 444e20a36f
			
		
	
	
		444e20a36f
		
	
	
	
	
		
			
			osdep.h will also define the available Windows API version for QEMU. Signed-off-by: Marc-André Lureau <marcandre.lureau@redhat.com> Message-Id: <20181122110039.15972-2-marcandre.lureau@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			2641 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2641 lines
		
	
	
		
			77 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Host code generation
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| 
 | |
| #include "qemu-common.h"
 | |
| #define NO_CPU_IO_DEFS
 | |
| #include "cpu.h"
 | |
| #include "trace.h"
 | |
| #include "disas/disas.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "tcg.h"
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| #include "qemu.h"
 | |
| #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
 | |
| #include <sys/param.h>
 | |
| #if __FreeBSD_version >= 700104
 | |
| #define HAVE_KINFO_GETVMMAP
 | |
| #define sigqueue sigqueue_freebsd  /* avoid redefinition */
 | |
| #include <sys/proc.h>
 | |
| #include <machine/profile.h>
 | |
| #define _KERNEL
 | |
| #include <sys/user.h>
 | |
| #undef _KERNEL
 | |
| #undef sigqueue
 | |
| #include <libutil.h>
 | |
| #endif
 | |
| #endif
 | |
| #else
 | |
| #include "exec/ram_addr.h"
 | |
| #endif
 | |
| 
 | |
| #include "exec/cputlb.h"
 | |
| #include "exec/tb-hash.h"
 | |
| #include "translate-all.h"
 | |
| #include "qemu/bitmap.h"
 | |
| #include "qemu/error-report.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "qemu/main-loop.h"
 | |
| #include "exec/log.h"
 | |
| #include "sysemu/cpus.h"
 | |
| 
 | |
| /* #define DEBUG_TB_INVALIDATE */
 | |
| /* #define DEBUG_TB_FLUSH */
 | |
| /* make various TB consistency checks */
 | |
| /* #define DEBUG_TB_CHECK */
 | |
| 
 | |
| #ifdef DEBUG_TB_INVALIDATE
 | |
| #define DEBUG_TB_INVALIDATE_GATE 1
 | |
| #else
 | |
| #define DEBUG_TB_INVALIDATE_GATE 0
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_TB_FLUSH
 | |
| #define DEBUG_TB_FLUSH_GATE 1
 | |
| #else
 | |
| #define DEBUG_TB_FLUSH_GATE 0
 | |
| #endif
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| /* TB consistency checks only implemented for usermode emulation.  */
 | |
| #undef DEBUG_TB_CHECK
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_TB_CHECK
 | |
| #define DEBUG_TB_CHECK_GATE 1
 | |
| #else
 | |
| #define DEBUG_TB_CHECK_GATE 0
 | |
| #endif
 | |
| 
 | |
| /* Access to the various translations structures need to be serialised via locks
 | |
|  * for consistency.
 | |
|  * In user-mode emulation access to the memory related structures are protected
 | |
|  * with mmap_lock.
 | |
|  * In !user-mode we use per-page locks.
 | |
|  */
 | |
| #ifdef CONFIG_SOFTMMU
 | |
| #define assert_memory_lock()
 | |
| #else
 | |
| #define assert_memory_lock() tcg_debug_assert(have_mmap_lock())
 | |
| #endif
 | |
| 
 | |
| #define SMC_BITMAP_USE_THRESHOLD 10
 | |
| 
 | |
| typedef struct PageDesc {
 | |
|     /* list of TBs intersecting this ram page */
 | |
|     uintptr_t first_tb;
 | |
| #ifdef CONFIG_SOFTMMU
 | |
|     /* in order to optimize self modifying code, we count the number
 | |
|        of lookups we do to a given page to use a bitmap */
 | |
|     unsigned long *code_bitmap;
 | |
|     unsigned int code_write_count;
 | |
| #else
 | |
|     unsigned long flags;
 | |
| #endif
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     QemuSpin lock;
 | |
| #endif
 | |
| } PageDesc;
 | |
| 
 | |
| /**
 | |
|  * struct page_entry - page descriptor entry
 | |
|  * @pd:     pointer to the &struct PageDesc of the page this entry represents
 | |
|  * @index:  page index of the page
 | |
|  * @locked: whether the page is locked
 | |
|  *
 | |
|  * This struct helps us keep track of the locked state of a page, without
 | |
|  * bloating &struct PageDesc.
 | |
|  *
 | |
|  * A page lock protects accesses to all fields of &struct PageDesc.
 | |
|  *
 | |
|  * See also: &struct page_collection.
 | |
|  */
 | |
| struct page_entry {
 | |
|     PageDesc *pd;
 | |
|     tb_page_addr_t index;
 | |
|     bool locked;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * struct page_collection - tracks a set of pages (i.e. &struct page_entry's)
 | |
|  * @tree:   Binary search tree (BST) of the pages, with key == page index
 | |
|  * @max:    Pointer to the page in @tree with the highest page index
 | |
|  *
 | |
|  * To avoid deadlock we lock pages in ascending order of page index.
 | |
|  * When operating on a set of pages, we need to keep track of them so that
 | |
|  * we can lock them in order and also unlock them later. For this we collect
 | |
|  * pages (i.e. &struct page_entry's) in a binary search @tree. Given that the
 | |
|  * @tree implementation we use does not provide an O(1) operation to obtain the
 | |
|  * highest-ranked element, we use @max to keep track of the inserted page
 | |
|  * with the highest index. This is valuable because if a page is not in
 | |
|  * the tree and its index is higher than @max's, then we can lock it
 | |
|  * without breaking the locking order rule.
 | |
|  *
 | |
|  * Note on naming: 'struct page_set' would be shorter, but we already have a few
 | |
|  * page_set_*() helpers, so page_collection is used instead to avoid confusion.
 | |
|  *
 | |
|  * See also: page_collection_lock().
 | |
|  */
 | |
| struct page_collection {
 | |
|     GTree *tree;
 | |
|     struct page_entry *max;
 | |
| };
 | |
| 
 | |
| /* list iterators for lists of tagged pointers in TranslationBlock */
 | |
| #define TB_FOR_EACH_TAGGED(head, tb, n, field)                          \
 | |
|     for (n = (head) & 1, tb = (TranslationBlock *)((head) & ~1);        \
 | |
|          tb; tb = (TranslationBlock *)tb->field[n], n = (uintptr_t)tb & 1, \
 | |
|              tb = (TranslationBlock *)((uintptr_t)tb & ~1))
 | |
| 
 | |
| #define PAGE_FOR_EACH_TB(pagedesc, tb, n)                       \
 | |
|     TB_FOR_EACH_TAGGED((pagedesc)->first_tb, tb, n, page_next)
 | |
| 
 | |
| #define TB_FOR_EACH_JMP(head_tb, tb, n)                                 \
 | |
|     TB_FOR_EACH_TAGGED((head_tb)->jmp_list_head, tb, n, jmp_list_next)
 | |
| 
 | |
| /* In system mode we want L1_MAP to be based on ram offsets,
 | |
|    while in user mode we want it to be based on virtual addresses.  */
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
 | |
| # define L1_MAP_ADDR_SPACE_BITS  HOST_LONG_BITS
 | |
| #else
 | |
| # define L1_MAP_ADDR_SPACE_BITS  TARGET_PHYS_ADDR_SPACE_BITS
 | |
| #endif
 | |
| #else
 | |
| # define L1_MAP_ADDR_SPACE_BITS  TARGET_VIRT_ADDR_SPACE_BITS
 | |
| #endif
 | |
| 
 | |
| /* Size of the L2 (and L3, etc) page tables.  */
 | |
| #define V_L2_BITS 10
 | |
| #define V_L2_SIZE (1 << V_L2_BITS)
 | |
| 
 | |
| /* Make sure all possible CPU event bits fit in tb->trace_vcpu_dstate */
 | |
| QEMU_BUILD_BUG_ON(CPU_TRACE_DSTATE_MAX_EVENTS >
 | |
|                   sizeof_field(TranslationBlock, trace_vcpu_dstate)
 | |
|                   * BITS_PER_BYTE);
 | |
| 
 | |
| /*
 | |
|  * L1 Mapping properties
 | |
|  */
 | |
| static int v_l1_size;
 | |
| static int v_l1_shift;
 | |
| static int v_l2_levels;
 | |
| 
 | |
| /* The bottom level has pointers to PageDesc, and is indexed by
 | |
|  * anything from 4 to (V_L2_BITS + 3) bits, depending on target page size.
 | |
|  */
 | |
| #define V_L1_MIN_BITS 4
 | |
| #define V_L1_MAX_BITS (V_L2_BITS + 3)
 | |
| #define V_L1_MAX_SIZE (1 << V_L1_MAX_BITS)
 | |
| 
 | |
| static void *l1_map[V_L1_MAX_SIZE];
 | |
| 
 | |
| /* code generation context */
 | |
| TCGContext tcg_init_ctx;
 | |
| __thread TCGContext *tcg_ctx;
 | |
| TBContext tb_ctx;
 | |
| bool parallel_cpus;
 | |
| 
 | |
| static void page_table_config_init(void)
 | |
| {
 | |
|     uint32_t v_l1_bits;
 | |
| 
 | |
|     assert(TARGET_PAGE_BITS);
 | |
|     /* The bits remaining after N lower levels of page tables.  */
 | |
|     v_l1_bits = (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS;
 | |
|     if (v_l1_bits < V_L1_MIN_BITS) {
 | |
|         v_l1_bits += V_L2_BITS;
 | |
|     }
 | |
| 
 | |
|     v_l1_size = 1 << v_l1_bits;
 | |
|     v_l1_shift = L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - v_l1_bits;
 | |
|     v_l2_levels = v_l1_shift / V_L2_BITS - 1;
 | |
| 
 | |
|     assert(v_l1_bits <= V_L1_MAX_BITS);
 | |
|     assert(v_l1_shift % V_L2_BITS == 0);
 | |
|     assert(v_l2_levels >= 0);
 | |
| }
 | |
| 
 | |
| void cpu_gen_init(void)
 | |
| {
 | |
|     tcg_context_init(&tcg_init_ctx);
 | |
| }
 | |
| 
 | |
| /* Encode VAL as a signed leb128 sequence at P.
 | |
|    Return P incremented past the encoded value.  */
 | |
| static uint8_t *encode_sleb128(uint8_t *p, target_long val)
 | |
| {
 | |
|     int more, byte;
 | |
| 
 | |
|     do {
 | |
|         byte = val & 0x7f;
 | |
|         val >>= 7;
 | |
|         more = !((val == 0 && (byte & 0x40) == 0)
 | |
|                  || (val == -1 && (byte & 0x40) != 0));
 | |
|         if (more) {
 | |
|             byte |= 0x80;
 | |
|         }
 | |
|         *p++ = byte;
 | |
|     } while (more);
 | |
| 
 | |
|     return p;
 | |
| }
 | |
| 
 | |
| /* Decode a signed leb128 sequence at *PP; increment *PP past the
 | |
|    decoded value.  Return the decoded value.  */
 | |
| static target_long decode_sleb128(uint8_t **pp)
 | |
| {
 | |
|     uint8_t *p = *pp;
 | |
|     target_long val = 0;
 | |
|     int byte, shift = 0;
 | |
| 
 | |
|     do {
 | |
|         byte = *p++;
 | |
|         val |= (target_ulong)(byte & 0x7f) << shift;
 | |
|         shift += 7;
 | |
|     } while (byte & 0x80);
 | |
|     if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
 | |
|         val |= -(target_ulong)1 << shift;
 | |
|     }
 | |
| 
 | |
|     *pp = p;
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Encode the data collected about the instructions while compiling TB.
 | |
|    Place the data at BLOCK, and return the number of bytes consumed.
 | |
| 
 | |
|    The logical table consists of TARGET_INSN_START_WORDS target_ulong's,
 | |
|    which come from the target's insn_start data, followed by a uintptr_t
 | |
|    which comes from the host pc of the end of the code implementing the insn.
 | |
| 
 | |
|    Each line of the table is encoded as sleb128 deltas from the previous
 | |
|    line.  The seed for the first line is { tb->pc, 0..., tb->tc.ptr }.
 | |
|    That is, the first column is seeded with the guest pc, the last column
 | |
|    with the host pc, and the middle columns with zeros.  */
 | |
| 
 | |
| static int encode_search(TranslationBlock *tb, uint8_t *block)
 | |
| {
 | |
|     uint8_t *highwater = tcg_ctx->code_gen_highwater;
 | |
|     uint8_t *p = block;
 | |
|     int i, j, n;
 | |
| 
 | |
|     for (i = 0, n = tb->icount; i < n; ++i) {
 | |
|         target_ulong prev;
 | |
| 
 | |
|         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
 | |
|             if (i == 0) {
 | |
|                 prev = (j == 0 ? tb->pc : 0);
 | |
|             } else {
 | |
|                 prev = tcg_ctx->gen_insn_data[i - 1][j];
 | |
|             }
 | |
|             p = encode_sleb128(p, tcg_ctx->gen_insn_data[i][j] - prev);
 | |
|         }
 | |
|         prev = (i == 0 ? 0 : tcg_ctx->gen_insn_end_off[i - 1]);
 | |
|         p = encode_sleb128(p, tcg_ctx->gen_insn_end_off[i] - prev);
 | |
| 
 | |
|         /* Test for (pending) buffer overflow.  The assumption is that any
 | |
|            one row beginning below the high water mark cannot overrun
 | |
|            the buffer completely.  Thus we can test for overflow after
 | |
|            encoding a row without having to check during encoding.  */
 | |
|         if (unlikely(p > highwater)) {
 | |
|             return -1;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return p - block;
 | |
| }
 | |
| 
 | |
| /* The cpu state corresponding to 'searched_pc' is restored.
