 5ebf5f4be6
			
		
	
	
		5ebf5f4be6
		
	
	
	
	
		
			
			Signed-off-by: LIU Zhiwei <zhiwei_liu@c-sky.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20200813071421.2509-4-zhiwei_liu@c-sky.com> [rth: Fix merge conflict with NO_SIGNALING_NANS; use bool for predicates.] Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
		
			
				
	
	
		
			1172 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1172 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*
 | |
|  * QEMU float support
 | |
|  *
 | |
|  * The code in this source file is derived from release 2a of the SoftFloat
 | |
|  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
 | |
|  * some later contributions) are provided under that license, as detailed below.
 | |
|  * It has subsequently been modified by contributors to the QEMU Project,
 | |
|  * so some portions are provided under:
 | |
|  *  the SoftFloat-2a license
 | |
|  *  the BSD license
 | |
|  *  GPL-v2-or-later
 | |
|  *
 | |
|  * Any future contributions to this file after December 1st 2014 will be
 | |
|  * taken to be licensed under the Softfloat-2a license unless specifically
 | |
|  * indicated otherwise.
 | |
|  */
 | |
| 
 | |
| /*
 | |
| ===============================================================================
 | |
| This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
 | |
| Arithmetic Package, Release 2a.
 | |
| 
 | |
| Written by John R. Hauser.  This work was made possible in part by the
 | |
| International Computer Science Institute, located at Suite 600, 1947 Center
 | |
| Street, Berkeley, California 94704.  Funding was partially provided by the
 | |
| National Science Foundation under grant MIP-9311980.  The original version
 | |
| of this code was written as part of a project to build a fixed-point vector
 | |
| processor in collaboration with the University of California at Berkeley,
 | |
| overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
 | |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
 | |
| arithmetic/SoftFloat.html'.
 | |
| 
 | |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
 | |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
 | |
| TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
 | |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
 | |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
 | |
| 
 | |
| Derivative works are acceptable, even for commercial purposes, so long as
 | |
| (1) they include prominent notice that the work is derivative, and (2) they
 | |
| include prominent notice akin to these four paragraphs for those parts of
 | |
| this code that are retained.
 | |
| 
 | |
| ===============================================================================
 | |
| */
 | |
| 
 | |
| /* BSD licensing:
 | |
|  * Copyright (c) 2006, Fabrice Bellard
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * Redistribution and use in source and binary forms, with or without
 | |
|  * modification, are permitted provided that the following conditions are met:
 | |
|  *
 | |
|  * 1. Redistributions of source code must retain the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer.
 | |
|  *
 | |
|  * 2. Redistributions in binary form must reproduce the above copyright notice,
 | |
|  * this list of conditions and the following disclaimer in the documentation
 | |
|  * and/or other materials provided with the distribution.
 | |
|  *
 | |
|  * 3. Neither the name of the copyright holder nor the names of its contributors
 | |
|  * may be used to endorse or promote products derived from this software without
 | |
|  * specific prior written permission.
 | |
|  *
 | |
|  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 | |
|  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | |
|  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 | |
|  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
 | |
|  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 | |
|  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 | |
|  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 | |
|  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 | |
|  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 | |
|  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 | |
|  * THE POSSIBILITY OF SUCH DAMAGE.
 | |
|  */
 | |
| 
 | |
| /* Portions of this work are licensed under the terms of the GNU GPL,
 | |
|  * version 2 or later. See the COPYING file in the top-level directory.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Define whether architecture deviates from IEEE in not supporting
 | |
|  * signaling NaNs (so all NaNs are treated as quiet).
 | |
|  */
 | |
| static inline bool no_signaling_nans(float_status *status)
 | |
| {
 | |
| #if defined(TARGET_XTENSA)
 | |
|     return status->no_signaling_nans;
 | |
| #else
 | |
|     return false;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Define how the architecture discriminates signaling NaNs.
 | |
|  * This done with the most significant bit of the fraction.
 | |
|  * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
 | |
|  * the msb must be zero.  MIPS is (so far) unique in supporting both the
 | |
|  * 2008 revision and backward compatibility with their original choice.
