 0bb446d8b0
			
		
	
	
		0bb446d8b0
		
	
	
	
	
		
			
			The public API is now defined in hw/semihosting/common-semi.h. do_common_semihosting takes CPUState * instead of CPUARMState *. All internal functions have been renamed common_semi_ instead of arm_semi_ or arm_. Aside from the API change, there are no functional changes in this patch. Signed-off-by: Keith Packard <keithp@keithp.com> Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Message-Id: <20210107170717.2098982-3-keithp@keithp.com> Message-Id: <20210108224256.2321-14-alex.bennee@linaro.org>
		
			
				
	
	
		
			499 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			499 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  qemu user cpu loop
 | |
|  *
 | |
|  *  Copyright (c) 2003-2008 Fabrice Bellard
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "qemu/osdep.h"
 | |
| #include "qemu-common.h"
 | |
| #include "qemu.h"
 | |
| #include "elf.h"
 | |
| #include "cpu_loop-common.h"
 | |
| #include "hw/semihosting/common-semi.h"
 | |
| 
 | |
| #define get_user_code_u32(x, gaddr, env)                \
 | |
|     ({ abi_long __r = get_user_u32((x), (gaddr));       \
 | |
|         if (!__r && bswap_code(arm_sctlr_b(env))) {     \
 | |
|             (x) = bswap32(x);                           \
 | |
|         }                                               \
 | |
|         __r;                                            \
 | |
|     })
 | |
| 
 | |
| #define get_user_code_u16(x, gaddr, env)                \
 | |
|     ({ abi_long __r = get_user_u16((x), (gaddr));       \
 | |
|         if (!__r && bswap_code(arm_sctlr_b(env))) {     \
 | |
|             (x) = bswap16(x);                           \
 | |
|         }                                               \
 | |
|         __r;                                            \
 | |
|     })
 | |
| 
 | |
| #define get_user_data_u32(x, gaddr, env)                \
 | |
|     ({ abi_long __r = get_user_u32((x), (gaddr));       \
 | |
|         if (!__r && arm_cpu_bswap_data(env)) {          \
 | |
|             (x) = bswap32(x);                           \
 | |
|         }                                               \
 | |
|         __r;                                            \
 | |
|     })
 | |
| 
 | |
| #define get_user_data_u16(x, gaddr, env)                \
 | |
|     ({ abi_long __r = get_user_u16((x), (gaddr));       \
 | |
|         if (!__r && arm_cpu_bswap_data(env)) {          \
 | |
|             (x) = bswap16(x);                           \
 | |
|         }                                               \
 | |
|         __r;                                            \
 | |
|     })
 | |
| 
 | |
| #define put_user_data_u32(x, gaddr, env)                \
 | |
|     ({ typeof(x) __x = (x);                             \
 | |
|         if (arm_cpu_bswap_data(env)) {                  \
 | |
|             __x = bswap32(__x);                         \
 | |
|         }                                               \
 | |
|         put_user_u32(__x, (gaddr));                     \
 | |
|     })
 | |
| 
 | |
| #define put_user_data_u16(x, gaddr, env)                \
 | |
|     ({ typeof(x) __x = (x);                             \
 | |
|         if (arm_cpu_bswap_data(env)) {                  \
 | |
|             __x = bswap16(__x);                         \
 | |
|         }                                               \
 | |
|         put_user_u16(__x, (gaddr));                     \
 | |
|     })
 | |
| 
 | |
| /* Commpage handling -- there is no commpage for AArch64 */
 | |
| 
 | |
| /*
 | |
|  * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
 | |
|  * Input:
 | |
|  * r0 = pointer to oldval
 | |
|  * r1 = pointer to newval
 | |
|  * r2 = pointer to target value
 | |
|  *
 | |
|  * Output:
 | |
|  * r0 = 0 if *ptr was changed, non-0 if no exchange happened
 | |
|  * C set if *ptr was changed, clear if no exchange happened
 | |
|  *
 | |
|  * Note segv's in kernel helpers are a bit tricky, we can set the
 | |
|  * data address sensibly but the PC address is just the entry point.
 | |
|  */
 | |
| static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
 | |
| {
 | |
|     uint64_t oldval, newval, val;
 | |
|     uint32_t addr, cpsr;
 | |
|     target_siginfo_t info;
 | |
| 
 | |
