 | |
|         return mmu_idx & 3;
 | |
|     case ARM_MMU_IDX_M:
 | |
|         return mmu_idx & ARM_MMU_IDX_M_PRIV;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return the MMU index for a v7M CPU in the specified security and
 | |
|  * privilege state
 | |
|  */
 | |
| static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
 | |
|                                                               bool secstate,
 | |
|                                                               bool priv)
 | |
| {
 | |
|     ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
 | |
| 
 | |
|     if (priv) {
 | |
|         mmu_idx |= ARM_MMU_IDX_M_PRIV;
 | |
|     }
 | |
| 
 | |
|     if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
 | |
|         mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
 | |
|     }
 | |
| 
 | |
|     if (secstate) {
 | |
|         mmu_idx |= ARM_MMU_IDX_M_S;
 | |
|     }
 | |
| 
 | |
|     return mmu_idx;
 | |
| }
 | |
| 
 | |
| /* Return the MMU index for a v7M CPU in the specified security state */
 | |
| static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
 | |
|                                                      bool secstate)
 | |
| {
 | |
|     bool priv = arm_current_el(env) != 0;
 | |
| 
 | |
|     return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
 | |
| }
 | |
| 
 | |
| /* Determine the current mmu_idx to use for normal loads/stores */
 | |
| static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_M)) {
 | |
|         ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
 | |
| 
 | |
|         return arm_to_core_mmu_idx(mmu_idx);
 | |
|     }
 | |
| 
 | |
|     if (el < 2 && arm_is_secure_below_el3(env)) {
 | |
|         return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
 | |
|     }
 | |
|     return el;
 | |
| }
 | |
| 
 | |
| /* Indexes used when registering address spaces with cpu_address_space_init */
 | |
| typedef enum ARMASIdx {
 | |
|     ARMASIdx_NS = 0,
 | |
|     ARMASIdx_S = 1,
 | |
| } ARMASIdx;
 | |
| 
 | |
| /* Return the Exception Level targeted by debug exceptions. */
 | |
| static inline int arm_debug_target_el(CPUARMState *env)
 | |
| {
 | |
|     bool secure = arm_is_secure(env);
 | |
|     bool route_to_el2 = false;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
 | |
|         route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
 | |
|                        env->cp15.mdcr_el2 & (1 << 8);
 | |
|     }
 | |
| 
 | |
|     if (route_to_el2) {
 | |
|         return 2;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_EL3) &&
 | |
|                !arm_el_is_aa64(env, 3) && secure) {
 | |
|         return 3;
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
 | |
| {
 | |
|     /* If all the CLIDR.Ctypem bits are 0 there are no caches, and
 | |
|      * CSSELR is RAZ/WI.
 | |
|      */
 | |
|     return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     if (arm_is_secure(env)) {
 | |
|         /* MDCR_EL3.SDD disables debug events from Secure state */
 | |
|         if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
 | |
|             || arm_current_el(env) == 3) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (arm_current_el(env) == arm_debug_target_el(env)) {
 | |
|         if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
 | |
|             || (env->daif & PSTATE_D)) {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     int el = arm_current_el(env);
 | |
| 
 | |
|     if (el == 0 && arm_el_is_aa64(env, 1)) {
 | |
|         return aa64_generate_debug_exceptions(env);
 | |
|     }
 | |
| 
 | |
|     if (arm_is_secure(env)) {
 | |
|         int spd;
 | |
| 
 | |
|         if (el == 0 && (env->cp15.sder & 1)) {
 | |
|             /* SDER.SUIDEN means debug exceptions from Secure EL0
 | |
|              * are always enabled. Otherwise they are controlled by
 | |
|              * SDCR.SPD like those from other Secure ELs.
 | |
|              */
 | |
|             return true;
 | |
|         }
 | |
| 
 | |
|         spd = extract32(env->cp15.mdcr_el3, 14, 2);
 | |
|         switch (spd) {
 | |
|         case 1:
 | |
|             /* SPD == 0b01 is reserved, but behaves as 0b00. */
 | |
|         case 0:
 | |
|             /* For 0b00 we return true if external secure invasive debug
 | |
|              * is enabled. On real hardware this is controlled by external
 | |
|              * signals to the core. QEMU always permits debug, and behaves
 | |
|              * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
 | |
|              */
 | |
|             return true;
 | |
|         case 2:
 | |
|             return false;
 | |
|         case 3:
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return el != 2;
 | |
| }
 | |
| 
 | |
| /* Return true if debugging exceptions are currently enabled.
