 a859595791
			
		
	
	
		a859595791
		
	
	
	
	
		
			
			Upon activating an interrupt, set the corresponding priority bit in the APR/NSAPR registers without touching the currently set bits. In the event of nested interrupts, the GIC will then have the information it needs to restore the priority of the pre-empted interrupt once the higher priority interrupt finishes execution. Signed-off-by: François Baldassari <francois@pebble.com> Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			1316 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1316 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM Generic/Distributed Interrupt Controller
 | |
|  *
 | |
|  * Copyright (c) 2006-2007 CodeSourcery.
 | |
|  * Written by Paul Brook
 | |
|  *
 | |
|  * This code is licensed under the GPL.
 | |
|  */
 | |
| 
 | |
| /* This file contains implementation code for the RealView EB interrupt
 | |
|  * controller, MPCore distributed interrupt controller and ARMv7-M
 | |
|  * Nested Vectored Interrupt Controller.
 | |
|  * It is compiled in two ways:
 | |
|  *  (1) as a standalone file to produce a sysbus device which is a GIC
 | |
|  *  that can be used on the realview board and as one of the builtin
 | |
|  *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
 | |
|  *  (2) by being directly #included into armv7m_nvic.c to produce the
 | |
|  *  armv7m_nvic device.
 | |
|  */
 | |
| 
 | |
| #include "hw/sysbus.h"
 | |
| #include "gic_internal.h"
 | |
| #include "qom/cpu.h"
 | |
| 
 | |
| //#define DEBUG_GIC
 | |
| 
 | |
| #ifdef DEBUG_GIC
 | |
| #define DPRINTF(fmt, ...) \
 | |
| do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
 | |
| #else
 | |
| #define DPRINTF(fmt, ...) do {} while(0)
 | |
| #endif
 | |
| 
 | |
| static const uint8_t gic_id[] = {
 | |
|     0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
 | |
| };
 | |
| 
 | |
| static inline int gic_get_current_cpu(GICState *s)
 | |
| {
 | |
|     if (s->num_cpu > 1) {
 | |
|         return current_cpu->cpu_index;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| /* Return true if this GIC config has interrupt groups, which is
 | |
|  * true if we're a GICv2, or a GICv1 with the security extensions.
 | |
|  */
 | |
| static inline bool gic_has_groups(GICState *s)
 | |
| {
 | |
|     return s->revision == 2 || s->security_extn;
 | |
| }
 | |
| 
 | |
| /* TODO: Many places that call this routine could be optimized.  */
 | |
| /* Update interrupt status after enabled or pending bits have been changed.  */
 | |
| void gic_update(GICState *s)
 | |
| {
 | |
|     int best_irq;
 | |
|     int best_prio;
 | |
|     int irq;
 | |
|     int irq_level, fiq_level;
 | |
|     int cpu;
 | |
|     int cm;
 | |
| 
 | |
|     for (cpu = 0; cpu < s->num_cpu; cpu++) {
 | |
|         cm = 1 << cpu;
 | |
|         s->current_pending[cpu] = 1023;
 | |
|         if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
 | |
|             || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
 | |
|             qemu_irq_lower(s->parent_irq[cpu]);
 | |
|             qemu_irq_lower(s->parent_fiq[cpu]);
 | |
|             continue;
 | |
|         }
 | |
|         best_prio = 0x100;
 | |
|         best_irq = 1023;
 | |
|         for (irq = 0; irq < s->num_irq; irq++) {
 | |
|             if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
 | |
|                 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
 | |
|                 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
 | |
|                     best_prio = GIC_GET_PRIORITY(irq, cpu);
 | |
|                     best_irq = irq;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         irq_level = fiq_level = 0;
 | |
| 
 | |
|         if (best_prio < s->priority_mask[cpu]) {
 | |
|             s->current_pending[cpu] = best_irq;
 | |
|             if (best_prio < s->running_priority[cpu]) {
 | |
|                 int group = GIC_TEST_GROUP(best_irq, cm);
 | |
| 
 | |
|                 if (extract32(s->ctlr, group, 1) &&
 | |
|                     extract32(s->cpu_ctlr[cpu], group, 1)) {
 | |
|                     if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
 | |
|                         DPRINTF("Raised pending FIQ %d (cpu %d)\n",
 | |
|                                 best_irq, cpu);
 | |
|                         fiq_level = 1;
 | |
|                     } else {
 | |
|                         DPRINTF("Raised pending IRQ %d (cpu %d)\n",
 | |
|                                 best_irq, cpu);
 | |
|                         irq_level = 1;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         qemu_set_irq(s->parent_irq[cpu], irq_level);
 | |
|         qemu_set_irq(s->parent_fiq[cpu], fiq_level);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void gic_set_pending_private(GICState *s, int cpu, int irq)
 | |
| {
 | |
|     int cm = 1 << cpu;
 | |
| 
 | |
|     if (gic_test_pending(s, irq, cm)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     DPRINTF("Set %d pending cpu %d\n", irq, cpu);
 | |
|     GIC_SET_PENDING(irq, cm);
 | |
|     gic_update(s);
 | |
| }
 | |
| 
 | |
| static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
 | |
|                                  int cm, int target)
 | |
| {
 | |
|     if (level) {
 | |
|         GIC_SET_LEVEL(irq, cm);
 | |
|         if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
 | |