|     /* Based on the 32 bit code in do_kernel_trap */
 | |
| 
 | |
|     /* XXX: This only works between threads, not between processes.
 | |
|        It's probably possible to implement this with native host
 | |
|        operations. However things like ldrex/strex are much harder so
 | |
|        there's not much point trying.  */
 | |
|     start_exclusive();
 | |
|     cpsr = cpsr_read(env);
 | |
|     addr = env->regs[2];
 | |
| 
 | |
|     if (get_user_u64(oldval, env->regs[0])) {
 | |
|         env->exception.vaddress = env->regs[0];
 | |
|         goto segv;
 | |
|     };
 | |
| 
 | |
|     if (get_user_u64(newval, env->regs[1])) {
 | |
|         env->exception.vaddress = env->regs[1];
 | |
|         goto segv;
 | |
|     };
 | |
| 
 | |
|     if (get_user_u64(val, addr)) {
 | |
|         env->exception.vaddress = addr;
 | |
|         goto segv;
 | |
|     }
 | |
| 
 | |
|     if (val == oldval) {
 | |
|         val = newval;
 | |
| 
 | |
|         if (put_user_u64(val, addr)) {
 | |
|             env->exception.vaddress = addr;
 | |
|             goto segv;
 | |
|         };
 | |
| 
 | |
|         env->regs[0] = 0;
 | |
|         cpsr |= CPSR_C;
 | |
|     } else {
 | |
|         env->regs[0] = -1;
 | |
|         cpsr &= ~CPSR_C;
 | |
|     }
 | |
|     cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
 | |
|     end_exclusive();
 | |
|     return;
 | |
| 
 | |
| segv:
 | |
|     end_exclusive();
 | |
|     /* We get the PC of the entry address - which is as good as anything,
 | |
|        on a real kernel what you get depends on which mode it uses. */
 | |
|     info.si_signo = TARGET_SIGSEGV;
 | |
|     info.si_errno = 0;
 | |
|     /* XXX: check env->error_code */
 | |
|     info.si_code = TARGET_SEGV_MAPERR;
 | |
|     info._sifields._sigfault._addr = env->exception.vaddress;
 | |
|     queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
 | |
| }
 | |
| 
 | |
| /* Handle a jump to the kernel code page.  */
 | |
| static int
 | |
| do_kernel_trap(CPUARMState *env)
 | |
| {
 | |
|     uint32_t addr;
 | |
|     uint32_t cpsr;
 | |
|     uint32_t val;
 | |
| 
 | |
|     switch (env->regs[15]) {
 | |
|     case 0xffff0fa0: /* __kernel_memory_barrier */
 | |
|         /* ??? No-op. Will need to do better for SMP.  */
 | |
|         break;
 | |
|     case 0xffff0fc0: /* __kernel_cmpxchg */
 | |
|          /* XXX: This only works between threads, not between processes.
 | |
|             It's probably possible to implement this with native host
 | |
|             operations. However things like ldrex/strex are much harder so
 | |
|             there's not much point trying.  */
 | |
|         start_exclusive();
 | |
|         cpsr = cpsr_read(env);
 | |
|         addr = env->regs[2];
 | |
|         /* FIXME: This should SEGV if the access fails.  */
 | |
|         if (get_user_u32(val, addr))
 | |
|             val = ~env->regs[0];
 | |
|         if (val == env->regs[0]) {
 | |
|             val = env->regs[1];
 | |
|             /* FIXME: Check for segfaults.  */
 | |
|             put_user_u32(val, addr);
 | |
|             env->regs[0] = 0;
 | |
|             cpsr |= CPSR_C;
 | |
|         } else {
 | |
|             env->regs[0] = -1;
 | |
|             cpsr &= ~CPSR_C;
 | |
|         }
 | |
|         cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr);
 | |
|         end_exclusive();
 | |
|         break;
 | |
|     case 0xffff0fe0: /* __kernel_get_tls */
 | |
|         env->regs[0] = cpu_get_tls(env);
 | |
|         break;
 | |
|     case 0xffff0f60: /* __kernel_cmpxchg64 */
 | |
|         arm_kernel_cmpxchg64_helper(env);
 | |
|         break;
 | |
| 
 | |
|     default:
 | |
|         return 1;
 | |
|     }
 | |
|     /* Jump back to the caller.  */
 | |
|     addr = env->regs[14];
 | |
|     if (addr & 1) {
 | |
|         env->thumb = 1;
 | |
|         addr &= ~1;
 | |
|     }
 | |
|     env->regs[15] = addr;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static bool insn_is_linux_bkpt(uint32_t opcode, bool is_thumb)
 | |
| {
 | |
|     /*
 | |
|      * Return true if this insn is one of the three magic UDF insns
 | |
|      * which the kernel treats as breakpoint insns.
 | |
|      */
 | |
|     if (!is_thumb) {
 | |
|         return (opcode & 0x0fffffff) == 0x07f001f0;
 | |
|     } else {
 | |
|         /*
 | |
