There's a RAM load complete trace event but there wasn't its start equivalent. Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com> Reviewed-by: Fabiano Rosas <farosas@suse.de> Link: https://lore.kernel.org/r/94ddfa7ecb83a78f73b82867dd30c8767592d257.1730203967.git.maciej.szmigiero@oracle.com Signed-off-by: Peter Xu <peterx@redhat.com>
		
			
				
	
	
		
			4555 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4555 lines
		
	
	
		
			137 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * QEMU System Emulator
 | 
						|
 *
 | 
						|
 * Copyright (c) 2003-2008 Fabrice Bellard
 | 
						|
 * Copyright (c) 2011-2015 Red Hat Inc
 | 
						|
 *
 | 
						|
 * Authors:
 | 
						|
 *  Juan Quintela <quintela@redhat.com>
 | 
						|
 *
 | 
						|
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 | 
						|
 * of this software and associated documentation files (the "Software"), to deal
 | 
						|
 * in the Software without restriction, including without limitation the rights
 | 
						|
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | 
						|
 * copies of the Software, and to permit persons to whom the Software is
 | 
						|
 * furnished to do so, subject to the following conditions:
 | 
						|
 *
 | 
						|
 * The above copyright notice and this permission notice shall be included in
 | 
						|
 * all copies or substantial portions of the Software.
 | 
						|
 *
 | 
						|
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | 
						|
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 | 
						|
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | 
						|
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | 
						|
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | 
						|
 * THE SOFTWARE.
 | 
						|
 */
 | 
						|
 | 
						|
#include "qemu/osdep.h"
 | 
						|
#include "qemu/cutils.h"
 | 
						|
#include "qemu/bitops.h"
 | 
						|
#include "qemu/bitmap.h"
 | 
						|
#include "qemu/madvise.h"
 | 
						|
#include "qemu/main-loop.h"
 | 
						|
#include "xbzrle.h"
 | 
						|
#include "ram.h"
 | 
						|
#include "migration.h"
 | 
						|
#include "migration-stats.h"
 | 
						|
#include "migration/register.h"
 | 
						|
#include "migration/misc.h"
 | 
						|
#include "qemu-file.h"
 | 
						|
#include "postcopy-ram.h"
 | 
						|
#include "page_cache.h"
 | 
						|
#include "qemu/error-report.h"
 | 
						|
#include "qapi/error.h"
 | 
						|
#include "qapi/qapi-types-migration.h"
 | 
						|
#include "qapi/qapi-events-migration.h"
 | 
						|
#include "qapi/qapi-commands-migration.h"
 | 
						|
#include "qapi/qmp/qerror.h"
 | 
						|
#include "trace.h"
 | 
						|
#include "exec/ram_addr.h"
 | 
						|
#include "exec/target_page.h"
 | 
						|
#include "qemu/rcu_queue.h"
 | 
						|
#include "migration/colo.h"
 | 
						|
#include "sysemu/cpu-throttle.h"
 | 
						|
#include "savevm.h"
 | 
						|
#include "qemu/iov.h"
 | 
						|
#include "multifd.h"
 | 
						|
#include "sysemu/runstate.h"
 | 
						|
#include "rdma.h"
 | 
						|
#include "options.h"
 | 
						|
#include "sysemu/dirtylimit.h"
 | 
						|
#include "sysemu/kvm.h"
 | 
						|
 | 
						|
#include "hw/boards.h" /* for machine_dump_guest_core() */
 | 
						|
 | 
						|
#if defined(__linux__)
 | 
						|
#include "qemu/userfaultfd.h"
 | 
						|
#endif /* defined(__linux__) */
 | 
						|
 | 
						|
/***********************************************************/
 | 
						|
/* ram save/restore */
 | 
						|
 | 
						|
/*
 | 
						|
 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
 | 
						|
 * worked for pages that were filled with the same char.  We switched
 | 
						|
 * it to only search for the zero value.  And to avoid confusion with
 | 
						|
 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
 | 
						|
 *
 | 
						|
 * RAM_SAVE_FLAG_FULL was obsoleted in 2009.
 | 
						|
 *
 | 
						|
 * RAM_SAVE_FLAG_COMPRESS_PAGE (0x100) was removed in QEMU 9.1.
 | 
						|
 */
 | 
						|
#define RAM_SAVE_FLAG_FULL     0x01
 | 
						|
#define RAM_SAVE_FLAG_ZERO     0x02
 | 
						|
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
 | 
						|
#define RAM_SAVE_FLAG_PAGE     0x08
 | 
						|
#define RAM_SAVE_FLAG_EOS      0x10
 | 
						|
#define RAM_SAVE_FLAG_CONTINUE 0x20
 | 
						|
#define RAM_SAVE_FLAG_XBZRLE   0x40
 | 
						|
/* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
 | 
						|
#define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
 | 
						|
/* We can't use any flag that is bigger than 0x200 */
 | 
						|
 | 
						|
/*
 | 
						|
 * mapped-ram migration supports O_DIRECT, so we need to make sure the
 | 
						|
 * userspace buffer, the IO operation size and the file offset are
 | 
						|
 * aligned according to the underlying device's block size. The first
 | 
						|
 * two are already aligned to page size, but we need to add padding to
 | 
						|
 * the file to align the offset.  We cannot read the block size
 | 
						|
 * dynamically because the migration file can be moved between
 | 
						|
 * different systems, so use 1M to cover most block sizes and to keep
 | 
						|
 * the file offset aligned at page size as well.
 | 
						|
 */
 | 
						|
#define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
 | 
						|
 | 
						|
/*
 | 
						|
 * When doing mapped-ram migration, this is the amount we read from
 | 
						|
 * the pages region in the migration file at a time.
 | 
						|
 */
 | 
						|
#define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
 | 
						|
 | 
						|
XBZRLECacheStats xbzrle_counters;
 | 
						|
 | 
						|
/* used by the search for pages to send */
 | 
						|
struct PageSearchStatus {
 | 
						|
    /* The migration channel used for a specific host page */
 | 
						|
    QEMUFile    *pss_channel;
 | 
						|
    /* Last block from where we have sent data */
 | 
						|
    RAMBlock *last_sent_block;
 | 
						|
    /* Current block being searched */
 | 
						|
    RAMBlock    *block;
 | 
						|
    /* Current page to search from */
 | 
						|
    unsigned long page;
 | 
						|
    /* Set once we wrap around */
 | 
						|
    bool         complete_round;
 | 
						|
    /* Whether we're sending a host page */
 | 
						|
    bool          host_page_sending;
 | 
						|
    /* The start/end of current host page.  Invalid if host_page_sending==false */
 | 
						|
    unsigned long host_page_start;
 | 
						|
    unsigned long host_page_end;
 | 
						|
};
 | 
						|
typedef struct PageSearchStatus PageSearchStatus;
 | 
						|
 | 
						|
/* struct contains XBZRLE cache and a static page
 | 
						|
   used by the compression */
 | 
						|
static struct {
 | 
						|
    /* buffer used for XBZRLE encoding */
 | 
						|
    uint8_t *encoded_buf;
 | 
						|
    /* buffer for storing page content */
 | 
						|
    uint8_t *current_buf;
 | 
						|
    /* Cache for XBZRLE, Protected by lock. */
 | 
						|
    PageCache *cache;
 | 
						|
    QemuMutex lock;
 | 
						|
    /* it will store a page full of zeros */
 | 
						|
    uint8_t *zero_target_page;
 | 
						|
    /* buffer used for XBZRLE decoding */
 | 
						|
    uint8_t *decoded_buf;
 | 
						|
} XBZRLE;
 | 
						|
 | 
						|
static void XBZRLE_cache_lock(void)
 | 
						|
{
 | 
						|
    if (migrate_xbzrle()) {
 | 
						|
        qemu_mutex_lock(&XBZRLE.lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void XBZRLE_cache_unlock(void)
 | 
						|
{
 | 
						|
    if (migrate_xbzrle()) {
 | 
						|
        qemu_mutex_unlock(&XBZRLE.lock);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * xbzrle_cache_resize: resize the xbzrle cache
 | 
						|
 *
 | 
						|
 * This function is called from migrate_params_apply in main
 | 
						|
 * thread, possibly while a migration is in progress.  A running
 | 
						|
 * migration may be using the cache and might finish during this call,
 | 
						|
 * hence changes to the cache are protected by XBZRLE.lock().
 | 
						|
 *
 | 
						|
 * Returns 0 for success or -1 for error
 | 
						|
 *
 | 
						|
 * @new_size: new cache size
 | 
						|
 * @errp: set *errp if the check failed, with reason
 | 
						|
 */
 | 
						|
int xbzrle_cache_resize(uint64_t new_size, Error **errp)
 | 
						|
{
 | 
						|
    PageCache *new_cache;
 | 
						|
    int64_t ret = 0;
 | 
						|
 | 
						|
    /* Check for truncation */
 | 
						|
    if (new_size != (size_t)new_size) {
 | 
						|
        error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
 | 
						|
                   "exceeding address space");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (new_size == migrate_xbzrle_cache_size()) {
 | 
						|
        /* nothing to do */
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    XBZRLE_cache_lock();
 | 
						|
 | 
						|
    if (XBZRLE.cache != NULL) {
 | 
						|
        new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
 | 
						|
        if (!new_cache) {
 | 
						|
            ret = -1;
 | 
						|
            goto out;
 | 
						|
        }
 | 
						|
 | 
						|
        cache_fini(XBZRLE.cache);
 | 
						|
        XBZRLE.cache = new_cache;
 | 
						|
    }
 | 
						|
out:
 | 
						|
    XBZRLE_cache_unlock();
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool postcopy_preempt_active(void)
 | 
						|
{
 | 
						|
    return migrate_postcopy_preempt() && migration_in_postcopy();
 | 
						|
}
 | 
						|
 | 
						|
bool migrate_ram_is_ignored(RAMBlock *block)
 | 
						|
{
 | 
						|
    return !qemu_ram_is_migratable(block) ||
 | 
						|
           (migrate_ignore_shared() && qemu_ram_is_shared(block)
 | 
						|
                                    && qemu_ram_is_named_file(block));
 | 
						|
}
 | 
						|
 | 
						|
#undef RAMBLOCK_FOREACH
 | 
						|
 | 
						|
int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        ret = func(block, opaque);
 | 
						|
        if (ret) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void ramblock_recv_map_init(void)
 | 
						|
{
 | 
						|
    RAMBlock *rb;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | 
						|
        assert(!rb->receivedmap);
 | 
						|
        rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
 | 
						|
{
 | 
						|
    return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
 | 
						|
                    rb->receivedmap);
 | 
						|
}
 | 
						|
 | 
						|
bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
 | 
						|
{
 | 
						|
    return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
 | 
						|
}
 | 
						|
 | 
						|
void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
 | 
						|
{
 | 
						|
    set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
 | 
						|
}
 | 
						|
 | 
						|
void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
 | 
						|
                                    size_t nr)
 | 
						|
{
 | 
						|
    bitmap_set_atomic(rb->receivedmap,
 | 
						|
                      ramblock_recv_bitmap_offset(host_addr, rb),
 | 
						|
                      nr);
 | 
						|
}
 | 
						|
 | 
						|
void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
 | 
						|
{
 | 
						|
    set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
 | 
						|
}
 | 
						|
#define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
 | 
						|
 | 
						|
/*
 | 
						|
 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
 | 
						|
 *
 | 
						|
 * Returns >0 if success with sent bytes, or <0 if error.
 | 
						|
 */
 | 
						|
int64_t ramblock_recv_bitmap_send(QEMUFile *file,
 | 
						|
                                  const char *block_name)
 | 
						|
{
 | 
						|
    RAMBlock *block = qemu_ram_block_by_name(block_name);
 | 
						|
    unsigned long *le_bitmap, nbits;
 | 
						|
    uint64_t size;
 | 
						|
 | 
						|
    if (!block) {
 | 
						|
        error_report("%s: invalid block name: %s", __func__, block_name);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    nbits = block->postcopy_length >> TARGET_PAGE_BITS;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
 | 
						|
     * machines we may need 4 more bytes for padding (see below
 | 
						|
     * comment). So extend it a bit before hand.
 | 
						|
     */
 | 
						|
    le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Always use little endian when sending the bitmap. This is
 | 
						|
     * required that when source and destination VMs are not using the
 | 
						|
     * same endianness. (Note: big endian won't work.)
 | 
						|
     */
 | 
						|
    bitmap_to_le(le_bitmap, block->receivedmap, nbits);
 | 
						|
 | 
						|
    /* Size of the bitmap, in bytes */
 | 
						|
    size = DIV_ROUND_UP(nbits, 8);
 | 
						|
 | 
						|
    /*
 | 
						|
     * size is always aligned to 8 bytes for 64bit machines, but it
 | 
						|
     * may not be true for 32bit machines. We need this padding to
 | 
						|
     * make sure the migration can survive even between 32bit and
 | 
						|
     * 64bit machines.
 | 
						|
     */
 | 
						|
    size = ROUND_UP(size, 8);
 | 
						|
 | 
						|
    qemu_put_be64(file, size);
 | 
						|
    qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
 | 
						|
    g_free(le_bitmap);
 | 
						|
    /*
 | 
						|
     * Mark as an end, in case the middle part is screwed up due to
 | 
						|
     * some "mysterious" reason.
 | 
						|
     */
 | 
						|
    qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
 | 
						|
    int ret = qemu_fflush(file);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return size + sizeof(size);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * An outstanding page request, on the source, having been received
 | 
						|
 * and queued
 | 
						|
 */
 | 
						|
struct RAMSrcPageRequest {
 | 
						|
    RAMBlock *rb;
 | 
						|
    hwaddr    offset;
 | 
						|
    hwaddr    len;
 | 
						|
 | 
						|
    QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
 | 
						|
};
 | 
						|
 | 
						|
/* State of RAM for migration */
 | 
						|
struct RAMState {
 | 
						|
    /*
 | 
						|
     * PageSearchStatus structures for the channels when send pages.
 | 
						|
     * Protected by the bitmap_mutex.
 | 
						|
     */
 | 
						|
    PageSearchStatus pss[RAM_CHANNEL_MAX];
 | 
						|
    /* UFFD file descriptor, used in 'write-tracking' migration */
 | 
						|
    int uffdio_fd;
 | 
						|
    /* total ram size in bytes */
 | 
						|
    uint64_t ram_bytes_total;
 | 
						|
    /* Last block that we have visited searching for dirty pages */
 | 
						|
    RAMBlock *last_seen_block;
 | 
						|
    /* Last dirty target page we have sent */
 | 
						|
    ram_addr_t last_page;
 | 
						|
    /* last ram version we have seen */
 | 
						|
    uint32_t last_version;
 | 
						|
    /* How many times we have dirty too many pages */
 | 
						|
    int dirty_rate_high_cnt;
 | 
						|
    /* these variables are used for bitmap sync */
 | 
						|
    /* last time we did a full bitmap_sync */
 | 
						|
    int64_t time_last_bitmap_sync;
 | 
						|
    /* bytes transferred at start_time */
 | 
						|
    uint64_t bytes_xfer_prev;
 | 
						|
    /* number of dirty pages since start_time */
 | 
						|
    uint64_t num_dirty_pages_period;
 | 
						|
    /* xbzrle misses since the beginning of the period */
 | 
						|
    uint64_t xbzrle_cache_miss_prev;
 | 
						|
    /* Amount of xbzrle pages since the beginning of the period */
 | 
						|
    uint64_t xbzrle_pages_prev;
 | 
						|
    /* Amount of xbzrle encoded bytes since the beginning of the period */
 | 
						|
    uint64_t xbzrle_bytes_prev;
 | 
						|
    /* Are we really using XBZRLE (e.g., after the first round). */
 | 
						|
    bool xbzrle_started;
 | 
						|
    /* Are we on the last stage of migration */
 | 
						|
    bool last_stage;
 | 
						|
 | 
						|
    /* total handled target pages at the beginning of period */
 | 
						|
    uint64_t target_page_count_prev;
 | 
						|
    /* total handled target pages since start */
 | 
						|
    uint64_t target_page_count;
 | 
						|
    /* number of dirty bits in the bitmap */
 | 
						|
    uint64_t migration_dirty_pages;
 | 
						|
    /*
 | 
						|
     * Protects:
 | 
						|
     * - dirty/clear bitmap
 | 
						|
     * - migration_dirty_pages
 | 
						|
     * - pss structures
 | 
						|
     */
 | 
						|
    QemuMutex bitmap_mutex;
 | 
						|
    /* The RAMBlock used in the last src_page_requests */
 | 
						|
    RAMBlock *last_req_rb;
 | 
						|
    /* Queue of outstanding page requests from the destination */
 | 
						|
    QemuMutex src_page_req_mutex;
 | 
						|
    QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
 | 
						|
 | 
						|
    /*
 | 
						|
     * This is only used when postcopy is in recovery phase, to communicate
 | 
						|
     * between the migration thread and the return path thread on dirty
 | 
						|
     * bitmap synchronizations.  This field is unused in other stages of
 | 
						|
     * RAM migration.
 | 
						|
     */
 | 
						|
    unsigned int postcopy_bmap_sync_requested;
 | 
						|
};
 | 
						|
typedef struct RAMState RAMState;
 | 
						|
 | 
						|
static RAMState *ram_state;
 | 
						|
 | 
						|
static NotifierWithReturnList precopy_notifier_list;
 | 
						|
 | 
						|
/* Whether postcopy has queued requests? */
 | 
						|
static bool postcopy_has_request(RAMState *rs)
 | 
						|
{
 | 
						|
    return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
 | 
						|
}
 | 
						|
 | 
						|
void precopy_infrastructure_init(void)
 | 
						|
{
 | 
						|
    notifier_with_return_list_init(&precopy_notifier_list);
 | 
						|
}
 | 
						|
 | 
						|
void precopy_add_notifier(NotifierWithReturn *n)
 | 
						|
{
 | 
						|
    notifier_with_return_list_add(&precopy_notifier_list, n);
 | 
						|
}
 | 
						|
 | 
						|
void precopy_remove_notifier(NotifierWithReturn *n)
 | 
						|
{
 | 
						|
    notifier_with_return_remove(n);
 | 
						|
}
 | 
						|
 | 
						|
int precopy_notify(PrecopyNotifyReason reason, Error **errp)
 | 
						|
{
 | 
						|
    PrecopyNotifyData pnd;
 | 
						|
    pnd.reason = reason;
 | 
						|
 | 
						|
    return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ram_bytes_remaining(void)
 | 
						|
{
 | 
						|
    return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
 | 
						|
                       0;
 | 
						|
}
 | 
						|
 | 
						|
void ram_transferred_add(uint64_t bytes)
 | 
						|
{
 | 
						|
    if (runstate_is_running()) {
 | 
						|
        stat64_add(&mig_stats.precopy_bytes, bytes);
 | 
						|
    } else if (migration_in_postcopy()) {
 | 
						|
        stat64_add(&mig_stats.postcopy_bytes, bytes);
 | 
						|
    } else {
 | 
						|
        stat64_add(&mig_stats.downtime_bytes, bytes);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
struct MigrationOps {
 | 
						|
    int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
 | 
						|
};
 | 
						|
typedef struct MigrationOps MigrationOps;
 | 
						|
 | 
						|
MigrationOps *migration_ops;
 | 
						|
 | 
						|
static int ram_save_host_page_urgent(PageSearchStatus *pss);
 | 
						|
 | 
						|
/* NOTE: page is the PFN not real ram_addr_t. */
 | 
						|
static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
 | 
						|
{
 | 
						|
    pss->block = rb;
 | 
						|
    pss->page = page;
 | 
						|
    pss->complete_round = false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check whether two PSSs are actively sending the same page.  Return true
 | 
						|
 * if it is, false otherwise.