 | |
|  * Thus for MIPS we must make the choice at runtime.
 | |
|  */
 | |
| static inline bool snan_bit_is_one(float_status *status)
 | |
| {
 | |
| #if defined(TARGET_MIPS)
 | |
|     return status->snan_bit_is_one;
 | |
| #elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
 | |
|     return 1;
 | |
| #else
 | |
|     return 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | For the deconstructed floating-point with fraction FRAC, return true
 | |
| | if the fraction represents a signalling NaN; otherwise false.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static bool parts_is_snan_frac(uint64_t frac, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return false;
 | |
|     } else {
 | |
|         bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
 | |
|         return msb == snan_bit_is_one(status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated deconstructed floating-point NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static FloatParts parts_default_nan(float_status *status)
 | |
| {
 | |
|     bool sign = 0;
 | |
|     uint64_t frac;
 | |
| 
 | |
| #if defined(TARGET_SPARC) || defined(TARGET_M68K)
 | |
|     /* !snan_bit_is_one, set all bits */
 | |
|     frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
 | |
| #elif defined(TARGET_I386) || defined(TARGET_X86_64) \
 | |
|     || defined(TARGET_MICROBLAZE)
 | |
|     /* !snan_bit_is_one, set sign and msb */
 | |
|     frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 | |
|     sign = 1;
 | |
| #elif defined(TARGET_HPPA)
 | |
|     /* snan_bit_is_one, set msb-1.  */
 | |
|     frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 | |
| #else
 | |
|     /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
 | |
|      * S390, SH4, TriCore, and Xtensa.  I cannot find documentation
 | |
|      * for Unicore32; the choice from the original commit is unchanged.
 | |
|      * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
 | |
|      * do not have floating-point.
 | |
|      */
 | |
|     if (snan_bit_is_one(status)) {
 | |
|         /* set all bits other than msb */
 | |
|         frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
 | |
|     } else {
 | |
|         /* set msb */
 | |
|         frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return (FloatParts) {
 | |
|         .cls = float_class_qnan,
 | |
|         .sign = sign,
 | |
|         .exp = INT_MAX,
 | |
|         .frac = frac
 | |
|     };
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns a quiet NaN from a signalling NaN for the deconstructed
 | |
| | floating-point parts.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static FloatParts parts_silence_nan(FloatParts a, float_status *status)
 | |
| {
 | |
|     g_assert(!no_signaling_nans(status));
 | |
| #if defined(TARGET_HPPA)
 | |
|     a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
 | |
|     a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
 | |
| #else
 | |
|     if (snan_bit_is_one(status)) {
 | |
|         return parts_default_nan(status);
 | |
|     } else {
 | |
|         a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
 | |
|     }
 | |
| #endif
 | |
|     a.cls = float_class_qnan;
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated extended double-precision NaN.
 | |
| *----------------------------------------------------------------------------*/
 | |
| floatx80 floatx80_default_nan(float_status *status)
 | |
| {
 | |
|     floatx80 r;
 | |
| 
 | |
|     /* None of the targets that have snan_bit_is_one use floatx80.  */
 | |
|     assert(!snan_bit_is_one(status));
 | |
| #if defined(TARGET_M68K)
 | |
|     r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
 | |
|     r.high = 0x7FFF;
 | |
| #else
 | |
|     /* X86 */
 | |
|     r.low = UINT64_C(0xC000000000000000);
 | |
|     r.high = 0xFFFF;
 | |
| #endif
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | The pattern for a default generated extended double-precision inf.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| #define floatx80_infinity_high 0x7FFF
 | |
| #if defined(TARGET_M68K)
 | |
| #define floatx80_infinity_low  UINT64_C(0x0000000000000000)
 | |
| #else
 | |
| #define floatx80_infinity_low  UINT64_C(0x8000000000000000)
 | |
| #endif
 | |
| 
 | |
| const floatx80 floatx80_infinity
 | |
|     = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Raises the exceptions specified by `flags'.  Floating-point traps can be
 | |
| | defined here if desired.  It is currently not possible for such a trap
 | |
| | to substitute a result value.  If traps are not implemented, this routine
 | |
| | should be simply `float_exception_flags |= flags;'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| void float_raise(uint8_t flags, float_status *status)
 | |
| {
 | |