 | |
|  * When reset_icount is true, current TB will be interrupted and
 | |
|  * icount should be recalculated.
 | |
|  */
 | |
| static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
 | |
|                                      uintptr_t searched_pc, bool reset_icount)
 | |
| {
 | |
|     target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
 | |
|     uintptr_t host_pc = (uintptr_t)tb->tc.ptr;
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     uint8_t *p = tb->tc.ptr + tb->tc.size;
 | |
|     int i, j, num_insns = tb->icount;
 | |
| #ifdef CONFIG_PROFILER
 | |
|     TCGProfile *prof = &tcg_ctx->prof;
 | |
|     int64_t ti = profile_getclock();
 | |
| #endif
 | |
| 
 | |
|     searched_pc -= GETPC_ADJ;
 | |
| 
 | |
|     if (searched_pc < host_pc) {
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* Reconstruct the stored insn data while looking for the point at
 | |
|        which the end of the insn exceeds the searched_pc.  */
 | |
|     for (i = 0; i < num_insns; ++i) {
 | |
|         for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
 | |
|             data[j] += decode_sleb128(&p);
 | |
|         }
 | |
|         host_pc += decode_sleb128(&p);
 | |
|         if (host_pc > searched_pc) {
 | |
|             goto found;
 | |
|         }
 | |
|     }
 | |
|     return -1;
 | |
| 
 | |
|  found:
 | |
|     if (reset_icount && (tb_cflags(tb) & CF_USE_ICOUNT)) {
 | |
|         assert(use_icount);
 | |
|         /* Reset the cycle counter to the start of the block
 | |
|            and shift if to the number of actually executed instructions */
 | |
|         cpu->icount_decr.u16.low += num_insns - i;
 | |
|     }
 | |
|     restore_state_to_opc(env, tb, data);
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
|     atomic_set(&prof->restore_time,
 | |
|                 prof->restore_time + profile_getclock() - ti);
 | |
|     atomic_set(&prof->restore_count, prof->restore_count + 1);
 | |
| #endif
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| bool cpu_restore_state(CPUState *cpu, uintptr_t host_pc, bool will_exit)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     bool r = false;
 | |
|     uintptr_t check_offset;
 | |
| 
 | |
|     /* The host_pc has to be in the region of current code buffer. If
 | |
|      * it is not we will not be able to resolve it here. The two cases
 | |
|      * where host_pc will not be correct are:
 | |
|      *
 | |
|      *  - fault during translation (instruction fetch)
 | |
|      *  - fault from helper (not using GETPC() macro)
 | |
|      *
 | |
|      * Either way we need return early as we can't resolve it here.
 | |
|      *
 | |
|      * We are using unsigned arithmetic so if host_pc <
 | |
|      * tcg_init_ctx.code_gen_buffer check_offset will wrap to way
 | |
|      * above the code_gen_buffer_size
 | |
|      */
 | |
|     check_offset = host_pc - (uintptr_t) tcg_init_ctx.code_gen_buffer;
 | |
| 
 | |
|     if (check_offset < tcg_init_ctx.code_gen_buffer_size) {
 | |
|         tb = tcg_tb_lookup(host_pc);
 | |
|         if (tb) {
 | |
|             cpu_restore_state_from_tb(cpu, tb, host_pc, will_exit);
 | |
|             if (tb_cflags(tb) & CF_NOCACHE) {
 | |
|                 /* one-shot translation, invalidate it immediately */
 | |
|                 tb_phys_invalidate(tb, -1);
 | |
|                 tcg_tb_remove(tb);
 | |
|             }
 | |
|             r = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return r;
 | |
| }
 | |
| 
 | |
| static void page_init(void)
 | |
| {
 | |
|     page_size_init();
 | |
|     page_table_config_init();
 | |
| 
 | |
| #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
 | |
|     {
 | |
| #ifdef HAVE_KINFO_GETVMMAP
 | |
|         struct kinfo_vmentry *freep;
 | |
|         int i, cnt;
 | |
| 
 | |
|         freep = kinfo_getvmmap(getpid(), &cnt);
 | |
|         if (freep) {
 | |
|             mmap_lock();
 | |
|             for (i = 0; i < cnt; i++) {
 | |
|                 unsigned long startaddr, endaddr;
 | |
| 
 | |
|                 startaddr = freep[i].kve_start;
 | |
|                 endaddr = freep[i].kve_end;
 | |
|                 if (h2g_valid(startaddr)) {
 | |
|                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|                     if (h2g_valid(endaddr)) {
 | |
|                         endaddr = h2g(endaddr);
 | |
|                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
|                     } else {
 | |
| #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
 | |
|                         endaddr = ~0ul;
 | |
|                         page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
| #endif
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             free(freep);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| #else
 | |
|         FILE *f;
 | |
| 
 | |
|         last_brk = (unsigned long)sbrk(0);
 | |
| 
 | |
|         f = fopen("/compat/linux/proc/self/maps", "r");
 | |
|         if (f) {
 | |
|             mmap_lock();
 | |
| 
 | |
|             do {
 | |
|                 unsigned long startaddr, endaddr;
 | |
|                 int n;
 | |
| 
 | |
|                 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
 | |
| 
 | |
|                 if (n == 2 && h2g_valid(startaddr)) {
 | |
|                     startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
 | |
| 
 | |
|                     if (h2g_valid(endaddr)) {
 | |
|                         endaddr = h2g(endaddr);
 | |
|                     } else {
 | |
|                         endaddr = ~0ul;
 | |
|                     }
 | |
|                     page_set_flags(startaddr, endaddr, PAGE_RESERVED);
 | |
|                 }
 | |
|             } while (!feof(f));
 | |
| 
 | |
|             fclose(f);
 | |
|             mmap_unlock();
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
 | |
| {
 | |
|     PageDesc *pd;
 | |
|     void **lp;
 | |
|     int i;
 | |
| 
 | |
|     /* Level 1.  Always allocated.  */
 | |
|     lp = l1_map + ((index >> v_l1_shift) & (v_l1_size - 1));
 | |
| 
 | |
|     /* Level 2..N-1.  */
 | |
|     for (i = v_l2_levels; i > 0; i--) {
 | |
|         void **p = atomic_rcu_read(lp);
 | |
| 
 | |
|         if (p == NULL) {
 | |
|             void *existing;
 | |
| 
 | |
|             if (!alloc) {
 | |
|                 return NULL;
 | |
|             }
 | |
|             p = g_new0(void *, V_L2_SIZE);
 | |
|             existing = atomic_cmpxchg(lp, NULL, p);
 | |
|             if (unlikely(existing)) {
 | |
|                 g_free(p);
 | |
|                 p = existing;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
 | |
|     }
 | |
| 
 | |
|     pd = atomic_rcu_read(lp);
 | |
|     if (pd == NULL) {
 | |
|         void *existing;
 | |
| 
 | |
|         if (!alloc) {
 | |
|             return NULL;
 | |
|         }
 | |
|         pd = g_new0(PageDesc, V_L2_SIZE);
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|         {
 | |
|             int i;
 | |
| 
 | |
|             for (i = 0; i < V_L2_SIZE; i++) {
 | |
|                 qemu_spin_init(&pd[i].lock);
 | |
|             }
 | |
|         }
 | |
| #endif
 | |
|         existing = atomic_cmpxchg(lp, NULL, pd);
 | |
|         if (unlikely(existing)) {
 | |
|             g_free(pd);
 | |
|             pd = existing;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return pd + (index & (V_L2_SIZE - 1));
 | |
| }
 | |
| 
 | |
| static inline PageDesc *page_find(tb_page_addr_t index)
 | |
| {
 | |
|     return page_find_alloc(index, 0);
 | |
| }
 | |
| 
 | |
| static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
 | |
|                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc);
 | |
| 
 | |
| /* In user-mode page locks aren't used; mmap_lock is enough */
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| 
 | |
| #define assert_page_locked(pd) tcg_debug_assert(have_mmap_lock())
 | |
| 
 | |
| static inline void page_lock(PageDesc *pd)
 | |
| { }
 | |
| 
 | |
| static inline void page_unlock(PageDesc *pd)
 | |
| { }
 | |
| 
 | |
| static inline void page_lock_tb(const TranslationBlock *tb)
 | |
| { }
 | |
| 
 | |
| static inline void page_unlock_tb(const TranslationBlock *tb)
 | |
| { }
 | |
| 
 | |
| struct page_collection *
 | |
| page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
 | |
| {
 | |
|     return NULL;
 | |
| }
 | |
| 
 | |
| void page_collection_unlock(struct page_collection *set)
 | |
| { }
 | |
| #else /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_TCG
 | |
| 
 | |
| static __thread GHashTable *ht_pages_locked_debug;
 | |
| 
 | |
| static void ht_pages_locked_debug_init(void)
 | |
| {
 | |
|     if (ht_pages_locked_debug) {
 | |
|         return;
 | |
|     }
 | |
|     ht_pages_locked_debug = g_hash_table_new(NULL, NULL);
 | |
| }
 | |
| 
 | |
| static bool page_is_locked(const PageDesc *pd)
 | |
| {
 | |
|     PageDesc *found;
 | |
| 
 | |
|     ht_pages_locked_debug_init();
 | |
|     found = g_hash_table_lookup(ht_pages_locked_debug, pd);
 | |
|     return !!found;
 | |
| }
 | |
| 
 | |
| static void page_lock__debug(PageDesc *pd)
 | |
| {
 | |
|     ht_pages_locked_debug_init();
 | |
|     g_assert(!page_is_locked(pd));
 | |
|     g_hash_table_insert(ht_pages_locked_debug, pd, pd);
 | |
| }
 | |
| 
 | |
| static void page_unlock__debug(const PageDesc *pd)
 | |
| {
 | |
|     bool removed;
 | |
| 
 | |
|     ht_pages_locked_debug_init();
 | |
|     g_assert(page_is_locked(pd));
 | |
|     removed = g_hash_table_remove(ht_pages_locked_debug, pd);
 | |
|     g_assert(removed);
 | |
| }
 | |
| 
 | |
| static void
 | |
| do_assert_page_locked(const PageDesc *pd, const char *file, int line)
 | |
| {
 | |
|     if (unlikely(!page_is_locked(pd))) {
 | |
|         error_report("assert_page_lock: PageDesc %p not locked @ %s:%d",
 | |
|                      pd, file, line);
 | |
|         abort();
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define assert_page_locked(pd) do_assert_page_locked(pd, __FILE__, __LINE__)
 | |
| 
 | |
| void assert_no_pages_locked(void)
 | |
| {
 | |
|     ht_pages_locked_debug_init();
 | |
|     g_assert(g_hash_table_size(ht_pages_locked_debug) == 0);
 | |
| }
 | |
| 
 | |
| #else /* !CONFIG_DEBUG_TCG */
 | |
| 
 | |
| #define assert_page_locked(pd)
 | |
| 
 | |
| static inline void page_lock__debug(const PageDesc *pd)
 | |
| {
 | |
| }
 | |
| 
 | |
| static inline void page_unlock__debug(const PageDesc *pd)
 | |
| {
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_DEBUG_TCG */
 | |
| 
 | |
| static inline void page_lock(PageDesc *pd)
 | |
| {
 | |
|     page_lock__debug(pd);
 | |
|     qemu_spin_lock(&pd->lock);
 | |
| }
 | |
| 
 | |
| static inline void page_unlock(PageDesc *pd)
 | |
| {
 | |
|     qemu_spin_unlock(&pd->lock);
 | |
|     page_unlock__debug(pd);
 | |
| }
 | |
| 
 | |
| /* lock the page(s) of a TB in the correct acquisition order */
 | |
| static inline void page_lock_tb(const TranslationBlock *tb)
 | |
| {
 | |
|     page_lock_pair(NULL, tb->page_addr[0], NULL, tb->page_addr[1], 0);
 | |
| }
 | |
| 
 | |
| static inline void page_unlock_tb(const TranslationBlock *tb)
 | |
| {
 | |
|     PageDesc *p1 = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | |
| 
 | |
|     page_unlock(p1);
 | |
|     if (unlikely(tb->page_addr[1] != -1)) {
 | |
|         PageDesc *p2 = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | |
| 
 | |
|         if (p2 != p1) {
 | |
|             page_unlock(p2);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline struct page_entry *
 | |
| page_entry_new(PageDesc *pd, tb_page_addr_t index)
 | |
| {
 | |
|     struct page_entry *pe = g_malloc(sizeof(*pe));
 | |
| 
 | |
|     pe->index = index;
 | |
|     pe->pd = pd;
 | |
|     pe->locked = false;
 | |
|     return pe;
 | |
| }
 | |
| 
 | |
| static void page_entry_destroy(gpointer p)
 | |
| {
 | |
|     struct page_entry *pe = p;
 | |
| 
 | |
|     g_assert(pe->locked);
 | |
|     page_unlock(pe->pd);
 | |
|     g_free(pe);
 | |
| }
 | |
| 
 | |
| /* returns false on success */
 | |
| static bool page_entry_trylock(struct page_entry *pe)
 | |
| {
 | |
|     bool busy;
 | |
| 
 | |
|     busy = qemu_spin_trylock(&pe->pd->lock);
 | |
|     if (!busy) {
 | |
|         g_assert(!pe->locked);
 | |
|         pe->locked = true;
 | |
|         page_lock__debug(pe->pd);
 | |
|     }
 | |
|     return busy;
 | |
| }
 | |
| 
 | |
| static void do_page_entry_lock(struct page_entry *pe)
 | |
| {
 | |
|     page_lock(pe->pd);
 | |
|     g_assert(!pe->locked);
 | |
|     pe->locked = true;
 | |
| }
 | |
| 
 | |
| static gboolean page_entry_lock(gpointer key, gpointer value, gpointer data)
 | |
| {
 | |
|     struct page_entry *pe = value;
 | |
| 
 | |
|     do_page_entry_lock(pe);
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| static gboolean page_entry_unlock(gpointer key, gpointer value, gpointer data)
 | |
| {
 | |
|     struct page_entry *pe = value;
 | |
| 
 | |
|     if (pe->locked) {
 | |
|         pe->locked = false;
 | |
|         page_unlock(pe->pd);
 | |
|     }
 | |
|     return FALSE;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Trylock a page, and if successful, add the page to a collection.