 | 
						|
 */
 | 
						|
static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
 | 
						|
{
 | 
						|
    return pss1->host_page_sending && pss2->host_page_sending &&
 | 
						|
        (pss1->host_page_start == pss2->host_page_start);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * save_page_header: write page header to wire
 | 
						|
 *
 | 
						|
 * If this is the 1st block, it also writes the block identification
 | 
						|
 *
 | 
						|
 * Returns the number of bytes written
 | 
						|
 *
 | 
						|
 * @pss: current PSS channel status
 | 
						|
 * @block: block that contains the page we want to send
 | 
						|
 * @offset: offset inside the block for the page
 | 
						|
 *          in the lower bits, it contains flags
 | 
						|
 */
 | 
						|
static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
 | 
						|
                               RAMBlock *block, ram_addr_t offset)
 | 
						|
{
 | 
						|
    size_t size, len;
 | 
						|
    bool same_block = (block == pss->last_sent_block);
 | 
						|
 | 
						|
    if (same_block) {
 | 
						|
        offset |= RAM_SAVE_FLAG_CONTINUE;
 | 
						|
    }
 | 
						|
    qemu_put_be64(f, offset);
 | 
						|
    size = 8;
 | 
						|
 | 
						|
    if (!same_block) {
 | 
						|
        len = strlen(block->idstr);
 | 
						|
        qemu_put_byte(f, len);
 | 
						|
        qemu_put_buffer(f, (uint8_t *)block->idstr, len);
 | 
						|
        size += 1 + len;
 | 
						|
        pss->last_sent_block = block;
 | 
						|
    }
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * mig_throttle_guest_down: throttle down the guest
 | 
						|
 *
 | 
						|
 * Reduce amount of guest cpu execution to hopefully slow down memory
 | 
						|
 * writes. If guest dirty memory rate is reduced below the rate at
 | 
						|
 * which we can transfer pages to the destination then we should be
 | 
						|
 * able to complete migration. Some workloads dirty memory way too
 | 
						|
 * fast and will not effectively converge, even with auto-converge.
 | 
						|
 */
 | 
						|
static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
 | 
						|
                                    uint64_t bytes_dirty_threshold)
 | 
						|
{
 | 
						|
    uint64_t pct_initial = migrate_cpu_throttle_initial();
 | 
						|
    uint64_t pct_increment = migrate_cpu_throttle_increment();
 | 
						|
    bool pct_tailslow = migrate_cpu_throttle_tailslow();
 | 
						|
    int pct_max = migrate_max_cpu_throttle();
 | 
						|
 | 
						|
    uint64_t throttle_now = cpu_throttle_get_percentage();
 | 
						|
    uint64_t cpu_now, cpu_ideal, throttle_inc;
 | 
						|
 | 
						|
    /* We have not started throttling yet. Let's start it. */
 | 
						|
    if (!cpu_throttle_active()) {
 | 
						|
        cpu_throttle_set(pct_initial);
 | 
						|
    } else {
 | 
						|
        /* Throttling already on, just increase the rate */
 | 
						|
        if (!pct_tailslow) {
 | 
						|
            throttle_inc = pct_increment;
 | 
						|
        } else {
 | 
						|
            /* Compute the ideal CPU percentage used by Guest, which may
 | 
						|
             * make the dirty rate match the dirty rate threshold. */
 | 
						|
            cpu_now = 100 - throttle_now;
 | 
						|
            cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
 | 
						|
                        bytes_dirty_period);
 | 
						|
            throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
 | 
						|
        }
 | 
						|
        cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void mig_throttle_counter_reset(void)
 | 
						|
{
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
 | 
						|
    rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | 
						|
    rs->num_dirty_pages_period = 0;
 | 
						|
    rs->bytes_xfer_prev = migration_transferred_bytes();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
 | 
						|
 *
 | 
						|
 * @current_addr: address for the zero page
 | 
						|
 *
 | 
						|
 * Update the xbzrle cache to reflect a page that's been sent as all 0.
 | 
						|
 * The important thing is that a stale (not-yet-0'd) page be replaced
 | 
						|
 * by the new data.
 | 
						|
 * As a bonus, if the page wasn't in the cache it gets added so that
 | 
						|
 * when a small write is made into the 0'd page it gets XBZRLE sent.
 | 
						|
 */
 | 
						|
static void xbzrle_cache_zero_page(ram_addr_t current_addr)
 | 
						|
{
 | 
						|
    /* We don't care if this fails to allocate a new cache page
 | 
						|
     * as long as it updated an old one */
 | 
						|
    cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
 | 
						|
                 stat64_get(&mig_stats.dirty_sync_count));
 | 
						|
}
 | 
						|
 | 
						|
#define ENCODING_FLAG_XBZRLE 0x1
 | 
						|
 | 
						|
/**
 | 
						|
 * save_xbzrle_page: compress and send current page
 | 
						|
 *
 | 
						|
 * Returns: 1 means that we wrote the page
 | 
						|
 *          0 means that page is identical to the one already sent
 | 
						|
 *          -1 means that xbzrle would be longer than normal
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: current PSS channel
 | 
						|
 * @current_data: pointer to the address of the page contents
 | 
						|
 * @current_addr: addr of the page
 | 
						|
 * @block: block that contains the page we want to send
 | 
						|
 * @offset: offset inside the block for the page
 | 
						|
 */
 | 
						|
static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
 | 
						|
                            uint8_t **current_data, ram_addr_t current_addr,
 | 
						|
                            RAMBlock *block, ram_addr_t offset)
 | 
						|
{
 | 
						|
    int encoded_len = 0, bytes_xbzrle;
 | 
						|
    uint8_t *prev_cached_page;
 | 
						|
    QEMUFile *file = pss->pss_channel;
 | 
						|
    uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
 | 
						|
 | 
						|
    if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
 | 
						|
        xbzrle_counters.cache_miss++;
 | 
						|
        if (!rs->last_stage) {
 | 
						|
            if (cache_insert(XBZRLE.cache, current_addr, *current_data,
 | 
						|
                             generation) == -1) {
 | 
						|
                return -1;
 | 
						|
            } else {
 | 
						|
                /* update *current_data when the page has been
 | 
						|
                   inserted into cache */
 | 
						|
                *current_data = get_cached_data(XBZRLE.cache, current_addr);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Reaching here means the page has hit the xbzrle cache, no matter what
 | 
						|
     * encoding result it is (normal encoding, overflow or skipping the page),
 | 
						|
     * count the page as encoded. This is used to calculate the encoding rate.
 | 
						|
     *
 | 
						|
     * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
 | 
						|
     * 2nd page turns out to be skipped (i.e. no new bytes written to the
 | 
						|
     * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
 | 
						|
     * skipped page included. In this way, the encoding rate can tell if the
 | 
						|
     * guest page is good for xbzrle encoding.
 | 
						|
     */
 | 
						|
    xbzrle_counters.pages++;
 | 
						|
    prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
 | 
						|
 | 
						|
    /* save current buffer into memory */
 | 
						|
    memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    /* XBZRLE encoding (if there is no overflow) */
 | 
						|
    encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
 | 
						|
                                       TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
 | 
						|
                                       TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Update the cache contents, so that it corresponds to the data
 | 
						|
     * sent, in all cases except where we skip the page.
 | 
						|
     */
 | 
						|
    if (!rs->last_stage && encoded_len != 0) {
 | 
						|
        memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
 | 
						|
        /*
 | 
						|
         * In the case where we couldn't compress, ensure that the caller
 | 
						|
         * sends the data from the cache, since the guest might have
 | 
						|
         * changed the RAM since we copied it.
 | 
						|
         */
 | 
						|
        *current_data = prev_cached_page;
 | 
						|
    }
 | 
						|
 | 
						|
    if (encoded_len == 0) {
 | 
						|
        trace_save_xbzrle_page_skipping();
 | 
						|
        return 0;
 | 
						|
    } else if (encoded_len == -1) {
 | 
						|
        trace_save_xbzrle_page_overflow();
 | 
						|
        xbzrle_counters.overflow++;
 | 
						|
        xbzrle_counters.bytes += TARGET_PAGE_SIZE;
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Send XBZRLE based compressed page */
 | 
						|
    bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
 | 
						|
                                    offset | RAM_SAVE_FLAG_XBZRLE);
 | 
						|
    qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
 | 
						|
    qemu_put_be16(file, encoded_len);
 | 
						|
    qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
 | 
						|
    bytes_xbzrle += encoded_len + 1 + 2;
 | 
						|
    /*
 | 
						|
     * The xbzrle encoded bytes don't count the 8 byte header with
 | 
						|
     * RAM_SAVE_FLAG_CONTINUE.
 | 
						|
     */
 | 
						|
    xbzrle_counters.bytes += bytes_xbzrle - 8;
 | 
						|
    ram_transferred_add(bytes_xbzrle);
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * pss_find_next_dirty: find the next dirty page of current ramblock
 | 
						|
 *
 | 
						|
 * This function updates pss->page to point to the next dirty page index
 | 
						|
 * within the ramblock to migrate, or the end of ramblock when nothing
 | 
						|
 * found.  Note that when pss->host_page_sending==true it means we're
 | 
						|
 * during sending a host page, so we won't look for dirty page that is
 | 
						|
 * outside the host page boundary.
 | 
						|
 *
 | 
						|
 * @pss: the current page search status
 | 
						|
 */
 | 
						|
static void pss_find_next_dirty(PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    RAMBlock *rb = pss->block;
 | 
						|
    unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
 | 
						|
    unsigned long *bitmap = rb->bmap;
 | 
						|
 | 
						|
    if (migrate_ram_is_ignored(rb)) {
 | 
						|
        /* Points directly to the end, so we know no dirty page */
 | 
						|
        pss->page = size;
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * If during sending a host page, only look for dirty pages within the
 | 
						|
     * current host page being send.
 | 
						|
     */
 | 
						|
    if (pss->host_page_sending) {
 | 
						|
        assert(pss->host_page_end);
 | 
						|
        size = MIN(size, pss->host_page_end);
 | 
						|
    }
 | 
						|
 | 
						|
    pss->page = find_next_bit(bitmap, size, pss->page);
 | 
						|
}
 | 
						|
 | 
						|
static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
 | 
						|
                                                       unsigned long page)
 | 
						|
{
 | 
						|
    uint8_t shift;
 | 
						|
    hwaddr size, start;
 | 
						|
 | 
						|
    if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    shift = rb->clear_bmap_shift;
 | 
						|
    /*
 | 
						|
     * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
 | 
						|
     * can make things easier sometimes since then start address
 | 
						|
     * of the small chunk will always be 64 pages aligned so the
 | 
						|
     * bitmap will always be aligned to unsigned long. We should
 | 
						|
     * even be able to remove this restriction but I'm simply
 | 
						|
     * keeping it.
 | 
						|
     */
 | 
						|
    assert(shift >= 6);
 | 
						|
 | 
						|
    size = 1ULL << (TARGET_PAGE_BITS + shift);
 | 
						|
    start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
 | 
						|
    trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
 | 
						|
    memory_region_clear_dirty_bitmap(rb->mr, start, size);
 | 
						|
}
 | 
						|
 | 
						|
static void
 | 
						|
migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
 | 
						|
                                                 unsigned long start,
 | 
						|
                                                 unsigned long npages)
 | 
						|
{
 | 
						|
    unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
 | 
						|
    unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
 | 
						|
    unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Clear pages from start to start + npages - 1, so the end boundary is
 | 
						|
     * exclusive.
 | 
						|
     */
 | 
						|
    for (i = chunk_start; i < chunk_end; i += chunk_pages) {
 | 
						|
        migration_clear_memory_region_dirty_bitmap(rb, i);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * colo_bitmap_find_diry:find contiguous dirty pages from start
 | 
						|
 *
 | 
						|
 * Returns the page offset within memory region of the start of the contiguout
 | 
						|
 * dirty page
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @rb: RAMBlock where to search for dirty pages
 | 
						|
 * @start: page where we start the search
 | 
						|
 * @num: the number of contiguous dirty pages
 | 
						|
 */
 | 
						|
static inline
 | 
						|
unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
 | 
						|
                                     unsigned long start, unsigned long *num)
 | 
						|
{
 | 
						|
    unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
 | 
						|
    unsigned long *bitmap = rb->bmap;
 | 
						|
    unsigned long first, next;
 | 
						|
 | 
						|
    *num = 0;
 | 
						|
 | 
						|
    if (migrate_ram_is_ignored(rb)) {
 | 
						|
        return size;
 | 
						|
    }
 | 
						|
 | 
						|
    first = find_next_bit(bitmap, size, start);
 | 
						|
    if (first >= size) {
 | 
						|
        return first;
 | 
						|
    }
 | 
						|
    next = find_next_zero_bit(bitmap, size, first + 1);
 | 
						|
    assert(next >= first);
 | 
						|
    *num = next - first;
 | 
						|
    return first;
 | 
						|
}
 | 
						|
 | 
						|
static inline bool migration_bitmap_clear_dirty(RAMState *rs,
 | 
						|
                                                RAMBlock *rb,
 | 
						|
                                                unsigned long page)
 | 
						|
{
 | 
						|
    bool ret;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Clear dirty bitmap if needed.  This _must_ be called before we
 | 
						|
     * send any of the page in the chunk because we need to make sure
 | 
						|
     * we can capture further page content changes when we sync dirty
 | 
						|
     * log the next time.  So as long as we are going to send any of
 | 
						|
     * the page in the chunk we clear the remote dirty bitmap for all.
 | 
						|
     * Clearing it earlier won't be a problem, but too late will.
 | 
						|
     */
 | 
						|
    migration_clear_memory_region_dirty_bitmap(rb, page);
 | 
						|
 | 
						|
    ret = test_and_clear_bit(page, rb->bmap);
 | 
						|
    if (ret) {
 | 
						|
        rs->migration_dirty_pages--;
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void dirty_bitmap_clear_section(MemoryRegionSection *section,
 | 
						|
                                       void *opaque)
 | 
						|
{
 | 
						|
    const hwaddr offset = section->offset_within_region;
 | 
						|
    const hwaddr size = int128_get64(section->size);
 | 
						|
    const unsigned long start = offset >> TARGET_PAGE_BITS;
 | 
						|
    const unsigned long npages = size >> TARGET_PAGE_BITS;
 | 
						|
    RAMBlock *rb = section->mr->ram_block;
 | 
						|
    uint64_t *cleared_bits = opaque;
 | 
						|
 | 
						|
    /*
 | 
						|
     * We don't grab ram_state->bitmap_mutex because we expect to run
 | 
						|
     * only when starting migration or during postcopy recovery where
 | 
						|
     * we don't have concurrent access.
 | 
						|
     */
 | 
						|
    if (!migration_in_postcopy() && !migrate_background_snapshot()) {
 | 
						|
        migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
 | 
						|
    }
 | 
						|
    *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
 | 
						|
    bitmap_clear(rb->bmap, start, npages);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Exclude all dirty pages from migration that fall into a discarded range as
 | 
						|
 * managed by a RamDiscardManager responsible for the mapped memory region of
 | 
						|
 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
 | 
						|
 *
 | 
						|
 * Discarded pages ("logically unplugged") have undefined content and must
 | 
						|
 * not get migrated, because even reading these pages for migration might
 | 
						|
 * result in undesired behavior.
 | 
						|
 *
 | 
						|
 * Returns the number of cleared bits in the RAMBlock dirty bitmap.
 | 
						|
 *
 | 
						|
 * Note: The result is only stable while migrating (precopy/postcopy).
 | 
						|
 */
 | 
						|
static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
 | 
						|
{
 | 
						|
    uint64_t cleared_bits = 0;
 | 
						|
 | 
						|
    if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
 | 
						|
        RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
 | 
						|
        MemoryRegionSection section = {
 | 
						|
            .mr = rb->mr,
 | 
						|
            .offset_within_region = 0,
 | 
						|
            .size = int128_make64(qemu_ram_get_used_length(rb)),
 | 
						|
        };
 | 
						|
 | 
						|
        ram_discard_manager_replay_discarded(rdm, §ion,
 | 
						|
                                             dirty_bitmap_clear_section,
 | 
						|
                                             &cleared_bits);
 | 
						|
    }
 | 
						|
    return cleared_bits;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Check if a host-page aligned page falls into a discarded range as managed by
 | 
						|
 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
 | 
						|
 *
 | 
						|
 * Note: The result is only stable while migrating (precopy/postcopy).
 | 
						|
 */
 | 
						|
bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
 | 
						|
{
 | 
						|
    if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
 | 
						|
        RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
 | 
						|
        MemoryRegionSection section = {
 | 
						|
            .mr = rb->mr,
 | 
						|
            .offset_within_region = start,
 | 
						|
            .size = int128_make64(qemu_ram_pagesize(rb)),
 | 
						|
        };
 | 
						|
 | 
						|
        return !ram_discard_manager_is_populated(rdm, §ion);
 | 
						|
    }
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/* Called with RCU critical section */
 | 
						|
static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
 | 
						|
{
 | 
						|
    uint64_t new_dirty_pages =
 | 
						|
        cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
 | 
						|
 | 
						|
    rs->migration_dirty_pages += new_dirty_pages;
 | 
						|
    rs->num_dirty_pages_period += new_dirty_pages;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_pagesize_summary: calculate all the pagesizes of a VM
 | 
						|
 *
 | 
						|
 * Returns a summary bitmap of the page sizes of all RAMBlocks
 | 
						|
 *
 | 
						|
 * For VMs with just normal pages this is equivalent to the host page
 | 
						|
 * size. If it's got some huge pages then it's the OR of all the
 | 
						|
 * different page sizes.
 | 
						|
 */
 | 
						|
uint64_t ram_pagesize_summary(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    uint64_t summary = 0;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        summary |= block->page_size;
 | 
						|
    }
 | 
						|
 | 
						|
    return summary;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ram_get_total_transferred_pages(void)
 | 
						|
{
 | 
						|
    return stat64_get(&mig_stats.normal_pages) +
 | 
						|
        stat64_get(&mig_stats.zero_pages) +
 | 
						|
        xbzrle_counters.pages;
 | 
						|
}
 | 
						|
 | 
						|
static void migration_update_rates(RAMState *rs, int64_t end_time)
 | 
						|
{
 | 
						|
    uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
 | 
						|
 | 
						|
    /* calculate period counters */
 | 
						|
    stat64_set(&mig_stats.dirty_pages_rate,
 | 
						|
               rs->num_dirty_pages_period * 1000 /
 | 
						|
               (end_time - rs->time_last_bitmap_sync));
 | 
						|
 | 
						|
    if (!page_count) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (migrate_xbzrle()) {
 | 
						|
        double encoded_size, unencoded_size;
 | 
						|
 | 
						|
        xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
 | 
						|
            rs->xbzrle_cache_miss_prev) / page_count;
 | 
						|
        rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
 | 
						|
        unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
 | 
						|
                         TARGET_PAGE_SIZE;
 | 
						|
        encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
 | 
						|
        if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
 | 
						|
            xbzrle_counters.encoding_rate = 0;
 | 
						|
        } else {
 | 
						|
            xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
 | 
						|
        }
 | 
						|
        rs->xbzrle_pages_prev = xbzrle_counters.pages;
 | 
						|
        rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Enable dirty-limit to throttle down the guest
 | 
						|
 */
 | 
						|
static void migration_dirty_limit_guest(void)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * dirty page rate quota for all vCPUs fetched from
 | 
						|
     * migration parameter 'vcpu_dirty_limit'
 | 
						|
     */
 | 
						|
    static int64_t quota_dirtyrate;
 | 
						|
    MigrationState *s = migrate_get_current();
 | 
						|
 | 
						|
    /*
 | 
						|
     * If dirty limit already enabled and migration parameter
 | 
						|
     * vcpu-dirty-limit untouched.
 | 
						|
     */
 | 
						|
    if (dirtylimit_in_service() &&
 | 
						|
        quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    quota_dirtyrate = s->parameters.vcpu_dirty_limit;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Set all vCPU a quota dirtyrate, note that the second
 | 
						|
     * parameter will be ignored if setting all vCPU for the vm
 | 
						|
     */
 | 
						|
    qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
 | 
						|
    trace_migration_dirty_limit_guest(quota_dirtyrate);
 | 
						|
}
 | 
						|
 | 
						|
static void migration_trigger_throttle(RAMState *rs)
 | 
						|
{
 | 
						|
    uint64_t threshold = migrate_throttle_trigger_threshold();
 | 
						|
    uint64_t bytes_xfer_period =
 | 
						|
        migration_transferred_bytes() - rs->bytes_xfer_prev;
 | 
						|
    uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
 | 
						|
    uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
 | 
						|
 | 
						|
    /*
 | 
						|
     * The following detection logic can be refined later. For now:
 | 
						|
     * Check to see if the ratio between dirtied bytes and the approx.
 | 
						|
     * amount of bytes that just got transferred since the last time
 | 
						|
     * we were in this routine reaches the threshold. If that happens
 | 
						|
     * twice, start or increase throttling.
 | 
						|
     */
 | 
						|
    if ((bytes_dirty_period > bytes_dirty_threshold) &&
 | 
						|
        (++rs->dirty_rate_high_cnt >= 2)) {
 | 
						|
        rs->dirty_rate_high_cnt = 0;
 | 
						|
        if (migrate_auto_converge()) {
 | 
						|
            trace_migration_throttle();
 | 
						|
            mig_throttle_guest_down(bytes_dirty_period,
 | 
						|
                                    bytes_dirty_threshold);
 | 
						|
        } else if (migrate_dirty_limit()) {
 | 
						|
            migration_dirty_limit_guest();
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void migration_bitmap_sync(RAMState *rs, bool last_stage)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    int64_t end_time;
 | 
						|
 | 
						|
    stat64_add(&mig_stats.dirty_sync_count, 1);
 | 
						|
 | 
						|
    if (!rs->time_last_bitmap_sync) {
 | 
						|
        rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | 
						|
    }
 | 
						|
 | 
						|
    trace_migration_bitmap_sync_start();
 | 
						|
    memory_global_dirty_log_sync(last_stage);
 | 
						|
 | 
						|
    WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
 | 
						|
        WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
            RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
                ramblock_sync_dirty_bitmap(rs, block);
 | 
						|
            }
 | 
						|
            stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    memory_global_after_dirty_log_sync();
 | 
						|
    trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
 | 
						|
 | 
						|
    end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
 | 
						|
 | 
						|
    /* more than 1 second = 1000 millisecons */
 | 
						|
    if (end_time > rs->time_last_bitmap_sync + 1000) {
 | 
						|
        migration_trigger_throttle(rs);
 | 
						|
 | 
						|
        migration_update_rates(rs, end_time);
 | 
						|
 | 
						|
        rs->target_page_count_prev = rs->target_page_count;
 | 
						|
 | 
						|
        /* reset period counters */
 | 
						|
        rs->time_last_bitmap_sync = end_time;
 | 
						|
        rs->num_dirty_pages_period = 0;
 | 
						|
        rs->bytes_xfer_prev = migration_transferred_bytes();
 | 
						|
    }
 | 
						|
    if (migrate_events()) {
 | 
						|
        uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
 | 
						|
        qapi_event_send_migration_pass(generation);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void migration_bitmap_sync_precopy(bool last_stage)
 | 
						|
{
 | 
						|
    Error *local_err = NULL;
 | 
						|
    assert(ram_state);
 | 
						|
 | 
						|
    /*
 | 
						|
     * The current notifier usage is just an optimization to migration, so we
 | 
						|
     * don't stop the normal migration process in the error case.
 | 
						|
     */
 | 
						|
    if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
 | 
						|
        error_report_err(local_err);
 | 
						|
        local_err = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    migration_bitmap_sync(ram_state, last_stage);
 | 
						|
 | 
						|
    if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
 | 
						|
        error_report_err(local_err);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ram_release_page(const char *rbname, uint64_t offset)
 | 
						|
{
 | 
						|
    if (!migrate_release_ram() || !migration_in_postcopy()) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * save_zero_page: send the zero page to the stream
 | 
						|
 *
 | 
						|
 * Returns the number of pages written.