|     status->float_exception_flags |= flags;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Internal canonical NaN format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| typedef struct {
 | |
|     bool sign;
 | |
|     uint64_t high, low;
 | |
| } commonNaNT;
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the half-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float16_is_quiet_nan(float16 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return float16_is_any_nan(a_);
 | |
|     } else {
 | |
|         uint16_t a = float16_val(a_);
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 | |
|         } else {
 | |
| 
 | |
|             return ((a >> 9) & 0x3F) == 0x3F;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the bfloat16 value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool bfloat16_is_quiet_nan(bfloat16 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return bfloat16_is_any_nan(a_);
 | |
|     } else {
 | |
|         uint16_t a = a_;
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
 | |
|         } else {
 | |
|             return ((a >> 6) & 0x1FF) == 0x1FF;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the half-precision floating-point value `a' is a signaling
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float16_is_signaling_nan(float16 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         uint16_t a = float16_val(a_);
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return ((a >> 9) & 0x3F) == 0x3F;
 | |
|         } else {
 | |
|             return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the bfloat16 value `a' is a signaling
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool bfloat16_is_signaling_nan(bfloat16 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         uint16_t a = a_;
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return ((a >> 6) & 0x1FF) == 0x1FF;
 | |
|         } else {
 | |
|             return (((a >> 6) & 0x1FF) == 0x1FE) && (a & 0x3F);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float32_is_quiet_nan(float32 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return float32_is_any_nan(a_);
 | |
|     } else {
 | |
|         uint32_t a = float32_val(a_);
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 | |
|         } else {
 | |
|             return ((uint32_t)(a << 1) >= 0xFF800000);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the single-precision floating-point value `a' is a signaling
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float32_is_signaling_nan(float32 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         uint32_t a = float32_val(a_);
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return ((uint32_t)(a << 1) >= 0xFF800000);
 | |
|         } else {
 | |
|             return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the single-precision floating-point NaN
 | |
| | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | |
| | exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if (float32_is_signaling_nan(a, status)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
|     z.sign = float32_val(a) >> 31;
 | |
|     z.low = 0;
 | |
|     z.high = ((uint64_t)float32_val(a)) << 41;
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the single-
 | |
| | precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
 | |
| {
 | |
|     uint32_t mantissa = a.high >> 41;
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (mantissa) {
 | |
|         return make_float32(
 | |
|             (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
 | |
|     } else {
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Select which NaN to propagate for a two-input operation.
 | |
| | IEEE754 doesn't specify all the details of this, so the
 | |
| | algorithm is target-specific.
 | |
| | The routine is passed various bits of information about the
 | |
| | two NaNs and should return 0 to select NaN a and 1 for NaN b.
 | |
| | Note that signalling NaNs are always squashed to quiet NaNs
 | |
| | by the caller, by calling floatXX_silence_nan() before
 | |
| | returning them.
 | |
| |
 | |
| | aIsLargerSignificand is only valid if both a and b are NaNs
 | |
| | of some kind, and is true if a has the larger significand,
 | |
| | or if both a and b have the same significand but a is
 | |
| | positive but b is negative. It is only needed for the x87
 | |
| | tie-break rule.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static int pickNaN(FloatClass a_cls, FloatClass b_cls,
 | |
|                    bool aIsLargerSignificand, float_status *status)
 | |
| {
 | |
| #if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
 | |
|     /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
 | |
|      * the first of:
 | |
|      *  1. A if it is signaling
 | |
|      *  2. B if it is signaling
 | |
|      *  3. A (quiet)
 | |
|      *  4. B (quiet)
 | |
|      * A signaling NaN is always quietened before returning it.