 | |
|  * This corresponds to what in ARM ARM pseudocode would be
 | |
|  *    if UsingAArch32() then
 | |
|  *        return AArch32.GenerateDebugExceptions()
 | |
|  *    else
 | |
|  *        return AArch64.GenerateDebugExceptions()
 | |
|  * We choose to push the if() down into this function for clarity,
 | |
|  * since the pseudocode has it at all callsites except for the one in
 | |
|  * CheckSoftwareStep(), where it is elided because both branches would
 | |
|  * always return the same value.
 | |
|  *
 | |
|  * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
 | |
|  * don't yet implement those exception levels or their associated trap bits.
 | |
|  */
 | |
| static inline bool arm_generate_debug_exceptions(CPUARMState *env)
 | |
| {
 | |
|     if (env->aarch64) {
 | |
|         return aa64_generate_debug_exceptions(env);
 | |
|     } else {
 | |
|         return aa32_generate_debug_exceptions(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Is single-stepping active? (Note that the "is EL_D AArch64?" check
 | |
|  * implicitly means this always returns false in pre-v8 CPUs.)
 | |
|  */
 | |
| static inline bool arm_singlestep_active(CPUARMState *env)
 | |
| {
 | |
|     return extract32(env->cp15.mdscr_el1, 0, 1)
 | |
|         && arm_el_is_aa64(env, arm_debug_target_el(env))
 | |
|         && arm_generate_debug_exceptions(env);
 | |
| }
 | |
| 
 | |
| static inline bool arm_sctlr_b(CPUARMState *env)
 | |
| {
 | |
|     return
 | |
|         /* We need not implement SCTLR.ITD in user-mode emulation, so
 | |
|          * let linux-user ignore the fact that it conflicts with SCTLR_B.
 | |
|          * This lets people run BE32 binaries with "-cpu any".
 | |
|          */
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         !arm_feature(env, ARM_FEATURE_V7) &&
 | |
| #endif
 | |
|         (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
 | |
| }
 | |
| 
 | |
| /* Return true if the processor is in big-endian mode. */
 | |
| static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
 | |
| {
 | |
|     int cur_el;
 | |
| 
 | |
|     /* In 32bit endianness is determined by looking at CPSR's E bit */
 | |
|     if (!is_a64(env)) {
 | |
|         return
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|             /* In system mode, BE32 is modelled in line with the
 | |
|              * architecture (as word-invariant big-endianness), where loads
 | |
|              * and stores are done little endian but from addresses which
 | |
|              * are adjusted by XORing with the appropriate constant. So the
 | |
|              * endianness to use for the raw data access is not affected by
 | |
|              * SCTLR.B.
 | |
|              * In user mode, however, we model BE32 as byte-invariant
 | |
|              * big-endianness (because user-only code cannot tell the
 | |
|              * difference), and so we need to use a data access endianness
 | |
|              * that depends on SCTLR.B.
 | |
|              */
 | |
|             arm_sctlr_b(env) ||
 | |
| #endif
 | |
|                 ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
 | |
|     }
 | |
| 
 | |
|     cur_el = arm_current_el(env);
 | |
| 
 | |
|     if (cur_el == 0) {
 | |
|         return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
 | |
|     }
 | |
| 
 | |
|     return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
 | |
| }
 | |
| 
 | |
| #include "exec/cpu-all.h"
 | |
| 
 | |
| /* Bit usage in the TB flags field: bit 31 indicates whether we are
 | |
|  * in 32 or 64 bit mode. The meaning of the other bits depends on that.
 | |
|  * We put flags which are shared between 32 and 64 bit mode at the top
 | |
|  * of the word, and flags which apply to only one mode at the bottom.