 | |
|  * Returns true ("busy") if the page could not be locked; false otherwise.
 | |
|  */
 | |
| static bool page_trylock_add(struct page_collection *set, tb_page_addr_t addr)
 | |
| {
 | |
|     tb_page_addr_t index = addr >> TARGET_PAGE_BITS;
 | |
|     struct page_entry *pe;
 | |
|     PageDesc *pd;
 | |
| 
 | |
|     pe = g_tree_lookup(set->tree, &index);
 | |
|     if (pe) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     pd = page_find(index);
 | |
|     if (pd == NULL) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     pe = page_entry_new(pd, index);
 | |
|     g_tree_insert(set->tree, &pe->index, pe);
 | |
| 
 | |
|     /*
 | |
|      * If this is either (1) the first insertion or (2) a page whose index
 | |
|      * is higher than any other so far, just lock the page and move on.
 | |
|      */
 | |
|     if (set->max == NULL || pe->index > set->max->index) {
 | |
|         set->max = pe;
 | |
|         do_page_entry_lock(pe);
 | |
|         return false;
 | |
|     }
 | |
|     /*
 | |
|      * Try to acquire out-of-order lock; if busy, return busy so that we acquire
 | |
|      * locks in order.
 | |
|      */
 | |
|     return page_entry_trylock(pe);
 | |
| }
 | |
| 
 | |
| static gint tb_page_addr_cmp(gconstpointer ap, gconstpointer bp, gpointer udata)
 | |
| {
 | |
|     tb_page_addr_t a = *(const tb_page_addr_t *)ap;
 | |
|     tb_page_addr_t b = *(const tb_page_addr_t *)bp;
 | |
| 
 | |
|     if (a == b) {
 | |
|         return 0;
 | |
|     } else if (a < b) {
 | |
|         return -1;
 | |
|     }
 | |
|     return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Lock a range of pages ([@start,@end[) as well as the pages of all
 | |
|  * intersecting TBs.
 | |
|  * Locking order: acquire locks in ascending order of page index.
 | |
|  */
 | |
| struct page_collection *
 | |
| page_collection_lock(tb_page_addr_t start, tb_page_addr_t end)
 | |
| {
 | |
|     struct page_collection *set = g_malloc(sizeof(*set));
 | |
|     tb_page_addr_t index;
 | |
|     PageDesc *pd;
 | |
| 
 | |
|     start >>= TARGET_PAGE_BITS;
 | |
|     end   >>= TARGET_PAGE_BITS;
 | |
|     g_assert(start <= end);
 | |
| 
 | |
|     set->tree = g_tree_new_full(tb_page_addr_cmp, NULL, NULL,
 | |
|                                 page_entry_destroy);
 | |
|     set->max = NULL;
 | |
|     assert_no_pages_locked();
 | |
| 
 | |
|  retry:
 | |
|     g_tree_foreach(set->tree, page_entry_lock, NULL);
 | |
| 
 | |
|     for (index = start; index <= end; index++) {
 | |
|         TranslationBlock *tb;
 | |
|         int n;
 | |
| 
 | |
|         pd = page_find(index);
 | |
|         if (pd == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         if (page_trylock_add(set, index << TARGET_PAGE_BITS)) {
 | |
|             g_tree_foreach(set->tree, page_entry_unlock, NULL);
 | |
|             goto retry;
 | |
|         }
 | |
|         assert_page_locked(pd);
 | |
|         PAGE_FOR_EACH_TB(pd, tb, n) {
 | |
|             if (page_trylock_add(set, tb->page_addr[0]) ||
 | |
|                 (tb->page_addr[1] != -1 &&
 | |
|                  page_trylock_add(set, tb->page_addr[1]))) {
 | |
|                 /* drop all locks, and reacquire in order */
 | |
|                 g_tree_foreach(set->tree, page_entry_unlock, NULL);
 | |
|                 goto retry;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return set;
 | |
| }
 | |
| 
 | |
| void page_collection_unlock(struct page_collection *set)
 | |
| {
 | |
|     /* entries are unlocked and freed via page_entry_destroy */
 | |
|     g_tree_destroy(set->tree);
 | |
|     g_free(set);
 | |
| }
 | |
| 
 | |
| #endif /* !CONFIG_USER_ONLY */
 | |
| 
 | |
| static void page_lock_pair(PageDesc **ret_p1, tb_page_addr_t phys1,
 | |
|                            PageDesc **ret_p2, tb_page_addr_t phys2, int alloc)
 | |
| {
 | |
|     PageDesc *p1, *p2;
 | |
|     tb_page_addr_t page1;
 | |
|     tb_page_addr_t page2;
 | |
| 
 | |
|     assert_memory_lock();
 | |
|     g_assert(phys1 != -1);
 | |
| 
 | |
|     page1 = phys1 >> TARGET_PAGE_BITS;
 | |
|     page2 = phys2 >> TARGET_PAGE_BITS;
 | |
| 
 | |
|     p1 = page_find_alloc(page1, alloc);
 | |
|     if (ret_p1) {
 | |
|         *ret_p1 = p1;
 | |
|     }
 | |
|     if (likely(phys2 == -1)) {
 | |
|         page_lock(p1);
 | |
|         return;
 | |
|     } else if (page1 == page2) {
 | |
|         page_lock(p1);
 | |
|         if (ret_p2) {
 | |
|             *ret_p2 = p1;
 | |
|         }
 | |
|         return;
 | |
|     }
 | |
|     p2 = page_find_alloc(page2, alloc);
 | |
|     if (ret_p2) {
 | |
|         *ret_p2 = p2;
 | |
|     }
 | |
|     if (page1 < page2) {
 | |
|         page_lock(p1);
 | |
|         page_lock(p2);
 | |
|     } else {
 | |
|         page_lock(p2);
 | |
|         page_lock(p1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
| /* Currently it is not recommended to allocate big chunks of data in
 | |
|    user mode. It will change when a dedicated libc will be used.  */
 | |
| /* ??? 64-bit hosts ought to have no problem mmaping data outside the
 | |
|    region in which the guest needs to run.  Revisit this.  */
 | |
| #define USE_STATIC_CODE_GEN_BUFFER
 | |
| #endif
 | |
| 
 | |
| /* Minimum size of the code gen buffer.  This number is randomly chosen,
 | |
|    but not so small that we can't have a fair number of TB's live.  */
 | |
| #define MIN_CODE_GEN_BUFFER_SIZE     (1024u * 1024)
 | |
| 
 | |
| /* Maximum size of the code gen buffer we'd like to use.  Unless otherwise
 | |
|    indicated, this is constrained by the range of direct branches on the
 | |
|    host cpu, as used by the TCG implementation of goto_tb.  */
 | |
| #if defined(__x86_64__)
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
 | |
| #elif defined(__sparc__)
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
 | |
| #elif defined(__powerpc64__)
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
 | |
| #elif defined(__powerpc__)
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (32u * 1024 * 1024)
 | |
| #elif defined(__aarch64__)
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (2ul * 1024 * 1024 * 1024)
 | |
| #elif defined(__s390x__)
 | |
|   /* We have a +- 4GB range on the branches; leave some slop.  */
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (3ul * 1024 * 1024 * 1024)
 | |
| #elif defined(__mips__)
 | |
|   /* We have a 256MB branch region, but leave room to make sure the
 | |
|      main executable is also within that region.  */
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  (128ul * 1024 * 1024)
 | |
| #else
 | |
| # define MAX_CODE_GEN_BUFFER_SIZE  ((size_t)-1)
 | |
| #endif
 | |
| 
 | |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
 | |
| 
 | |
| #define DEFAULT_CODE_GEN_BUFFER_SIZE \
 | |
|   (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
 | |
|    ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
 | |
| 
 | |
| static inline size_t size_code_gen_buffer(size_t tb_size)
 | |
| {
 | |
|     /* Size the buffer.  */
 | |
|     if (tb_size == 0) {
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
|         tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
 | |
| #else
 | |
|         /* ??? Needs adjustments.  */
 | |
|         /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
 | |
|            static buffer, we could size this on RESERVED_VA, on the text
 | |
|            segment size of the executable, or continue to use the default.  */
 | |
|         tb_size = (unsigned long)(ram_size / 4);
 | |
| #endif
 | |
|     }
 | |
|     if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
 | |
|         tb_size = MIN_CODE_GEN_BUFFER_SIZE;
 | |
|     }
 | |
|     if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
 | |
|         tb_size = MAX_CODE_GEN_BUFFER_SIZE;
 | |
|     }
 | |
|     return tb_size;
 | |
| }
 | |
| 
 | |
| #ifdef __mips__
 | |
| /* In order to use J and JAL within the code_gen_buffer, we require
 | |
|    that the buffer not cross a 256MB boundary.  */
 | |
| static inline bool cross_256mb(void *addr, size_t size)
 | |
| {
 | |
|     return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & ~0x0ffffffful;
 | |
| }
 | |
| 
 | |
| /* We weren't able to allocate a buffer without crossing that boundary,
 | |
|    so make do with the larger portion of the buffer that doesn't cross.
 | |
|    Returns the new base of the buffer, and adjusts code_gen_buffer_size.  */
 | |
| static inline void *split_cross_256mb(void *buf1, size_t size1)
 | |
| {
 | |
|     void *buf2 = (void *)(((uintptr_t)buf1 + size1) & ~0x0ffffffful);
 | |
|     size_t size2 = buf1 + size1 - buf2;
 | |
| 
 | |
|     size1 = buf2 - buf1;
 | |
|     if (size1 < size2) {
 | |
|         size1 = size2;
 | |
|         buf1 = buf2;
 | |
|     }
 | |
| 
 | |
|     tcg_ctx->code_gen_buffer_size = size1;
 | |
|     return buf1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef USE_STATIC_CODE_GEN_BUFFER
 | |
| static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
 | |
|     __attribute__((aligned(CODE_GEN_ALIGN)));
 | |
| 
 | |
| static inline void *alloc_code_gen_buffer(void)
 | |
| {
 | |
|     void *buf = static_code_gen_buffer;
 | |
|     void *end = static_code_gen_buffer + sizeof(static_code_gen_buffer);
 | |
|     size_t size;
 | |
| 
 | |
|     /* page-align the beginning and end of the buffer */
 | |
|     buf = QEMU_ALIGN_PTR_UP(buf, qemu_real_host_page_size);
 | |
|     end = QEMU_ALIGN_PTR_DOWN(end, qemu_real_host_page_size);
 | |
| 
 | |
|     size = end - buf;
 | |
| 
 | |
|     /* Honor a command-line option limiting the size of the buffer.  */
 | |
|     if (size > tcg_ctx->code_gen_buffer_size) {
 | |
|         size = QEMU_ALIGN_DOWN(tcg_ctx->code_gen_buffer_size,
 | |
|                                qemu_real_host_page_size);
 | |
|     }
 | |
|     tcg_ctx->code_gen_buffer_size = size;
 | |
| 
 | |
| #ifdef __mips__
 | |
|     if (cross_256mb(buf, size)) {
 | |
|         buf = split_cross_256mb(buf, size);
 | |
|         size = tcg_ctx->code_gen_buffer_size;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     if (qemu_mprotect_rwx(buf, size)) {
 | |
|         abort();
 | |
|     }
 | |
|     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
 | |
| 
 | |
|     return buf;
 | |
| }
 | |
| #elif defined(_WIN32)
 | |
| static inline void *alloc_code_gen_buffer(void)
 | |
| {
 | |
|     size_t size = tcg_ctx->code_gen_buffer_size;
 | |
|     return VirtualAlloc(NULL, size, MEM_RESERVE | MEM_COMMIT,
 | |
|                         PAGE_EXECUTE_READWRITE);
 | |
| }
 | |
| #else
 | |
| static inline void *alloc_code_gen_buffer(void)
 | |
| {
 | |
|     int prot = PROT_WRITE | PROT_READ | PROT_EXEC;
 | |
|     int flags = MAP_PRIVATE | MAP_ANONYMOUS;
 | |
|     uintptr_t start = 0;
 | |
|     size_t size = tcg_ctx->code_gen_buffer_size;
 | |
|     void *buf;
 | |
| 
 | |
|     /* Constrain the position of the buffer based on the host cpu.