 | |
|      */
 | |
|     /* According to MIPS specifications, if one of the two operands is
 | |
|      * a sNaN, a new qNaN has to be generated. This is done in
 | |
|      * floatXX_silence_nan(). For qNaN inputs the specifications
 | |
|      * says: "When possible, this QNaN result is one of the operand QNaN
 | |
|      * values." In practice it seems that most implementations choose
 | |
|      * the first operand if both operands are qNaN. In short this gives
 | |
|      * the following rules:
 | |
|      *  1. A if it is signaling
 | |
|      *  2. B if it is signaling
 | |
|      *  3. A (quiet)
 | |
|      *  4. B (quiet)
 | |
|      * A signaling NaN is always silenced before returning it.
 | |
|      */
 | |
|     if (is_snan(a_cls)) {
 | |
|         return 0;
 | |
|     } else if (is_snan(b_cls)) {
 | |
|         return 1;
 | |
|     } else if (is_qnan(a_cls)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| #elif defined(TARGET_PPC) || defined(TARGET_M68K)
 | |
|     /* PowerPC propagation rules:
 | |
|      *  1. A if it sNaN or qNaN
 | |
|      *  2. B if it sNaN or qNaN
 | |
|      * A signaling NaN is always silenced before returning it.
 | |
|      */
 | |
|     /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
 | |
|      * 3.4 FLOATING-POINT INSTRUCTION DETAILS
 | |
|      * If either operand, but not both operands, of an operation is a
 | |
|      * nonsignaling NaN, then that NaN is returned as the result. If both
 | |
|      * operands are nonsignaling NaNs, then the destination operand
 | |
|      * nonsignaling NaN is returned as the result.
 | |
|      * If either operand to an operation is a signaling NaN (SNaN), then the
 | |
|      * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
 | |
|      * is set in the FPCR ENABLE byte, then the exception is taken and the
 | |
|      * destination is not modified. If the SNaN exception enable bit is not
 | |
|      * set, setting the SNaN bit in the operand to a one converts the SNaN to
 | |
|      * a nonsignaling NaN. The operation then continues as described in the
 | |
|      * preceding paragraph for nonsignaling NaNs.
 | |
|      */
 | |
|     if (is_nan(a_cls)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| #elif defined(TARGET_XTENSA)
 | |
|     /*
 | |
|      * Xtensa has two NaN propagation modes.
 | |
|      * Which one is active is controlled by float_status::use_first_nan.
 | |
|      */
 | |
|     if (status->use_first_nan) {
 | |
|         if (is_nan(a_cls)) {
 | |
|             return 0;
 | |
|         } else {
 | |
|             return 1;
 | |
|         }
 | |
|     } else {
 | |
|         if (is_nan(b_cls)) {
 | |
|             return 1;
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     /* This implements x87 NaN propagation rules:
 | |
|      * SNaN + QNaN => return the QNaN
 | |
|      * two SNaNs => return the one with the larger significand, silenced
 | |
|      * two QNaNs => return the one with the larger significand
 | |
|      * SNaN and a non-NaN => return the SNaN, silenced
 | |
|      * QNaN and a non-NaN => return the QNaN
 | |
|      *
 | |
|      * If we get down to comparing significands and they are the same,
 | |
|      * return the NaN with the positive sign bit (if any).
 | |
|      */
 | |
|     if (is_snan(a_cls)) {
 | |
|         if (is_snan(b_cls)) {
 | |
|             return aIsLargerSignificand ? 0 : 1;
 | |
|         }
 | |
|         return is_qnan(b_cls) ? 1 : 0;
 | |
|     } else if (is_qnan(a_cls)) {
 | |
|         if (is_snan(b_cls) || !is_qnan(b_cls)) {
 | |
|             return 0;
 | |
|         } else {
 | |
|             return aIsLargerSignificand ? 0 : 1;
 | |
|         }
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Select which NaN to propagate for a three-input operation.
 | |
| | For the moment we assume that no CPU needs the 'larger significand'
 | |
| | information.
