 04e3aabde3
			
		
	
	
		04e3aabde3
		
	
	
	
	
		
			
			Call the new cpu_transaction_failed() hook at the places where CPU generated code interacts with the memory system: io_readx() io_writex() get_page_addr_code() Any access from C code (eg via cpu_physical_memory_rw(), address_space_rw(), ld/st_*_phys()) will *not* trigger CPU exceptions via cpu_transaction_failed(). Handling for transactions failures for this kind of call should be done by using a function which returns a MemTxResult and treating the failure case appropriately in the calling code. In an ideal world we would not generate CPU exceptions for instruction fetch failures in get_page_addr_code() but instead wait until the code translation process tried a load and it failed; however that change would require too great a restructuring and redesign to attempt at this point. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
		
			
				
	
	
		
			434 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			434 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Software MMU support
 | |
|  *
 | |
|  * Generate helpers used by TCG for qemu_ld/st ops and code load
 | |
|  * functions.
 | |
|  *
 | |
|  * Included from target op helpers and exec.c.
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #if DATA_SIZE == 8
 | |
| #define SUFFIX q
 | |
| #define LSUFFIX q
 | |
| #define SDATA_TYPE  int64_t
 | |
| #define DATA_TYPE  uint64_t
 | |
| #elif DATA_SIZE == 4
 | |
| #define SUFFIX l
 | |
| #define LSUFFIX l
 | |
| #define SDATA_TYPE  int32_t
 | |
| #define DATA_TYPE  uint32_t
 | |
| #elif DATA_SIZE == 2
 | |
| #define SUFFIX w
 | |
| #define LSUFFIX uw
 | |
| #define SDATA_TYPE  int16_t
 | |
| #define DATA_TYPE  uint16_t
 | |
| #elif DATA_SIZE == 1
 | |
| #define SUFFIX b
 | |
| #define LSUFFIX ub
 | |
| #define SDATA_TYPE  int8_t
 | |
| #define DATA_TYPE  uint8_t
 | |
| #else
 | |
| #error unsupported data size
 | |
| #endif
 | |
| 
 | |
| 
 | |
| /* For the benefit of TCG generated code, we want to avoid the complication
 | |
|    of ABI-specific return type promotion and always return a value extended
 | |
|    to the register size of the host.  This is tcg_target_long, except in the
 | |
|    case of a 32-bit host and 64-bit data, and for that we always have
 | |
|    uint64_t.  Don't bother with this widened value for SOFTMMU_CODE_ACCESS.  */
 | |
| #if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
 | |
| # define WORD_TYPE  DATA_TYPE
 | |
| # define USUFFIX    SUFFIX
 | |
| #else
 | |
| # define WORD_TYPE  tcg_target_ulong
 | |
| # define USUFFIX    glue(u, SUFFIX)
 | |
| # define SSUFFIX    glue(s, SUFFIX)
 | |
| #endif
 | |
| 
 | |
| #ifdef SOFTMMU_CODE_ACCESS
 | |
| #define READ_ACCESS_TYPE MMU_INST_FETCH
 | |
| #define ADDR_READ addr_code
 | |
| #else
 | |
| #define READ_ACCESS_TYPE MMU_DATA_LOAD
 | |
| #define ADDR_READ addr_read
 | |
| #endif
 | |
| 
 | |
| #if DATA_SIZE == 8
 | |
| # define BSWAP(X)  bswap64(X)
 | |
| #elif DATA_SIZE == 4
 | |
| # define BSWAP(X)  bswap32(X)
 | |
| #elif DATA_SIZE == 2
 | |
| # define BSWAP(X)  bswap16(X)
 | |
| #else
 | |
| # define BSWAP(X)  (X)
 | |
| #endif
 | |
| 
 | |
| #if DATA_SIZE == 1
 | |
| # define helper_le_ld_name  glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
 | |
| # define helper_be_ld_name  helper_le_ld_name
 | |
| # define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
 | |
| # define helper_be_lds_name helper_le_lds_name
 | |
| # define helper_le_st_name  glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
 | |
| # define helper_be_st_name  helper_le_st_name
 | |
| #else
 | |
| # define helper_le_ld_name  glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
 | |
| # define helper_be_ld_name  glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
 | |
| # define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
 | |
| # define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
 | |
| # define helper_le_st_name  glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
 | |
| # define helper_be_st_name  glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
 | |
| #endif
 | |
| 
 | |
| #ifndef SOFTMMU_CODE_ACCESS
 | |
| static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
 | |
|                                               size_t mmu_idx, size_t index,