 | |
|        Note that these addresses are chosen in concert with the
 | |
|        addresses assigned in the relevant linker script file.  */
 | |
| # if defined(__PIE__) || defined(__PIC__)
 | |
|     /* Don't bother setting a preferred location if we're building
 | |
|        a position-independent executable.  We're more likely to get
 | |
|        an address near the main executable if we let the kernel
 | |
|        choose the address.  */
 | |
| # elif defined(__x86_64__) && defined(MAP_32BIT)
 | |
|     /* Force the memory down into low memory with the executable.
 | |
|        Leave the choice of exact location with the kernel.  */
 | |
|     flags |= MAP_32BIT;
 | |
|     /* Cannot expect to map more than 800MB in low memory.  */
 | |
|     if (size > 800u * 1024 * 1024) {
 | |
|         tcg_ctx->code_gen_buffer_size = size = 800u * 1024 * 1024;
 | |
|     }
 | |
| # elif defined(__sparc__)
 | |
|     start = 0x40000000ul;
 | |
| # elif defined(__s390x__)
 | |
|     start = 0x90000000ul;
 | |
| # elif defined(__mips__)
 | |
| #  if _MIPS_SIM == _ABI64
 | |
|     start = 0x128000000ul;
 | |
| #  else
 | |
|     start = 0x08000000ul;
 | |
| #  endif
 | |
| # endif
 | |
| 
 | |
|     buf = mmap((void *)start, size, prot, flags, -1, 0);
 | |
|     if (buf == MAP_FAILED) {
 | |
|         return NULL;
 | |
|     }
 | |
| 
 | |
| #ifdef __mips__
 | |
|     if (cross_256mb(buf, size)) {
 | |
|         /* Try again, with the original still mapped, to avoid re-acquiring
 | |
|            that 256mb crossing.  This time don't specify an address.  */
 | |
|         size_t size2;
 | |
|         void *buf2 = mmap(NULL, size, prot, flags, -1, 0);
 | |
|         switch ((int)(buf2 != MAP_FAILED)) {
 | |
|         case 1:
 | |
|             if (!cross_256mb(buf2, size)) {
 | |
|                 /* Success!  Use the new buffer.  */
 | |
|                 munmap(buf, size);
 | |
|                 break;
 | |
|             }
 | |
|             /* Failure.  Work with what we had.  */
 | |
|             munmap(buf2, size);
 | |
|             /* fallthru */
 | |
|         default:
 | |
|             /* Split the original buffer.  Free the smaller half.  */
 | |
|             buf2 = split_cross_256mb(buf, size);
 | |
|             size2 = tcg_ctx->code_gen_buffer_size;
 | |
|             if (buf == buf2) {
 | |
|                 munmap(buf + size2, size - size2);
 | |
|             } else {
 | |
|                 munmap(buf, size - size2);
 | |
|             }
 | |
|             size = size2;
 | |
|             break;
 | |
|         }
 | |
|         buf = buf2;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Request large pages for the buffer.  */
 | |
|     qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
 | |
| 
 | |
|     return buf;
 | |
| }
 | |
| #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
 | |
| 
 | |
| static inline void code_gen_alloc(size_t tb_size)
 | |
| {
 | |
|     tcg_ctx->code_gen_buffer_size = size_code_gen_buffer(tb_size);
 | |
|     tcg_ctx->code_gen_buffer = alloc_code_gen_buffer();
 | |
|     if (tcg_ctx->code_gen_buffer == NULL) {
 | |
|         fprintf(stderr, "Could not allocate dynamic translator buffer\n");
 | |
|         exit(1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static bool tb_cmp(const void *ap, const void *bp)
 | |
| {
 | |
|     const TranslationBlock *a = ap;
 | |
|     const TranslationBlock *b = bp;
 | |
| 
 | |
|     return a->pc == b->pc &&
 | |
|         a->cs_base == b->cs_base &&
 | |
|         a->flags == b->flags &&
 | |
|         (tb_cflags(a) & CF_HASH_MASK) == (tb_cflags(b) & CF_HASH_MASK) &&
 | |
|         a->trace_vcpu_dstate == b->trace_vcpu_dstate &&
 | |
|         a->page_addr[0] == b->page_addr[0] &&
 | |
|         a->page_addr[1] == b->page_addr[1];
 | |
| }
 | |
| 
 | |
| static void tb_htable_init(void)
 | |
| {
 | |
|     unsigned int mode = QHT_MODE_AUTO_RESIZE;
 | |
| 
 | |
|     qht_init(&tb_ctx.htable, tb_cmp, CODE_GEN_HTABLE_SIZE, mode);
 | |
| }
 | |
| 
 | |
| /* Must be called before using the QEMU cpus. 'tb_size' is the size
 | |
|    (in bytes) allocated to the translation buffer. Zero means default
 | |
|    size. */
 | |
| void tcg_exec_init(unsigned long tb_size)
 | |
| {
 | |
|     tcg_allowed = true;
 | |
|     cpu_gen_init();
 | |
|     page_init();
 | |
|     tb_htable_init();
 | |
|     code_gen_alloc(tb_size);
 | |
| #if defined(CONFIG_SOFTMMU)
 | |
|     /* There's no guest base to take into account, so go ahead and
 | |
|        initialize the prologue now.  */
 | |
|     tcg_prologue_init(tcg_ctx);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate a new translation block. Flush the translation buffer if
 | |
|  * too many translation blocks or too much generated code.
 | |
|  */
 | |
| static TranslationBlock *tb_alloc(target_ulong pc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     tb = tcg_tb_alloc(tcg_ctx);
 | |
|     if (unlikely(tb == NULL)) {
 | |
|         return NULL;
 | |
|     }
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /* call with @p->lock held */
 | |
| static inline void invalidate_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     assert_page_locked(p);
 | |
| #ifdef CONFIG_SOFTMMU
 | |
|     g_free(p->code_bitmap);
 | |
|     p->code_bitmap = NULL;
 | |
|     p->code_write_count = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Set to NULL all the 'first_tb' fields in all PageDescs. */
 | |
| static void page_flush_tb_1(int level, void **lp)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     if (level == 0) {
 | |
|         PageDesc *pd = *lp;
 | |
| 
 | |
|         for (i = 0; i < V_L2_SIZE; ++i) {
 | |
|             page_lock(&pd[i]);
 | |
|             pd[i].first_tb = (uintptr_t)NULL;
 | |
|             invalidate_page_bitmap(pd + i);
 | |
|             page_unlock(&pd[i]);
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
| 
 | |
|         for (i = 0; i < V_L2_SIZE; ++i) {
 | |
|             page_flush_tb_1(level - 1, pp + i);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void page_flush_tb(void)
 | |
| {
 | |
|     int i, l1_sz = v_l1_size;
 | |
| 
 | |
|     for (i = 0; i < l1_sz; i++) {
 | |
|         page_flush_tb_1(v_l2_levels, l1_map + i);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static gboolean tb_host_size_iter(gpointer key, gpointer value, gpointer data)
 | |
| {
 | |
|     const TranslationBlock *tb = value;
 | |
|     size_t *size = data;
 | |
| 
 | |
|     *size += tb->tc.size;
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| /* flush all the translation blocks */
 | |
| static void do_tb_flush(CPUState *cpu, run_on_cpu_data tb_flush_count)
 | |
| {
 | |
|     mmap_lock();
 | |
|     /* If it is already been done on request of another CPU,
 | |
|      * just retry.
 | |
|      */
 | |
|     if (tb_ctx.tb_flush_count != tb_flush_count.host_int) {
 | |
|         goto done;
 | |
|     }
 | |
| 
 | |
|     if (DEBUG_TB_FLUSH_GATE) {
 | |
|         size_t nb_tbs = tcg_nb_tbs();
 | |
|         size_t host_size = 0;
 | |
| 
 | |
|         tcg_tb_foreach(tb_host_size_iter, &host_size);
 | |
|         printf("qemu: flush code_size=%zu nb_tbs=%zu avg_tb_size=%zu\n",
 | |
|                tcg_code_size(), nb_tbs, nb_tbs > 0 ? host_size / nb_tbs : 0);
 | |
|     }
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         cpu_tb_jmp_cache_clear(cpu);
 | |
|     }
 | |
| 
 | |
|     qht_reset_size(&tb_ctx.htable, CODE_GEN_HTABLE_SIZE);
 | |
|     page_flush_tb();
 | |
| 
 | |
|     tcg_region_reset_all();
 | |
|     /* XXX: flush processor icache at this point if cache flush is
 | |
|        expensive */
 | |
|     atomic_mb_set(&tb_ctx.tb_flush_count, tb_ctx.tb_flush_count + 1);
 | |
| 
 | |
| done:
 | |
|     mmap_unlock();
 | |
| }
 | |
| 
 | |
| void tb_flush(CPUState *cpu)
 | |
| {
 | |
|     if (tcg_enabled()) {
 | |
|         unsigned tb_flush_count = atomic_mb_read(&tb_ctx.tb_flush_count);
 | |
|         async_safe_run_on_cpu(cpu, do_tb_flush,
 | |
|                               RUN_ON_CPU_HOST_INT(tb_flush_count));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Formerly ifdef DEBUG_TB_CHECK. These debug functions are user-mode-only,
 | |
|  * so in order to prevent bit rot we compile them unconditionally in user-mode,
 | |
|  * and let the optimizer get rid of them by wrapping their user-only callers
 | |
|  * with if (DEBUG_TB_CHECK_GATE).
 | |
|  */
 | |
| #ifdef CONFIG_USER_ONLY
 | |
| 
 | |
| static void do_tb_invalidate_check(void *p, uint32_t hash, void *userp)
 | |
| {
 | |
|     TranslationBlock *tb = p;
 | |
|     target_ulong addr = *(target_ulong *)userp;
 | |
| 
 | |
|     if (!(addr + TARGET_PAGE_SIZE <= tb->pc || addr >= tb->pc + tb->size)) {
 | |
|         printf("ERROR invalidate: address=" TARGET_FMT_lx
 | |
|                " PC=%08lx size=%04x\n", addr, (long)tb->pc, tb->size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* verify that all the pages have correct rights for code
 | |
|  *
 | |
|  * Called with mmap_lock held.
 | |
|  */
 | |
| static void tb_invalidate_check(target_ulong address)
 | |
| {
 | |
|     address &= TARGET_PAGE_MASK;
 | |
|     qht_iter(&tb_ctx.htable, do_tb_invalidate_check, &address);
 | |
| }
 | |
| 
 | |
| static void do_tb_page_check(void *p, uint32_t hash, void *userp)
 | |
| {
 | |
|     TranslationBlock *tb = p;
 | |
|     int flags1, flags2;
 | |
| 
 | |
|     flags1 = page_get_flags(tb->pc);
 | |
|     flags2 = page_get_flags(tb->pc + tb->size - 1);
 | |
|     if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
 | |
|         printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
 | |
|                (long)tb->pc, tb->size, flags1, flags2);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* verify that all the pages have correct rights for code */
 | |
| static void tb_page_check(void)
 | |
| {
 | |
|     qht_iter(&tb_ctx.htable, do_tb_page_check, NULL);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| 
 | |
| /*
 | |
|  * user-mode: call with mmap_lock held
 | |
|  * !user-mode: call with @pd->lock held
 | |
|  */
 | |
| static inline void tb_page_remove(PageDesc *pd, TranslationBlock *tb)
 | |
| {
 | |
|     TranslationBlock *tb1;
 | |
|     uintptr_t *pprev;
 | |
|     unsigned int n1;
 | |
| 
 | |
|     assert_page_locked(pd);
 | |
|     pprev = &pd->first_tb;
 | |
|     PAGE_FOR_EACH_TB(pd, tb1, n1) {
 | |
|         if (tb1 == tb) {
 | |
|             *pprev = tb1->page_next[n1];
 | |
|             return;
 | |
|         }
 | |
|         pprev = &tb1->page_next[n1];
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| /* remove @orig from its @n_orig-th jump list */
 | |
| static inline void tb_remove_from_jmp_list(TranslationBlock *orig, int n_orig)
 | |
| {
 | |
|     uintptr_t ptr, ptr_locked;
 | |
|     TranslationBlock *dest;
 | |
|     TranslationBlock *tb;
 | |
|     uintptr_t *pprev;
 | |
|     int n;
 | |
| 
 | |
|     /* mark the LSB of jmp_dest[] so that no further jumps can be inserted */
 | |
|     ptr = atomic_or_fetch(&orig->jmp_dest[n_orig], 1);
 | |
|     dest = (TranslationBlock *)(ptr & ~1);
 | |
|     if (dest == NULL) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qemu_spin_lock(&dest->jmp_lock);
 | |
|     /*
 | |
|      * While acquiring the lock, the jump might have been removed if the
 | |
|      * destination TB was invalidated; check again.