 | |
| | Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
 | |
| *----------------------------------------------------------------------------*/
 | |
| static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
 | |
|                          bool infzero, float_status *status)
 | |
| {
 | |
| #if defined(TARGET_ARM)
 | |
|     /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
 | |
|      * the default NaN
 | |
|      */
 | |
|     if (infzero && is_qnan(c_cls)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 3;
 | |
|     }
 | |
| 
 | |
|     /* This looks different from the ARM ARM pseudocode, because the ARM ARM
 | |
|      * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
 | |
|      */
 | |
|     if (is_snan(c_cls)) {
 | |
|         return 2;
 | |
|     } else if (is_snan(a_cls)) {
 | |
|         return 0;
 | |
|     } else if (is_snan(b_cls)) {
 | |
|         return 1;
 | |
|     } else if (is_qnan(c_cls)) {
 | |
|         return 2;
 | |
|     } else if (is_qnan(a_cls)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| #elif defined(TARGET_MIPS)
 | |
|     if (snan_bit_is_one(status)) {
 | |
|         /*
 | |
|          * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
 | |
|          * case sets InvalidOp and returns the default NaN
 | |
|          */
 | |
|         if (infzero) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return 3;
 | |
|         }
 | |
|         /* Prefer sNaN over qNaN, in the a, b, c order. */
 | |
|         if (is_snan(a_cls)) {
 | |
|             return 0;
 | |
|         } else if (is_snan(b_cls)) {
 | |
|             return 1;
 | |
|         } else if (is_snan(c_cls)) {
 | |
|             return 2;
 | |
|         } else if (is_qnan(a_cls)) {
 | |
|             return 0;
 | |
|         } else if (is_qnan(b_cls)) {
 | |
|             return 1;
 | |
|         } else {
 | |
|             return 2;
 | |
|         }
 | |
|     } else {
 | |
|         /*
 | |
|          * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
 | |
|          * case sets InvalidOp and returns the input value 'c'
 | |
|          */
 | |
|         if (infzero) {
 | |
|             float_raise(float_flag_invalid, status);
 | |
|             return 2;
 | |
|         }
 | |
|         /* Prefer sNaN over qNaN, in the c, a, b order. */
 | |
|         if (is_snan(c_cls)) {
 | |
|             return 2;
 | |
|         } else if (is_snan(a_cls)) {
 | |
|             return 0;
 | |
|         } else if (is_snan(b_cls)) {
 | |
|             return 1;
 | |
|         } else if (is_qnan(c_cls)) {
 | |
|             return 2;
 | |
|         } else if (is_qnan(a_cls)) {
 | |
|             return 0;
 | |
|         } else {
 | |
|             return 1;
 | |
|         }
 | |
|     }
 | |
| #elif defined(TARGET_PPC)
 | |
|     /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
 | |
|      * to return an input NaN if we have one (ie c) rather than generating
 | |
|      * a default NaN
 | |
|      */
 | |
|     if (infzero) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 2;
 | |
|     }
 | |
| 
 | |
|     /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
 | |
|      * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
 | |
|      */
 | |
|     if (is_nan(a_cls)) {
 | |
|         return 0;
 | |
|     } else if (is_nan(c_cls)) {
 | |
|         return 2;
 | |
|     } else {
 | |
|         return 1;
 | |
|     }
 | |
| #elif defined(TARGET_XTENSA)
 | |
|     /*
 | |
|      * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
 | |
|      * an input NaN if we have one (ie c).
 | |
|      */
 | |
|     if (infzero) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|         return 2;
 | |
|     }
 | |
|     if (status->use_first_nan) {
 | |
|         if (is_nan(a_cls)) {
 | |
|             return 0;
 | |
|         } else if (is_nan(b_cls)) {
 | |
|             return 1;
 | |
|         } else {
 | |
|             return 2;
 | |
|         }
 | |
|     } else {
 | |
|         if (is_nan(c_cls)) {
 | |
|             return 2;
 | |
|         } else if (is_nan(b_cls)) {
 | |
|             return 1;
 | |
|         } else {
 | |
|             return 0;
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     /* A default implementation: prefer a to b to c.
 | |
|      * This is unlikely to actually match any real implementation.
