 23c11b04dc
			
		
	
	
		23c11b04dc
		
	
	
	
	
		
			
			Code change produced with:
    $ git grep '#include "exec/exec-all.h"' | \
      cut -d: -f-1 | \
      xargs egrep -L "(cpu_address_space_init|cpu_loop_|tlb_|tb_|GETPC|singlestep|TranslationBlock)" | \
      xargs sed -i.bak '/#include "exec\/exec-all.h"/d'
Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Message-Id: <20180528232719.4721-10-f4bug@amsat.org>
Acked-by: Michael S. Tsirkin <mst@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
	
			
		
			
				
	
	
		
			300 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			300 lines
		
	
	
		
			8.9 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * QEMU support -- ARM Power Control specific functions.
 | |
|  *
 | |
|  * Copyright (c) 2016 Jean-Christophe Dubois
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "cpu.h"
 | |
| #include "cpu-qom.h"
 | |
| #include "internals.h"
 | |
| #include "arm-powerctl.h"
 | |
| #include "qemu/log.h"
 | |
| #include "qemu/main-loop.h"
 | |
| 
 | |
| #ifndef DEBUG_ARM_POWERCTL
 | |
| #define DEBUG_ARM_POWERCTL 0
 | |
| #endif
 | |
| 
 | |
| #define DPRINTF(fmt, args...) \
 | |
|     do { \
 | |
|         if (DEBUG_ARM_POWERCTL) { \
 | |
|             fprintf(stderr, "[ARM]%s: " fmt , __func__, ##args); \
 | |
|         } \
 | |
|     } while (0)
 | |
| 
 | |
| CPUState *arm_get_cpu_by_id(uint64_t id)
 | |
| {
 | |
|     CPUState *cpu;
 | |
| 
 | |
|     DPRINTF("cpu %" PRId64 "\n", id);
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         ARMCPU *armcpu = ARM_CPU(cpu);
 | |
| 
 | |
|         if (armcpu->mp_affinity == id) {
 | |
|             return cpu;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                   "[ARM]%s: Requesting unknown CPU %" PRId64 "\n",
 | |
|                   __func__, id);
 | |
| 
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| struct CpuOnInfo {
 | |
|     uint64_t entry;
 | |
|     uint64_t context_id;
 | |
|     uint32_t target_el;
 | |
|     bool target_aa64;
 | |
| };
 | |
| 
 | |
| 
 | |
| static void arm_set_cpu_on_async_work(CPUState *target_cpu_state,
 | |
|                                       run_on_cpu_data data)
 | |
| {
 | |
|     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 | |
|     struct CpuOnInfo *info = (struct CpuOnInfo *) data.host_ptr;
 | |
| 
 | |
|     /* Initialize the cpu we are turning on */
 | |
|     cpu_reset(target_cpu_state);
 | |
|     target_cpu_state->halted = 0;
 | |
| 
 | |
|     if (info->target_aa64) {
 | |
|         if ((info->target_el < 3) && arm_feature(&target_cpu->env,
 | |
|                                                  ARM_FEATURE_EL3)) {
 | |
|             /*
 | |
|              * As target mode is AArch64, we need to set lower
 | |
|              * exception level (the requested level 2) to AArch64
 | |
|              */
 | |
|             target_cpu->env.cp15.scr_el3 |= SCR_RW;
 | |
|         }
 | |
| 
 | |
|         if ((info->target_el < 2) && arm_feature(&target_cpu->env,
 | |
|                                                  ARM_FEATURE_EL2)) {
 | |
|             /*
 | |
|              * As target mode is AArch64, we need to set lower
 | |
|              * exception level (the requested level 1) to AArch64
 | |
|              */
 | |
|             target_cpu->env.cp15.hcr_el2 |= HCR_RW;
 | |
|         }
 | |
| 
 | |
|         target_cpu->env.pstate = aarch64_pstate_mode(info->target_el, true);
 | |
|     } else {
 | |
|         /* We are requested to boot in AArch32 mode */
 | |
|         static const uint32_t mode_for_el[] = { 0,
 | |
|                                                 ARM_CPU_MODE_SVC,
 | |
|                                                 ARM_CPU_MODE_HYP,
 | |
|                                                 ARM_CPU_MODE_SVC };
 | |
| 
 | |
|         cpsr_write(&target_cpu->env, mode_for_el[info->target_el], CPSR_M,