 | |
|  */
 | |
| #define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
 | |
| #define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
 | |
| #define ARM_TBFLAG_MMUIDX_SHIFT 28
 | |
| #define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
 | |
| #define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
 | |
| #define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
 | |
| #define ARM_TBFLAG_PSTATE_SS_SHIFT 26
 | |
| #define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
 | |
| /* Target EL if we take a floating-point-disabled exception */
 | |
| #define ARM_TBFLAG_FPEXC_EL_SHIFT 24
 | |
| #define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
 | |
| 
 | |
| /* Bit usage when in AArch32 state: */
 | |
| #define ARM_TBFLAG_THUMB_SHIFT      0
 | |
| #define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
 | |
| #define ARM_TBFLAG_VECLEN_SHIFT     1
 | |
| #define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
 | |
| #define ARM_TBFLAG_VECSTRIDE_SHIFT  4
 | |
| #define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
| #define ARM_TBFLAG_VFPEN_SHIFT      7
 | |
| #define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
 | |
| #define ARM_TBFLAG_CONDEXEC_SHIFT   8
 | |
| #define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
| #define ARM_TBFLAG_SCTLR_B_SHIFT    16
 | |
| #define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
 | |
| /* We store the bottom two bits of the CPAR as TB flags and handle
 | |
|  * checks on the other bits at runtime
 | |
|  */
 | |
| #define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
 | |
| #define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
 | |
| /* Indicates whether cp register reads and writes by guest code should access
 | |
|  * the secure or nonsecure bank of banked registers; note that this is not
 | |
|  * the same thing as the current security state of the processor!
 | |
|  */
 | |
| #define ARM_TBFLAG_NS_SHIFT         19
 | |
| #define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
 | |
| #define ARM_TBFLAG_BE_DATA_SHIFT    20
 | |
| #define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
 | |
| /* For M profile only, Handler (ie not Thread) mode */
 | |
| #define ARM_TBFLAG_HANDLER_SHIFT    21
 | |
| #define ARM_TBFLAG_HANDLER_MASK     (1 << ARM_TBFLAG_HANDLER_SHIFT)
 | |
| 
 | |
| /* Bit usage when in AArch64 state */
 | |
| #define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
 | |
| #define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
 | |
| #define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
 | |
| #define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
 | |
| #define ARM_TBFLAG_SVEEXC_EL_SHIFT  2
 | |
| #define ARM_TBFLAG_SVEEXC_EL_MASK   (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
 | |
| #define ARM_TBFLAG_ZCR_LEN_SHIFT    4
 | |
| #define ARM_TBFLAG_ZCR_LEN_MASK     (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
 | |
| 
 | |
| /* some convenience accessor macros */
 | |
| #define ARM_TBFLAG_AARCH64_STATE(F) \
 | |
|     (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
 | |
| #define ARM_TBFLAG_MMUIDX(F) \
 | |
|     (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
 | |
| #define ARM_TBFLAG_SS_ACTIVE(F) \
 | |
|     (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
 | |
| #define ARM_TBFLAG_PSTATE_SS(F) \
 | |
|     (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
 | |
| #define ARM_TBFLAG_FPEXC_EL(F) \
 | |
|     (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
 | |
| #define ARM_TBFLAG_THUMB(F) \
 | |
|     (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
 | |
| #define ARM_TBFLAG_VECLEN(F) \
 | |
|     (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
 | |
| #define ARM_TBFLAG_VECSTRIDE(F) \
 | |
|     (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
 | |
| #define ARM_TBFLAG_VFPEN(F) \
 | |
|     (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
 | |
| #define ARM_TBFLAG_CONDEXEC(F) \
 | |
|     (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
 | |
| #define ARM_TBFLAG_SCTLR_B(F) \
 | |
|     (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
 | |
| #define ARM_TBFLAG_XSCALE_CPAR(F) \
 | |
|     (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
 | |
| #define ARM_TBFLAG_NS(F) \
 | |
|     (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
 | |
| #define ARM_TBFLAG_BE_DATA(F) \
 | |
|     (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
 | |
| #define ARM_TBFLAG_HANDLER(F) \
 | |
|     (((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
 | |
| #define ARM_TBFLAG_TBI0(F) \
 | |
|     (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
 | |
| #define ARM_TBFLAG_TBI1(F) \
 | |
|     (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
 | |
| #define ARM_TBFLAG_SVEEXC_EL(F) \
 | |
|     (((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
 | |
| #define ARM_TBFLAG_ZCR_LEN(F) \
 | |
|     (((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
 | |
| 
 | |
| static inline bool bswap_code(bool sctlr_b)
 | |
| {
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
 | |
|      * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
 | |
|      * would also end up as a mixed-endian mode with BE code, LE data.