 | |
|      */
 | |
|     if (is_nan(a_cls)) {
 | |
|         return 0;
 | |
|     } else if (is_nan(b_cls)) {
 | |
|         return 1;
 | |
|     } else {
 | |
|         return 2;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two single-precision floating-point values `a' and `b', one of which
 | |
| | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | |
| | signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
 | |
| {
 | |
|     bool aIsLargerSignificand;
 | |
|     uint32_t av, bv;
 | |
|     FloatClass a_cls, b_cls;
 | |
| 
 | |
|     /* This is not complete, but is good enough for pickNaN.  */
 | |
|     a_cls = (!float32_is_any_nan(a)
 | |
|              ? float_class_normal
 | |
|              : float32_is_signaling_nan(a, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
|     b_cls = (!float32_is_any_nan(b)
 | |
|              ? float_class_normal
 | |
|              : float32_is_signaling_nan(b, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
| 
 | |
|     av = float32_val(a);
 | |
|     bv = float32_val(b);
 | |
| 
 | |
|     if (is_snan(a_cls) || is_snan(b_cls)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return float32_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
 | |
|         aIsLargerSignificand = 0;
 | |
|     } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
 | |
|         aIsLargerSignificand = 1;
 | |
|     } else {
 | |
|         aIsLargerSignificand = (av < bv) ? 1 : 0;
 | |
|     }
 | |
| 
 | |
|     if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
 | |
|         if (is_snan(b_cls)) {
 | |
|             return float32_silence_nan(b, status);
 | |
|         }
 | |
|         return b;
 | |
|     } else {
 | |
|         if (is_snan(a_cls)) {
 | |
|             return float32_silence_nan(a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float64_is_quiet_nan(float64 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return float64_is_any_nan(a_);
 | |
|     } else {
 | |
|         uint64_t a = float64_val(a_);
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return (((a >> 51) & 0xFFF) == 0xFFE)
 | |
|                 && (a & 0x0007FFFFFFFFFFFFULL);
 | |
|         } else {
 | |
|             return ((a << 1) >= 0xFFF0000000000000ULL);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the double-precision floating-point value `a' is a signaling
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float64_is_signaling_nan(float64 a_, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         uint64_t a = float64_val(a_);
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return ((a << 1) >= 0xFFF0000000000000ULL);
 | |
|         } else {
 | |
|             return (((a >> 51) & 0xFFF) == 0xFFE)
 | |
|                 && (a & UINT64_C(0x0007FFFFFFFFFFFF));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the double-precision floating-point NaN
 | |
| | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | |
| | exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if (float64_is_signaling_nan(a, status)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
|     z.sign = float64_val(a) >> 63;
 | |
|     z.low = 0;
 | |
|     z.high = float64_val(a) << 12;
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the double-
 | |
| | precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
 | |
| {
 | |
|     uint64_t mantissa = a.high >> 12;
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (mantissa) {
 | |
|         return make_float64(
 | |
|               (((uint64_t) a.sign) << 63)
 | |
|             | UINT64_C(0x7FF0000000000000)
 | |
|             | (a.high >> 12));
 | |
|     } else {
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two double-precision floating-point values `a' and `b', one of which
 | |
| | is a NaN, and returns the appropriate NaN result.  If either `a' or `b' is a
 | |
| | signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
 | |
| {
 | |
|     bool aIsLargerSignificand;
 | |
|     uint64_t av, bv;
 | |
|     FloatClass a_cls, b_cls;
 | |
| 
 | |
|     /* This is not complete, but is good enough for pickNaN.  */
 | |
|     a_cls = (!float64_is_any_nan(a)
 | |
|              ? float_class_normal
 | |
|              : float64_is_signaling_nan(a, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
|     b_cls = (!float64_is_any_nan(b)
 | |
|              ? float_class_normal
 | |
|              : float64_is_signaling_nan(b, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
| 
 | |
|     av = float64_val(a);
 | |
|     bv = float64_val(b);
 | |
| 
 | |
|     if (is_snan(a_cls) || is_snan(b_cls)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return float64_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
 | |
|         aIsLargerSignificand = 0;
 | |
|     } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
 | |
|         aIsLargerSignificand = 1;
 | |
|     } else {
 | |