 | |
|                    CPSRWriteRaw);
 | |
|     }
 | |
| 
 | |
|     if (info->target_el == 3) {
 | |
|         /* Processor is in secure mode */
 | |
|         target_cpu->env.cp15.scr_el3 &= ~SCR_NS;
 | |
|     } else {
 | |
|         /* Processor is not in secure mode */
 | |
|         target_cpu->env.cp15.scr_el3 |= SCR_NS;
 | |
|     }
 | |
| 
 | |
|     /* We check if the started CPU is now at the correct level */
 | |
|     assert(info->target_el == arm_current_el(&target_cpu->env));
 | |
| 
 | |
|     if (info->target_aa64) {
 | |
|         target_cpu->env.xregs[0] = info->context_id;
 | |
|         target_cpu->env.thumb = false;
 | |
|     } else {
 | |
|         target_cpu->env.regs[0] = info->context_id;
 | |
|         target_cpu->env.thumb = info->entry & 1;
 | |
|         info->entry &= 0xfffffffe;
 | |
|     }
 | |
| 
 | |
|     /* Start the new CPU at the requested address */
 | |
|     cpu_set_pc(target_cpu_state, info->entry);
 | |
| 
 | |
|     g_free(info);
 | |
| 
 | |
|     /* Finally set the power status */
 | |
|     assert(qemu_mutex_iothread_locked());
 | |
|     target_cpu->power_state = PSCI_ON;
 | |
| }
 | |
| 
 | |
| int arm_set_cpu_on(uint64_t cpuid, uint64_t entry, uint64_t context_id,
 | |
|                    uint32_t target_el, bool target_aa64)
 | |
| {
 | |
|     CPUState *target_cpu_state;
 | |
|     ARMCPU *target_cpu;
 | |
|     struct CpuOnInfo *info;
 | |
| 
 | |
|     assert(qemu_mutex_iothread_locked());
 | |
| 
 | |
|     DPRINTF("cpu %" PRId64 " (EL %d, %s) @ 0x%" PRIx64 " with R0 = 0x%" PRIx64
 | |
|             "\n", cpuid, target_el, target_aa64 ? "aarch64" : "aarch32", entry,
 | |
|             context_id);
 | |
| 
 | |
|     /* requested EL level need to be in the 1 to 3 range */
 | |
|     assert((target_el > 0) && (target_el < 4));
 | |
| 
 | |
|     if (target_aa64 && (entry & 3)) {
 | |
|         /*
 | |
|          * if we are booting in AArch64 mode then "entry" needs to be 4 bytes
 | |
|          * aligned.
 | |
|          */
 | |
|         return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | |
|     }
 | |
| 
 | |
|     /* Retrieve the cpu we are powering up */
 | |
|     target_cpu_state = arm_get_cpu_by_id(cpuid);
 | |
|     if (!target_cpu_state) {
 | |
|         /* The cpu was not found */
 | |
|         return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | |
|     }
 | |
| 
 | |
|     target_cpu = ARM_CPU(target_cpu_state);
 | |
|     if (target_cpu->power_state == PSCI_ON) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "[ARM]%s: CPU %" PRId64 " is already on\n",
 | |
|                       __func__, cpuid);
 | |
|         return QEMU_ARM_POWERCTL_ALREADY_ON;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * The newly brought CPU is requested to enter the exception level
 | |
|      * "target_el" and be in the requested mode (AArch64 or AArch32).
 | |
|      */
 | |
| 
 | |
|     if (((target_el == 3) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL3)) ||
 | |
|         ((target_el == 2) && !arm_feature(&target_cpu->env, ARM_FEATURE_EL2))) {
 | |
|         /*
 | |
|          * The CPU does not support requested level
 | |
|          */
 | |
|         return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | |
|     }
 | |
| 
 | |
|     if (!target_aa64 && arm_feature(&target_cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         /*
 | |
|          * For now we don't support booting an AArch64 CPU in AArch32 mode
 | |
|          * TODO: We should add this support later
 | |
|          */
 | |
|         qemu_log_mask(LOG_UNIMP,
 | |
|                       "[ARM]%s: Starting AArch64 CPU %" PRId64
 | |
|                       " in AArch32 mode is not supported yet\n",
 | |
|                       __func__, cpuid);
 | |
|         return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * If another CPU has powered the target on we are in the state