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: current PSS channel
 | 
						|
 * @offset: offset inside the block for the page
 | 
						|
 */
 | 
						|
static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
 | 
						|
                          ram_addr_t offset)
 | 
						|
{
 | 
						|
    uint8_t *p = pss->block->host + offset;
 | 
						|
    QEMUFile *file = pss->pss_channel;
 | 
						|
    int len = 0;
 | 
						|
 | 
						|
    if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    stat64_add(&mig_stats.zero_pages, 1);
 | 
						|
 | 
						|
    if (migrate_mapped_ram()) {
 | 
						|
        /* zero pages are not transferred with mapped-ram */
 | 
						|
        clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
 | 
						|
    qemu_put_byte(file, 0);
 | 
						|
    len += 1;
 | 
						|
    ram_release_page(pss->block->idstr, offset);
 | 
						|
    ram_transferred_add(len);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Must let xbzrle know, otherwise a previous (now 0'd) cached
 | 
						|
     * page would be stale.
 | 
						|
     */
 | 
						|
    if (rs->xbzrle_started) {
 | 
						|
        XBZRLE_cache_lock();
 | 
						|
        xbzrle_cache_zero_page(pss->block->offset + offset);
 | 
						|
        XBZRLE_cache_unlock();
 | 
						|
    }
 | 
						|
 | 
						|
    return len;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * @pages: the number of pages written by the control path,
 | 
						|
 *        < 0 - error
 | 
						|
 *        > 0 - number of pages written
 | 
						|
 *
 | 
						|
 * Return true if the pages has been saved, otherwise false is returned.
 | 
						|
 */
 | 
						|
static bool control_save_page(PageSearchStatus *pss,
 | 
						|
                              ram_addr_t offset, int *pages)
 | 
						|
{
 | 
						|
    int ret;
 | 
						|
 | 
						|
    ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
 | 
						|
                                 TARGET_PAGE_SIZE);
 | 
						|
    if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (ret == RAM_SAVE_CONTROL_DELAYED) {
 | 
						|
        *pages = 1;
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
    *pages = ret;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * directly send the page to the stream
 | 
						|
 *
 | 
						|
 * Returns the number of pages written.
 | 
						|
 *
 | 
						|
 * @pss: current PSS channel
 | 
						|
 * @block: block that contains the page we want to send
 | 
						|
 * @offset: offset inside the block for the page
 | 
						|
 * @buf: the page to be sent
 | 
						|
 * @async: send to page asyncly
 | 
						|
 */
 | 
						|
static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
 | 
						|
                            ram_addr_t offset, uint8_t *buf, bool async)
 | 
						|
{
 | 
						|
    QEMUFile *file = pss->pss_channel;
 | 
						|
 | 
						|
    if (migrate_mapped_ram()) {
 | 
						|
        qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
 | 
						|
                           block->pages_offset + offset);
 | 
						|
        set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
 | 
						|
    } else {
 | 
						|
        ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
 | 
						|
                                             offset | RAM_SAVE_FLAG_PAGE));
 | 
						|
        if (async) {
 | 
						|
            qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
 | 
						|
                                  migrate_release_ram() &&
 | 
						|
                                  migration_in_postcopy());
 | 
						|
        } else {
 | 
						|
            qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ram_transferred_add(TARGET_PAGE_SIZE);
 | 
						|
    stat64_add(&mig_stats.normal_pages, 1);
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_page: send the given page to the stream
 | 
						|
 *
 | 
						|
 * Returns the number of pages written.
 | 
						|
 *          < 0 - error
 | 
						|
 *          >=0 - Number of pages written - this might legally be 0
 | 
						|
 *                if xbzrle noticed the page was the same.
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @block: block that contains the page we want to send
 | 
						|
 * @offset: offset inside the block for the page
 | 
						|
 */
 | 
						|
static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    int pages = -1;
 | 
						|
    uint8_t *p;
 | 
						|
    bool send_async = true;
 | 
						|
    RAMBlock *block = pss->block;
 | 
						|
    ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
 | 
						|
    ram_addr_t current_addr = block->offset + offset;
 | 
						|
 | 
						|
    p = block->host + offset;
 | 
						|
    trace_ram_save_page(block->idstr, (uint64_t)offset, p);
 | 
						|
 | 
						|
    XBZRLE_cache_lock();
 | 
						|
    if (rs->xbzrle_started && !migration_in_postcopy()) {
 | 
						|
        pages = save_xbzrle_page(rs, pss, &p, current_addr,
 | 
						|
                                 block, offset);
 | 
						|
        if (!rs->last_stage) {
 | 
						|
            /* Can't send this cached data async, since the cache page
 | 
						|
             * might get updated before it gets to the wire
 | 
						|
             */
 | 
						|
            send_async = false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /* XBZRLE overflow or normal page */
 | 
						|
    if (pages == -1) {
 | 
						|
        pages = save_normal_page(pss, block, offset, p, send_async);
 | 
						|
    }
 | 
						|
 | 
						|
    XBZRLE_cache_unlock();
 | 
						|
 | 
						|
    return pages;
 | 
						|
}
 | 
						|
 | 
						|
static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
 | 
						|
{
 | 
						|
    if (!multifd_queue_page(block, offset)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
#define PAGE_ALL_CLEAN 0
 | 
						|
#define PAGE_TRY_AGAIN 1
 | 
						|
#define PAGE_DIRTY_FOUND 2
 | 
						|
/**
 | 
						|
 * find_dirty_block: find the next dirty page and update any state
 | 
						|
 * associated with the search process.
 | 
						|
 *
 | 
						|
 * Returns:
 | 
						|
 *         <0: An error happened
 | 
						|
 *         PAGE_ALL_CLEAN: no dirty page found, give up
 | 
						|
 *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
 | 
						|
 *         PAGE_DIRTY_FOUND: dirty page found
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: data about the state of the current dirty page scan
 | 
						|
 * @again: set to false if the search has scanned the whole of RAM
 | 
						|
 */
 | 
						|
static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    /* Update pss->page for the next dirty bit in ramblock */
 | 
						|
    pss_find_next_dirty(pss);
 | 
						|
 | 
						|
    if (pss->complete_round && pss->block == rs->last_seen_block &&
 | 
						|
        pss->page >= rs->last_page) {
 | 
						|
        /*
 | 
						|
         * We've been once around the RAM and haven't found anything.
 | 
						|
         * Give up.
 | 
						|
         */
 | 
						|
        return PAGE_ALL_CLEAN;
 | 
						|
    }
 | 
						|
    if (!offset_in_ramblock(pss->block,
 | 
						|
                            ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
 | 
						|
        /* Didn't find anything in this RAM Block */
 | 
						|
        pss->page = 0;
 | 
						|
        pss->block = QLIST_NEXT_RCU(pss->block, next);
 | 
						|
        if (!pss->block) {
 | 
						|
            if (migrate_multifd() &&
 | 
						|
                (!migrate_multifd_flush_after_each_section() ||
 | 
						|
                 migrate_mapped_ram())) {
 | 
						|
                QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
 | 
						|
                int ret = multifd_ram_flush_and_sync();
 | 
						|
                if (ret < 0) {
 | 
						|
                    return ret;
 | 
						|
                }
 | 
						|
 | 
						|
                if (!migrate_mapped_ram()) {
 | 
						|
                    qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
 | 
						|
                    qemu_fflush(f);
 | 
						|
                }
 | 
						|
            }
 | 
						|
 | 
						|
            /* Hit the end of the list */
 | 
						|
            pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
 | 
						|
            /* Flag that we've looped */
 | 
						|
            pss->complete_round = true;
 | 
						|
            /* After the first round, enable XBZRLE. */
 | 
						|
            if (migrate_xbzrle()) {
 | 
						|
                rs->xbzrle_started = true;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        /* Didn't find anything this time, but try again on the new block */
 | 
						|
        return PAGE_TRY_AGAIN;
 | 
						|
    } else {
 | 
						|
        /* We've found something */
 | 
						|
        return PAGE_DIRTY_FOUND;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * unqueue_page: gets a page of the queue
 | 
						|
 *
 | 
						|
 * Helper for 'get_queued_page' - gets a page off the queue
 | 
						|
 *
 | 
						|
 * Returns the block of the page (or NULL if none available)
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @offset: used to return the offset within the RAMBlock
 | 
						|
 */
 | 
						|
static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
 | 
						|
{
 | 
						|
    struct RAMSrcPageRequest *entry;
 | 
						|
    RAMBlock *block = NULL;
 | 
						|
 | 
						|
    if (!postcopy_has_request(rs)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
 | 
						|
 | 
						|
    /*
 | 
						|
     * This should _never_ change even after we take the lock, because no one
 | 
						|
     * should be taking anything off the request list other than us.
 | 
						|
     */
 | 
						|
    assert(postcopy_has_request(rs));
 | 
						|
 | 
						|
    entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
 | 
						|
    block = entry->rb;
 | 
						|
    *offset = entry->offset;
 | 
						|
 | 
						|
    if (entry->len > TARGET_PAGE_SIZE) {
 | 
						|
        entry->len -= TARGET_PAGE_SIZE;
 | 
						|
        entry->offset += TARGET_PAGE_SIZE;
 | 
						|
    } else {
 | 
						|
        memory_region_unref(block->mr);
 | 
						|
        QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
 | 
						|
        g_free(entry);
 | 
						|
        migration_consume_urgent_request();
 | 
						|
    }
 | 
						|
 | 
						|
    return block;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(__linux__)
 | 
						|
/**
 | 
						|
 * poll_fault_page: try to get next UFFD write fault page and, if pending fault
 | 
						|
 *   is found, return RAM block pointer and page offset
 | 
						|
 *
 | 
						|
 * Returns pointer to the RAMBlock containing faulting page,
 | 
						|
 *   NULL if no write faults are pending
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @offset: page offset from the beginning of the block
 | 
						|
 */
 | 
						|
static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
 | 
						|
{
 | 
						|
    struct uffd_msg uffd_msg;
 | 
						|
    void *page_address;
 | 
						|
    RAMBlock *block;
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (!migrate_background_snapshot()) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
 | 
						|
    if (res <= 0) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
 | 
						|
    block = qemu_ram_block_from_host(page_address, false, offset);
 | 
						|
    assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
 | 
						|
    return block;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_release_protection: release UFFD write protection after
 | 
						|
 *   a range of pages has been saved
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: page-search-status structure
 | 
						|
 * @start_page: index of the first page in the range relative to pss->block
 | 
						|
 *
 | 
						|
 * Returns 0 on success, negative value in case of an error
 | 
						|
*/
 | 
						|
static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
 | 
						|
        unsigned long start_page)
 | 
						|
{
 | 
						|
    int res = 0;
 | 
						|
 | 
						|
    /* Check if page is from UFFD-managed region. */
 | 
						|
    if (pss->block->flags & RAM_UF_WRITEPROTECT) {
 | 
						|
        void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
 | 
						|
        uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
 | 
						|
 | 
						|
        /* Flush async buffers before un-protect. */
 | 
						|
        qemu_fflush(pss->pss_channel);
 | 
						|
        /* Un-protect memory range. */
 | 
						|
        res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
 | 
						|
                false, false);
 | 
						|
    }
 | 
						|
 | 
						|
    return res;
 | 
						|
}
 | 
						|
 | 
						|
/* ram_write_tracking_available: check if kernel supports required UFFD features
 | 
						|
 *
 | 
						|
 * Returns true if supports, false otherwise
 | 
						|
 */
 | 
						|
bool ram_write_tracking_available(void)
 | 
						|
{
 | 
						|
    uint64_t uffd_features;
 | 
						|
    int res;
 | 
						|
 | 
						|
    res = uffd_query_features(&uffd_features);
 | 
						|
    return (res == 0 &&
 | 
						|
            (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
 | 
						|
}
 | 
						|
 | 
						|
/* ram_write_tracking_compatible: check if guest configuration is
 | 
						|
 *   compatible with 'write-tracking'
 | 
						|
 *
 | 
						|
 * Returns true if compatible, false otherwise
 | 
						|
 */
 | 
						|
bool ram_write_tracking_compatible(void)
 | 
						|
{
 | 
						|
    const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
 | 
						|
    int uffd_fd;
 | 
						|
    RAMBlock *block;
 | 
						|
    bool ret = false;
 | 
						|
 | 
						|
    /* Open UFFD file descriptor */
 | 
						|
    uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
 | 
						|
    if (uffd_fd < 0) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        uint64_t uffd_ioctls;
 | 
						|
 | 
						|
        /* Nothing to do with read-only and MMIO-writable regions */
 | 
						|
        if (block->mr->readonly || block->mr->rom_device) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        /* Try to register block memory via UFFD-IO to track writes */
 | 
						|
        if (uffd_register_memory(uffd_fd, block->host, block->max_length,
 | 
						|
                UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
 | 
						|
            goto out;
 | 
						|
        }
 | 
						|
        if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
 | 
						|
            goto out;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ret = true;
 | 
						|
 | 
						|
out:
 | 
						|
    uffd_close_fd(uffd_fd);
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
 | 
						|
                                       ram_addr_t size)
 | 
						|
{
 | 
						|
    const ram_addr_t end = offset + size;
 | 
						|
 | 
						|
    /*
 | 
						|
     * We read one byte of each page; this will preallocate page tables if
 | 
						|
     * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
 | 
						|
     * where no page was populated yet. This might require adaption when
 | 
						|
     * supporting other mappings, like shmem.
 | 
						|
     */
 | 
						|
    for (; offset < end; offset += block->page_size) {
 | 
						|
        char tmp = *((char *)block->host + offset);
 | 
						|
 | 
						|
        /* Don't optimize the read out */
 | 
						|
        asm volatile("" : "+r" (tmp));
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int populate_read_section(MemoryRegionSection *section,
 | 
						|
                                        void *opaque)
 | 
						|
{
 | 
						|
    const hwaddr size = int128_get64(section->size);
 | 
						|
    hwaddr offset = section->offset_within_region;
 | 
						|
    RAMBlock *block = section->mr->ram_block;
 | 
						|
 | 
						|
    populate_read_range(block, offset, size);
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ram_block_populate_read: preallocate page tables and populate pages in the
 | 
						|
 *   RAM block by reading a byte of each page.
 | 
						|
 *
 | 
						|
 * Since it's solely used for userfault_fd WP feature, here we just
 | 
						|
 *   hardcode page size to qemu_real_host_page_size.
 | 
						|
 *
 | 
						|
 * @block: RAM block to populate
 | 
						|
 */
 | 
						|
static void ram_block_populate_read(RAMBlock *rb)
 | 
						|
{
 | 
						|
    /*
 | 
						|
     * Skip populating all pages that fall into a discarded range as managed by
 | 
						|
     * a RamDiscardManager responsible for the mapped memory region of the
 | 
						|
     * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
 | 
						|
     * must not get populated automatically. We don't have to track
 | 
						|
     * modifications via userfaultfd WP reliably, because these pages will
 | 
						|
     * not be part of the migration stream either way -- see
 | 
						|
     * ramblock_dirty_bitmap_exclude_discarded_pages().
 | 
						|
     *
 | 
						|
     * Note: The result is only stable while migrating (precopy/postcopy).
 | 
						|
     */
 | 
						|
    if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
 | 
						|
        RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
 | 
						|
        MemoryRegionSection section = {
 | 
						|
            .mr = rb->mr,
 | 
						|
            .offset_within_region = 0,
 | 
						|
            .size = rb->mr->size,
 | 
						|
        };
 | 
						|
 | 
						|
        ram_discard_manager_replay_populated(rdm, §ion,
 | 
						|
                                             populate_read_section, NULL);
 | 
						|
    } else {
 | 
						|
        populate_read_range(rb, 0, rb->used_length);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
 | 
						|
 */
 | 
						|
void ram_write_tracking_prepare(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        /* Nothing to do with read-only and MMIO-writable regions */
 | 
						|
        if (block->mr->readonly || block->mr->rom_device) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /*
 | 
						|
         * Populate pages of the RAM block before enabling userfault_fd
 | 
						|
         * write protection.
 | 
						|
         *
 | 
						|
         * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
 | 
						|
         * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
 | 
						|
         * pages with pte_none() entries in page table.