|          * Note that we get the two halves of the 32-bit T32 insn
 | |
|          * in the opposite order to the value the kernel uses in
 | |
|          * its undef_hook struct.
 | |
|          */
 | |
|         return ((opcode & 0xffff) == 0xde01) || (opcode == 0xa000f7f0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void cpu_loop(CPUARMState *env)
 | |
| {
 | |
|     CPUState *cs = env_cpu(env);
 | |
|     int trapnr;
 | |
|     unsigned int n, insn;
 | |
|     target_siginfo_t info;
 | |
|     uint32_t addr;
 | |
|     abi_ulong ret;
 | |
| 
 | |
|     for(;;) {
 | |
|         cpu_exec_start(cs);
 | |
|         trapnr = cpu_exec(cs);
 | |
|         cpu_exec_end(cs);
 | |
|         process_queued_cpu_work(cs);
 | |
| 
 | |
|         switch(trapnr) {
 | |
|         case EXCP_UDEF:
 | |
|         case EXCP_NOCP:
 | |
|         case EXCP_INVSTATE:
 | |
|             {
 | |
|                 TaskState *ts = cs->opaque;
 | |
|                 uint32_t opcode;
 | |
|                 int rc;
 | |
| 
 | |
|                 /* we handle the FPU emulation here, as Linux */
 | |
|                 /* we get the opcode */
 | |
|                 /* FIXME - what to do if get_user() fails? */
 | |
|                 get_user_code_u32(opcode, env->regs[15], env);
 | |
| 
 | |
|                 /*
 | |
|                  * The Linux kernel treats some UDF patterns specially
 | |
|                  * to use as breakpoints (instead of the architectural
 | |
|                  * bkpt insn). These should trigger a SIGTRAP rather
 | |
|                  * than SIGILL.
 | |
|                  */
 | |
|                 if (insn_is_linux_bkpt(opcode, env->thumb)) {
 | |
|                     goto excp_debug;
 | |
|                 }
 | |
| 
 | |
|                 rc = EmulateAll(opcode, &ts->fpa, env);
 | |
|                 if (rc == 0) { /* illegal instruction */
 | |
|                     info.si_signo = TARGET_SIGILL;
 | |
|                     info.si_errno = 0;
 | |
|                     info.si_code = TARGET_ILL_ILLOPN;
 | |
|                     info._sifields._sigfault._addr = env->regs[15];
 | |
|                     queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
 | |
|                 } else if (rc < 0) { /* FP exception */
 | |
|                     int arm_fpe=0;
 | |
| 
 | |
|                     /* translate softfloat flags to FPSR flags */
 | |
|                     if (-rc & float_flag_invalid)
 | |
|                       arm_fpe |= BIT_IOC;
 | |
|                     if (-rc & float_flag_divbyzero)
 | |
|                       arm_fpe |= BIT_DZC;
 | |
|                     if (-rc & float_flag_overflow)
 | |
|                       arm_fpe |= BIT_OFC;
 | |
|                     if (-rc & float_flag_underflow)
 | |
|                       arm_fpe |= BIT_UFC;
 | |
|                     if (-rc & float_flag_inexact)
 | |
|                       arm_fpe |= BIT_IXC;
 | |
| 
 | |
|                     FPSR fpsr = ts->fpa.fpsr;
 | |
|                     //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
 | |
| 
 | |
|                     if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
 | |
|                       info.si_signo = TARGET_SIGFPE;
 | |
|                       info.si_errno = 0;
 | |
| 
 | |
|                       /* ordered by priority, least first */
 | |
|                       if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
 | |
|                       if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
 | |
|                       if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
 | |
|                       if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
 | |
|                       if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
 | |
| 
 | |
|                       info._sifields._sigfault._addr = env->regs[15];
 | |
|                       queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
 | |
|                     } else {
 | |
|                       env->regs[15] += 4;
 | |
|                     }
 | |
| 
 | |
|                     /* accumulate unenabled exceptions */
 | |
|                     if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
 | |
|                       fpsr |= BIT_IXC;
 | |
|                     if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