 | |
|      */
 | |
|     ptr_locked = atomic_read(&orig->jmp_dest[n_orig]);
 | |
|     if (ptr_locked != ptr) {
 | |
|         qemu_spin_unlock(&dest->jmp_lock);
 | |
|         /*
 | |
|          * The only possibility is that the jump was unlinked via
 | |
|          * tb_jump_unlink(dest). Seeing here another destination would be a bug,
 | |
|          * because we set the LSB above.
 | |
|          */
 | |
|         g_assert(ptr_locked == 1 && dest->cflags & CF_INVALID);
 | |
|         return;
 | |
|     }
 | |
|     /*
 | |
|      * We first acquired the lock, and since the destination pointer matches,
 | |
|      * we know for sure that @orig is in the jmp list.
 | |
|      */
 | |
|     pprev = &dest->jmp_list_head;
 | |
|     TB_FOR_EACH_JMP(dest, tb, n) {
 | |
|         if (tb == orig && n == n_orig) {
 | |
|             *pprev = tb->jmp_list_next[n];
 | |
|             /* no need to set orig->jmp_dest[n]; setting the LSB was enough */
 | |
|             qemu_spin_unlock(&dest->jmp_lock);
 | |
|             return;
 | |
|         }
 | |
|         pprev = &tb->jmp_list_next[n];
 | |
|     }
 | |
|     g_assert_not_reached();
 | |
| }
 | |
| 
 | |
| /* reset the jump entry 'n' of a TB so that it is not chained to
 | |
|    another TB */
 | |
| static inline void tb_reset_jump(TranslationBlock *tb, int n)
 | |
| {
 | |
|     uintptr_t addr = (uintptr_t)(tb->tc.ptr + tb->jmp_reset_offset[n]);
 | |
|     tb_set_jmp_target(tb, n, addr);
 | |
| }
 | |
| 
 | |
| /* remove any jumps to the TB */
 | |
| static inline void tb_jmp_unlink(TranslationBlock *dest)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     int n;
 | |
| 
 | |
|     qemu_spin_lock(&dest->jmp_lock);
 | |
| 
 | |
|     TB_FOR_EACH_JMP(dest, tb, n) {
 | |
|         tb_reset_jump(tb, n);
 | |
|         atomic_and(&tb->jmp_dest[n], (uintptr_t)NULL | 1);
 | |
|         /* No need to clear the list entry; setting the dest ptr is enough */
 | |
|     }
 | |
|     dest->jmp_list_head = (uintptr_t)NULL;
 | |
| 
 | |
|     qemu_spin_unlock(&dest->jmp_lock);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In user-mode, call with mmap_lock held.
 | |
|  * In !user-mode, if @rm_from_page_list is set, call with the TB's pages'
 | |
|  * locks held.
 | |
|  */
 | |
| static void do_tb_phys_invalidate(TranslationBlock *tb, bool rm_from_page_list)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     PageDesc *p;
 | |
|     uint32_t h;
 | |
|     tb_page_addr_t phys_pc;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     /* make sure no further incoming jumps will be chained to this TB */
 | |
|     qemu_spin_lock(&tb->jmp_lock);
 | |
|     atomic_set(&tb->cflags, tb->cflags | CF_INVALID);
 | |
|     qemu_spin_unlock(&tb->jmp_lock);
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|     h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb_cflags(tb) & CF_HASH_MASK,
 | |
|                      tb->trace_vcpu_dstate);
 | |
|     if (!(tb->cflags & CF_NOCACHE) &&
 | |
|         !qht_remove(&tb_ctx.htable, tb, h)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* remove the TB from the page list */
 | |
|     if (rm_from_page_list) {
 | |
|         p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
 | |
|         tb_page_remove(p, tb);
 | |
|         invalidate_page_bitmap(p);
 | |
|         if (tb->page_addr[1] != -1) {
 | |
|             p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
 | |
|             tb_page_remove(p, tb);
 | |
|             invalidate_page_bitmap(p);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* remove the TB from the hash list */
 | |
|     h = tb_jmp_cache_hash_func(tb->pc);
 | |
|     CPU_FOREACH(cpu) {
 | |
|         if (atomic_read(&cpu->tb_jmp_cache[h]) == tb) {
 | |
|             atomic_set(&cpu->tb_jmp_cache[h], NULL);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* suppress this TB from the two jump lists */
 | |
|     tb_remove_from_jmp_list(tb, 0);
 | |
|     tb_remove_from_jmp_list(tb, 1);
 | |
| 
 | |
|     /* suppress any remaining jumps to this TB */
 | |
|     tb_jmp_unlink(tb);
 | |
| 
 | |
|     atomic_set(&tcg_ctx->tb_phys_invalidate_count,
 | |
|                tcg_ctx->tb_phys_invalidate_count + 1);
 | |
| }
 | |
| 
 | |
| static void tb_phys_invalidate__locked(TranslationBlock *tb)
 | |
| {
 | |
|     do_tb_phys_invalidate(tb, true);
 | |
| }
 | |
| 
 | |
| /* invalidate one TB
 | |
|  *
 | |
|  * Called with mmap_lock held in user-mode.
 | |
|  */
 | |
| void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
 | |
| {
 | |
|     if (page_addr == -1 && tb->page_addr[0] != -1) {
 | |
|         page_lock_tb(tb);
 | |
|         do_tb_phys_invalidate(tb, true);
 | |
|         page_unlock_tb(tb);
 | |
|     } else {
 | |
|         do_tb_phys_invalidate(tb, false);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SOFTMMU
 | |
| /* call with @p->lock held */
 | |
| static void build_page_bitmap(PageDesc *p)
 | |
| {
 | |
|     int n, tb_start, tb_end;
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     assert_page_locked(p);
 | |
|     p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
 | |
| 
 | |
|     PAGE_FOR_EACH_TB(p, tb, n) {
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->pc & ~TARGET_PAGE_MASK;
 | |
|             tb_end = tb_start + tb->size;
 | |
|             if (tb_end > TARGET_PAGE_SIZE) {
 | |
|                 tb_end = TARGET_PAGE_SIZE;
 | |
|              }
 | |
|         } else {
 | |
|             tb_start = 0;
 | |
|             tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* add the tb in the target page and protect it if necessary
 | |
|  *
 | |
|  * Called with mmap_lock held for user-mode emulation.
 | |
|  * Called with @p->lock held in !user-mode.
 | |
|  */
 | |
| static inline void tb_page_add(PageDesc *p, TranslationBlock *tb,
 | |
|                                unsigned int n, tb_page_addr_t page_addr)
 | |
| {
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     bool page_already_protected;
 | |
| #endif
 | |
| 
 | |
|     assert_page_locked(p);
 | |
| 
 | |
|     tb->page_addr[n] = page_addr;
 | |
|     tb->page_next[n] = p->first_tb;
 | |
| #ifndef CONFIG_USER_ONLY
 | |
|     page_already_protected = p->first_tb != (uintptr_t)NULL;
 | |
| #endif
 | |
|     p->first_tb = (uintptr_t)tb | n;
 | |
|     invalidate_page_bitmap(p);
 | |
| 
 | |
| #if defined(CONFIG_USER_ONLY)
 | |
|     if (p->flags & PAGE_WRITE) {
 | |
|         target_ulong addr;
 | |
|         PageDesc *p2;
 | |
|         int prot;
 | |
| 
 | |
|         /* force the host page as non writable (writes will have a
 | |
|            page fault + mprotect overhead) */
 | |
|         page_addr &= qemu_host_page_mask;
 | |
|         prot = 0;
 | |
|         for (addr = page_addr; addr < page_addr + qemu_host_page_size;
 | |
|             addr += TARGET_PAGE_SIZE) {
 | |
| 
 | |
|             p2 = page_find(addr >> TARGET_PAGE_BITS);
 | |
|             if (!p2) {
 | |
|                 continue;
 | |
|             }
 | |
|             prot |= p2->flags;
 | |
|             p2->flags &= ~PAGE_WRITE;
 | |
|           }
 | |
|         mprotect(g2h(page_addr), qemu_host_page_size,
 | |
|                  (prot & PAGE_BITS) & ~PAGE_WRITE);
 | |
|         if (DEBUG_TB_INVALIDATE_GATE) {
 | |
|             printf("protecting code page: 0x" TB_PAGE_ADDR_FMT "\n", page_addr);
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     /* if some code is already present, then the pages are already
 | |
|        protected. So we handle the case where only the first TB is
 | |
|        allocated in a physical page */
 | |
|     if (!page_already_protected) {
 | |
|         tlb_protect_code(page_addr);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* add a new TB and link it to the physical page tables. phys_page2 is
 | |
|  * (-1) to indicate that only one page contains the TB.
 | |
|  *
 | |
|  * Called with mmap_lock held for user-mode emulation.
 | |
|  *
 | |
|  * Returns a pointer @tb, or a pointer to an existing TB that matches @tb.
 | |
|  * Note that in !user-mode, another thread might have already added a TB
 | |
|  * for the same block of guest code that @tb corresponds to. In that case,
 | |
|  * the caller should discard the original @tb, and use instead the returned TB.
 | |
|  */
 | |
| static TranslationBlock *
 | |
| tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
 | |
|              tb_page_addr_t phys_page2)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     PageDesc *p2 = NULL;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     if (phys_pc == -1) {
 | |
|         /*
 | |
|          * If the TB is not associated with a physical RAM page then
 | |
|          * it must be a temporary one-insn TB, and we have nothing to do
 | |
|          * except fill in the page_addr[] fields.
 | |
|          */
 | |
|         assert(tb->cflags & CF_NOCACHE);
 | |
|         tb->page_addr[0] = tb->page_addr[1] = -1;
 | |
|         return tb;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * Add the TB to the page list, acquiring first the pages's locks.
 | |
|      * We keep the locks held until after inserting the TB in the hash table,
 | |
|      * so that if the insertion fails we know for sure that the TBs are still
 | |
|      * in the page descriptors.
 | |
|      * Note that inserting into the hash table first isn't an option, since
 | |
|      * we can only insert TBs that are fully initialized.