 | |
|                                               target_ulong addr,
 | |
|                                               uintptr_t retaddr)
 | |
| {
 | |
|     CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
 | |
|     return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, DATA_SIZE);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
 | |
|                             TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     unsigned mmu_idx = get_mmuidx(oi);
 | |
|     int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 | |
|     unsigned a_bits = get_alignment_bits(get_memop(oi));
 | |
|     uintptr_t haddr;
 | |
|     DATA_TYPE res;
 | |
| 
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if ((addr & TARGET_PAGE_MASK)
 | |
|          != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
 | |
|             tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 | |
|                      mmu_idx, retaddr);
 | |
|         }
 | |
|         tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 | |
|     }
 | |
| 
 | |
|     /* Handle an IO access.  */
 | |
|     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | |
|         if ((addr & (DATA_SIZE - 1)) != 0) {
 | |
|             goto do_unaligned_access;
 | |
|         }
 | |
| 
 | |
|         /* ??? Note that the io helpers always read data in the target
 | |
|            byte ordering.  We should push the LE/BE request down into io.  */
 | |
|         res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
 | |
|         res = TGT_LE(res);
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /* Handle slow unaligned access (it spans two pages or IO).  */
 | |
|     if (DATA_SIZE > 1
 | |
|         && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 | |
|                     >= TARGET_PAGE_SIZE)) {
 | |
|         target_ulong addr1, addr2;
 | |
|         DATA_TYPE res1, res2;
 | |
|         unsigned shift;
 | |
|     do_unaligned_access:
 | |
|         addr1 = addr & ~(DATA_SIZE - 1);
 | |
|         addr2 = addr1 + DATA_SIZE;
 | |
|         res1 = helper_le_ld_name(env, addr1, oi, retaddr);
 | |
|         res2 = helper_le_ld_name(env, addr2, oi, retaddr);
 | |
|         shift = (addr & (DATA_SIZE - 1)) * 8;
 | |
| 
 | |
|         /* Little-endian combine.  */
 | |
|         res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     haddr = addr + env->tlb_table[mmu_idx][index].addend;
 | |
| #if DATA_SIZE == 1
 | |
|     res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
 | |
| #else
 | |
|     res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
 | |
| #endif
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| #if DATA_SIZE > 1
 | |
| WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
 | |
|                             TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     unsigned mmu_idx = get_mmuidx(oi);
 | |
|     int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 | |
|     unsigned a_bits = get_alignment_bits(get_memop(oi));
 | |
|     uintptr_t haddr;
 | |
|     DATA_TYPE res;
 | |
| 
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if ((addr & TARGET_PAGE_MASK)
 | |
|          != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         if (!VICTIM_TLB_HIT(ADDR_READ, addr)) {
 | |
|             tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
 | |
|                      mmu_idx, retaddr);
 | |
|         }
 | |
|         tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
 | |
|     }
 | |
| 
 | |
|     /* Handle an IO access.  */
 | |
|     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | |
|         if ((addr & (DATA_SIZE - 1)) != 0) {
 | |
|             goto do_unaligned_access;
 | |
|         }
 | |
| 
 | |
|         /* ??? Note that the io helpers always read data in the target
 | |
|            byte ordering.  We should push the LE/BE request down into io.  */
 | |
|         res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
 | |
|         res = TGT_BE(res);
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     /* Handle slow unaligned access (it spans two pages or IO).  */
 | |
|     if (DATA_SIZE > 1
 | |
|         && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 | |
|                     >= TARGET_PAGE_SIZE)) {