 | |
|      */
 | |
|     return
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|         1 ^
 | |
| #endif
 | |
|         sctlr_b;
 | |
| #else
 | |
|     /* All code access in ARM is little endian, and there are no loaders
 | |
|      * doing swaps that need to be reversed
 | |
|      */
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| static inline bool arm_cpu_bswap_data(CPUARMState *env)
 | |
| {
 | |
|     return
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|        1 ^
 | |
| #endif
 | |
|        arm_cpu_data_is_big_endian(env);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /**
 | |
|  * arm_regime_tbi0:
 | |
|  * @env: CPUARMState
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  *
 | |
|  * Extracts the TBI0 value from the appropriate TCR for the current EL
 | |
|  *
 | |
|  * Returns: the TBI0 value.
 | |
|  */
 | |
| uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
 | |
| 
 | |
| /**
 | |
|  * arm_regime_tbi1:
 | |
|  * @env: CPUARMState
 | |
|  * @mmu_idx: MMU index indicating required translation regime
 | |
|  *
 | |
|  * Extracts the TBI1 value from the appropriate TCR for the current EL
 | |
|  *
 | |
|  * Returns: the TBI1 value.
 | |
|  */
 | |
| uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
 | |
| #else
 | |
| /* We can't handle tagged addresses properly in user-only mode */
 | |
| static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
 | |
| {
 | |
|     return 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
 | |
|                           target_ulong *cs_base, uint32_t *flags);
 | |
| 
 | |
| enum {
 | |
|     QEMU_PSCI_CONDUIT_DISABLED = 0,
 | |
|     QEMU_PSCI_CONDUIT_SMC = 1,
 | |
|     QEMU_PSCI_CONDUIT_HVC = 2,
 | |
| };
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* Return the address space index to use for a memory access */
 | |
| static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
 | |
| {
 | |
|     return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
 | |
| }
 | |
| 
 | |
| /* Return the AddressSpace to use for a memory access
 | |
|  * (which depends on whether the access is S or NS, and whether
 | |
|  * the board gave us a separate AddressSpace for S accesses).
 | |
|  */
 | |
| static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
 | |
| {
 | |
|     return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * arm_register_pre_el_change_hook:
 | |
|  * Register a hook function which will be called immediately before this
 | |
|  * CPU changes exception level or mode. The hook function will be
 | |
|  * passed a pointer to the ARMCPU and the opaque data pointer passed
 | |
|  * to this function when the hook was registered.
 | |
|  *
 | |
|  * Note that if a pre-change hook is called, any registered post-change hooks
 | |
|  * are guaranteed to subsequently be called.
 | |
|  */
 | |
| void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
 | |
|                                  void *opaque);
 | |
| /**
 | |
|  * arm_register_el_change_hook:
 | |
|  * Register a hook function which will be called immediately after this
 | |
|  * CPU changes exception level or mode. The hook function will be
 | |
|  * passed a pointer to the ARMCPU and the opaque data pointer passed
 | |
|  * to this function when the hook was registered.
 | |
|  *
 | |
|  * Note that any registered hooks registered here are guaranteed to be called
 | |
|  * if pre-change hooks have been.
 | |
|  */
 | |
| void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
 | |
|         *opaque);
 | |
| 
 | |
| /**
 | |
|  * aa32_vfp_dreg:
 | |
|  * Return a pointer to the Dn register within env in 32-bit mode.
 | |
|  */
 | |
| static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
 | |
| {
 | |
|     return &env->vfp.zregs[regno >> 1].d[regno & 1];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * aa32_vfp_qreg:
 | |
|  * Return a pointer to the Qn register within env in 32-bit mode.
 | |
|  */
 | |
| static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
 | |
| {
 | |
|     return &env->vfp.zregs[regno].d[0];
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * aa64_vfp_qreg:
 | |
|  * Return a pointer to the Qn register within env in 64-bit mode.
 | |
|  */
 | |
| static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
 | |
| {
 | |
|     return &env->vfp.zregs[regno].d[0];
 | |
| }
 | |
| 
 | |
| /* Shared between translate-sve.c and sve_helper.c.  */
 | |
| extern const uint64_t pred_esz_masks[4];
 | |
| 
 | |
| #endif
 |