 | 
						|
         */
 | 
						|
        ram_block_populate_read(block);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static inline int uffd_protect_section(MemoryRegionSection *section,
 | 
						|
                                       void *opaque)
 | 
						|
{
 | 
						|
    const hwaddr size = int128_get64(section->size);
 | 
						|
    const hwaddr offset = section->offset_within_region;
 | 
						|
    RAMBlock *rb = section->mr->ram_block;
 | 
						|
    int uffd_fd = (uintptr_t)opaque;
 | 
						|
 | 
						|
    return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
 | 
						|
                                  false);
 | 
						|
}
 | 
						|
 | 
						|
static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
 | 
						|
{
 | 
						|
    assert(rb->flags & RAM_UF_WRITEPROTECT);
 | 
						|
 | 
						|
    /* See ram_block_populate_read() */
 | 
						|
    if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
 | 
						|
        RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
 | 
						|
        MemoryRegionSection section = {
 | 
						|
            .mr = rb->mr,
 | 
						|
            .offset_within_region = 0,
 | 
						|
            .size = rb->mr->size,
 | 
						|
        };
 | 
						|
 | 
						|
        return ram_discard_manager_replay_populated(rdm, §ion,
 | 
						|
                                                    uffd_protect_section,
 | 
						|
                                                    (void *)(uintptr_t)uffd_fd);
 | 
						|
    }
 | 
						|
    return uffd_change_protection(uffd_fd, rb->host,
 | 
						|
                                  rb->used_length, true, false);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * ram_write_tracking_start: start UFFD-WP memory tracking
 | 
						|
 *
 | 
						|
 * Returns 0 for success or negative value in case of error
 | 
						|
 */
 | 
						|
int ram_write_tracking_start(void)
 | 
						|
{
 | 
						|
    int uffd_fd;
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    /* Open UFFD file descriptor */
 | 
						|
    uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
 | 
						|
    if (uffd_fd < 0) {
 | 
						|
        return uffd_fd;
 | 
						|
    }
 | 
						|
    rs->uffdio_fd = uffd_fd;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        /* Nothing to do with read-only and MMIO-writable regions */
 | 
						|
        if (block->mr->readonly || block->mr->rom_device) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Register block memory with UFFD to track writes */
 | 
						|
        if (uffd_register_memory(rs->uffdio_fd, block->host,
 | 
						|
                block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
 | 
						|
            goto fail;
 | 
						|
        }
 | 
						|
        block->flags |= RAM_UF_WRITEPROTECT;
 | 
						|
        memory_region_ref(block->mr);
 | 
						|
 | 
						|
        /* Apply UFFD write protection to the block memory range */
 | 
						|
        if (ram_block_uffd_protect(block, uffd_fd)) {
 | 
						|
            goto fail;
 | 
						|
        }
 | 
						|
 | 
						|
        trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
 | 
						|
                block->host, block->max_length);
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
 | 
						|
fail:
 | 
						|
    error_report("ram_write_tracking_start() failed: restoring initial memory state");
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
 | 
						|
        /* Cleanup flags and remove reference */
 | 
						|
        block->flags &= ~RAM_UF_WRITEPROTECT;
 | 
						|
        memory_region_unref(block->mr);
 | 
						|
    }
 | 
						|
 | 
						|
    uffd_close_fd(uffd_fd);
 | 
						|
    rs->uffdio_fd = -1;
 | 
						|
    return -1;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
 | 
						|
 */
 | 
						|
void ram_write_tracking_stop(void)
 | 
						|
{
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
 | 
						|
            continue;
 | 
						|
        }
 | 
						|
        uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
 | 
						|
 | 
						|
        trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
 | 
						|
                block->host, block->max_length);
 | 
						|
 | 
						|
        /* Cleanup flags and remove reference */
 | 
						|
        block->flags &= ~RAM_UF_WRITEPROTECT;
 | 
						|
        memory_region_unref(block->mr);
 | 
						|
    }
 | 
						|
 | 
						|
    /* Finally close UFFD file descriptor */
 | 
						|
    uffd_close_fd(rs->uffdio_fd);
 | 
						|
    rs->uffdio_fd = -1;
 | 
						|
}
 | 
						|
 | 
						|
#else
 | 
						|
/* No target OS support, stubs just fail or ignore */
 | 
						|
 | 
						|
static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
 | 
						|
{
 | 
						|
    (void) rs;
 | 
						|
    (void) offset;
 | 
						|
 | 
						|
    return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
 | 
						|
        unsigned long start_page)
 | 
						|
{
 | 
						|
    (void) rs;
 | 
						|
    (void) pss;
 | 
						|
    (void) start_page;
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
bool ram_write_tracking_available(void)
 | 
						|
{
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
bool ram_write_tracking_compatible(void)
 | 
						|
{
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
int ram_write_tracking_start(void)
 | 
						|
{
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
 | 
						|
void ram_write_tracking_stop(void)
 | 
						|
{
 | 
						|
    g_assert_not_reached();
 | 
						|
}
 | 
						|
#endif /* defined(__linux__) */
 | 
						|
 | 
						|
/**
 | 
						|
 * get_queued_page: unqueue a page from the postcopy requests
 | 
						|
 *
 | 
						|
 * Skips pages that are already sent (!dirty)
 | 
						|
 *
 | 
						|
 * Returns true if a queued page is found
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: data about the state of the current dirty page scan
 | 
						|
 */
 | 
						|
static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    RAMBlock  *block;
 | 
						|
    ram_addr_t offset;
 | 
						|
    bool dirty = false;
 | 
						|
 | 
						|
    do {
 | 
						|
        block = unqueue_page(rs, &offset);
 | 
						|
        /*
 | 
						|
         * We're sending this page, and since it's postcopy nothing else
 | 
						|
         * will dirty it, and we must make sure it doesn't get sent again
 | 
						|
         * even if this queue request was received after the background
 | 
						|
         * search already sent it.
 | 
						|
         */
 | 
						|
        if (block) {
 | 
						|
            unsigned long page;
 | 
						|
 | 
						|
            page = offset >> TARGET_PAGE_BITS;
 | 
						|
            dirty = test_bit(page, block->bmap);
 | 
						|
            if (!dirty) {
 | 
						|
                trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
 | 
						|
                                                page);
 | 
						|
            } else {
 | 
						|
                trace_get_queued_page(block->idstr, (uint64_t)offset, page);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    } while (block && !dirty);
 | 
						|
 | 
						|
    if (!block) {
 | 
						|
        /*
 | 
						|
         * Poll write faults too if background snapshot is enabled; that's
 | 
						|
         * when we have vcpus got blocked by the write protected pages.
 | 
						|
         */
 | 
						|
        block = poll_fault_page(rs, &offset);
 | 
						|
    }
 | 
						|
 | 
						|
    if (block) {
 | 
						|
        /*
 | 
						|
         * We want the background search to continue from the queued page
 | 
						|
         * since the guest is likely to want other pages near to the page
 | 
						|
         * it just requested.
 | 
						|
         */
 | 
						|
        pss->block = block;
 | 
						|
        pss->page = offset >> TARGET_PAGE_BITS;
 | 
						|
 | 
						|
        /*
 | 
						|
         * This unqueued page would break the "one round" check, even is
 | 
						|
         * really rare.
 | 
						|
         */
 | 
						|
        pss->complete_round = false;
 | 
						|
    }
 | 
						|
 | 
						|
    return !!block;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * migration_page_queue_free: drop any remaining pages in the ram
 | 
						|
 * request queue
 | 
						|
 *
 | 
						|
 * It should be empty at the end anyway, but in error cases there may
 | 
						|
 * be some left.  in case that there is any page left, we drop it.
 | 
						|
 *
 | 
						|
 */
 | 
						|
static void migration_page_queue_free(RAMState *rs)
 | 
						|
{
 | 
						|
    struct RAMSrcPageRequest *mspr, *next_mspr;
 | 
						|
    /* This queue generally should be empty - but in the case of a failed
 | 
						|
     * migration might have some droppings in.
 | 
						|
     */
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
    QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
 | 
						|
        memory_region_unref(mspr->rb->mr);
 | 
						|
        QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
 | 
						|
        g_free(mspr);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_queue_pages: queue the page for transmission
 | 
						|
 *
 | 
						|
 * A request from postcopy destination for example.
 | 
						|
 *
 | 
						|
 * Returns zero on success or negative on error
 | 
						|
 *
 | 
						|
 * @rbname: Name of the RAMBLock of the request. NULL means the
 | 
						|
 *          same that last one.
 | 
						|
 * @start: starting address from the start of the RAMBlock
 | 
						|
 * @len: length (in bytes) to send
 | 
						|
 */
 | 
						|
int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
 | 
						|
                         Error **errp)
 | 
						|
{
 | 
						|
    RAMBlock *ramblock;
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
 | 
						|
    stat64_add(&mig_stats.postcopy_requests, 1);
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    if (!rbname) {
 | 
						|
        /* Reuse last RAMBlock */
 | 
						|
        ramblock = rs->last_req_rb;
 | 
						|
 | 
						|
        if (!ramblock) {
 | 
						|
            /*
 | 
						|
             * Shouldn't happen, we can't reuse the last RAMBlock if
 | 
						|
             * it's the 1st request.
 | 
						|
             */
 | 
						|
            error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        ramblock = qemu_ram_block_by_name(rbname);
 | 
						|
 | 
						|
        if (!ramblock) {
 | 
						|
            /* We shouldn't be asked for a non-existent RAMBlock */
 | 
						|
            error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
        rs->last_req_rb = ramblock;
 | 
						|
    }
 | 
						|
    trace_ram_save_queue_pages(ramblock->idstr, start, len);
 | 
						|
    if (!offset_in_ramblock(ramblock, start + len - 1)) {
 | 
						|
        error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
 | 
						|
                   "start=" RAM_ADDR_FMT " len="
 | 
						|
                   RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
 | 
						|
                   start, len, ramblock->used_length);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * When with postcopy preempt, we send back the page directly in the
 | 
						|
     * rp-return thread.
 | 
						|
     */
 | 
						|
    if (postcopy_preempt_active()) {
 | 
						|
        ram_addr_t page_start = start >> TARGET_PAGE_BITS;
 | 
						|
        size_t page_size = qemu_ram_pagesize(ramblock);
 | 
						|
        PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
 | 
						|
        int ret = 0;
 | 
						|
 | 
						|
        qemu_mutex_lock(&rs->bitmap_mutex);
 | 
						|
 | 
						|
        pss_init(pss, ramblock, page_start);
 | 
						|
        /*
 | 
						|
         * Always use the preempt channel, and make sure it's there.  It's
 | 
						|
         * safe to access without lock, because when rp-thread is running
 | 
						|
         * we should be the only one who operates on the qemufile
 | 
						|
         */
 | 
						|
        pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
 | 
						|
        assert(pss->pss_channel);
 | 
						|
 | 
						|
        /*
 | 
						|
         * It must be either one or multiple of host page size.  Just
 | 
						|
         * assert; if something wrong we're mostly split brain anyway.
 | 
						|
         */
 | 
						|
        assert(len % page_size == 0);
 | 
						|
        while (len) {
 | 
						|
            if (ram_save_host_page_urgent(pss)) {
 | 
						|
                error_setg(errp, "ram_save_host_page_urgent() failed: "
 | 
						|
                           "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
 | 
						|
                           ramblock->idstr, start);
 | 
						|
                ret = -1;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
             * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
 | 
						|
             * will automatically be moved and point to the next host page
 | 
						|
             * we're going to send, so no need to update here.
 | 
						|
             *
 | 
						|
             * Normally QEMU never sends >1 host page in requests, so
 | 
						|
             * logically we don't even need that as the loop should only
 | 
						|
             * run once, but just to be consistent.
 | 
						|
             */
 | 
						|
            len -= page_size;
 | 
						|
        };
 | 
						|
        qemu_mutex_unlock(&rs->bitmap_mutex);
 | 
						|
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    struct RAMSrcPageRequest *new_entry =
 | 
						|
        g_new0(struct RAMSrcPageRequest, 1);
 | 
						|
    new_entry->rb = ramblock;
 | 
						|
    new_entry->offset = start;
 | 
						|
    new_entry->len = len;
 | 
						|
 | 
						|
    memory_region_ref(ramblock->mr);
 | 
						|
    qemu_mutex_lock(&rs->src_page_req_mutex);
 | 
						|
    QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
 | 
						|
    migration_make_urgent_request();
 | 
						|
    qemu_mutex_unlock(&rs->src_page_req_mutex);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_target_page_legacy: save one target page
 | 
						|
 *
 | 
						|
 * Returns the number of pages written
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: data about the page we want to send
 | 
						|
 */
 | 
						|
static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (control_save_page(pss, offset, &res)) {
 | 
						|
        return res;
 | 
						|
    }
 | 
						|
 | 
						|
    if (save_zero_page(rs, pss, offset)) {
 | 
						|
        return 1;
 | 
						|
    }
 | 
						|
 | 
						|
    return ram_save_page(rs, pss);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_target_page_multifd: send one target page to multifd workers
 | 
						|
 *
 | 
						|
 * Returns 1 if the page was queued, -1 otherwise.
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: data about the page we want to send
 | 
						|
 */
 | 
						|
static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    RAMBlock *block = pss->block;
 | 
						|
    ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
 | 
						|
 | 
						|
    /*
 | 
						|
     * While using multifd live migration, we still need to handle zero
 | 
						|
     * page checking on the migration main thread.
 | 
						|
     */
 | 
						|
    if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
 | 
						|
        if (save_zero_page(rs, pss, offset)) {
 | 
						|
            return 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return ram_save_multifd_page(block, offset);
 | 
						|
}
 | 
						|
 | 
						|
/* Should be called before sending a host page */
 | 
						|
static void pss_host_page_prepare(PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    /* How many guest pages are there in one host page? */
 | 
						|
    size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
 | 
						|
 | 
						|
    pss->host_page_sending = true;
 | 
						|
    if (guest_pfns <= 1) {
 | 
						|
        /*
 | 
						|
         * This covers both when guest psize == host psize, or when guest
 | 
						|
         * has larger psize than the host (guest_pfns==0).
 | 
						|
         *
 | 
						|
         * For the latter, we always send one whole guest page per
 | 
						|
         * iteration of the host page (example: an Alpha VM on x86 host
 | 
						|
         * will have guest psize 8K while host psize 4K).
 | 
						|
         */
 | 
						|
        pss->host_page_start = pss->page;
 | 
						|
        pss->host_page_end = pss->page + 1;
 | 
						|
    } else {
 | 
						|
        /*
 | 
						|
         * The host page spans over multiple guest pages, we send them
 | 
						|
         * within the same host page iteration.
 | 
						|
         */
 | 
						|
        pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
 | 
						|
        pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Whether the page pointed by PSS is within the host page being sent.
 | 
						|
 * Must be called after a previous pss_host_page_prepare().
 | 
						|
 */
 | 
						|
static bool pss_within_range(PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    ram_addr_t ram_addr;
 | 
						|
 | 
						|
    assert(pss->host_page_sending);
 | 
						|
 | 
						|
    /* Over host-page boundary? */
 | 
						|
    if (pss->page >= pss->host_page_end) {
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
 | 
						|
 | 
						|
    return offset_in_ramblock(pss->block, ram_addr);
 | 
						|
}
 | 
						|
 | 
						|
static void pss_host_page_finish(PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    pss->host_page_sending = false;
 | 
						|
    /* This is not needed, but just to reset it */
 | 
						|
    pss->host_page_start = pss->host_page_end = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Send an urgent host page specified by `pss'.  Need to be called with
 | 
						|
 * bitmap_mutex held.
 | 
						|
 *
 | 
						|
 * Returns 0 if save host page succeeded, false otherwise.
 | 
						|
 */
 | 
						|
static int ram_save_host_page_urgent(PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    bool page_dirty, sent = false;
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
 | 
						|
    pss_host_page_prepare(pss);
 | 
						|
 | 
						|
    /*
 | 
						|
     * If precopy is sending the same page, let it be done in precopy, or
 | 
						|
     * we could send the same page in two channels and none of them will
 | 
						|
     * receive the whole page.
 | 
						|
     */
 | 
						|
    if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
 | 
						|
        trace_postcopy_preempt_hit(pss->block->idstr,
 | 
						|
                                   pss->page << TARGET_PAGE_BITS);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    do {
 | 
						|
        page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
 | 
						|
 | 
						|
        if (page_dirty) {
 | 
						|
            /* Be strict to return code; it must be 1, or what else? */
 | 
						|
            if (migration_ops->ram_save_target_page(rs, pss) != 1) {
 | 
						|
                error_report_once("%s: ram_save_target_page failed", __func__);
 | 
						|
                ret = -1;
 | 
						|
                goto out;
 | 
						|
            }
 | 
						|
            sent = true;
 | 
						|
        }
 | 
						|
        pss_find_next_dirty(pss);
 | 
						|
    } while (pss_within_range(pss));
 | 
						|
out:
 | 
						|
    pss_host_page_finish(pss);
 | 
						|
    /* For urgent requests, flush immediately if sent */
 | 
						|
    if (sent) {
 | 
						|
        qemu_fflush(pss->pss_channel);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_host_page: save a whole host page
 | 
						|
 *
 | 
						|
 * Starting at *offset send pages up to the end of the current host
 | 
						|
 * page. It's valid for the initial offset to point into the middle of
 | 
						|
 * a host page in which case the remainder of the hostpage is sent.
 | 
						|
 * Only dirty target pages are sent. Note that the host page size may
 | 
						|
 * be a huge page for this block.
 | 
						|
 *
 | 
						|
 * The saving stops at the boundary of the used_length of the block
 | 
						|
 * if the RAMBlock isn't a multiple of the host page size.
 | 
						|
 *
 | 
						|
 * The caller must be with ram_state.bitmap_mutex held to call this
 | 
						|
 * function.  Note that this function can temporarily release the lock, but
 | 
						|
 * when the function is returned it'll make sure the lock is still held.
 | 
						|
 *
 | 
						|
 * Returns the number of pages written or negative on error
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 * @pss: data about the page we want to send
 | 
						|
 */
 | 
						|
static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
 | 
						|
{
 | 
						|
    bool page_dirty, preempt_active = postcopy_preempt_active();
 | 
						|
    int tmppages, pages = 0;
 | 
						|
    size_t pagesize_bits =
 | 
						|
        qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
 | 
						|
    unsigned long start_page = pss->page;
 | 
						|
    int res;
 | 
						|
 | 
						|
    if (migrate_ram_is_ignored(pss->block)) {
 | 
						|
        error_report("block %s should not be migrated !", pss->block->idstr);
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Update host page boundary information */
 | 
						|
    pss_host_page_prepare(pss);
 | 
						|
 | 
						|
    do {
 | 
						|
        page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
 | 
						|
 | 
						|
        /* Check the pages is dirty and if it is send it */
 | 
						|
        if (page_dirty) {
 | 
						|
            /*
 | 
						|
             * Properly yield the lock only in postcopy preempt mode
 | 
						|
             * because both migration thread and rp-return thread can
 | 
						|
             * operate on the bitmaps.
 | 
						|
             */
 | 
						|
            if (preempt_active) {
 | 
						|
                qemu_mutex_unlock(&rs->bitmap_mutex);
 | 
						|
            }
 | 
						|
            tmppages = migration_ops->ram_save_target_page(rs, pss);
 | 
						|
            if (tmppages >= 0) {
 | 
						|
                pages += tmppages;
 | 
						|
                /*
 | 
						|
                 * Allow rate limiting to happen in the middle of huge pages if
 | 
						|
                 * something is sent in the current iteration.
 | 
						|
                 */
 | 
						|
                if (pagesize_bits > 1 && tmppages > 0) {
 | 
						|
                    migration_rate_limit();
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (preempt_active) {
 | 
						|
                qemu_mutex_lock(&rs->bitmap_mutex);
 | 
						|
            }
 | 
						|
        } else {
 | 
						|
            tmppages = 0;
 | 
						|
        }
 | 
						|
 | 
						|
        if (tmppages < 0) {
 | 
						|
            pss_host_page_finish(pss);
 | 
						|
            return tmppages;
 | 
						|
        }
 | 
						|
 | 
						|
        pss_find_next_dirty(pss);
 | 
						|
    } while (pss_within_range(pss));
 | 
						|
 | 
						|
    pss_host_page_finish(pss);
 | 
						|
 | 
						|
    res = ram_save_release_protection(rs, pss, start_page);
 | 
						|
    return (res < 0 ? res : pages);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_find_and_save_block: finds a dirty page and sends it to f
 | 
						|
 *
 | 
						|
 * Called within an RCU critical section.
 | 
						|
 *
 | 
						|
 * Returns the number of pages written where zero means no dirty pages,
 | 
						|
 * or negative on error
 | 
						|
 *
 | 
						|
 * @rs: current RAM state
 | 
						|
 *
 | 
						|
 * On systems where host-page-size > target-page-size it will send all the
 | 
						|
 * pages in a host page that are dirty.
 | 
						|
 */
 | 
						|
static int ram_find_and_save_block(RAMState *rs)
 | 
						|
{
 | 
						|
    PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
 | 
						|
    int pages = 0;
 | 
						|
 | 
						|
    /* No dirty page as there is zero RAM */
 | 
						|
    if (!rs->ram_bytes_total) {
 | 
						|
        return pages;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Always keep last_seen_block/last_page valid during this procedure,
 | 
						|
     * because find_dirty_block() relies on these values (e.g., we compare
 | 
						|
     * last_seen_block with pss.block to see whether we searched all the
 | 
						|
     * ramblocks) to detect the completion of migration.  Having NULL value
 | 
						|
     * of last_seen_block can conditionally cause below loop to run forever.