 | |
|      */
 | |
|     page_lock_pair(&p, phys_pc, &p2, phys_page2, 1);
 | |
|     tb_page_add(p, tb, 0, phys_pc & TARGET_PAGE_MASK);
 | |
|     if (p2) {
 | |
|         tb_page_add(p2, tb, 1, phys_page2);
 | |
|     } else {
 | |
|         tb->page_addr[1] = -1;
 | |
|     }
 | |
| 
 | |
|     if (!(tb->cflags & CF_NOCACHE)) {
 | |
|         void *existing_tb = NULL;
 | |
|         uint32_t h;
 | |
| 
 | |
|         /* add in the hash table */
 | |
|         h = tb_hash_func(phys_pc, tb->pc, tb->flags, tb->cflags & CF_HASH_MASK,
 | |
|                          tb->trace_vcpu_dstate);
 | |
|         qht_insert(&tb_ctx.htable, tb, h, &existing_tb);
 | |
| 
 | |
|         /* remove TB from the page(s) if we couldn't insert it */
 | |
|         if (unlikely(existing_tb)) {
 | |
|             tb_page_remove(p, tb);
 | |
|             invalidate_page_bitmap(p);
 | |
|             if (p2) {
 | |
|                 tb_page_remove(p2, tb);
 | |
|                 invalidate_page_bitmap(p2);
 | |
|             }
 | |
|             tb = existing_tb;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (p2 && p2 != p) {
 | |
|         page_unlock(p2);
 | |
|     }
 | |
|     page_unlock(p);
 | |
| 
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|     if (DEBUG_TB_CHECK_GATE) {
 | |
|         tb_page_check();
 | |
|     }
 | |
| #endif
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /* Called with mmap_lock held for user mode emulation.  */
 | |
| TranslationBlock *tb_gen_code(CPUState *cpu,
 | |
|                               target_ulong pc, target_ulong cs_base,
 | |
|                               uint32_t flags, int cflags)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     TranslationBlock *tb, *existing_tb;
 | |
|     tb_page_addr_t phys_pc, phys_page2;
 | |
|     target_ulong virt_page2;
 | |
|     tcg_insn_unit *gen_code_buf;
 | |
|     int gen_code_size, search_size;
 | |
| #ifdef CONFIG_PROFILER
 | |
|     TCGProfile *prof = &tcg_ctx->prof;
 | |
|     int64_t ti;
 | |
| #endif
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     phys_pc = get_page_addr_code(env, pc);
 | |
| 
 | |
|     if (phys_pc == -1) {
 | |
|         /* Generate a temporary TB with 1 insn in it */
 | |
|         cflags &= ~CF_COUNT_MASK;
 | |
|         cflags |= CF_NOCACHE | 1;
 | |
|     }
 | |
| 
 | |
|  buffer_overflow:
 | |
|     tb = tb_alloc(pc);
 | |
|     if (unlikely(!tb)) {
 | |
|         /* flush must be done */
 | |
|         tb_flush(cpu);
 | |
|         mmap_unlock();
 | |
|         /* Make the execution loop process the flush as soon as possible.  */
 | |
|         cpu->exception_index = EXCP_INTERRUPT;
 | |
|         cpu_loop_exit(cpu);
 | |
|     }
 | |
| 
 | |
|     gen_code_buf = tcg_ctx->code_gen_ptr;
 | |
|     tb->tc.ptr = gen_code_buf;
 | |
|     tb->pc = pc;
 | |
|     tb->cs_base = cs_base;
 | |
|     tb->flags = flags;
 | |
|     tb->cflags = cflags;
 | |
|     tb->trace_vcpu_dstate = *cpu->trace_dstate;
 | |
|     tcg_ctx->tb_cflags = cflags;
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
|     /* includes aborted translations because of exceptions */
 | |
|     atomic_set(&prof->tb_count1, prof->tb_count1 + 1);
 | |
|     ti = profile_getclock();
 | |
| #endif
 | |
| 
 | |
|     tcg_func_start(tcg_ctx);
 | |
| 
 | |
|     tcg_ctx->cpu = ENV_GET_CPU(env);
 | |
|     gen_intermediate_code(cpu, tb);
 | |
|     tcg_ctx->cpu = NULL;
 | |
| 
 | |
|     trace_translate_block(tb, tb->pc, tb->tc.ptr);
 | |
| 
 | |
|     /* generate machine code */
 | |
|     tb->jmp_reset_offset[0] = TB_JMP_RESET_OFFSET_INVALID;
 | |
|     tb->jmp_reset_offset[1] = TB_JMP_RESET_OFFSET_INVALID;
 | |
|     tcg_ctx->tb_jmp_reset_offset = tb->jmp_reset_offset;
 | |
|     if (TCG_TARGET_HAS_direct_jump) {
 | |
|         tcg_ctx->tb_jmp_insn_offset = tb->jmp_target_arg;
 | |
|         tcg_ctx->tb_jmp_target_addr = NULL;
 | |
|     } else {
 | |
|         tcg_ctx->tb_jmp_insn_offset = NULL;
 | |
|         tcg_ctx->tb_jmp_target_addr = tb->jmp_target_arg;
 | |
|     }
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
|     atomic_set(&prof->tb_count, prof->tb_count + 1);
 | |
|     atomic_set(&prof->interm_time, prof->interm_time + profile_getclock() - ti);
 | |
|     ti = profile_getclock();
 | |
| #endif
 | |
| 
 | |
|     /* ??? Overflow could be handled better here.  In particular, we
 | |
|        don't need to re-do gen_intermediate_code, nor should we re-do
 | |
|        the tcg optimization currently hidden inside tcg_gen_code.  All
 | |
|        that should be required is to flush the TBs, allocate a new TB,
 | |
|        re-initialize it per above, and re-do the actual code generation.  */
 | |
|     gen_code_size = tcg_gen_code(tcg_ctx, tb);
 | |
|     if (unlikely(gen_code_size < 0)) {
 | |
|         goto buffer_overflow;
 | |
|     }
 | |
|     search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
 | |
|     if (unlikely(search_size < 0)) {
 | |
|         goto buffer_overflow;
 | |
|     }
 | |
|     tb->tc.size = gen_code_size;
 | |
| 
 | |
| #ifdef CONFIG_PROFILER
 | |
|     atomic_set(&prof->code_time, prof->code_time + profile_getclock() - ti);
 | |
|     atomic_set(&prof->code_in_len, prof->code_in_len + tb->size);
 | |
|     atomic_set(&prof->code_out_len, prof->code_out_len + gen_code_size);
 | |
|     atomic_set(&prof->search_out_len, prof->search_out_len + search_size);
 | |
| #endif
 | |
| 
 | |
| #ifdef DEBUG_DISAS
 | |
|     if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM) &&
 | |
|         qemu_log_in_addr_range(tb->pc)) {
 | |
|         qemu_log_lock();
 | |
|         qemu_log("OUT: [size=%d]\n", gen_code_size);
 | |
|         if (tcg_ctx->data_gen_ptr) {
 | |
|             size_t code_size = tcg_ctx->data_gen_ptr - tb->tc.ptr;
 | |
|             size_t data_size = gen_code_size - code_size;
 | |
|             size_t i;
 | |
| 
 | |
|             log_disas(tb->tc.ptr, code_size);
 | |
| 
 | |
|             for (i = 0; i < data_size; i += sizeof(tcg_target_ulong)) {
 | |
|                 if (sizeof(tcg_target_ulong) == 8) {
 | |
|                     qemu_log("0x%08" PRIxPTR ":  .quad  0x%016" PRIx64 "\n",
 | |
|                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
 | |
|                              *(uint64_t *)(tcg_ctx->data_gen_ptr + i));
 | |
|                 } else {
 | |
|                     qemu_log("0x%08" PRIxPTR ":  .long  0x%08x\n",
 | |
|                              (uintptr_t)tcg_ctx->data_gen_ptr + i,
 | |
|                              *(uint32_t *)(tcg_ctx->data_gen_ptr + i));
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             log_disas(tb->tc.ptr, gen_code_size);
 | |
|         }
 | |
|         qemu_log("\n");
 | |
|         qemu_log_flush();
 | |
|         qemu_log_unlock();
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     atomic_set(&tcg_ctx->code_gen_ptr, (void *)
 | |
|         ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
 | |
|                  CODE_GEN_ALIGN));
 | |
| 
 | |
|     /* init jump list */
 | |
|     qemu_spin_init(&tb->jmp_lock);
 | |
|     tb->jmp_list_head = (uintptr_t)NULL;
 | |
|     tb->jmp_list_next[0] = (uintptr_t)NULL;
 | |
|     tb->jmp_list_next[1] = (uintptr_t)NULL;
 | |
|     tb->jmp_dest[0] = (uintptr_t)NULL;
 | |
|     tb->jmp_dest[1] = (uintptr_t)NULL;
 | |
| 
 | |
|     /* init original jump addresses which have been set during tcg_gen_code() */
 | |
|     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
 | |
|         tb_reset_jump(tb, 0);
 | |
|     }
 | |
|     if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
 | |
|         tb_reset_jump(tb, 1);
 | |
|     }
 | |
| 
 | |
|     /* check next page if needed */
 | |
|     virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
 | |
|     phys_page2 = -1;
 | |
|     if ((pc & TARGET_PAGE_MASK) != virt_page2) {
 | |
|         phys_page2 = get_page_addr_code(env, virt_page2);
 | |
|     }
 | |
|     /*
 | |
|      * No explicit memory barrier is required -- tb_link_page() makes the
 | |
|      * TB visible in a consistent state.
 | |
|      */
 | |
|     existing_tb = tb_link_page(tb, phys_pc, phys_page2);
 | |
|     /* if the TB already exists, discard what we just translated */
 | |
|     if (unlikely(existing_tb != tb)) {
 | |
|         uintptr_t orig_aligned = (uintptr_t)gen_code_buf;
 | |
| 
 | |
|         orig_aligned -= ROUND_UP(sizeof(*tb), qemu_icache_linesize);
 | |
|         atomic_set(&tcg_ctx->code_gen_ptr, (void *)orig_aligned);
 | |
|         return existing_tb;
 | |
|     }
 | |
|     tcg_tb_insert(tb);
 | |
|     return tb;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * @p must be non-NULL.
 | |
|  * user-mode: call with mmap_lock held.
 | |
|  * !user-mode: call with all @pages locked.
 | |
|  */
 | |
| static void
 | |
| tb_invalidate_phys_page_range__locked(struct page_collection *pages,
 | |
|                                       PageDesc *p, tb_page_addr_t start,
 | |
|                                       tb_page_addr_t end,
 | |
|                                       int is_cpu_write_access)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     tb_page_addr_t tb_start, tb_end;
 | |
|     int n;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     CPUState *cpu = current_cpu;
 | |
|     CPUArchState *env = NULL;
 | |
|     int current_tb_not_found = is_cpu_write_access;
 | |
|     TranslationBlock *current_tb = NULL;
 | |
|     int current_tb_modified = 0;
 | |
|     target_ulong current_pc = 0;
 | |
|     target_ulong current_cs_base = 0;
 | |
|     uint32_t current_flags = 0;
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
| 
 | |
|     assert_page_locked(p);
 | |
| 
 | |
| #if defined(TARGET_HAS_PRECISE_SMC)
 | |
|     if (cpu != NULL) {
 | |
|         env = cpu->env_ptr;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* we remove all the TBs in the range [start, end[ */
 | |
|     /* XXX: see if in some cases it could be faster to invalidate all
 | |
|        the code */
 | |
|     PAGE_FOR_EACH_TB(p, tb, n) {
 | |
|         assert_page_locked(p);
 | |
|         /* NOTE: this is subtle as a TB may span two physical pages */
 | |
|         if (n == 0) {
 | |
|             /* NOTE: tb_end may be after the end of the page, but
 | |
|                it is not a problem */
 | |
|             tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
 | |
|             tb_end = tb_start + tb->size;
 | |
|         } else {
 | |
|             tb_start = tb->page_addr[1];
 | |
|             tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
 | |
|         }
 | |
|         if (!(tb_end <= start || tb_start >= end)) {
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|             if (current_tb_not_found) {
 | |
|                 current_tb_not_found = 0;
 | |
|                 current_tb = NULL;
 | |
|                 if (cpu->mem_io_pc) {
 | |
|                     /* now we have a real cpu fault */
 | |
|                     current_tb = tcg_tb_lookup(cpu->mem_io_pc);
 | |
|                 }
 | |
|             }
 | |
|             if (current_tb == tb &&
 | |
|                 (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                 its execution. We could be more precise by checking
 | |
|                 that the modification is after the current PC, but it
 | |
|                 would require a specialized function to partially
 | |
|                 restore the CPU state */
 | |
| 
 | |
|                 current_tb_modified = 1;
 | |
|                 cpu_restore_state_from_tb(cpu, current_tb,
 | |
|                                           cpu->mem_io_pc, true);
 | |
|                 cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | |
|                                      ¤t_flags);
 | |
|             }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|             tb_phys_invalidate__locked(tb);
 | |
|         }
 | |
|     }
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
|     /* if no code remaining, no need to continue to use slow writes */
 | |
|     if (!p->first_tb) {
 | |
|         invalidate_page_bitmap(p);
 | |
|         tlb_unprotect_code(start);
 | |
|     }
 | |
| #endif
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         page_collection_unlock(pages);
 | |
|         /* Force execution of one insn next time.  */
 | |
|         cpu->cflags_next_tb = 1 | curr_cflags();
 | |
|         mmap_unlock();
 | |
|         cpu_loop_exit_noexc(cpu);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate all TBs which intersect with the target physical address range
 | |
|  * [start;end[. NOTE: start and end must refer to the *same* physical page.
 | |
|  * 'is_cpu_write_access' should be true if called from a real cpu write
 | |
|  * access: the virtual CPU will exit the current TB if code is modified inside
 | |
|  * this TB.
 | |
|  *
 | |
|  * Called with mmap_lock held for user-mode emulation
 | |
|  */
 | |
| void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
 | |
|                                    int is_cpu_write_access)
 | |
| {
 | |
|     struct page_collection *pages;
 | |
|     PageDesc *p;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (p == NULL) {
 | |
|         return;
 | |
|     }
 | |
|     pages = page_collection_lock(start, end);
 | |
|     tb_invalidate_phys_page_range__locked(pages, p, start, end,
 | |
|                                           is_cpu_write_access);
 | |
|     page_collection_unlock(pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Invalidate all TBs which intersect with the target physical address range
 | |
|  * [start;end[. NOTE: start and end may refer to *different* physical pages.
 | |
|  * 'is_cpu_write_access' should be true if called from a real cpu write
 | |
|  * access: the virtual CPU will exit the current TB if code is modified inside
 | |
|  * this TB.
 | |
|  *
 | |
|  * Called with mmap_lock held for user-mode emulation.