|         aIsLargerSignificand = (av < bv) ? 1 : 0;
 | |
|     }
 | |
| 
 | |
|     if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
 | |
|         if (is_snan(b_cls)) {
 | |
|             return float64_silence_nan(b, status);
 | |
|         }
 | |
|         return b;
 | |
|     } else {
 | |
|         if (is_snan(a_cls)) {
 | |
|             return float64_silence_nan(a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is a
 | |
| | quiet NaN; otherwise returns 0. This slightly differs from the same
 | |
| | function for other types as floatx80 has an explicit bit.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_is_quiet_nan(floatx80 a, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return floatx80_is_any_nan(a);
 | |
|     } else {
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             uint64_t aLow;
 | |
| 
 | |
|             aLow = a.low & ~0x4000000000000000ULL;
 | |
|             return ((a.high & 0x7FFF) == 0x7FFF)
 | |
|                 && (aLow << 1)
 | |
|                 && (a.low == aLow);
 | |
|         } else {
 | |
|             return ((a.high & 0x7FFF) == 0x7FFF)
 | |
|                 && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the extended double-precision floating-point value `a' is a
 | |
| | signaling NaN; otherwise returns 0. This slightly differs from the same
 | |
| | function for other types as floatx80 has an explicit bit.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| int floatx80_is_signaling_nan(floatx80 a, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return ((a.high & 0x7FFF) == 0x7FFF)
 | |
|                 && ((a.low << 1) >= 0x8000000000000000ULL);
 | |
|         } else {
 | |
|             uint64_t aLow;
 | |
| 
 | |
|             aLow = a.low & ~UINT64_C(0x4000000000000000);
 | |
|             return ((a.high & 0x7FFF) == 0x7FFF)
 | |
|                 && (uint64_t)(aLow << 1)
 | |
|                 && (a.low == aLow);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns a quiet NaN from a signalling NaN for the extended double-precision
 | |
| | floating point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
 | |
| {
 | |
|     /* None of the targets that have snan_bit_is_one use floatx80.  */
 | |
|     assert(!snan_bit_is_one(status));
 | |
|     a.low |= UINT64_C(0xC000000000000000);
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the extended double-precision floating-
 | |
| | point NaN `a' to the canonical NaN format.  If `a' is a signaling NaN, the
 | |
| | invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
 | |
| {
 | |
|     floatx80 dflt;
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if (floatx80_is_signaling_nan(a, status)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
|     if (a.low >> 63) {
 | |
|         z.sign = a.high >> 15;
 | |
|         z.low = 0;
 | |
|         z.high = a.low << 1;
 | |
|     } else {
 | |
|         dflt = floatx80_default_nan(status);
 | |
|         z.sign = dflt.high >> 15;
 | |
|         z.low = 0;
 | |
|         z.high = dflt.low << 1;
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the extended
 | |
| | double-precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
 | |
| {
 | |
|     floatx80 z;
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (a.high >> 1) {
 | |
|         z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
 | |
|         z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
 | |
|     } else {
 | |
|         z = floatx80_default_nan(status);
 | |
|     }
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two extended double-precision floating-point values `a' and `b', one
 | |
| | of which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | |
| | `b' is a signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
 | |
| {
 | |
|     bool aIsLargerSignificand;
 | |
|     FloatClass a_cls, b_cls;
 | |
| 
 | |
|     /* This is not complete, but is good enough for pickNaN.  */
 | |
|     a_cls = (!floatx80_is_any_nan(a)
 | |
|              ? float_class_normal
 | |
|              : floatx80_is_signaling_nan(a, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
|     b_cls = (!floatx80_is_any_nan(b)
 | |
|              ? float_class_normal
 | |
|              : floatx80_is_signaling_nan(b, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
| 
 | |
|     if (is_snan(a_cls) || is_snan(b_cls)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return floatx80_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (a.low < b.low) {
 | |
|         aIsLargerSignificand = 0;
 | |
|     } else if (b.low < a.low) {
 | |
|         aIsLargerSignificand = 1;
 | |
|     } else {
 | |
|         aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
 | |
|     }
 | |
| 
 | |
|     if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
 | |
|         if (is_snan(b_cls)) {
 | |
|             return floatx80_silence_nan(b, status);