 | |
|                       fpsr |= BIT_UFC;
 | |
|                     if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
 | |
|                       fpsr |= BIT_OFC;
 | |
|                     if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
 | |
|                       fpsr |= BIT_DZC;
 | |
|                     if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
 | |
|                       fpsr |= BIT_IOC;
 | |
|                     ts->fpa.fpsr=fpsr;
 | |
|                 } else { /* everything OK */
 | |
|                     /* increment PC */
 | |
|                     env->regs[15] += 4;
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case EXCP_SWI:
 | |
|             {
 | |
|                 env->eabi = 1;
 | |
|                 /* system call */
 | |
|                 if (env->thumb) {
 | |
|                     /* Thumb is always EABI style with syscall number in r7 */
 | |
|                     n = env->regs[7];
 | |
|                 } else {
 | |
|                     /*
 | |
|                      * Equivalent of kernel CONFIG_OABI_COMPAT: read the
 | |
|                      * Arm SVC insn to extract the immediate, which is the
 | |
|                      * syscall number in OABI.
 | |
|                      */
 | |
|                     /* FIXME - what to do if get_user() fails? */
 | |
|                     get_user_code_u32(insn, env->regs[15] - 4, env);
 | |
|                     n = insn & 0xffffff;
 | |
|                     if (n == 0) {
 | |
|                         /* zero immediate: EABI, syscall number in r7 */
 | |
|                         n = env->regs[7];
 | |
|                     } else {
 | |
|                         /*
 | |
|                          * This XOR matches the kernel code: an immediate
 | |
|                          * in the valid range (0x900000 .. 0x9fffff) is
 | |
|                          * converted into the correct EABI-style syscall
 | |
|                          * number; invalid immediates end up as values
 | |
|                          * > 0xfffff and are handled below as out-of-range.
 | |
|                          */
 | |
|                         n ^= ARM_SYSCALL_BASE;
 | |
|                         env->eabi = 0;
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (n > ARM_NR_BASE) {
 | |
|                     switch (n) {
 | |
|                     case ARM_NR_cacheflush:
 | |
|                         /* nop */
 | |
|                         break;
 | |
|                     case ARM_NR_set_tls:
 | |
|                         cpu_set_tls(env, env->regs[0]);
 | |
|                         env->regs[0] = 0;
 | |
|                         break;
 | |
|                     case ARM_NR_breakpoint:
 | |
|                         env->regs[15] -= env->thumb ? 2 : 4;
 | |
|                         goto excp_debug;
 | |
|                     case ARM_NR_get_tls:
 | |
|                         env->regs[0] = cpu_get_tls(env);
 | |
|                         break;
 | |
|                     default:
 | |
|                         if (n < 0xf0800) {
 | |
|                             /*
 | |
|                              * Syscalls 0xf0000..0xf07ff (or 0x9f0000..
 | |
|                              * 0x9f07ff in OABI numbering) are defined
 | |
|                              * to return -ENOSYS rather than raising
 | |
|                              * SIGILL. Note that we have already
 | |
|                              * removed the 0x900000 prefix.
 | |
|                              */
 | |
|                             qemu_log_mask(LOG_UNIMP,
 | |
|                                 "qemu: Unsupported ARM syscall: 0x%x\n",
 | |
|                                           n);
 | |
|                             env->regs[0] = -TARGET_ENOSYS;
 | |
|                         } else {
 | |
|                             /*
 | |
|                              * Otherwise SIGILL. This includes any SWI with
 | |
|                              * immediate not originally 0x9fxxxx, because
 | |
|                              * of the earlier XOR.
 | |
|                              */
 | |
|                             info.si_signo = TARGET_SIGILL;
 | |
|                             info.si_errno = 0;
 | |
|                             info.si_code = TARGET_ILL_ILLTRP;