 | |
|  */
 | |
| #ifdef CONFIG_SOFTMMU
 | |
| void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end)
 | |
| #else
 | |
| void tb_invalidate_phys_range(target_ulong start, target_ulong end)
 | |
| #endif
 | |
| {
 | |
|     struct page_collection *pages;
 | |
|     tb_page_addr_t next;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     pages = page_collection_lock(start, end);
 | |
|     for (next = (start & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
 | |
|          start < end;
 | |
|          start = next, next += TARGET_PAGE_SIZE) {
 | |
|         PageDesc *pd = page_find(start >> TARGET_PAGE_BITS);
 | |
|         tb_page_addr_t bound = MIN(next, end);
 | |
| 
 | |
|         if (pd == NULL) {
 | |
|             continue;
 | |
|         }
 | |
|         tb_invalidate_phys_page_range__locked(pages, pd, start, bound, 0);
 | |
|     }
 | |
|     page_collection_unlock(pages);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SOFTMMU
 | |
| /* len must be <= 8 and start must be a multiple of len.
 | |
|  * Called via softmmu_template.h when code areas are written to with
 | |
|  * iothread mutex not held.
 | |
|  *
 | |
|  * Call with all @pages in the range [@start, @start + len[ locked.
 | |
|  */
 | |
| void tb_invalidate_phys_page_fast(struct page_collection *pages,
 | |
|                                   tb_page_addr_t start, int len)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     p = page_find(start >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     assert_page_locked(p);
 | |
|     if (!p->code_bitmap &&
 | |
|         ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
 | |
|         build_page_bitmap(p);
 | |
|     }
 | |
|     if (p->code_bitmap) {
 | |
|         unsigned int nr;
 | |
|         unsigned long b;
 | |
| 
 | |
|         nr = start & ~TARGET_PAGE_MASK;
 | |
|         b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
 | |
|         if (b & ((1 << len) - 1)) {
 | |
|             goto do_invalidate;
 | |
|         }
 | |
|     } else {
 | |
|     do_invalidate:
 | |
|         tb_invalidate_phys_page_range__locked(pages, p, start, start + len, 1);
 | |
|     }
 | |
| }
 | |
| #else
 | |
| /* Called with mmap_lock held. If pc is not 0 then it indicates the
 | |
|  * host PC of the faulting store instruction that caused this invalidate.
 | |
|  * Returns true if the caller needs to abort execution of the current
 | |
|  * TB (because it was modified by this store and the guest CPU has
 | |
|  * precise-SMC semantics).
 | |
|  */
 | |
| static bool tb_invalidate_phys_page(tb_page_addr_t addr, uintptr_t pc)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
|     PageDesc *p;
 | |
|     int n;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     TranslationBlock *current_tb = NULL;
 | |
|     CPUState *cpu = current_cpu;
 | |
|     CPUArchState *env = NULL;
 | |
|     int current_tb_modified = 0;
 | |
|     target_ulong current_pc = 0;
 | |
|     target_ulong current_cs_base = 0;
 | |
|     uint32_t current_flags = 0;
 | |
| #endif
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (p->first_tb && pc != 0) {
 | |
|         current_tb = tcg_tb_lookup(pc);
 | |
|     }
 | |
|     if (cpu != NULL) {
 | |
|         env = cpu->env_ptr;
 | |
|     }
 | |
| #endif
 | |
|     assert_page_locked(p);
 | |
|     PAGE_FOR_EACH_TB(p, tb, n) {
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|         if (current_tb == tb &&
 | |
|             (tb_cflags(current_tb) & CF_COUNT_MASK) != 1) {
 | |
|                 /* If we are modifying the current TB, we must stop
 | |
|                    its execution. We could be more precise by checking
 | |
|                    that the modification is after the current PC, but it
 | |
|                    would require a specialized function to partially
 | |
|                    restore the CPU state */
 | |
| 
 | |
|             current_tb_modified = 1;
 | |
|             cpu_restore_state_from_tb(cpu, current_tb, pc, true);
 | |
|             cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
 | |
|                                  ¤t_flags);
 | |
|         }
 | |
| #endif /* TARGET_HAS_PRECISE_SMC */
 | |
|         tb_phys_invalidate(tb, addr);
 | |
|     }
 | |
|     p->first_tb = (uintptr_t)NULL;
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|     if (current_tb_modified) {
 | |
|         /* Force execution of one insn next time.  */
 | |
|         cpu->cflags_next_tb = 1 | curr_cflags();
 | |
|         return true;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /* user-mode: call with mmap_lock held */
 | |
| void tb_check_watchpoint(CPUState *cpu)
 | |
| {
 | |
|     TranslationBlock *tb;
 | |
| 
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     tb = tcg_tb_lookup(cpu->mem_io_pc);
 | |
|     if (tb) {
 | |
|         /* We can use retranslation to find the PC.  */
 | |
|         cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc, true);
 | |
|         tb_phys_invalidate(tb, -1);
 | |
|     } else {
 | |
|         /* The exception probably happened in a helper.  The CPU state should
 | |
|            have been saved before calling it. Fetch the PC from there.  */
 | |
|         CPUArchState *env = cpu->env_ptr;
 | |
|         target_ulong pc, cs_base;
 | |
|         tb_page_addr_t addr;
 | |
|         uint32_t flags;
 | |
| 
 | |
|         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
 | |
|         addr = get_page_addr_code(env, pc);
 | |
|         if (addr != -1) {
 | |
|             tb_invalidate_phys_range(addr, addr + 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_USER_ONLY
 | |
| /* in deterministic execution mode, instructions doing device I/Os
 | |
|  * must be at the end of the TB.
 | |
|  *
 | |
|  * Called by softmmu_template.h, with iothread mutex not held.
 | |
|  */
 | |
| void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
 | |
| {
 | |
| #if defined(TARGET_MIPS) || defined(TARGET_SH4)
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
| #endif
 | |
|     TranslationBlock *tb;
 | |
|     uint32_t n;
 | |
| 
 | |
|     tb = tcg_tb_lookup(retaddr);
 | |
|     if (!tb) {
 | |
|         cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
 | |
|                   (void *)retaddr);
 | |
|     }
 | |
|     cpu_restore_state_from_tb(cpu, tb, retaddr, true);
 | |
| 
 | |
|     /* On MIPS and SH, delay slot instructions can only be restarted if
 | |
|        they were already the first instruction in the TB.  If this is not
 | |
|        the first instruction in a TB then re-execute the preceding
 | |
|        branch.  */
 | |
|     n = 1;
 | |
| #if defined(TARGET_MIPS)
 | |
|     if ((env->hflags & MIPS_HFLAG_BMASK) != 0
 | |
|         && env->active_tc.PC != tb->pc) {
 | |
|         env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
 | |
|         cpu->icount_decr.u16.low++;
 | |
|         env->hflags &= ~MIPS_HFLAG_BMASK;
 | |
|         n = 2;
 | |
|     }
 | |
| #elif defined(TARGET_SH4)
 | |
|     if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
 | |
|         && env->pc != tb->pc) {
 | |
|         env->pc -= 2;
 | |
|         cpu->icount_decr.u16.low++;
 | |
|         env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
 | |
|         n = 2;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     /* Generate a new TB executing the I/O insn.  */
 | |
|     cpu->cflags_next_tb = curr_cflags() | CF_LAST_IO | n;
 | |
| 
 | |
|     if (tb_cflags(tb) & CF_NOCACHE) {
 | |
|         if (tb->orig_tb) {
 | |
|             /* Invalidate original TB if this TB was generated in
 | |
|              * cpu_exec_nocache() */
 | |
|             tb_phys_invalidate(tb->orig_tb, -1);
 | |
|         }
 | |
|         tcg_tb_remove(tb);
 | |
|     }
 | |
| 
 | |
|     /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
 | |
|      * the first in the TB) then we end up generating a whole new TB and
 | |
|      *  repeating the fault, which is horribly inefficient.
 | |
|      *  Better would be to execute just this insn uncached, or generate a
 | |
|      *  second new TB.
 | |
|      */
 | |
|     cpu_loop_exit_noexc(cpu);
 | |
| }
 | |
| 
 | |
| static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
 | |
| {
 | |
|     unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr);
 | |
| 
 | |
|     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
 | |
|         atomic_set(&cpu->tb_jmp_cache[i0 + i], NULL);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
 | |
| {
 | |
|     /* Discard jump cache entries for any tb which might potentially
 | |
|        overlap the flushed page.  */
 | |
|     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
 | |
|     tb_jmp_cache_clear_page(cpu, addr);
 | |
| }
 | |
| 
 | |
| static void print_qht_statistics(FILE *f, fprintf_function cpu_fprintf,
 | |
|                                  struct qht_stats hst)
 | |
| {
 | |
|     uint32_t hgram_opts;
 | |
|     size_t hgram_bins;
 | |
|     char *hgram;
 | |
| 
 | |
|     if (!hst.head_buckets) {
 | |
|         return;
 | |
|     }
 | |
|     cpu_fprintf(f, "TB hash buckets     %zu/%zu (%0.2f%% head buckets used)\n",
 | |
|                 hst.used_head_buckets, hst.head_buckets,
 | |
|                 (double)hst.used_head_buckets / hst.head_buckets * 100);
 | |
| 
 | |
|     hgram_opts =  QDIST_PR_BORDER | QDIST_PR_LABELS;
 | |
|     hgram_opts |= QDIST_PR_100X   | QDIST_PR_PERCENT;
 | |
|     if (qdist_xmax(&hst.occupancy) - qdist_xmin(&hst.occupancy) == 1) {
 | |
|         hgram_opts |= QDIST_PR_NODECIMAL;
 | |
|     }
 | |
|     hgram = qdist_pr(&hst.occupancy, 10, hgram_opts);
 | |
|     cpu_fprintf(f, "TB hash occupancy   %0.2f%% avg chain occ. Histogram: %s\n",
 | |
|                 qdist_avg(&hst.occupancy) * 100, hgram);
 | |
|     g_free(hgram);
 | |
| 
 | |
|     hgram_opts = QDIST_PR_BORDER | QDIST_PR_LABELS;
 | |
|     hgram_bins = qdist_xmax(&hst.chain) - qdist_xmin(&hst.chain);
 | |
|     if (hgram_bins > 10) {
 | |
|         hgram_bins = 10;
 | |
|     } else {
 | |
|         hgram_bins = 0;
 | |
|         hgram_opts |= QDIST_PR_NODECIMAL | QDIST_PR_NOBINRANGE;
 | |
|     }
 | |
|     hgram = qdist_pr(&hst.chain, hgram_bins, hgram_opts);
 | |
|     cpu_fprintf(f, "TB hash avg chain   %0.3f buckets. Histogram: %s\n",
 | |
|                 qdist_avg(&hst.chain), hgram);
 | |
|     g_free(hgram);
 | |
| }
 | |
| 
 | |
| struct tb_tree_stats {
 | |
|     size_t nb_tbs;
 | |
|     size_t host_size;
 | |
|     size_t target_size;
 | |
|     size_t max_target_size;
 | |
|     size_t direct_jmp_count;
 | |
|     size_t direct_jmp2_count;
 | |
|     size_t cross_page;
 | |
| };
 | |
| 
 | |
| static gboolean tb_tree_stats_iter(gpointer key, gpointer value, gpointer data)
 | |
| {
 | |
|     const TranslationBlock *tb = value;
 | |
|     struct tb_tree_stats *tst = data;
 | |
| 
 | |
|     tst->nb_tbs++;
 | |
|     tst->host_size += tb->tc.size;
 | |
|     tst->target_size += tb->size;
 | |
|     if (tb->size > tst->max_target_size) {
 | |
|         tst->max_target_size = tb->size;
 | |
|     }
 | |
|     if (tb->page_addr[1] != -1) {
 | |
|         tst->cross_page++;
 | |
|     }
 | |
|     if (tb->jmp_reset_offset[0] != TB_JMP_RESET_OFFSET_INVALID) {
 | |
|         tst->direct_jmp_count++;
 | |
|         if (tb->jmp_reset_offset[1] != TB_JMP_RESET_OFFSET_INVALID) {
 | |
|             tst->direct_jmp2_count++;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     struct tb_tree_stats tst = {};
 | |
|     struct qht_stats hst;
 | |
|     size_t nb_tbs, flush_full, flush_part, flush_elide;
 | |
| 
 | |
|     tcg_tb_foreach(tb_tree_stats_iter, &tst);
 | |
|     nb_tbs = tst.nb_tbs;
 | |
|     /* XXX: avoid using doubles ? */
 | |
|     cpu_fprintf(f, "Translation buffer state:\n");
 | |
|     /*
 | |
|      * Report total code size including the padding and TB structs;
 | |
|      * otherwise users might think "-tb-size" is not honoured.
 | |
|      * For avg host size we use the precise numbers from tb_tree_stats though.