 | 
						|
     */
 | 
						|
    if (!rs->last_seen_block) {
 | 
						|
        rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
 | 
						|
        rs->last_page = 0;
 | 
						|
    }
 | 
						|
 | 
						|
    pss_init(pss, rs->last_seen_block, rs->last_page);
 | 
						|
 | 
						|
    while (true){
 | 
						|
        if (!get_queued_page(rs, pss)) {
 | 
						|
            /* priority queue empty, so just search for something dirty */
 | 
						|
            int res = find_dirty_block(rs, pss);
 | 
						|
            if (res != PAGE_DIRTY_FOUND) {
 | 
						|
                if (res == PAGE_ALL_CLEAN) {
 | 
						|
                    break;
 | 
						|
                } else if (res == PAGE_TRY_AGAIN) {
 | 
						|
                    continue;
 | 
						|
                } else if (res < 0) {
 | 
						|
                    pages = res;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
        pages = ram_save_host_page(rs, pss);
 | 
						|
        if (pages) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    rs->last_seen_block = pss->block;
 | 
						|
    rs->last_page = pss->page;
 | 
						|
 | 
						|
    return pages;
 | 
						|
}
 | 
						|
 | 
						|
static uint64_t ram_bytes_total_with_ignored(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    uint64_t total = 0;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_MIGRATABLE(block) {
 | 
						|
        total += block->used_length;
 | 
						|
    }
 | 
						|
    return total;
 | 
						|
}
 | 
						|
 | 
						|
uint64_t ram_bytes_total(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    uint64_t total = 0;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        total += block->used_length;
 | 
						|
    }
 | 
						|
    return total;
 | 
						|
}
 | 
						|
 | 
						|
static void xbzrle_load_setup(void)
 | 
						|
{
 | 
						|
    XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
static void xbzrle_load_cleanup(void)
 | 
						|
{
 | 
						|
    g_free(XBZRLE.decoded_buf);
 | 
						|
    XBZRLE.decoded_buf = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void ram_state_cleanup(RAMState **rsp)
 | 
						|
{
 | 
						|
    if (*rsp) {
 | 
						|
        migration_page_queue_free(*rsp);
 | 
						|
        qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
 | 
						|
        qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
 | 
						|
        g_free(*rsp);
 | 
						|
        *rsp = NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void xbzrle_cleanup(void)
 | 
						|
{
 | 
						|
    XBZRLE_cache_lock();
 | 
						|
    if (XBZRLE.cache) {
 | 
						|
        cache_fini(XBZRLE.cache);
 | 
						|
        g_free(XBZRLE.encoded_buf);
 | 
						|
        g_free(XBZRLE.current_buf);
 | 
						|
        g_free(XBZRLE.zero_target_page);
 | 
						|
        XBZRLE.cache = NULL;
 | 
						|
        XBZRLE.encoded_buf = NULL;
 | 
						|
        XBZRLE.current_buf = NULL;
 | 
						|
        XBZRLE.zero_target_page = NULL;
 | 
						|
    }
 | 
						|
    XBZRLE_cache_unlock();
 | 
						|
}
 | 
						|
 | 
						|
static void ram_bitmaps_destroy(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        g_free(block->clear_bmap);
 | 
						|
        block->clear_bmap = NULL;
 | 
						|
        g_free(block->bmap);
 | 
						|
        block->bmap = NULL;
 | 
						|
        g_free(block->file_bmap);
 | 
						|
        block->file_bmap = NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ram_save_cleanup(void *opaque)
 | 
						|
{
 | 
						|
    RAMState **rsp = opaque;
 | 
						|
 | 
						|
    /* We don't use dirty log with background snapshots */
 | 
						|
    if (!migrate_background_snapshot()) {
 | 
						|
        /* caller have hold BQL or is in a bh, so there is
 | 
						|
         * no writing race against the migration bitmap
 | 
						|
         */
 | 
						|
        if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
 | 
						|
            /*
 | 
						|
             * do not stop dirty log without starting it, since
 | 
						|
             * memory_global_dirty_log_stop will assert that
 | 
						|
             * memory_global_dirty_log_start/stop used in pairs
 | 
						|
             */
 | 
						|
            memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ram_bitmaps_destroy();
 | 
						|
 | 
						|
    xbzrle_cleanup();
 | 
						|
    multifd_ram_save_cleanup();
 | 
						|
    ram_state_cleanup(rsp);
 | 
						|
    g_free(migration_ops);
 | 
						|
    migration_ops = NULL;
 | 
						|
}
 | 
						|
 | 
						|
static void ram_state_reset(RAMState *rs)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
 | 
						|
    for (i = 0; i < RAM_CHANNEL_MAX; i++) {
 | 
						|
        rs->pss[i].last_sent_block = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    rs->last_seen_block = NULL;
 | 
						|
    rs->last_page = 0;
 | 
						|
    rs->last_version = ram_list.version;
 | 
						|
    rs->xbzrle_started = false;
 | 
						|
}
 | 
						|
 | 
						|
#define MAX_WAIT 50 /* ms, half buffered_file limit */
 | 
						|
 | 
						|
/* **** functions for postcopy ***** */
 | 
						|
 | 
						|
void ram_postcopy_migrated_memory_release(MigrationState *ms)
 | 
						|
{
 | 
						|
    struct RAMBlock *block;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        unsigned long *bitmap = block->bmap;
 | 
						|
        unsigned long range = block->used_length >> TARGET_PAGE_BITS;
 | 
						|
        unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
 | 
						|
 | 
						|
        while (run_start < range) {
 | 
						|
            unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
 | 
						|
            ram_discard_range(block->idstr,
 | 
						|
                              ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
 | 
						|
                              ((ram_addr_t)(run_end - run_start))
 | 
						|
                                << TARGET_PAGE_BITS);
 | 
						|
            run_start = find_next_zero_bit(bitmap, range, run_end + 1);
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * postcopy_send_discard_bm_ram: discard a RAMBlock
 | 
						|
 *
 | 
						|
 * Callback from postcopy_each_ram_send_discard for each RAMBlock
 | 
						|
 *
 | 
						|
 * @ms: current migration state
 | 
						|
 * @block: RAMBlock to discard
 | 
						|
 */
 | 
						|
static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
 | 
						|
{
 | 
						|
    unsigned long end = block->used_length >> TARGET_PAGE_BITS;
 | 
						|
    unsigned long current;
 | 
						|
    unsigned long *bitmap = block->bmap;
 | 
						|
 | 
						|
    for (current = 0; current < end; ) {
 | 
						|
        unsigned long one = find_next_bit(bitmap, end, current);
 | 
						|
        unsigned long zero, discard_length;
 | 
						|
 | 
						|
        if (one >= end) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        zero = find_next_zero_bit(bitmap, end, one + 1);
 | 
						|
 | 
						|
        if (zero >= end) {
 | 
						|
            discard_length = end - one;
 | 
						|
        } else {
 | 
						|
            discard_length = zero - one;
 | 
						|
        }
 | 
						|
        postcopy_discard_send_range(ms, one, discard_length);
 | 
						|
        current = one + discard_length;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
 | 
						|
 | 
						|
/**
 | 
						|
 * postcopy_each_ram_send_discard: discard all RAMBlocks
 | 
						|
 *
 | 
						|
 * Utility for the outgoing postcopy code.
 | 
						|
 *   Calls postcopy_send_discard_bm_ram for each RAMBlock
 | 
						|
 *   passing it bitmap indexes and name.
 | 
						|
 * (qemu_ram_foreach_block ends up passing unscaled lengths
 | 
						|
 *  which would mean postcopy code would have to deal with target page)
 | 
						|
 *
 | 
						|
 * @ms: current migration state
 | 
						|
 */
 | 
						|
static void postcopy_each_ram_send_discard(MigrationState *ms)
 | 
						|
{
 | 
						|
    struct RAMBlock *block;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        postcopy_discard_send_init(ms, block->idstr);
 | 
						|
 | 
						|
        /*
 | 
						|
         * Deal with TPS != HPS and huge pages.  It discard any partially sent
 | 
						|
         * host-page size chunks, mark any partially dirty host-page size
 | 
						|
         * chunks as all dirty.  In this case the host-page is the host-page
 | 
						|
         * for the particular RAMBlock, i.e. it might be a huge page.
 | 
						|
         */
 | 
						|
        postcopy_chunk_hostpages_pass(ms, block);
 | 
						|
 | 
						|
        /*
 | 
						|
         * Postcopy sends chunks of bitmap over the wire, but it
 | 
						|
         * just needs indexes at this point, avoids it having
 | 
						|
         * target page specific code.
 | 
						|
         */
 | 
						|
        postcopy_send_discard_bm_ram(ms, block);
 | 
						|
        postcopy_discard_send_finish(ms);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
 | 
						|
 *
 | 
						|
 * Helper for postcopy_chunk_hostpages; it's called twice to
 | 
						|
 * canonicalize the two bitmaps, that are similar, but one is
 | 
						|
 * inverted.
 | 
						|
 *
 | 
						|
 * Postcopy requires that all target pages in a hostpage are dirty or
 | 
						|
 * clean, not a mix.  This function canonicalizes the bitmaps.
 | 
						|
 *
 | 
						|
 * @ms: current migration state
 | 
						|
 * @block: block that contains the page we want to canonicalize
 | 
						|
 */
 | 
						|
static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
 | 
						|
{
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
    unsigned long *bitmap = block->bmap;
 | 
						|
    unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
 | 
						|
    unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
 | 
						|
    unsigned long run_start;
 | 
						|
 | 
						|
    if (block->page_size == TARGET_PAGE_SIZE) {
 | 
						|
        /* Easy case - TPS==HPS for a non-huge page RAMBlock */
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Find a dirty page */
 | 
						|
    run_start = find_next_bit(bitmap, pages, 0);
 | 
						|
 | 
						|
    while (run_start < pages) {
 | 
						|
 | 
						|
        /*
 | 
						|
         * If the start of this run of pages is in the middle of a host
 | 
						|
         * page, then we need to fixup this host page.
 | 
						|
         */
 | 
						|
        if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
 | 
						|
            /* Find the end of this run */
 | 
						|
            run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
 | 
						|
            /*
 | 
						|
             * If the end isn't at the start of a host page, then the
 | 
						|
             * run doesn't finish at the end of a host page
 | 
						|
             * and we need to discard.
 | 
						|
             */
 | 
						|
        }
 | 
						|
 | 
						|
        if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
 | 
						|
            unsigned long page;
 | 
						|
            unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
 | 
						|
                                                             host_ratio);
 | 
						|
            run_start = QEMU_ALIGN_UP(run_start, host_ratio);
 | 
						|
 | 
						|
            /* Clean up the bitmap */
 | 
						|
            for (page = fixup_start_addr;
 | 
						|
                 page < fixup_start_addr + host_ratio; page++) {
 | 
						|
                /*
 | 
						|
                 * Remark them as dirty, updating the count for any pages
 | 
						|
                 * that weren't previously dirty.
 | 
						|
                 */
 | 
						|
                rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        /* Find the next dirty page for the next iteration */
 | 
						|
        run_start = find_next_bit(bitmap, pages, run_start);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
 | 
						|
 *
 | 
						|
 * Transmit the set of pages to be discarded after precopy to the target
 | 
						|
 * these are pages that:
 | 
						|
 *     a) Have been previously transmitted but are now dirty again
 | 
						|
 *     b) Pages that have never been transmitted, this ensures that
 | 
						|
 *        any pages on the destination that have been mapped by background
 | 
						|
 *        tasks get discarded (transparent huge pages is the specific concern)
 | 
						|
 * Hopefully this is pretty sparse
 | 
						|
 *
 | 
						|
 * @ms: current migration state
 | 
						|
 */
 | 
						|
void ram_postcopy_send_discard_bitmap(MigrationState *ms)
 | 
						|
{
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    /* This should be our last sync, the src is now paused */
 | 
						|
    migration_bitmap_sync(rs, false);
 | 
						|
 | 
						|
    /* Easiest way to make sure we don't resume in the middle of a host-page */
 | 
						|
    rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
 | 
						|
    rs->last_seen_block = NULL;
 | 
						|
    rs->last_page = 0;
 | 
						|
 | 
						|
    postcopy_each_ram_send_discard(ms);
 | 
						|
 | 
						|
    trace_ram_postcopy_send_discard_bitmap();
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_discard_range: discard dirtied pages at the beginning of postcopy
 | 
						|
 *
 | 
						|
 * Returns zero on success
 | 
						|
 *
 | 
						|
 * @rbname: name of the RAMBlock of the request. NULL means the
 | 
						|
 *          same that last one.
 | 
						|
 * @start: RAMBlock starting page
 | 
						|
 * @length: RAMBlock size
 | 
						|
 */
 | 
						|
int ram_discard_range(const char *rbname, uint64_t start, size_t length)
 | 
						|
{
 | 
						|
    trace_ram_discard_range(rbname, start, length);
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
    RAMBlock *rb = qemu_ram_block_by_name(rbname);
 | 
						|
 | 
						|
    if (!rb) {
 | 
						|
        error_report("ram_discard_range: Failed to find block '%s'", rbname);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * On source VM, we don't need to update the received bitmap since
 | 
						|
     * we don't even have one.
 | 
						|
     */
 | 
						|
    if (rb->receivedmap) {
 | 
						|
        bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
 | 
						|
                     length >> qemu_target_page_bits());
 | 
						|
    }
 | 
						|
 | 
						|
    return ram_block_discard_range(rb, start, length);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * For every allocation, we will try not to crash the VM if the
 | 
						|
 * allocation failed.
 | 
						|
 */
 | 
						|
static bool xbzrle_init(Error **errp)
 | 
						|
{
 | 
						|
    if (!migrate_xbzrle()) {
 | 
						|
        return true;
 | 
						|
    }
 | 
						|
 | 
						|
    XBZRLE_cache_lock();
 | 
						|
 | 
						|
    XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
 | 
						|
    if (!XBZRLE.zero_target_page) {
 | 
						|
        error_setg(errp, "%s: Error allocating zero page", __func__);
 | 
						|
        goto err_out;
 | 
						|
    }
 | 
						|
 | 
						|
    XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
 | 
						|
                              TARGET_PAGE_SIZE, errp);
 | 
						|
    if (!XBZRLE.cache) {
 | 
						|
        goto free_zero_page;
 | 
						|
    }
 | 
						|
 | 
						|
    XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
 | 
						|
    if (!XBZRLE.encoded_buf) {
 | 
						|
        error_setg(errp, "%s: Error allocating encoded_buf", __func__);
 | 
						|
        goto free_cache;
 | 
						|
    }
 | 
						|
 | 
						|
    XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
 | 
						|
    if (!XBZRLE.current_buf) {
 | 
						|
        error_setg(errp, "%s: Error allocating current_buf", __func__);
 | 
						|
        goto free_encoded_buf;
 | 
						|
    }
 | 
						|
 | 
						|
    /* We are all good */
 | 
						|
    XBZRLE_cache_unlock();
 | 
						|
    return true;
 | 
						|
 | 
						|
free_encoded_buf:
 | 
						|
    g_free(XBZRLE.encoded_buf);
 | 
						|
    XBZRLE.encoded_buf = NULL;
 | 
						|
free_cache:
 | 
						|
    cache_fini(XBZRLE.cache);
 | 
						|
    XBZRLE.cache = NULL;
 | 
						|
free_zero_page:
 | 
						|
    g_free(XBZRLE.zero_target_page);
 | 
						|
    XBZRLE.zero_target_page = NULL;
 | 
						|
err_out:
 | 
						|
    XBZRLE_cache_unlock();
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static bool ram_state_init(RAMState **rsp, Error **errp)
 | 
						|
{
 | 
						|
    *rsp = g_try_new0(RAMState, 1);
 | 
						|
 | 
						|
    if (!*rsp) {
 | 
						|
        error_setg(errp, "%s: Init ramstate fail", __func__);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_mutex_init(&(*rsp)->bitmap_mutex);
 | 
						|
    qemu_mutex_init(&(*rsp)->src_page_req_mutex);
 | 
						|
    QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
 | 
						|
    (*rsp)->ram_bytes_total = ram_bytes_total();
 | 
						|
 | 
						|
    /*
 | 
						|
     * Count the total number of pages used by ram blocks not including any
 | 
						|
     * gaps due to alignment or unplugs.
 | 
						|
     * This must match with the initial values of dirty bitmap.
 | 
						|
     */
 | 
						|
    (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
 | 
						|
    ram_state_reset(*rsp);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static void ram_list_init_bitmaps(void)
 | 
						|
{
 | 
						|
    MigrationState *ms = migrate_get_current();
 | 
						|
    RAMBlock *block;
 | 
						|
    unsigned long pages;
 | 
						|
    uint8_t shift;
 | 
						|
 | 
						|
    /* Skip setting bitmap if there is no RAM */
 | 
						|
    if (ram_bytes_total()) {
 | 
						|
        shift = ms->clear_bitmap_shift;
 | 
						|
        if (shift > CLEAR_BITMAP_SHIFT_MAX) {
 | 
						|
            error_report("clear_bitmap_shift (%u) too big, using "
 | 
						|
                         "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
 | 
						|
            shift = CLEAR_BITMAP_SHIFT_MAX;
 | 
						|
        } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
 | 
						|
            error_report("clear_bitmap_shift (%u) too small, using "
 | 
						|
                         "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
 | 
						|
            shift = CLEAR_BITMAP_SHIFT_MIN;
 | 
						|
        }
 | 
						|
 | 
						|
        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
            pages = block->max_length >> TARGET_PAGE_BITS;
 | 
						|
            /*
 | 
						|
             * The initial dirty bitmap for migration must be set with all
 | 
						|
             * ones to make sure we'll migrate every guest RAM page to
 | 
						|
             * destination.
 | 
						|
             * Here we set RAMBlock.bmap all to 1 because when rebegin a
 | 
						|
             * new migration after a failed migration, ram_list.
 | 
						|
             * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
 | 
						|
             * guest memory.
 | 
						|
             */
 | 
						|
            block->bmap = bitmap_new(pages);
 | 
						|
            bitmap_set(block->bmap, 0, pages);
 | 
						|
            if (migrate_mapped_ram()) {
 | 
						|
                block->file_bmap = bitmap_new(pages);
 | 
						|
            }
 | 
						|
            block->clear_bmap_shift = shift;
 | 
						|
            block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
 | 
						|
        }
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void migration_bitmap_clear_discarded_pages(RAMState *rs)
 | 
						|
{
 | 
						|
    unsigned long pages;
 | 
						|
    RAMBlock *rb;
 | 
						|
 | 
						|
    RCU_READ_LOCK_GUARD();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | 
						|
            pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
 | 
						|
            rs->migration_dirty_pages -= pages;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static bool ram_init_bitmaps(RAMState *rs, Error **errp)
 | 
						|
{
 | 
						|
    bool ret = true;
 | 
						|
 | 
						|
    qemu_mutex_lock_ramlist();
 | 
						|
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        ram_list_init_bitmaps();
 | 
						|
        /* We don't use dirty log with background snapshots */
 | 
						|
        if (!migrate_background_snapshot()) {
 | 
						|
            ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
 | 
						|
            if (!ret) {
 | 
						|
                goto out_unlock;
 | 
						|
            }
 | 
						|
            migration_bitmap_sync_precopy(false);
 | 
						|
        }
 | 
						|
    }
 | 
						|
out_unlock:
 | 
						|
    qemu_mutex_unlock_ramlist();
 | 
						|
 | 
						|
    if (!ret) {
 | 
						|
        ram_bitmaps_destroy();
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * After an eventual first bitmap sync, fixup the initial bitmap
 | 
						|
     * containing all 1s to exclude any discarded pages from migration.
 | 
						|
     */
 | 
						|
    migration_bitmap_clear_discarded_pages(rs);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static int ram_init_all(RAMState **rsp, Error **errp)
 | 
						|
{
 | 
						|
    if (!ram_state_init(rsp, errp)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!xbzrle_init(errp)) {
 | 
						|
        ram_state_cleanup(rsp);
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!ram_init_bitmaps(*rsp, errp)) {
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    uint64_t pages = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Postcopy is not using xbzrle/compression, so no need for that.
 | 
						|
     * Also, since source are already halted, we don't need to care
 | 
						|
     * about dirty page logging as well.
 | 
						|
     */
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        pages += bitmap_count_one(block->bmap,
 | 
						|
                                  block->used_length >> TARGET_PAGE_BITS);
 | 
						|
    }
 | 
						|
 | 
						|
    /* This may not be aligned with current bitmaps. Recalculate. */
 | 
						|
    rs->migration_dirty_pages = pages;
 | 
						|
 | 
						|
    ram_state_reset(rs);
 | 
						|
 | 
						|
    /* Update RAMState cache of output QEMUFile */
 | 
						|
    rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
 | 
						|
 | 
						|
    trace_ram_state_resume_prepare(pages);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function clears bits of the free pages reported by the caller from the
 | 
						|
 * migration dirty bitmap. @addr is the host address corresponding to the
 | 
						|
 * start of the continuous guest free pages, and @len is the total bytes of
 | 
						|
 * those pages.