 | |
|         }
 | |
|         return b;
 | |
|     } else {
 | |
|         if (is_snan(a_cls)) {
 | |
|             return floatx80_silence_nan(a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is a quiet
 | |
| | NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float128_is_quiet_nan(float128 a, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return float128_is_any_nan(a);
 | |
|     } else {
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 | |
|                 && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
 | |
|         } else {
 | |
|             return ((a.high << 1) >= 0xFFFF000000000000ULL)
 | |
|                 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns 1 if the quadruple-precision floating-point value `a' is a
 | |
| | signaling NaN; otherwise returns 0.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| bool float128_is_signaling_nan(float128 a, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         return 0;
 | |
|     } else {
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return ((a.high << 1) >= 0xFFFF000000000000ULL)
 | |
|                 && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
 | |
|         } else {
 | |
|             return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
 | |
|                 && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns a quiet NaN from a signalling NaN for the quadruple-precision
 | |
| | floating point value `a'.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| float128 float128_silence_nan(float128 a, float_status *status)
 | |
| {
 | |
|     if (no_signaling_nans(status)) {
 | |
|         g_assert_not_reached();
 | |
|     } else {
 | |
|         if (snan_bit_is_one(status)) {
 | |
|             return float128_default_nan(status);
 | |
|         } else {
 | |
|             a.high |= UINT64_C(0x0000800000000000);
 | |
|             return a;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the quadruple-precision floating-point NaN
 | |
| | `a' to the canonical NaN format.  If `a' is a signaling NaN, the invalid
 | |
| | exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
 | |
| {
 | |
|     commonNaNT z;
 | |
| 
 | |
|     if (float128_is_signaling_nan(a, status)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
|     z.sign = a.high >> 63;
 | |
|     shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Returns the result of converting the canonical NaN `a' to the quadruple-
 | |
| | precision floating-point format.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
 | |
| {
 | |
|     float128 z;
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     shift128Right(a.high, a.low, 16, &z.high, &z.low);
 | |
|     z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
 | |
|     return z;
 | |
| }
 | |
| 
 | |
| /*----------------------------------------------------------------------------
 | |
| | Takes two quadruple-precision floating-point values `a' and `b', one of
 | |
| | which is a NaN, and returns the appropriate NaN result.  If either `a' or
 | |
| | `b' is a signaling NaN, the invalid exception is raised.
 | |
| *----------------------------------------------------------------------------*/
 | |
| 
 | |
| static float128 propagateFloat128NaN(float128 a, float128 b,
 | |
|                                      float_status *status)
 | |
| {
 | |
|     bool aIsLargerSignificand;
 | |
|     FloatClass a_cls, b_cls;
 | |
| 
 | |
|     /* This is not complete, but is good enough for pickNaN.  */
 | |
|     a_cls = (!float128_is_any_nan(a)
 | |
|              ? float_class_normal
 | |
|              : float128_is_signaling_nan(a, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
|     b_cls = (!float128_is_any_nan(b)
 | |
|              ? float_class_normal
 | |
|              : float128_is_signaling_nan(b, status)
 | |
|              ? float_class_snan
 | |
|              : float_class_qnan);
 | |
| 
 | |
|     if (is_snan(a_cls) || is_snan(b_cls)) {
 | |
|         float_raise(float_flag_invalid, status);
 | |
|     }
 | |
| 
 | |
|     if (status->default_nan_mode) {
 | |
|         return float128_default_nan(status);
 | |
|     }
 | |
| 
 | |
|     if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
 | |
|         aIsLargerSignificand = 0;
 | |
|     } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
 | |
|         aIsLargerSignificand = 1;
 | |
|     } else {
 | |
|         aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
 | |
|     }
 | |
| 
 | |
|     if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
 | |
|         if (is_snan(b_cls)) {
 | |
|             return float128_silence_nan(b, status);
 | |
|         }
 | |
|         return b;
 | |
|     } else {
 | |
|         if (is_snan(a_cls)) {
 | |
|             return float128_silence_nan(a, status);
 | |
|         }
 | |
|         return a;
 | |
|     }
 | |
| }
 |