 | |
|                             info._sifields._sigfault._addr = env->regs[15];
 | |
|                             if (env->thumb) {
 | |
|                                 info._sifields._sigfault._addr -= 2;
 | |
|                             } else {
 | |
|                                 info._sifields._sigfault._addr -= 4;
 | |
|                             }
 | |
|                             queue_signal(env, info.si_signo,
 | |
|                                          QEMU_SI_FAULT, &info);
 | |
|                         }
 | |
|                         break;
 | |
|                     }
 | |
|                 } else {
 | |
|                     ret = do_syscall(env,
 | |
|                                      n,
 | |
|                                      env->regs[0],
 | |
|                                      env->regs[1],
 | |
|                                      env->regs[2],
 | |
|                                      env->regs[3],
 | |
|                                      env->regs[4],
 | |
|                                      env->regs[5],
 | |
|                                      0, 0);
 | |
|                     if (ret == -TARGET_ERESTARTSYS) {
 | |
|                         env->regs[15] -= env->thumb ? 2 : 4;
 | |
|                     } else if (ret != -TARGET_QEMU_ESIGRETURN) {
 | |
|                         env->regs[0] = ret;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             break;
 | |
|         case EXCP_SEMIHOST:
 | |
|             env->regs[0] = do_common_semihosting(cs);
 | |
|             env->regs[15] += env->thumb ? 2 : 4;
 | |
|             break;
 | |
|         case EXCP_INTERRUPT:
 | |
|             /* just indicate that signals should be handled asap */
 | |
|             break;
 | |
|         case EXCP_PREFETCH_ABORT:
 | |
|         case EXCP_DATA_ABORT:
 | |
|             addr = env->exception.vaddress;
 | |
|             {
 | |
|                 info.si_signo = TARGET_SIGSEGV;
 | |
|                 info.si_errno = 0;
 | |
|                 /* XXX: check env->error_code */
 | |
|                 info.si_code = TARGET_SEGV_MAPERR;
 | |
|                 info._sifields._sigfault._addr = addr;
 | |
|                 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
 | |
|             }
 | |
|             break;
 | |
|         case EXCP_DEBUG:
 | |
|         case EXCP_BKPT:
 | |
|         excp_debug:
 | |
|             info.si_signo = TARGET_SIGTRAP;
 | |
|             info.si_errno = 0;
 | |
|             info.si_code = TARGET_TRAP_BRKPT;
 | |
|             queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
 | |
|             break;
 | |
|         case EXCP_KERNEL_TRAP:
 | |
|             if (do_kernel_trap(env))
 | |
|               goto error;
 | |
|             break;
 | |
|         case EXCP_YIELD:
 | |
|             /* nothing to do here for user-mode, just resume guest code */
 | |
|             break;
 | |
|         case EXCP_ATOMIC:
 | |
|             cpu_exec_step_atomic(cs);
 | |
|             break;
 | |
|         default:
 | |
|         error:
 | |
|             EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
 | |
|             abort();
 | |
|         }
 | |
|         process_pending_signals(env);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
 | |
| {
 | |
|     CPUState *cpu = env_cpu(env);
 | |
|     TaskState *ts = cpu->opaque;
 | |
|     struct image_info *info = ts->info;
 | |
|     int i;
 | |
| 
 | |
|     cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC,
 | |
|                CPSRWriteByInstr);
 | |
|     for(i = 0; i < 16; i++) {
 | |
|         env->regs[i] = regs->uregs[i];
 | |
|     }
 | |
| #ifdef TARGET_WORDS_BIGENDIAN
 | |
|     /* Enable BE8.  */
 | |
|     if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
 | |
|         && (info->elf_flags & EF_ARM_BE8)) {
 | |
|         env->uncached_cpsr |= CPSR_E;
 | |
|         env->cp15.sctlr_el[1] |= SCTLR_E0E;
 | |
|     } else {
 | |
|         env->cp15.sctlr_el[1] |= SCTLR_B;
 | |
|     }
 | |
|     arm_rebuild_hflags(env);
 | |
| #endif
 | |
| 
 | |
|     ts->stack_base = info->start_stack;
 | |
|     ts->heap_base = info->brk;
 | |
|     /* This will be filled in on the first SYS_HEAPINFO call.  */
 | |
|     ts->heap_limit = 0;
 | |
| }
 |