 | 
						|
 */
 | 
						|
void qemu_guest_free_page_hint(void *addr, size_t len)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    ram_addr_t offset;
 | 
						|
    size_t used_len, start, npages;
 | 
						|
 | 
						|
    /* This function is currently expected to be used during live migration */
 | 
						|
    if (!migration_is_running()) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    for (; len > 0; len -= used_len, addr += used_len) {
 | 
						|
        block = qemu_ram_block_from_host(addr, false, &offset);
 | 
						|
        if (unlikely(!block || offset >= block->used_length)) {
 | 
						|
            /*
 | 
						|
             * The implementation might not support RAMBlock resize during
 | 
						|
             * live migration, but it could happen in theory with future
 | 
						|
             * updates. So we add a check here to capture that case.
 | 
						|
             */
 | 
						|
            error_report_once("%s unexpected error", __func__);
 | 
						|
            return;
 | 
						|
        }
 | 
						|
 | 
						|
        if (len <= block->used_length - offset) {
 | 
						|
            used_len = len;
 | 
						|
        } else {
 | 
						|
            used_len = block->used_length - offset;
 | 
						|
        }
 | 
						|
 | 
						|
        start = offset >> TARGET_PAGE_BITS;
 | 
						|
        npages = used_len >> TARGET_PAGE_BITS;
 | 
						|
 | 
						|
        qemu_mutex_lock(&ram_state->bitmap_mutex);
 | 
						|
        /*
 | 
						|
         * The skipped free pages are equavalent to be sent from clear_bmap's
 | 
						|
         * perspective, so clear the bits from the memory region bitmap which
 | 
						|
         * are initially set. Otherwise those skipped pages will be sent in
 | 
						|
         * the next round after syncing from the memory region bitmap.
 | 
						|
         */
 | 
						|
        migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
 | 
						|
        ram_state->migration_dirty_pages -=
 | 
						|
                      bitmap_count_one_with_offset(block->bmap, start, npages);
 | 
						|
        bitmap_clear(block->bmap, start, npages);
 | 
						|
        qemu_mutex_unlock(&ram_state->bitmap_mutex);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#define MAPPED_RAM_HDR_VERSION 1
 | 
						|
struct MappedRamHeader {
 | 
						|
    uint32_t version;
 | 
						|
    /*
 | 
						|
     * The target's page size, so we know how many pages are in the
 | 
						|
     * bitmap.
 | 
						|
     */
 | 
						|
    uint64_t page_size;
 | 
						|
    /*
 | 
						|
     * The offset in the migration file where the pages bitmap is
 | 
						|
     * stored.
 | 
						|
     */
 | 
						|
    uint64_t bitmap_offset;
 | 
						|
    /*
 | 
						|
     * The offset in the migration file where the actual pages (data)
 | 
						|
     * are stored.
 | 
						|
     */
 | 
						|
    uint64_t pages_offset;
 | 
						|
} QEMU_PACKED;
 | 
						|
typedef struct MappedRamHeader MappedRamHeader;
 | 
						|
 | 
						|
static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
 | 
						|
{
 | 
						|
    g_autofree MappedRamHeader *header = NULL;
 | 
						|
    size_t header_size, bitmap_size;
 | 
						|
    long num_pages;
 | 
						|
 | 
						|
    header = g_new0(MappedRamHeader, 1);
 | 
						|
    header_size = sizeof(MappedRamHeader);
 | 
						|
 | 
						|
    num_pages = block->used_length >> TARGET_PAGE_BITS;
 | 
						|
    bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
 | 
						|
 | 
						|
    /*
 | 
						|
     * Save the file offsets of where the bitmap and the pages should
 | 
						|
     * go as they are written at the end of migration and during the
 | 
						|
     * iterative phase, respectively.
 | 
						|
     */
 | 
						|
    block->bitmap_offset = qemu_get_offset(file) + header_size;
 | 
						|
    block->pages_offset = ROUND_UP(block->bitmap_offset +
 | 
						|
                                   bitmap_size,
 | 
						|
                                   MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
 | 
						|
 | 
						|
    header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
 | 
						|
    header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
 | 
						|
    header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
 | 
						|
    header->pages_offset = cpu_to_be64(block->pages_offset);
 | 
						|
 | 
						|
    qemu_put_buffer(file, (uint8_t *) header, header_size);
 | 
						|
 | 
						|
    /* prepare offset for next ramblock */
 | 
						|
    qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
 | 
						|
}
 | 
						|
 | 
						|
static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
 | 
						|
                                   Error **errp)
 | 
						|
{
 | 
						|
    size_t ret, header_size = sizeof(MappedRamHeader);
 | 
						|
 | 
						|
    ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
 | 
						|
    if (ret != header_size) {
 | 
						|
        error_setg(errp, "Could not read whole mapped-ram migration header "
 | 
						|
                   "(expected %zd, got %zd bytes)", header_size, ret);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /* migration stream is big-endian */
 | 
						|
    header->version = be32_to_cpu(header->version);
 | 
						|
 | 
						|
    if (header->version > MAPPED_RAM_HDR_VERSION) {
 | 
						|
        error_setg(errp, "Migration mapped-ram capability version not "
 | 
						|
                   "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
 | 
						|
                   header->version);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    header->page_size = be64_to_cpu(header->page_size);
 | 
						|
    header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
 | 
						|
    header->pages_offset = be64_to_cpu(header->pages_offset);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
 | 
						|
 * long-running RCU critical section.  When rcu-reclaims in the code
 | 
						|
 * start to become numerous it will be necessary to reduce the
 | 
						|
 * granularity of these critical sections.
 | 
						|
 */
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_setup: Setup RAM for migration
 | 
						|
 *
 | 
						|
 * Returns zero to indicate success and negative for error
 | 
						|
 *
 | 
						|
 * @f: QEMUFile where to send the data
 | 
						|
 * @opaque: RAMState pointer
 | 
						|
 * @errp: pointer to Error*, to store an error if it happens.
 | 
						|
 */
 | 
						|
static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
 | 
						|
{
 | 
						|
    RAMState **rsp = opaque;
 | 
						|
    RAMBlock *block;
 | 
						|
    int ret, max_hg_page_size;
 | 
						|
 | 
						|
    /* migration has already setup the bitmap, reuse it. */
 | 
						|
    if (!migration_in_colo_state()) {
 | 
						|
        if (ram_init_all(rsp, errp) != 0) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
 | 
						|
 | 
						|
    /*
 | 
						|
     * ??? Mirrors the previous value of qemu_host_page_size,
 | 
						|
     * but is this really what was intended for the migration?
 | 
						|
     */
 | 
						|
    max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        qemu_put_be64(f, ram_bytes_total_with_ignored()
 | 
						|
                         | RAM_SAVE_FLAG_MEM_SIZE);
 | 
						|
 | 
						|
        RAMBLOCK_FOREACH_MIGRATABLE(block) {
 | 
						|
            qemu_put_byte(f, strlen(block->idstr));
 | 
						|
            qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
 | 
						|
            qemu_put_be64(f, block->used_length);
 | 
						|
            if (migrate_postcopy_ram() &&
 | 
						|
                block->page_size != max_hg_page_size) {
 | 
						|
                qemu_put_be64(f, block->page_size);
 | 
						|
            }
 | 
						|
            if (migrate_ignore_shared()) {
 | 
						|
                qemu_put_be64(f, block->mr->addr);
 | 
						|
            }
 | 
						|
 | 
						|
            if (migrate_mapped_ram()) {
 | 
						|
                mapped_ram_setup_ramblock(f, block);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
 | 
						|
    if (ret < 0) {
 | 
						|
        error_setg(errp, "%s: failed to start RDMA registration", __func__);
 | 
						|
        qemu_file_set_error(f, ret);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
 | 
						|
    if (ret < 0) {
 | 
						|
        error_setg(errp, "%s: failed to stop RDMA registration", __func__);
 | 
						|
        qemu_file_set_error(f, ret);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    migration_ops = g_malloc0(sizeof(MigrationOps));
 | 
						|
 | 
						|
    if (migrate_multifd()) {
 | 
						|
        multifd_ram_save_setup();
 | 
						|
        migration_ops->ram_save_target_page = ram_save_target_page_multifd;
 | 
						|
    } else {
 | 
						|
        migration_ops->ram_save_target_page = ram_save_target_page_legacy;
 | 
						|
    }
 | 
						|
 | 
						|
    bql_unlock();
 | 
						|
    ret = multifd_ram_flush_and_sync();
 | 
						|
    bql_lock();
 | 
						|
    if (ret < 0) {
 | 
						|
        error_setg(errp, "%s: multifd synchronization failed", __func__);
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
 | 
						|
        && !migrate_mapped_ram()) {
 | 
						|
        qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | 
						|
    ret = qemu_fflush(f);
 | 
						|
    if (ret < 0) {
 | 
						|
        error_setg_errno(errp, -ret, "%s failed", __func__);
 | 
						|
    }
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void ram_save_file_bmap(QEMUFile *f)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_MIGRATABLE(block) {
 | 
						|
        long num_pages = block->used_length >> TARGET_PAGE_BITS;
 | 
						|
        long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
 | 
						|
 | 
						|
        qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
 | 
						|
                           block->bitmap_offset);
 | 
						|
        ram_transferred_add(bitmap_size);
 | 
						|
 | 
						|
        /*
 | 
						|
         * Free the bitmap here to catch any synchronization issues
 | 
						|
         * with multifd channels. No channels should be sending pages
 | 
						|
         * after we've written the bitmap to file.
 | 
						|
         */
 | 
						|
        g_free(block->file_bmap);
 | 
						|
        block->file_bmap = NULL;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
 | 
						|
{
 | 
						|
    if (set) {
 | 
						|
        set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
 | 
						|
    } else {
 | 
						|
        clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_iterate: iterative stage for migration
 | 
						|
 *
 | 
						|
 * Returns zero to indicate success and negative for error
 | 
						|
 *
 | 
						|
 * @f: QEMUFile where to send the data
 | 
						|
 * @opaque: RAMState pointer
 | 
						|
 */
 | 
						|
static int ram_save_iterate(QEMUFile *f, void *opaque)
 | 
						|
{
 | 
						|
    RAMState **temp = opaque;
 | 
						|
    RAMState *rs = *temp;
 | 
						|
    int ret = 0;
 | 
						|
    int i;
 | 
						|
    int64_t t0;
 | 
						|
    int done = 0;
 | 
						|
 | 
						|
    /*
 | 
						|
     * We'll take this lock a little bit long, but it's okay for two reasons.
 | 
						|
     * Firstly, the only possible other thread to take it is who calls
 | 
						|
     * qemu_guest_free_page_hint(), which should be rare; secondly, see
 | 
						|
     * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
 | 
						|
     * guarantees that we'll at least released it in a regular basis.
 | 
						|
     */
 | 
						|
    WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
 | 
						|
        WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
            if (ram_list.version != rs->last_version) {
 | 
						|
                ram_state_reset(rs);
 | 
						|
            }
 | 
						|
 | 
						|
            /* Read version before ram_list.blocks */
 | 
						|
            smp_rmb();
 | 
						|
 | 
						|
            ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
 | 
						|
            if (ret < 0) {
 | 
						|
                qemu_file_set_error(f, ret);
 | 
						|
                goto out;
 | 
						|
            }
 | 
						|
 | 
						|
            t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
 | 
						|
            i = 0;
 | 
						|
            while ((ret = migration_rate_exceeded(f)) == 0 ||
 | 
						|
                   postcopy_has_request(rs)) {
 | 
						|
                int pages;
 | 
						|
 | 
						|
                if (qemu_file_get_error(f)) {
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
 | 
						|
                pages = ram_find_and_save_block(rs);
 | 
						|
                /* no more pages to sent */
 | 
						|
                if (pages == 0) {
 | 
						|
                    done = 1;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
 | 
						|
                if (pages < 0) {
 | 
						|
                    qemu_file_set_error(f, pages);
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
 | 
						|
                rs->target_page_count += pages;
 | 
						|
 | 
						|
                /*
 | 
						|
                 * we want to check in the 1st loop, just in case it was the 1st
 | 
						|
                 * time and we had to sync the dirty bitmap.
 | 
						|
                 * qemu_clock_get_ns() is a bit expensive, so we only check each
 | 
						|
                 * some iterations
 | 
						|
                 */
 | 
						|
                if ((i & 63) == 0) {
 | 
						|
                    uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
 | 
						|
                        1000000;
 | 
						|
                    if (t1 > MAX_WAIT) {
 | 
						|
                        trace_ram_save_iterate_big_wait(t1, i);
 | 
						|
                        break;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                i++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Must occur before EOS (or any QEMUFile operation)
 | 
						|
     * because of RDMA protocol.
 | 
						|
     */
 | 
						|
    ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
 | 
						|
    if (ret < 0) {
 | 
						|
        qemu_file_set_error(f, ret);
 | 
						|
    }
 | 
						|
 | 
						|
out:
 | 
						|
    if (ret >= 0 && migration_is_running()) {
 | 
						|
        if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
 | 
						|
            !migrate_mapped_ram()) {
 | 
						|
            ret = multifd_ram_flush_and_sync();
 | 
						|
            if (ret < 0) {
 | 
						|
                return ret;
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
        qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | 
						|
        ram_transferred_add(8);
 | 
						|
        ret = qemu_fflush(f);
 | 
						|
    }
 | 
						|
    if (ret < 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    return done;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_save_complete: function called to send the remaining amount of ram
 | 
						|
 *
 | 
						|
 * Returns zero to indicate success or negative on error
 | 
						|
 *
 | 
						|
 * Called with the BQL
 | 
						|
 *
 | 
						|
 * @f: QEMUFile where to send the data
 | 
						|
 * @opaque: RAMState pointer
 | 
						|
 */
 | 
						|
static int ram_save_complete(QEMUFile *f, void *opaque)
 | 
						|
{
 | 
						|
    RAMState **temp = opaque;
 | 
						|
    RAMState *rs = *temp;
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    rs->last_stage = !migration_in_colo_state();
 | 
						|
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        if (!migration_in_postcopy()) {
 | 
						|
            migration_bitmap_sync_precopy(true);
 | 
						|
        }
 | 
						|
 | 
						|
        ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
 | 
						|
        if (ret < 0) {
 | 
						|
            qemu_file_set_error(f, ret);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
 | 
						|
        /* try transferring iterative blocks of memory */
 | 
						|
 | 
						|
        /* flush all remaining blocks regardless of rate limiting */
 | 
						|
        qemu_mutex_lock(&rs->bitmap_mutex);
 | 
						|
        while (true) {
 | 
						|
            int pages;
 | 
						|
 | 
						|
            pages = ram_find_and_save_block(rs);
 | 
						|
            /* no more blocks to sent */
 | 
						|
            if (pages == 0) {
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (pages < 0) {
 | 
						|
                qemu_mutex_unlock(&rs->bitmap_mutex);
 | 
						|
                return pages;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        qemu_mutex_unlock(&rs->bitmap_mutex);
 | 
						|
 | 
						|
        ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
 | 
						|
        if (ret < 0) {
 | 
						|
            qemu_file_set_error(f, ret);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    ret = multifd_ram_flush_and_sync();
 | 
						|
    if (ret < 0) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    if (migrate_mapped_ram()) {
 | 
						|
        ram_save_file_bmap(f);
 | 
						|
 | 
						|
        if (qemu_file_get_error(f)) {
 | 
						|
            Error *local_err = NULL;
 | 
						|
            int err = qemu_file_get_error_obj(f, &local_err);
 | 
						|
 | 
						|
            error_reportf_err(local_err, "Failed to write bitmap to file: ");
 | 
						|
            return -err;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
 | 
						|
    return qemu_fflush(f);
 | 
						|
}
 | 
						|
 | 
						|
static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
 | 
						|
                                       uint64_t *can_postcopy)
 | 
						|
{
 | 
						|
    RAMState **temp = opaque;
 | 
						|
    RAMState *rs = *temp;
 | 
						|
 | 
						|
    uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
 | 
						|
 | 
						|
    if (migrate_postcopy_ram()) {
 | 
						|
        /* We can do postcopy, and all the data is postcopiable */
 | 
						|
        *can_postcopy += remaining_size;
 | 
						|
    } else {
 | 
						|
        *must_precopy += remaining_size;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
 | 
						|
                                    uint64_t *can_postcopy)
 | 
						|
{
 | 
						|
    RAMState **temp = opaque;
 | 
						|
    RAMState *rs = *temp;
 | 
						|
    uint64_t remaining_size;
 | 
						|
 | 
						|
    if (!migration_in_postcopy()) {
 | 
						|
        bql_lock();
 | 
						|
        WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
            migration_bitmap_sync_precopy(false);
 | 
						|
        }
 | 
						|
        bql_unlock();
 | 
						|
    }
 | 
						|
 | 
						|
    remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
 | 
						|
 | 
						|
    if (migrate_postcopy_ram()) {
 | 
						|
        /* We can do postcopy, and all the data is postcopiable */
 | 
						|
        *can_postcopy += remaining_size;
 | 
						|
    } else {
 | 
						|
        *must_precopy += remaining_size;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
 | 
						|
{
 | 
						|
    unsigned int xh_len;
 | 
						|
    int xh_flags;
 | 
						|
    uint8_t *loaded_data;
 | 
						|
 | 
						|
    /* extract RLE header */
 | 
						|
    xh_flags = qemu_get_byte(f);
 | 
						|
    xh_len = qemu_get_be16(f);
 | 
						|
 | 
						|
    if (xh_flags != ENCODING_FLAG_XBZRLE) {
 | 
						|
        error_report("Failed to load XBZRLE page - wrong compression!");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    if (xh_len > TARGET_PAGE_SIZE) {
 | 
						|
        error_report("Failed to load XBZRLE page - len overflow!");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
    loaded_data = XBZRLE.decoded_buf;
 | 
						|
    /* load data and decode */
 | 
						|
    /* it can change loaded_data to point to an internal buffer */
 | 
						|
    qemu_get_buffer_in_place(f, &loaded_data, xh_len);
 | 
						|
 | 
						|
    /* decode RLE */
 | 
						|
    if (xbzrle_decode_buffer(loaded_data, xh_len, host,
 | 
						|
                             TARGET_PAGE_SIZE) == -1) {
 | 
						|
        error_report("Failed to load XBZRLE page - decode error!");
 | 
						|
        return -1;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_block_from_stream: read a RAMBlock id from the migration stream
 | 
						|
 *
 | 
						|
 * Must be called from within a rcu critical section.
 | 
						|
 *
 | 
						|
 * Returns a pointer from within the RCU-protected ram_list.