 | |
|         target_ulong addr1, addr2;
 | |
|         DATA_TYPE res1, res2;
 | |
|         unsigned shift;
 | |
|     do_unaligned_access:
 | |
|         addr1 = addr & ~(DATA_SIZE - 1);
 | |
|         addr2 = addr1 + DATA_SIZE;
 | |
|         res1 = helper_be_ld_name(env, addr1, oi, retaddr);
 | |
|         res2 = helper_be_ld_name(env, addr2, oi, retaddr);
 | |
|         shift = (addr & (DATA_SIZE - 1)) * 8;
 | |
| 
 | |
|         /* Big-endian combine.  */
 | |
|         res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     haddr = addr + env->tlb_table[mmu_idx][index].addend;
 | |
|     res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
 | |
|     return res;
 | |
| }
 | |
| #endif /* DATA_SIZE > 1 */
 | |
| 
 | |
| #ifndef SOFTMMU_CODE_ACCESS
 | |
| 
 | |
| /* Provide signed versions of the load routines as well.  We can of course
 | |
|    avoid this for 64-bit data, or for 32-bit data on 32-bit host.  */
 | |
| #if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
 | |
| WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
 | |
|                              TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
 | |
| }
 | |
| 
 | |
| # if DATA_SIZE > 1
 | |
| WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
 | |
|                              TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
 | |
| }
 | |
| # endif
 | |
| #endif
 | |
| 
 | |
| static inline void glue(io_write, SUFFIX)(CPUArchState *env,
 | |
|                                           size_t mmu_idx, size_t index,
 | |
|                                           DATA_TYPE val,
 | |
|                                           target_ulong addr,
 | |
|                                           uintptr_t retaddr)
 | |
| {
 | |
|     CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
 | |
|     return io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, DATA_SIZE);
 | |
| }
 | |
| 
 | |
| void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     unsigned mmu_idx = get_mmuidx(oi);
 | |
|     int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 | |
|     unsigned a_bits = get_alignment_bits(get_memop(oi));
 | |
|     uintptr_t haddr;
 | |
| 
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if ((addr & TARGET_PAGE_MASK)
 | |
|         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | |
|             tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 | |
|         }
 | |
|         tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 | |
|     }
 | |
| 
 | |
|     /* Handle an IO access.  */
 | |
|     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | |
|         if ((addr & (DATA_SIZE - 1)) != 0) {
 | |
|             goto do_unaligned_access;
 | |
|         }
 | |
| 
 | |
|         /* ??? Note that the io helpers always read data in the target
 | |
|            byte ordering.  We should push the LE/BE request down into io.  */
 | |
|         val = TGT_LE(val);
 | |
|         glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Handle slow unaligned access (it spans two pages or IO).  */
 | |
|     if (DATA_SIZE > 1
 | |
|         && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 | |
|                      >= TARGET_PAGE_SIZE)) {
 | |
|         int i, index2;
 | |
|         target_ulong page2, tlb_addr2;
 | |
|     do_unaligned_access:
 | |
|         /* Ensure the second page is in the TLB.  Note that the first page
 | |
|            is already guaranteed to be filled, and that the second page
 | |
|            cannot evict the first.  */
 | |
|         page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
 | |
|         index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|         tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
 | |
|         if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
 | |
|             && !VICTIM_TLB_HIT(addr_write, page2)) {
 | |
|             tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
 | |
|                      mmu_idx, retaddr);
 | |
|         }
 | |
| 
 | |
|         /* XXX: not efficient, but simple.  */
 | |
|         /* This loop must go in the forward direction to avoid issues
 | |
|            with self-modifying code in Windows 64-bit.  */
 | |