 | |
|      */
 | |
|     cpu_fprintf(f, "gen code size       %zu/%zu\n",
 | |
|                 tcg_code_size(), tcg_code_capacity());
 | |
|     cpu_fprintf(f, "TB count            %zu\n", nb_tbs);
 | |
|     cpu_fprintf(f, "TB avg target size  %zu max=%zu bytes\n",
 | |
|                 nb_tbs ? tst.target_size / nb_tbs : 0,
 | |
|                 tst.max_target_size);
 | |
|     cpu_fprintf(f, "TB avg host size    %zu bytes (expansion ratio: %0.1f)\n",
 | |
|                 nb_tbs ? tst.host_size / nb_tbs : 0,
 | |
|                 tst.target_size ? (double)tst.host_size / tst.target_size : 0);
 | |
|     cpu_fprintf(f, "cross page TB count %zu (%zu%%)\n", tst.cross_page,
 | |
|             nb_tbs ? (tst.cross_page * 100) / nb_tbs : 0);
 | |
|     cpu_fprintf(f, "direct jump count   %zu (%zu%%) (2 jumps=%zu %zu%%)\n",
 | |
|                 tst.direct_jmp_count,
 | |
|                 nb_tbs ? (tst.direct_jmp_count * 100) / nb_tbs : 0,
 | |
|                 tst.direct_jmp2_count,
 | |
|                 nb_tbs ? (tst.direct_jmp2_count * 100) / nb_tbs : 0);
 | |
| 
 | |
|     qht_statistics_init(&tb_ctx.htable, &hst);
 | |
|     print_qht_statistics(f, cpu_fprintf, hst);
 | |
|     qht_statistics_destroy(&hst);
 | |
| 
 | |
|     cpu_fprintf(f, "\nStatistics:\n");
 | |
|     cpu_fprintf(f, "TB flush count      %u\n",
 | |
|                 atomic_read(&tb_ctx.tb_flush_count));
 | |
|     cpu_fprintf(f, "TB invalidate count %zu\n", tcg_tb_phys_invalidate_count());
 | |
| 
 | |
|     tlb_flush_counts(&flush_full, &flush_part, &flush_elide);
 | |
|     cpu_fprintf(f, "TLB full flushes    %zu\n", flush_full);
 | |
|     cpu_fprintf(f, "TLB partial flushes %zu\n", flush_part);
 | |
|     cpu_fprintf(f, "TLB elided flushes  %zu\n", flush_elide);
 | |
|     tcg_dump_info(f, cpu_fprintf);
 | |
| }
 | |
| 
 | |
| void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
 | |
| {
 | |
|     tcg_dump_op_count(f, cpu_fprintf);
 | |
| }
 | |
| 
 | |
| #else /* CONFIG_USER_ONLY */
 | |
| 
 | |
| void cpu_interrupt(CPUState *cpu, int mask)
 | |
| {
 | |
|     g_assert(qemu_mutex_iothread_locked());
 | |
|     cpu->interrupt_request |= mask;
 | |
|     atomic_set(&cpu->icount_decr.u16.high, -1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Walks guest process memory "regions" one by one
 | |
|  * and calls callback function 'fn' for each region.
 | |
|  */
 | |
| struct walk_memory_regions_data {
 | |
|     walk_memory_regions_fn fn;
 | |
|     void *priv;
 | |
|     target_ulong start;
 | |
|     int prot;
 | |
| };
 | |
| 
 | |
| static int walk_memory_regions_end(struct walk_memory_regions_data *data,
 | |
|                                    target_ulong end, int new_prot)
 | |
| {
 | |
|     if (data->start != -1u) {
 | |
|         int rc = data->fn(data->priv, data->start, end, data->prot);
 | |
|         if (rc != 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     data->start = (new_prot ? end : -1u);
 | |
|     data->prot = new_prot;
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static int walk_memory_regions_1(struct walk_memory_regions_data *data,
 | |
|                                  target_ulong base, int level, void **lp)
 | |
| {
 | |
|     target_ulong pa;
 | |
|     int i, rc;
 | |
| 
 | |
|     if (*lp == NULL) {
 | |
|         return walk_memory_regions_end(data, base, 0);
 | |
|     }
 | |
| 
 | |
|     if (level == 0) {
 | |
|         PageDesc *pd = *lp;
 | |
| 
 | |
|         for (i = 0; i < V_L2_SIZE; ++i) {
 | |
|             int prot = pd[i].flags;
 | |
| 
 | |
|             pa = base | (i << TARGET_PAGE_BITS);
 | |
|             if (prot != data->prot) {
 | |
|                 rc = walk_memory_regions_end(data, pa, prot);
 | |
|                 if (rc != 0) {
 | |
|                     return rc;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         void **pp = *lp;
 | |
| 
 | |
|         for (i = 0; i < V_L2_SIZE; ++i) {
 | |
|             pa = base | ((target_ulong)i <<
 | |
|                 (TARGET_PAGE_BITS + V_L2_BITS * level));
 | |
|             rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
 | |
|             if (rc != 0) {
 | |
|                 return rc;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
 | |
| {
 | |
|     struct walk_memory_regions_data data;
 | |
|     uintptr_t i, l1_sz = v_l1_size;
 | |
| 
 | |
|     data.fn = fn;
 | |
|     data.priv = priv;
 | |
|     data.start = -1u;
 | |
|     data.prot = 0;
 | |
| 
 | |
|     for (i = 0; i < l1_sz; i++) {
 | |
|         target_ulong base = i << (v_l1_shift + TARGET_PAGE_BITS);
 | |
|         int rc = walk_memory_regions_1(&data, base, v_l2_levels, l1_map + i);
 | |
|         if (rc != 0) {
 | |
|             return rc;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return walk_memory_regions_end(&data, 0, 0);
 | |
| }
 | |
| 
 | |
| static int dump_region(void *priv, target_ulong start,
 | |
|     target_ulong end, unsigned long prot)
 | |
| {
 | |
|     FILE *f = (FILE *)priv;
 | |
| 
 | |
|     (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
 | |
|         " "TARGET_FMT_lx" %c%c%c\n",
 | |
|         start, end, end - start,
 | |
|         ((prot & PAGE_READ) ? 'r' : '-'),
 | |
|         ((prot & PAGE_WRITE) ? 'w' : '-'),
 | |
|         ((prot & PAGE_EXEC) ? 'x' : '-'));
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* dump memory mappings */
 | |
| void page_dump(FILE *f)
 | |
| {
 | |
|     const int length = sizeof(target_ulong) * 2;
 | |
|     (void) fprintf(f, "%-*s %-*s %-*s %s\n",
 | |
|             length, "start", length, "end", length, "size", "prot");
 | |
|     walk_memory_regions(f, dump_region);
 | |
| }
 | |
| 
 | |
| int page_get_flags(target_ulong address)
 | |
| {
 | |
|     PageDesc *p;
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         return 0;
 | |
|     }
 | |
|     return p->flags;
 | |
| }
 | |
| 
 | |
| /* Modify the flags of a page and invalidate the code if necessary.
 | |
|    The flag PAGE_WRITE_ORG is positioned automatically depending
 | |
|    on PAGE_WRITE.  The mmap_lock should already be held.  */
 | |
| void page_set_flags(target_ulong start, target_ulong end, int flags)
 | |
| {
 | |
|     target_ulong addr, len;
 | |
| 
 | |
|     /* This function should never be called with addresses outside the
 | |
|        guest address space.  If this assert fires, it probably indicates
 | |
|        a missing call to h2g_valid.  */
 | |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | |
|     assert(end <= ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | |
| #endif
 | |
|     assert(start < end);
 | |
|     assert_memory_lock();
 | |
| 
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
|     end = TARGET_PAGE_ALIGN(end);
 | |
| 
 | |
|     if (flags & PAGE_WRITE) {
 | |
|         flags |= PAGE_WRITE_ORG;
 | |
|     }
 | |
| 
 | |
|     for (addr = start, len = end - start;
 | |
|          len != 0;
 | |
|          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | |
|         PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
 | |
| 
 | |
|         /* If the write protection bit is set, then we invalidate
 | |
|            the code inside.  */
 | |
|         if (!(p->flags & PAGE_WRITE) &&
 | |
|             (flags & PAGE_WRITE) &&
 | |
|             p->first_tb) {
 | |
|             tb_invalidate_phys_page(addr, 0);
 | |
|         }
 | |
|         p->flags = flags;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int page_check_range(target_ulong start, target_ulong len, int flags)
 | |
| {
 | |
|     PageDesc *p;
 | |
|     target_ulong end;
 | |
|     target_ulong addr;
 | |
| 
 | |
|     /* This function should never be called with addresses outside the
 | |
|        guest address space.  If this assert fires, it probably indicates
 | |
|        a missing call to h2g_valid.  */
 | |
| #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
 | |
|     assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
 | |
| #endif
 | |
| 
 | |
|     if (len == 0) {
 | |
|         return 0;
 | |
|     }
 | |
|     if (start + len - 1 < start) {
 | |
|         /* We've wrapped around.  */
 | |
|         return -1;
 | |
|     }
 | |
| 
 | |
|     /* must do before we loose bits in the next step */
 | |
|     end = TARGET_PAGE_ALIGN(start + len);
 | |
|     start = start & TARGET_PAGE_MASK;
 | |
| 
 | |
|     for (addr = start, len = end - start;
 | |
|          len != 0;
 | |
|          len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
 | |
|         p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|         if (!p) {
 | |
|             return -1;
 | |
|         }
 | |
|         if (!(p->flags & PAGE_VALID)) {
 | |
|             return -1;
 | |
|         }
 | |
| 
 | |
|         if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
 | |
|             return -1;
 | |
|         }
 | |
|         if (flags & PAGE_WRITE) {
 | |
|             if (!(p->flags & PAGE_WRITE_ORG)) {
 | |
|                 return -1;
 | |
|             }
 | |
|             /* unprotect the page if it was put read-only because it
 | |
|                contains translated code */
 | |
|             if (!(p->flags & PAGE_WRITE)) {
 | |
|                 if (!page_unprotect(addr, 0)) {
 | |
|                     return -1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* called from signal handler: invalidate the code and unprotect the
 | |
|  * page. Return 0 if the fault was not handled, 1 if it was handled,
 | |
|  * and 2 if it was handled but the caller must cause the TB to be
 | |
|  * immediately exited. (We can only return 2 if the 'pc' argument is
 | |
|  * non-zero.)
 | |
|  */
 | |
| int page_unprotect(target_ulong address, uintptr_t pc)
 | |
| {
 | |
|     unsigned int prot;
 | |
|     bool current_tb_invalidated;
 | |
|     PageDesc *p;
 | |
|     target_ulong host_start, host_end, addr;
 | |
| 
 | |
|     /* Technically this isn't safe inside a signal handler.  However we
 | |
|        know this only ever happens in a synchronous SEGV handler, so in
 | |
|        practice it seems to be ok.  */
 | |
|     mmap_lock();
 | |
| 
 | |
|     p = page_find(address >> TARGET_PAGE_BITS);
 | |
|     if (!p) {
 | |
|         mmap_unlock();
 | |
|         return 0;
 | |
|     }
 | |
| 
 | |
|     /* if the page was really writable, then we change its
 | |
|        protection back to writable */
 | |
|     if (p->flags & PAGE_WRITE_ORG) {
 | |
|         current_tb_invalidated = false;
 | |
|         if (p->flags & PAGE_WRITE) {
 | |
|             /* If the page is actually marked WRITE then assume this is because
 | |
|              * this thread raced with another one which got here first and
 | |
|              * set the page to PAGE_WRITE and did the TB invalidate for us.
 | |
|              */
 | |
| #ifdef TARGET_HAS_PRECISE_SMC
 | |
|             TranslationBlock *current_tb = tcg_tb_lookup(pc);
 | |
|             if (current_tb) {
 | |
|                 current_tb_invalidated = tb_cflags(current_tb) & CF_INVALID;
 | |
|             }
 | |
| #endif
 | |
|         } else {
 | |
|             host_start = address & qemu_host_page_mask;
 | |
|             host_end = host_start + qemu_host_page_size;
 | |
| 
 | |
|             prot = 0;
 | |
|             for (addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE) {
 | |
|                 p = page_find(addr >> TARGET_PAGE_BITS);
 | |
|                 p->flags |= PAGE_WRITE;
 | |
|                 prot |= p->flags;
 | |
| 
 | |
|                 /* and since the content will be modified, we must invalidate
 | |
|                    the corresponding translated code. */
 | |
|                 current_tb_invalidated |= tb_invalidate_phys_page(addr, pc);
 | |
| #ifdef CONFIG_USER_ONLY
 | |
|                 if (DEBUG_TB_CHECK_GATE) {
 | |
|                     tb_invalidate_check(addr);
 | |
|                 }
 | |
| #endif
 | |
|             }
 | |
|             mprotect((void *)g2h(host_start), qemu_host_page_size,
 | |
|                      prot & PAGE_BITS);
 | |
|         }
 | |
|         mmap_unlock();
 | |
|         /* If current TB was invalidated return to main loop */
 | |
|         return current_tb_invalidated ? 2 : 1;
 | |
|     }
 | |
|     mmap_unlock();
 | |
|     return 0;
 | |
| }
 | |
| #endif /* CONFIG_USER_ONLY */
 | |
| 
 | |
| /* This is a wrapper for common code that can not use CONFIG_SOFTMMU */
 | |
| void tcg_flush_softmmu_tlb(CPUState *cs)
 | |
| {
 | |
| #ifdef CONFIG_SOFTMMU
 | |
|     tlb_flush(cs);
 | |
| #endif
 | |
| }
 |