 | 
						|
 *
 | 
						|
 * @mis: the migration incoming state pointer
 | 
						|
 * @f: QEMUFile where to read the data from
 | 
						|
 * @flags: Page flags (mostly to see if it's a continuation of previous block)
 | 
						|
 * @channel: the channel we're using
 | 
						|
 */
 | 
						|
static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
 | 
						|
                                              QEMUFile *f, int flags,
 | 
						|
                                              int channel)
 | 
						|
{
 | 
						|
    RAMBlock *block = mis->last_recv_block[channel];
 | 
						|
    char id[256];
 | 
						|
    uint8_t len;
 | 
						|
 | 
						|
    if (flags & RAM_SAVE_FLAG_CONTINUE) {
 | 
						|
        if (!block) {
 | 
						|
            error_report("Ack, bad migration stream!");
 | 
						|
            return NULL;
 | 
						|
        }
 | 
						|
        return block;
 | 
						|
    }
 | 
						|
 | 
						|
    len = qemu_get_byte(f);
 | 
						|
    qemu_get_buffer(f, (uint8_t *)id, len);
 | 
						|
    id[len] = 0;
 | 
						|
 | 
						|
    block = qemu_ram_block_by_name(id);
 | 
						|
    if (!block) {
 | 
						|
        error_report("Can't find block %s", id);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (migrate_ram_is_ignored(block)) {
 | 
						|
        error_report("block %s should not be migrated !", id);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    mis->last_recv_block[channel] = block;
 | 
						|
 | 
						|
    return block;
 | 
						|
}
 | 
						|
 | 
						|
static inline void *host_from_ram_block_offset(RAMBlock *block,
 | 
						|
                                               ram_addr_t offset)
 | 
						|
{
 | 
						|
    if (!offset_in_ramblock(block, offset)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return block->host + offset;
 | 
						|
}
 | 
						|
 | 
						|
static void *host_page_from_ram_block_offset(RAMBlock *block,
 | 
						|
                                             ram_addr_t offset)
 | 
						|
{
 | 
						|
    /* Note: Explicitly no check against offset_in_ramblock(). */
 | 
						|
    return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
 | 
						|
                                   block->page_size);
 | 
						|
}
 | 
						|
 | 
						|
static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
 | 
						|
                                                         ram_addr_t offset)
 | 
						|
{
 | 
						|
    return ((uintptr_t)block->host + offset) & (block->page_size - 1);
 | 
						|
}
 | 
						|
 | 
						|
void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
 | 
						|
{
 | 
						|
    qemu_mutex_lock(&ram_state->bitmap_mutex);
 | 
						|
    for (int i = 0; i < pages; i++) {
 | 
						|
        ram_addr_t offset = normal[i];
 | 
						|
        ram_state->migration_dirty_pages += !test_and_set_bit(
 | 
						|
                                                offset >> TARGET_PAGE_BITS,
 | 
						|
                                                block->bmap);
 | 
						|
    }
 | 
						|
    qemu_mutex_unlock(&ram_state->bitmap_mutex);
 | 
						|
}
 | 
						|
 | 
						|
static inline void *colo_cache_from_block_offset(RAMBlock *block,
 | 
						|
                             ram_addr_t offset, bool record_bitmap)
 | 
						|
{
 | 
						|
    if (!offset_in_ramblock(block, offset)) {
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
    if (!block->colo_cache) {
 | 
						|
        error_report("%s: colo_cache is NULL in block :%s",
 | 
						|
                     __func__, block->idstr);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
    * During colo checkpoint, we need bitmap of these migrated pages.
 | 
						|
    * It help us to decide which pages in ram cache should be flushed
 | 
						|
    * into VM's RAM later.
 | 
						|
    */
 | 
						|
    if (record_bitmap) {
 | 
						|
        colo_record_bitmap(block, &offset, 1);
 | 
						|
    }
 | 
						|
    return block->colo_cache + offset;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_handle_zero: handle the zero page case
 | 
						|
 *
 | 
						|
 * If a page (or a whole RDMA chunk) has been
 | 
						|
 * determined to be zero, then zap it.
 | 
						|
 *
 | 
						|
 * @host: host address for the zero page
 | 
						|
 * @ch: what the page is filled from.  We only support zero
 | 
						|
 * @size: size of the zero page
 | 
						|
 */
 | 
						|
void ram_handle_zero(void *host, uint64_t size)
 | 
						|
{
 | 
						|
    if (!buffer_is_zero(host, size)) {
 | 
						|
        memset(host, 0, size);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static void colo_init_ram_state(void)
 | 
						|
{
 | 
						|
    Error *local_err = NULL;
 | 
						|
 | 
						|
    if (!ram_state_init(&ram_state, &local_err)) {
 | 
						|
        error_report_err(local_err);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * colo cache: this is for secondary VM, we cache the whole
 | 
						|
 * memory of the secondary VM, it is need to hold the global lock
 | 
						|
 * to call this helper.
 | 
						|
 */
 | 
						|
int colo_init_ram_cache(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
            block->colo_cache = qemu_anon_ram_alloc(block->used_length,
 | 
						|
                                                    NULL, false, false);
 | 
						|
            if (!block->colo_cache) {
 | 
						|
                error_report("%s: Can't alloc memory for COLO cache of block %s,"
 | 
						|
                             "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
 | 
						|
                             block->used_length);
 | 
						|
                RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
                    if (block->colo_cache) {
 | 
						|
                        qemu_anon_ram_free(block->colo_cache, block->used_length);
 | 
						|
                        block->colo_cache = NULL;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                return -errno;
 | 
						|
            }
 | 
						|
            if (!machine_dump_guest_core(current_machine)) {
 | 
						|
                qemu_madvise(block->colo_cache, block->used_length,
 | 
						|
                             QEMU_MADV_DONTDUMP);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
    * Record the dirty pages that sent by PVM, we use this dirty bitmap together
 | 
						|
    * with to decide which page in cache should be flushed into SVM's RAM. Here
 | 
						|
    * we use the same name 'ram_bitmap' as for migration.
 | 
						|
    */
 | 
						|
    if (ram_bytes_total()) {
 | 
						|
        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
            unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
 | 
						|
            block->bmap = bitmap_new(pages);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    colo_init_ram_state();
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* TODO: duplicated with ram_init_bitmaps */
 | 
						|
void colo_incoming_start_dirty_log(void)
 | 
						|
{
 | 
						|
    RAMBlock *block = NULL;
 | 
						|
    Error *local_err = NULL;
 | 
						|
 | 
						|
    /* For memory_global_dirty_log_start below. */
 | 
						|
    bql_lock();
 | 
						|
    qemu_mutex_lock_ramlist();
 | 
						|
 | 
						|
    memory_global_dirty_log_sync(false);
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
            ramblock_sync_dirty_bitmap(ram_state, block);
 | 
						|
            /* Discard this dirty bitmap record */
 | 
						|
            bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
 | 
						|
        }
 | 
						|
        if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
 | 
						|
                                           &local_err)) {
 | 
						|
            error_report_err(local_err);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ram_state->migration_dirty_pages = 0;
 | 
						|
    qemu_mutex_unlock_ramlist();
 | 
						|
    bql_unlock();
 | 
						|
}
 | 
						|
 | 
						|
/* It is need to hold the global lock to call this helper */
 | 
						|
void colo_release_ram_cache(void)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
 | 
						|
    memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        g_free(block->bmap);
 | 
						|
        block->bmap = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
            if (block->colo_cache) {
 | 
						|
                qemu_anon_ram_free(block->colo_cache, block->used_length);
 | 
						|
                block->colo_cache = NULL;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ram_state_cleanup(&ram_state);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_load_setup: Setup RAM for migration incoming side
 | 
						|
 *
 | 
						|
 * Returns zero to indicate success and negative for error
 | 
						|
 *
 | 
						|
 * @f: QEMUFile where to receive the data
 | 
						|
 * @opaque: RAMState pointer
 | 
						|
 * @errp: pointer to Error*, to store an error if it happens.
 | 
						|
 */
 | 
						|
static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
 | 
						|
{
 | 
						|
    xbzrle_load_setup();
 | 
						|
    ramblock_recv_map_init();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int ram_load_cleanup(void *opaque)
 | 
						|
{
 | 
						|
    RAMBlock *rb;
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | 
						|
        qemu_ram_block_writeback(rb);
 | 
						|
    }
 | 
						|
 | 
						|
    xbzrle_load_cleanup();
 | 
						|
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | 
						|
        g_free(rb->receivedmap);
 | 
						|
        rb->receivedmap = NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_postcopy_incoming_init: allocate postcopy data structures
 | 
						|
 *
 | 
						|
 * Returns 0 for success and negative if there was one error
 | 
						|
 *
 | 
						|
 * @mis: current migration incoming state
 | 
						|
 *
 | 
						|
 * Allocate data structures etc needed by incoming migration with
 | 
						|
 * postcopy-ram. postcopy-ram's similarly names
 | 
						|
 * postcopy_ram_incoming_init does the work.
 | 
						|
 */
 | 
						|
int ram_postcopy_incoming_init(MigrationIncomingState *mis)
 | 
						|
{
 | 
						|
    return postcopy_ram_incoming_init(mis);
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_load_postcopy: load a page in postcopy case
 | 
						|
 *
 | 
						|
 * Returns 0 for success or -errno in case of error
 | 
						|
 *
 | 
						|
 * Called in postcopy mode by ram_load().
 | 
						|
 * rcu_read_lock is taken prior to this being called.
 | 
						|
 *
 | 
						|
 * @f: QEMUFile where to send the data
 | 
						|
 * @channel: the channel to use for loading
 | 
						|
 */
 | 
						|
int ram_load_postcopy(QEMUFile *f, int channel)
 | 
						|
{
 | 
						|
    int flags = 0, ret = 0;
 | 
						|
    bool place_needed = false;
 | 
						|
    bool matches_target_page_size = false;
 | 
						|
    MigrationIncomingState *mis = migration_incoming_get_current();
 | 
						|
    PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
 | 
						|
 | 
						|
    while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
 | 
						|
        ram_addr_t addr;
 | 
						|
        void *page_buffer = NULL;
 | 
						|
        void *place_source = NULL;
 | 
						|
        RAMBlock *block = NULL;
 | 
						|
        uint8_t ch;
 | 
						|
 | 
						|
        addr = qemu_get_be64(f);
 | 
						|
 | 
						|
        /*
 | 
						|
         * If qemu file error, we should stop here, and then "addr"
 | 
						|
         * may be invalid
 | 
						|
         */
 | 
						|
        ret = qemu_file_get_error(f);
 | 
						|
        if (ret) {
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        flags = addr & ~TARGET_PAGE_MASK;
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
 | 
						|
        trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
 | 
						|
        if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
 | 
						|
            block = ram_block_from_stream(mis, f, flags, channel);
 | 
						|
            if (!block) {
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             * Relying on used_length is racy and can result in false positives.
 | 
						|
             * We might place pages beyond used_length in case RAM was shrunk
 | 
						|
             * while in postcopy, which is fine - trying to place via
 | 
						|
             * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
 | 
						|
             */
 | 
						|
            if (!block->host || addr >= block->postcopy_length) {
 | 
						|
                error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            tmp_page->target_pages++;
 | 
						|
            matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
 | 
						|
            /*
 | 
						|
             * Postcopy requires that we place whole host pages atomically;
 | 
						|
             * these may be huge pages for RAMBlocks that are backed by
 | 
						|
             * hugetlbfs.
 | 
						|
             * To make it atomic, the data is read into a temporary page
 | 
						|
             * that's moved into place later.
 | 
						|
             * The migration protocol uses,  possibly smaller, target-pages
 | 
						|
             * however the source ensures it always sends all the components
 | 
						|
             * of a host page in one chunk.
 | 
						|
             */
 | 
						|
            page_buffer = tmp_page->tmp_huge_page +
 | 
						|
                          host_page_offset_from_ram_block_offset(block, addr);
 | 
						|
            /* If all TP are zero then we can optimise the place */
 | 
						|
            if (tmp_page->target_pages == 1) {
 | 
						|
                tmp_page->host_addr =
 | 
						|
                    host_page_from_ram_block_offset(block, addr);
 | 
						|
            } else if (tmp_page->host_addr !=
 | 
						|
                       host_page_from_ram_block_offset(block, addr)) {
 | 
						|
                /* not the 1st TP within the HP */
 | 
						|
                error_report("Non-same host page detected on channel %d: "
 | 
						|
                             "Target host page %p, received host page %p "
 | 
						|
                             "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
 | 
						|
                             channel, tmp_page->host_addr,
 | 
						|
                             host_page_from_ram_block_offset(block, addr),
 | 
						|
                             block->idstr, addr, tmp_page->target_pages);
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
 | 
						|
            /*
 | 
						|
             * If it's the last part of a host page then we place the host
 | 
						|
             * page
 | 
						|
             */
 | 
						|
            if (tmp_page->target_pages ==
 | 
						|
                (block->page_size / TARGET_PAGE_SIZE)) {
 | 
						|
                place_needed = true;
 | 
						|
            }
 | 
						|
            place_source = tmp_page->tmp_huge_page;
 | 
						|
        }
 | 
						|
 | 
						|
        switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
 | 
						|
        case RAM_SAVE_FLAG_ZERO:
 | 
						|
            ch = qemu_get_byte(f);
 | 
						|
            if (ch != 0) {
 | 
						|
                error_report("Found a zero page with value %d", ch);
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            /*
 | 
						|
             * Can skip to set page_buffer when
 | 
						|
             * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
 | 
						|
             */
 | 
						|
            if (!matches_target_page_size) {
 | 
						|
                memset(page_buffer, ch, TARGET_PAGE_SIZE);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case RAM_SAVE_FLAG_PAGE:
 | 
						|
            tmp_page->all_zero = false;
 | 
						|
            if (!matches_target_page_size) {
 | 
						|
                /* For huge pages, we always use temporary buffer */
 | 
						|
                qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
 | 
						|
            } else {
 | 
						|
                /*
 | 
						|
                 * For small pages that matches target page size, we
 | 
						|
                 * avoid the qemu_file copy.  Instead we directly use
 | 
						|
                 * the buffer of QEMUFile to place the page.  Note: we
 | 
						|
                 * cannot do any QEMUFile operation before using that
 | 
						|
                 * buffer to make sure the buffer is valid when
 | 
						|
                 * placing the page.
 | 
						|
                 */
 | 
						|
                qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
 | 
						|
                                         TARGET_PAGE_SIZE);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RAM_SAVE_FLAG_MULTIFD_FLUSH:
 | 
						|
            multifd_recv_sync_main();
 | 
						|
            break;
 | 
						|
        case RAM_SAVE_FLAG_EOS:
 | 
						|
            /* normal exit */
 | 
						|
            if (migrate_multifd() &&
 | 
						|
                migrate_multifd_flush_after_each_section()) {
 | 
						|
                multifd_recv_sync_main();
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            error_report("Unknown combination of migration flags: 0x%x"
 | 
						|
                         " (postcopy mode)", flags);
 | 
						|
            ret = -EINVAL;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        /* Detect for any possible file errors */
 | 
						|
        if (!ret && qemu_file_get_error(f)) {
 | 
						|
            ret = qemu_file_get_error(f);
 | 
						|
        }
 | 
						|
 | 
						|
        if (!ret && place_needed) {
 | 
						|
            if (tmp_page->all_zero) {
 | 
						|
                ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
 | 
						|
            } else {
 | 
						|
                ret = postcopy_place_page(mis, tmp_page->host_addr,
 | 
						|
                                          place_source, block);
 | 
						|
            }
 | 
						|
            place_needed = false;
 | 
						|
            postcopy_temp_page_reset(tmp_page);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool postcopy_is_running(void)
 | 
						|
{
 | 
						|
    PostcopyState ps = postcopy_state_get();
 | 
						|
    return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Flush content of RAM cache into SVM's memory.
 | 
						|
 * Only flush the pages that be dirtied by PVM or SVM or both.
 | 
						|
 */
 | 
						|
void colo_flush_ram_cache(void)
 | 
						|
{
 | 
						|
    RAMBlock *block = NULL;
 | 
						|
    void *dst_host;
 | 
						|
    void *src_host;
 | 
						|
    unsigned long offset = 0;
 | 
						|
 | 
						|
    memory_global_dirty_log_sync(false);
 | 
						|
    qemu_mutex_lock(&ram_state->bitmap_mutex);
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
            ramblock_sync_dirty_bitmap(ram_state, block);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        block = QLIST_FIRST_RCU(&ram_list.blocks);
 | 
						|
 | 
						|
        while (block) {
 | 
						|
            unsigned long num = 0;
 | 
						|
 | 
						|
            offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
 | 
						|
            if (!offset_in_ramblock(block,
 | 
						|
                                    ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
 | 
						|
                offset = 0;
 | 
						|
                num = 0;
 | 
						|
                block = QLIST_NEXT_RCU(block, next);
 | 
						|
            } else {
 | 
						|
                unsigned long i = 0;
 | 
						|
 | 
						|
                for (i = 0; i < num; i++) {
 | 
						|
                    migration_bitmap_clear_dirty(ram_state, block, offset + i);
 | 
						|
                }
 | 
						|
                dst_host = block->host
 | 
						|
                         + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
 | 
						|
                src_host = block->colo_cache
 | 
						|
                         + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
 | 
						|
                memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
 | 
						|
                offset += num;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    qemu_mutex_unlock(&ram_state->bitmap_mutex);
 | 
						|
    trace_colo_flush_ram_cache_end();
 | 
						|
}
 | 
						|
 | 
						|
static size_t ram_load_multifd_pages(void *host_addr, size_t size,
 | 
						|
                                     uint64_t offset)
 | 
						|
{
 | 
						|
    MultiFDRecvData *data = multifd_get_recv_data();
 | 
						|
 | 
						|
    data->opaque = host_addr;
 | 
						|
    data->file_offset = offset;
 | 
						|
    data->size = size;
 | 
						|
 | 
						|
    if (!multifd_recv()) {
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    return size;
 | 
						|
}
 | 
						|
 | 
						|
static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
 | 
						|
                                     long num_pages, unsigned long *bitmap,
 | 
						|
                                     Error **errp)
 | 
						|
{
 | 
						|
    ERRP_GUARD();
 | 
						|
    unsigned long set_bit_idx, clear_bit_idx;
 | 
						|
    ram_addr_t offset;
 | 
						|
    void *host;
 | 
						|
    size_t read, unread, size;
 | 
						|
 | 
						|
    for (set_bit_idx = find_first_bit(bitmap, num_pages);
 | 
						|
         set_bit_idx < num_pages;
 | 
						|
         set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
 | 
						|
 | 
						|
        clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
 | 
						|
 | 
						|
        unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
 | 
						|
        offset = set_bit_idx << TARGET_PAGE_BITS;
 | 
						|
 | 
						|
        while (unread > 0) {
 | 
						|
            host = host_from_ram_block_offset(block, offset);
 | 
						|
            if (!host) {
 | 
						|
                error_setg(errp, "page outside of ramblock %s range",
 | 
						|
                           block->idstr);
 | 
						|
                return false;
 | 
						|
            }
 | 
						|
 | 
						|
            size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
 | 
						|
 | 
						|
            if (migrate_multifd()) {
 | 
						|
                read = ram_load_multifd_pages(host, size,
 | 
						|
                                              block->pages_offset + offset);
 | 
						|
            } else {
 | 
						|
                read = qemu_get_buffer_at(f, host, size,
 | 
						|
                                          block->pages_offset + offset);
 | 
						|
            }
 | 
						|
 | 
						|
            if (!read) {
 | 
						|
                goto err;
 | 
						|
            }
 | 
						|
            offset += read;
 | 
						|
            unread -= read;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return true;
 | 
						|
 | 
						|
err:
 | 
						|
    qemu_file_get_error_obj(f, errp);
 | 
						|
    error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
 | 
						|
                  "from file offset %" PRIx64 ": ", block->idstr, offset,
 | 
						|
                  block->pages_offset + offset);
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
 | 
						|
                                      ram_addr_t length, Error **errp)
 | 
						|
{
 | 
						|
    g_autofree unsigned long *bitmap = NULL;
 | 
						|
    MappedRamHeader header;
 | 
						|
    size_t bitmap_size;
 | 
						|
    long num_pages;
 | 
						|
 | 
						|
    if (!mapped_ram_read_header(f, &header, errp)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    block->pages_offset = header.pages_offset;
 | 
						|
 | 
						|
    /*
 | 
						|
     * Check the alignment of the file region that contains pages. We
 | 
						|
     * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
 | 
						|
     * value to change in the future. Do only a sanity check with page
 | 
						|
     * size alignment.
 | 
						|
     */
 | 
						|
    if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
 | 
						|
        error_setg(errp,
 | 
						|
                   "Error reading ramblock %s pages, region has bad alignment",
 | 
						|
                   block->idstr);
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    num_pages = length / header.page_size;
 | 
						|
    bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
 | 
						|
 | 
						|
    bitmap = g_malloc0(bitmap_size);
 | 
						|
    if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
 | 
						|
                           header.bitmap_offset) != bitmap_size) {
 | 
						|
        error_setg(errp, "Error reading dirty bitmap");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    /* Skip pages array */
 | 
						|
    qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
 | 
						|
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    /* ADVISE is earlier, it shows the source has the postcopy capability on */
 | 
						|
    bool postcopy_advised = migration_incoming_postcopy_advised();
 | 
						|
    int max_hg_page_size;
 | 
						|
    Error *local_err = NULL;
 | 
						|
 | 
						|
    assert(block);
 | 
						|
 | 
						|
    if (migrate_mapped_ram()) {
 | 
						|
        parse_ramblock_mapped_ram(f, block, length, &local_err);
 | 
						|
        if (local_err) {
 | 
						|
            error_report_err(local_err);
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
        return 0;
 | 
						|
    }
 | 
						|
 | 
						|
    if (!qemu_ram_is_migratable(block)) {
 | 
						|
        error_report("block %s should not be migrated !", block->idstr);
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    if (length != block->used_length) {
 | 
						|
        ret = qemu_ram_resize(block, length, &local_err);
 | 
						|
        if (local_err) {
 | 
						|
            error_report_err(local_err);
 | 
						|
            return ret;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * ??? Mirrors the previous value of qemu_host_page_size,
 | 
						|
     * but is this really what was intended for the migration?