|         for (i = 0; i < DATA_SIZE; ++i) {
 | |
|             /* Little-endian extract.  */
 | |
|             uint8_t val8 = val >> (i * 8);
 | |
|             glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
 | |
|                                             oi, retaddr);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     haddr = addr + env->tlb_table[mmu_idx][index].addend;
 | |
| #if DATA_SIZE == 1
 | |
|     glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
 | |
| #else
 | |
|     glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #if DATA_SIZE > 1
 | |
| void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
 | |
|                        TCGMemOpIdx oi, uintptr_t retaddr)
 | |
| {
 | |
|     unsigned mmu_idx = get_mmuidx(oi);
 | |
|     int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 | |
|     unsigned a_bits = get_alignment_bits(get_memop(oi));
 | |
|     uintptr_t haddr;
 | |
| 
 | |
|     if (addr & ((1 << a_bits) - 1)) {
 | |
|         cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
 | |
|                              mmu_idx, retaddr);
 | |
|     }
 | |
| 
 | |
|     /* If the TLB entry is for a different page, reload and try again.  */
 | |
|     if ((addr & TARGET_PAGE_MASK)
 | |
|         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         if (!VICTIM_TLB_HIT(addr_write, addr)) {
 | |
|             tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
 | |
|         }
 | |
|         tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
 | |
|     }
 | |
| 
 | |
|     /* Handle an IO access.  */
 | |
|     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
 | |
|         if ((addr & (DATA_SIZE - 1)) != 0) {
 | |
|             goto do_unaligned_access;
 | |
|         }
 | |
| 
 | |
|         /* ??? Note that the io helpers always read data in the target
 | |
|            byte ordering.  We should push the LE/BE request down into io.  */
 | |
|         val = TGT_BE(val);
 | |
|         glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Handle slow unaligned access (it spans two pages or IO).  */
 | |
|     if (DATA_SIZE > 1
 | |
|         && unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
 | |
|                      >= TARGET_PAGE_SIZE)) {
 | |
|         int i, index2;
 | |
|         target_ulong page2, tlb_addr2;
 | |
|     do_unaligned_access:
 | |
|         /* Ensure the second page is in the TLB.  Note that the first page
 | |
|            is already guaranteed to be filled, and that the second page
 | |
|            cannot evict the first.  */
 | |
|         page2 = (addr + DATA_SIZE) & TARGET_PAGE_MASK;
 | |
|         index2 = (page2 >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|         tlb_addr2 = env->tlb_table[mmu_idx][index2].addr_write;
 | |
|         if (page2 != (tlb_addr2 & (TARGET_PAGE_MASK | TLB_INVALID_MASK))
 | |
|             && !VICTIM_TLB_HIT(addr_write, page2)) {
 | |
|             tlb_fill(ENV_GET_CPU(env), page2, MMU_DATA_STORE,
 | |
|                      mmu_idx, retaddr);
 | |
|         }
 | |
| 
 | |
|         /* XXX: not efficient, but simple */
 | |
|         /* This loop must go in the forward direction to avoid issues
 | |
|            with self-modifying code.  */
 | |
|         for (i = 0; i < DATA_SIZE; ++i) {
 | |
|             /* Big-endian extract.  */
 | |
|             uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
 | |
|             glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
 | |
|                                             oi, retaddr);
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     haddr = addr + env->tlb_table[mmu_idx][index].addend;
 | |
|     glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
 | |
| }
 | |
| #endif /* DATA_SIZE > 1 */
 | |
| #endif /* !defined(SOFTMMU_CODE_ACCESS) */
 | |
| 
 | |
| #undef READ_ACCESS_TYPE
 | |
| #undef DATA_TYPE
 | |
| #undef SUFFIX
 | |
| #undef LSUFFIX
 | |
| #undef DATA_SIZE
 | |
| #undef ADDR_READ
 | |
| #undef WORD_TYPE
 | |
| #undef SDATA_TYPE
 | |
| #undef USUFFIX
 | |
| #undef SSUFFIX
 | |
| #undef BSWAP
 | |
| #undef helper_le_ld_name
 | |
| #undef helper_be_ld_name
 | |
| #undef helper_le_lds_name
 | |
| #undef helper_be_lds_name
 | |
| #undef helper_le_st_name
 | |
| #undef helper_be_st_name
 |