 | |
|      * ON_PENDING and additional attempts to power on the CPU should
 | |
|      * fail (see 6.6 Implementation CPU_ON/CPU_OFF races in the PSCI
 | |
|      * spec)
 | |
|      */
 | |
|     if (target_cpu->power_state == PSCI_ON_PENDING) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "[ARM]%s: CPU %" PRId64 " is already powering on\n",
 | |
|                       __func__, cpuid);
 | |
|         return QEMU_ARM_POWERCTL_ON_PENDING;
 | |
|     }
 | |
| 
 | |
|     /* To avoid racing with a CPU we are just kicking off we do the
 | |
|      * final bit of preparation for the work in the target CPUs
 | |
|      * context.
 | |
|      */
 | |
|     info = g_new(struct CpuOnInfo, 1);
 | |
|     info->entry = entry;
 | |
|     info->context_id = context_id;
 | |
|     info->target_el = target_el;
 | |
|     info->target_aa64 = target_aa64;
 | |
| 
 | |
|     async_run_on_cpu(target_cpu_state, arm_set_cpu_on_async_work,
 | |
|                      RUN_ON_CPU_HOST_PTR(info));
 | |
| 
 | |
|     /* We are good to go */
 | |
|     return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void arm_set_cpu_off_async_work(CPUState *target_cpu_state,
 | |
|                                        run_on_cpu_data data)
 | |
| {
 | |
|     ARMCPU *target_cpu = ARM_CPU(target_cpu_state);
 | |
| 
 | |
|     assert(qemu_mutex_iothread_locked());
 | |
|     target_cpu->power_state = PSCI_OFF;
 | |
|     target_cpu_state->halted = 1;
 | |
|     target_cpu_state->exception_index = EXCP_HLT;
 | |
| }
 | |
| 
 | |
| int arm_set_cpu_off(uint64_t cpuid)
 | |
| {
 | |
|     CPUState *target_cpu_state;
 | |
|     ARMCPU *target_cpu;
 | |
| 
 | |
|     assert(qemu_mutex_iothread_locked());
 | |
| 
 | |
|     DPRINTF("cpu %" PRId64 "\n", cpuid);
 | |
| 
 | |
|     /* change to the cpu we are powering up */
 | |
|     target_cpu_state = arm_get_cpu_by_id(cpuid);
 | |
|     if (!target_cpu_state) {
 | |
|         return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | |
|     }
 | |
|     target_cpu = ARM_CPU(target_cpu_state);
 | |
|     if (target_cpu->power_state == PSCI_OFF) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "[ARM]%s: CPU %" PRId64 " is already off\n",
 | |
|                       __func__, cpuid);
 | |
|         return QEMU_ARM_POWERCTL_IS_OFF;
 | |
|     }
 | |
| 
 | |
|     /* Queue work to run under the target vCPUs context */
 | |
|     async_run_on_cpu(target_cpu_state, arm_set_cpu_off_async_work,
 | |
|                      RUN_ON_CPU_NULL);
 | |
| 
 | |
|     return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | |
| }
 | |
| 
 | |
| static void arm_reset_cpu_async_work(CPUState *target_cpu_state,
 | |
|                                      run_on_cpu_data data)
 | |
| {
 | |
|     /* Reset the cpu */
 | |
|     cpu_reset(target_cpu_state);
 | |
| }
 | |
| 
 | |
| int arm_reset_cpu(uint64_t cpuid)
 | |
| {
 | |
|     CPUState *target_cpu_state;
 | |
|     ARMCPU *target_cpu;
 | |
| 
 | |
|     assert(qemu_mutex_iothread_locked());
 | |
| 
 | |
|     DPRINTF("cpu %" PRId64 "\n", cpuid);
 | |
| 
 | |
|     /* change to the cpu we are resetting */
 | |
|     target_cpu_state = arm_get_cpu_by_id(cpuid);
 | |
|     if (!target_cpu_state) {
 | |
|         return QEMU_ARM_POWERCTL_INVALID_PARAM;
 | |
|     }
 | |
|     target_cpu = ARM_CPU(target_cpu_state);
 | |
| 
 | |
|     if (target_cpu->power_state == PSCI_OFF) {
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "[ARM]%s: CPU %" PRId64 " is off\n",
 | |
|                       __func__, cpuid);
 | |
|         return QEMU_ARM_POWERCTL_IS_OFF;
 | |
|     }
 | |
| 
 | |
|     /* Queue work to run under the target vCPUs context */
 | |
|     async_run_on_cpu(target_cpu_state, arm_reset_cpu_async_work,
 | |
|                      RUN_ON_CPU_NULL);
 | |
| 
 | |
|     return QEMU_ARM_POWERCTL_RET_SUCCESS;
 | |
| }
 |