 | 
						|
     */
 | 
						|
    max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
 | 
						|
 | 
						|
    /* For postcopy we need to check hugepage sizes match */
 | 
						|
    if (postcopy_advised && migrate_postcopy_ram() &&
 | 
						|
        block->page_size != max_hg_page_size) {
 | 
						|
        uint64_t remote_page_size = qemu_get_be64(f);
 | 
						|
        if (remote_page_size != block->page_size) {
 | 
						|
            error_report("Mismatched RAM page size %s "
 | 
						|
                         "(local) %zd != %" PRId64, block->idstr,
 | 
						|
                         block->page_size, remote_page_size);
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (migrate_ignore_shared()) {
 | 
						|
        hwaddr addr = qemu_get_be64(f);
 | 
						|
        if (migrate_ram_is_ignored(block) &&
 | 
						|
            block->mr->addr != addr) {
 | 
						|
            error_report("Mismatched GPAs for block %s "
 | 
						|
                         "%" PRId64 "!= %" PRId64, block->idstr,
 | 
						|
                         (uint64_t)addr, (uint64_t)block->mr->addr);
 | 
						|
            return -EINVAL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    ret = rdma_block_notification_handle(f, block->idstr);
 | 
						|
    if (ret < 0) {
 | 
						|
        qemu_file_set_error(f, ret);
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
 | 
						|
    /* Synchronize RAM block list */
 | 
						|
    while (!ret && total_ram_bytes) {
 | 
						|
        RAMBlock *block;
 | 
						|
        char id[256];
 | 
						|
        ram_addr_t length;
 | 
						|
        int len = qemu_get_byte(f);
 | 
						|
 | 
						|
        qemu_get_buffer(f, (uint8_t *)id, len);
 | 
						|
        id[len] = 0;
 | 
						|
        length = qemu_get_be64(f);
 | 
						|
 | 
						|
        block = qemu_ram_block_by_name(id);
 | 
						|
        if (block) {
 | 
						|
            ret = parse_ramblock(f, block, length);
 | 
						|
        } else {
 | 
						|
            error_report("Unknown ramblock \"%s\", cannot accept "
 | 
						|
                         "migration", id);
 | 
						|
            ret = -EINVAL;
 | 
						|
        }
 | 
						|
        total_ram_bytes -= length;
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
/**
 | 
						|
 * ram_load_precopy: load pages in precopy case
 | 
						|
 *
 | 
						|
 * Returns 0 for success or -errno in case of error
 | 
						|
 *
 | 
						|
 * Called in precopy mode by ram_load().
 | 
						|
 * rcu_read_lock is taken prior to this being called.
 | 
						|
 *
 | 
						|
 * @f: QEMUFile where to send the data
 | 
						|
 */
 | 
						|
static int ram_load_precopy(QEMUFile *f)
 | 
						|
{
 | 
						|
    MigrationIncomingState *mis = migration_incoming_get_current();
 | 
						|
    int flags = 0, ret = 0, invalid_flags = 0, i = 0;
 | 
						|
 | 
						|
    if (migrate_mapped_ram()) {
 | 
						|
        invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
 | 
						|
                          RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
 | 
						|
                          RAM_SAVE_FLAG_ZERO);
 | 
						|
    }
 | 
						|
 | 
						|
    while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
 | 
						|
        ram_addr_t addr;
 | 
						|
        void *host = NULL, *host_bak = NULL;
 | 
						|
        uint8_t ch;
 | 
						|
 | 
						|
        /*
 | 
						|
         * Yield periodically to let main loop run, but an iteration of
 | 
						|
         * the main loop is expensive, so do it each some iterations
 | 
						|
         */
 | 
						|
        if ((i & 32767) == 0 && qemu_in_coroutine()) {
 | 
						|
            aio_co_schedule(qemu_get_current_aio_context(),
 | 
						|
                            qemu_coroutine_self());
 | 
						|
            qemu_coroutine_yield();
 | 
						|
        }
 | 
						|
        i++;
 | 
						|
 | 
						|
        addr = qemu_get_be64(f);
 | 
						|
        ret = qemu_file_get_error(f);
 | 
						|
        if (ret) {
 | 
						|
            error_report("Getting RAM address failed");
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        flags = addr & ~TARGET_PAGE_MASK;
 | 
						|
        addr &= TARGET_PAGE_MASK;
 | 
						|
 | 
						|
        if (flags & invalid_flags) {
 | 
						|
            error_report("Unexpected RAM flags: %d", flags & invalid_flags);
 | 
						|
 | 
						|
            ret = -EINVAL;
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
 | 
						|
                     RAM_SAVE_FLAG_XBZRLE)) {
 | 
						|
            RAMBlock *block = ram_block_from_stream(mis, f, flags,
 | 
						|
                                                    RAM_CHANNEL_PRECOPY);
 | 
						|
 | 
						|
            host = host_from_ram_block_offset(block, addr);
 | 
						|
            /*
 | 
						|
             * After going into COLO stage, we should not load the page
 | 
						|
             * into SVM's memory directly, we put them into colo_cache firstly.
 | 
						|
             * NOTE: We need to keep a copy of SVM's ram in colo_cache.
 | 
						|
             * Previously, we copied all these memory in preparing stage of COLO
 | 
						|
             * while we need to stop VM, which is a time-consuming process.
 | 
						|
             * Here we optimize it by a trick, back-up every page while in
 | 
						|
             * migration process while COLO is enabled, though it affects the
 | 
						|
             * speed of the migration, but it obviously reduce the downtime of
 | 
						|
             * back-up all SVM'S memory in COLO preparing stage.
 | 
						|
             */
 | 
						|
            if (migration_incoming_colo_enabled()) {
 | 
						|
                if (migration_incoming_in_colo_state()) {
 | 
						|
                    /* In COLO stage, put all pages into cache temporarily */
 | 
						|
                    host = colo_cache_from_block_offset(block, addr, true);
 | 
						|
                } else {
 | 
						|
                   /*
 | 
						|
                    * In migration stage but before COLO stage,
 | 
						|
                    * Put all pages into both cache and SVM's memory.
 | 
						|
                    */
 | 
						|
                    host_bak = colo_cache_from_block_offset(block, addr, false);
 | 
						|
                }
 | 
						|
            }
 | 
						|
            if (!host) {
 | 
						|
                error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            if (!migration_incoming_in_colo_state()) {
 | 
						|
                ramblock_recv_bitmap_set(block, host);
 | 
						|
            }
 | 
						|
 | 
						|
            trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
 | 
						|
        }
 | 
						|
 | 
						|
        switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
 | 
						|
        case RAM_SAVE_FLAG_MEM_SIZE:
 | 
						|
            ret = parse_ramblocks(f, addr);
 | 
						|
            /*
 | 
						|
             * For mapped-ram migration (to a file) using multifd, we sync
 | 
						|
             * once and for all here to make sure all tasks we queued to
 | 
						|
             * multifd threads are completed, so that all the ramblocks
 | 
						|
             * (including all the guest memory pages within) are fully
 | 
						|
             * loaded after this sync returns.
 | 
						|
             */
 | 
						|
            if (migrate_mapped_ram()) {
 | 
						|
                multifd_recv_sync_main();
 | 
						|
            }
 | 
						|
            break;
 | 
						|
 | 
						|
        case RAM_SAVE_FLAG_ZERO:
 | 
						|
            ch = qemu_get_byte(f);
 | 
						|
            if (ch != 0) {
 | 
						|
                error_report("Found a zero page with value %d", ch);
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            ram_handle_zero(host, TARGET_PAGE_SIZE);
 | 
						|
            break;
 | 
						|
 | 
						|
        case RAM_SAVE_FLAG_PAGE:
 | 
						|
            qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
 | 
						|
            break;
 | 
						|
 | 
						|
        case RAM_SAVE_FLAG_XBZRLE:
 | 
						|
            if (load_xbzrle(f, addr, host) < 0) {
 | 
						|
                error_report("Failed to decompress XBZRLE page at "
 | 
						|
                             RAM_ADDR_FMT, addr);
 | 
						|
                ret = -EINVAL;
 | 
						|
                break;
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RAM_SAVE_FLAG_MULTIFD_FLUSH:
 | 
						|
            multifd_recv_sync_main();
 | 
						|
            break;
 | 
						|
        case RAM_SAVE_FLAG_EOS:
 | 
						|
            /* normal exit */
 | 
						|
            if (migrate_multifd() &&
 | 
						|
                migrate_multifd_flush_after_each_section() &&
 | 
						|
                /*
 | 
						|
                 * Mapped-ram migration flushes once and for all after
 | 
						|
                 * parsing ramblocks. Always ignore EOS for it.
 | 
						|
                 */
 | 
						|
                !migrate_mapped_ram()) {
 | 
						|
                multifd_recv_sync_main();
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        case RAM_SAVE_FLAG_HOOK:
 | 
						|
            ret = rdma_registration_handle(f);
 | 
						|
            if (ret < 0) {
 | 
						|
                qemu_file_set_error(f, ret);
 | 
						|
            }
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            error_report("Unknown combination of migration flags: 0x%x", flags);
 | 
						|
            ret = -EINVAL;
 | 
						|
        }
 | 
						|
        if (!ret) {
 | 
						|
            ret = qemu_file_get_error(f);
 | 
						|
        }
 | 
						|
        if (!ret && host_bak) {
 | 
						|
            memcpy(host_bak, host, TARGET_PAGE_SIZE);
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int ram_load(QEMUFile *f, void *opaque, int version_id)
 | 
						|
{
 | 
						|
    int ret = 0;
 | 
						|
    static uint64_t seq_iter;
 | 
						|
    /*
 | 
						|
     * If system is running in postcopy mode, page inserts to host memory must
 | 
						|
     * be atomic
 | 
						|
     */
 | 
						|
    bool postcopy_running = postcopy_is_running();
 | 
						|
 | 
						|
    seq_iter++;
 | 
						|
 | 
						|
    if (version_id != 4) {
 | 
						|
        return -EINVAL;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * This RCU critical section can be very long running.
 | 
						|
     * When RCU reclaims in the code start to become numerous,
 | 
						|
     * it will be necessary to reduce the granularity of this
 | 
						|
     * critical section.
 | 
						|
     */
 | 
						|
    trace_ram_load_start();
 | 
						|
    WITH_RCU_READ_LOCK_GUARD() {
 | 
						|
        if (postcopy_running) {
 | 
						|
            /*
 | 
						|
             * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
 | 
						|
             * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
 | 
						|
             * service fast page faults.
 | 
						|
             */
 | 
						|
            ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
 | 
						|
        } else {
 | 
						|
            ret = ram_load_precopy(f);
 | 
						|
        }
 | 
						|
    }
 | 
						|
    trace_ram_load_complete(ret, seq_iter);
 | 
						|
 | 
						|
    return ret;
 | 
						|
}
 | 
						|
 | 
						|
static bool ram_has_postcopy(void *opaque)
 | 
						|
{
 | 
						|
    RAMBlock *rb;
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
 | 
						|
        if (ramblock_is_pmem(rb)) {
 | 
						|
            info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
 | 
						|
                         "is not supported now!", rb->idstr, rb->host);
 | 
						|
            return false;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return migrate_postcopy_ram();
 | 
						|
}
 | 
						|
 | 
						|
/* Sync all the dirty bitmap with destination VM.  */
 | 
						|
static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
 | 
						|
{
 | 
						|
    RAMBlock *block;
 | 
						|
    QEMUFile *file = s->to_dst_file;
 | 
						|
 | 
						|
    trace_ram_dirty_bitmap_sync_start();
 | 
						|
 | 
						|
    qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
 | 
						|
    RAMBLOCK_FOREACH_NOT_IGNORED(block) {
 | 
						|
        qemu_savevm_send_recv_bitmap(file, block->idstr);
 | 
						|
        trace_ram_dirty_bitmap_request(block->idstr);
 | 
						|
        qatomic_inc(&rs->postcopy_bmap_sync_requested);
 | 
						|
    }
 | 
						|
 | 
						|
    trace_ram_dirty_bitmap_sync_wait();
 | 
						|
 | 
						|
    /* Wait until all the ramblocks' dirty bitmap synced */
 | 
						|
    while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
 | 
						|
        if (migration_rp_wait(s)) {
 | 
						|
            return -1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    trace_ram_dirty_bitmap_sync_complete();
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Read the received bitmap, revert it as the initial dirty bitmap.
 | 
						|
 * This is only used when the postcopy migration is paused but wants
 | 
						|
 * to resume from a middle point.
 | 
						|
 *
 | 
						|
 * Returns true if succeeded, false for errors.
 | 
						|
 */
 | 
						|
bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
 | 
						|
{
 | 
						|
    /* from_dst_file is always valid because we're within rp_thread */
 | 
						|
    QEMUFile *file = s->rp_state.from_dst_file;
 | 
						|
    g_autofree unsigned long *le_bitmap = NULL;
 | 
						|
    unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
 | 
						|
    uint64_t local_size = DIV_ROUND_UP(nbits, 8);
 | 
						|
    uint64_t size, end_mark;
 | 
						|
    RAMState *rs = ram_state;
 | 
						|
 | 
						|
    trace_ram_dirty_bitmap_reload_begin(block->idstr);
 | 
						|
 | 
						|
    if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
 | 
						|
        error_setg(errp, "Reload bitmap in incorrect state %s",
 | 
						|
                   MigrationStatus_str(s->state));
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Note: see comments in ramblock_recv_bitmap_send() on why we
 | 
						|
     * need the endianness conversion, and the paddings.
 | 
						|
     */
 | 
						|
    local_size = ROUND_UP(local_size, 8);
 | 
						|
 | 
						|
    /* Add paddings */
 | 
						|
    le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
 | 
						|
 | 
						|
    size = qemu_get_be64(file);
 | 
						|
 | 
						|
    /* The size of the bitmap should match with our ramblock */
 | 
						|
    if (size != local_size) {
 | 
						|
        error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
 | 
						|
                   " != 0x%"PRIx64")", block->idstr, size, local_size);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
 | 
						|
    end_mark = qemu_get_be64(file);
 | 
						|
 | 
						|
    if (qemu_file_get_error(file) || size != local_size) {
 | 
						|
        error_setg(errp, "read bitmap failed for ramblock '%s': "
 | 
						|
                   "(size 0x%"PRIx64", got: 0x%"PRIx64")",
 | 
						|
                   block->idstr, local_size, size);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
 | 
						|
        error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
 | 
						|
                   block->idstr, end_mark);
 | 
						|
        return false;
 | 
						|
    }
 | 
						|
 | 
						|
    /*
 | 
						|
     * Endianness conversion. We are during postcopy (though paused).
 | 
						|
     * The dirty bitmap won't change. We can directly modify it.
 | 
						|
     */
 | 
						|
    bitmap_from_le(block->bmap, le_bitmap, nbits);
 | 
						|
 | 
						|
    /*
 | 
						|
     * What we received is "received bitmap". Revert it as the initial
 | 
						|
     * dirty bitmap for this ramblock.
 | 
						|
     */
 | 
						|
    bitmap_complement(block->bmap, block->bmap, nbits);
 | 
						|
 | 
						|
    /* Clear dirty bits of discarded ranges that we don't want to migrate. */
 | 
						|
    ramblock_dirty_bitmap_clear_discarded_pages(block);
 | 
						|
 | 
						|
    /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
 | 
						|
    trace_ram_dirty_bitmap_reload_complete(block->idstr);
 | 
						|
 | 
						|
    qatomic_dec(&rs->postcopy_bmap_sync_requested);
 | 
						|
 | 
						|
    /*
 | 
						|
     * We succeeded to sync bitmap for current ramblock. Always kick the
 | 
						|
     * migration thread to check whether all requested bitmaps are
 | 
						|
     * reloaded.  NOTE: it's racy to only kick when requested==0, because
 | 
						|
     * we don't know whether the migration thread may still be increasing
 | 
						|
     * it.
 | 
						|
     */
 | 
						|
    migration_rp_kick(s);
 | 
						|
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
static int ram_resume_prepare(MigrationState *s, void *opaque)
 | 
						|
{
 | 
						|
    RAMState *rs = *(RAMState **)opaque;
 | 
						|
    int ret;
 | 
						|
 | 
						|
    ret = ram_dirty_bitmap_sync_all(s, rs);
 | 
						|
    if (ret) {
 | 
						|
        return ret;
 | 
						|
    }
 | 
						|
 | 
						|
    ram_state_resume_prepare(rs, s->to_dst_file);
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
void postcopy_preempt_shutdown_file(MigrationState *s)
 | 
						|
{
 | 
						|
    qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
 | 
						|
    qemu_fflush(s->postcopy_qemufile_src);
 | 
						|
}
 | 
						|
 | 
						|
static SaveVMHandlers savevm_ram_handlers = {
 | 
						|
    .save_setup = ram_save_setup,
 | 
						|
    .save_live_iterate = ram_save_iterate,
 | 
						|
    .save_live_complete_postcopy = ram_save_complete,
 | 
						|
    .save_live_complete_precopy = ram_save_complete,
 | 
						|
    .has_postcopy = ram_has_postcopy,
 | 
						|
    .state_pending_exact = ram_state_pending_exact,
 | 
						|
    .state_pending_estimate = ram_state_pending_estimate,
 | 
						|
    .load_state = ram_load,
 | 
						|
    .save_cleanup = ram_save_cleanup,
 | 
						|
    .load_setup = ram_load_setup,
 | 
						|
    .load_cleanup = ram_load_cleanup,
 | 
						|
    .resume_prepare = ram_resume_prepare,
 | 
						|
};
 | 
						|
 | 
						|
static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
 | 
						|
                                      size_t old_size, size_t new_size)
 | 
						|
{
 | 
						|
    PostcopyState ps = postcopy_state_get();
 | 
						|
    ram_addr_t offset;
 | 
						|
    RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
 | 
						|
    Error *err = NULL;
 | 
						|
 | 
						|
    if (!rb) {
 | 
						|
        error_report("RAM block not found");
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (migrate_ram_is_ignored(rb)) {
 | 
						|
        return;
 | 
						|
    }
 | 
						|
 | 
						|
    if (migration_is_running()) {
 | 
						|
        /*
 | 
						|
         * Precopy code on the source cannot deal with the size of RAM blocks
 | 
						|
         * changing at random points in time - especially after sending the
 | 
						|
         * RAM block sizes in the migration stream, they must no longer change.
 | 
						|
         * Abort and indicate a proper reason.
 | 
						|
         */
 | 
						|
        error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
 | 
						|
        migration_cancel(err);
 | 
						|
        error_free(err);
 | 
						|
    }
 | 
						|
 | 
						|
    switch (ps) {
 | 
						|
    case POSTCOPY_INCOMING_ADVISE:
 | 
						|
        /*
 | 
						|
         * Update what ram_postcopy_incoming_init()->init_range() does at the
 | 
						|
         * time postcopy was advised. Syncing RAM blocks with the source will
 | 
						|
         * result in RAM resizes.
 | 
						|
         */
 | 
						|
        if (old_size < new_size) {
 | 
						|
            if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
 | 
						|
                error_report("RAM block '%s' discard of resized RAM failed",
 | 
						|
                             rb->idstr);
 | 
						|
            }
 | 
						|
        }
 | 
						|
        rb->postcopy_length = new_size;
 | 
						|
        break;
 | 
						|
    case POSTCOPY_INCOMING_NONE:
 | 
						|
    case POSTCOPY_INCOMING_RUNNING:
 | 
						|
    case POSTCOPY_INCOMING_END:
 | 
						|
        /*
 | 
						|
         * Once our guest is running, postcopy does no longer care about
 | 
						|
         * resizes. When growing, the new memory was not available on the
 | 
						|
         * source, no handler needed.
 | 
						|
         */
 | 
						|
        break;
 | 
						|
    default:
 | 
						|
        error_report("RAM block '%s' resized during postcopy state: %d",
 | 
						|
                     rb->idstr, ps);
 | 
						|
        exit(-1);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
static RAMBlockNotifier ram_mig_ram_notifier = {
 | 
						|
    .ram_block_resized = ram_mig_ram_block_resized,
 | 
						|
};
 | 
						|
 | 
						|
void ram_mig_init(void)
 | 
						|
{
 | 
						|
    qemu_mutex_init(&XBZRLE.lock);
 | 
						|
    register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
 | 
						|
    ram_block_notifier_add(&ram_mig_ram_notifier);
 | 
						|
}
 |