|             DPRINTF("Set %d pending mask %x\n", irq, target);
 | |
|             GIC_SET_PENDING(irq, target);
 | |
|         }
 | |
|     } else {
 | |
|         GIC_CLEAR_LEVEL(irq, cm);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gic_set_irq_generic(GICState *s, int irq, int level,
 | |
|                                 int cm, int target)
 | |
| {
 | |
|     if (level) {
 | |
|         GIC_SET_LEVEL(irq, cm);
 | |
|         DPRINTF("Set %d pending mask %x\n", irq, target);
 | |
|         if (GIC_TEST_EDGE_TRIGGER(irq)) {
 | |
|             GIC_SET_PENDING(irq, target);
 | |
|         }
 | |
|     } else {
 | |
|         GIC_CLEAR_LEVEL(irq, cm);
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Process a change in an external IRQ input.  */
 | |
| static void gic_set_irq(void *opaque, int irq, int level)
 | |
| {
 | |
|     /* Meaning of the 'irq' parameter:
 | |
|      *  [0..N-1] : external interrupts
 | |
|      *  [N..N+31] : PPI (internal) interrupts for CPU 0
 | |
|      *  [N+32..N+63] : PPI (internal interrupts for CPU 1
 | |
|      *  ...
 | |
|      */
 | |
|     GICState *s = (GICState *)opaque;
 | |
|     int cm, target;
 | |
|     if (irq < (s->num_irq - GIC_INTERNAL)) {
 | |
|         /* The first external input line is internal interrupt 32.  */
 | |
|         cm = ALL_CPU_MASK;
 | |
|         irq += GIC_INTERNAL;
 | |
|         target = GIC_TARGET(irq);
 | |
|     } else {
 | |
|         int cpu;
 | |
|         irq -= (s->num_irq - GIC_INTERNAL);
 | |
|         cpu = irq / GIC_INTERNAL;
 | |
|         irq %= GIC_INTERNAL;
 | |
|         cm = 1 << cpu;
 | |
|         target = cm;
 | |
|     }
 | |
| 
 | |
|     assert(irq >= GIC_NR_SGIS);
 | |
| 
 | |
|     if (level == GIC_TEST_LEVEL(irq, cm)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|         gic_set_irq_11mpcore(s, irq, level, cm, target);
 | |
|     } else {
 | |
|         gic_set_irq_generic(s, irq, level, cm, target);
 | |
|     }
 | |
| 
 | |
|     gic_update(s);
 | |
| }
 | |
| 
 | |
| static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
 | |
|                                             MemTxAttrs attrs)
 | |
| {
 | |
|     uint16_t pending_irq = s->current_pending[cpu];
 | |
| 
 | |
|     if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
 | |
|         int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
 | |
|         /* On a GIC without the security extensions, reading this register
 | |
|          * behaves in the same way as a secure access to a GIC with them.
 | |
|          */
 | |
|         bool secure = !s->security_extn || attrs.secure;
 | |
| 
 | |
|         if (group == 0 && !secure) {
 | |
|             /* Group0 interrupts hidden from Non-secure access */
 | |
|             return 1023;
 | |
|         }
 | |
|         if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
 | |
|             /* Group1 interrupts only seen by Secure access if
 | |
|              * AckCtl bit set.
 | |
|              */
 | |
|             return 1022;
 | |
|         }
 | |
|     }
 | |
|     return pending_irq;
 | |
| }
 | |
| 
 | |
| static int gic_get_group_priority(GICState *s, int cpu, int irq)
 | |
| {
 | |
|     /* Return the group priority of the specified interrupt
 | |
|      * (which is the top bits of its priority, with the number
 | |
|      * of bits masked determined by the applicable binary point register).
 | |
|      */
 | |
|     int bpr;
 | |
|     uint32_t mask;
 | |
| 
 | |
|     if (gic_has_groups(s) &&
 | |
|         !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
 | |
|         GIC_TEST_GROUP(irq, (1 << cpu))) {
 | |
|         bpr = s->abpr[cpu];
 | |
|     } else {
 | |
|         bpr = s->bpr[cpu];
 | |
|     }
 | |
| 
 | |
|     /* a BPR of 0 means the group priority bits are [7:1];
 | |
|      * a BPR of 1 means they are [7:2], and so on down to
 | |
|      * a BPR of 7 meaning no group priority bits at all.
 | |
|      */
 | |
|     mask = ~0U << ((bpr & 7) + 1);
 | |
| 
 | |
|     return GIC_GET_PRIORITY(irq, cpu) & mask;
 | |
| }
 | |
| 
 | |
| static void gic_activate_irq(GICState *s, int cpu, int irq)
 | |
| {
 | |
|     /* Set the appropriate Active Priority Register bit for this IRQ,
 | |
|      * and update the running priority.
 | |
|      */
 | |
|     int prio = gic_get_group_priority(s, cpu, irq);
 | |
|     int preemption_level = prio >> (GIC_MIN_BPR + 1);
 | |
|     int regno = preemption_level / 32;
 | |
|     int bitno = preemption_level % 32;
 | |
| 
 | |
|     if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
 | |
|         s->nsapr[regno][cpu] |= (1 << bitno);
 | |
|     } else {
 | |
|         s->apr[regno][cpu] |= (1 << bitno);
 | |
|     }
 | |
| 
 | |
|     s->running_priority[cpu] = prio;
 | |
|     GIC_SET_ACTIVE(irq, 1 << cpu);
 | |
| }
 | |
| 
 | |
| static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
 | |
| {
 | |
|     /* Recalculate the current running priority for this CPU based
 | |
|      * on the set bits in the Active Priority Registers.
 | |
|      */
 | |
|     int i;
 | |
|     for (i = 0; i < GIC_NR_APRS; i++) {
 | |
|         uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
 | |
|         if (!apr) {
 | |
|             continue;
 | |
|         }
 | |
|         return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
 | |
|     }
 | |
|     return 0x100;
 | |
| }
 | |
| 
 | |
| static void gic_drop_prio(GICState *s, int cpu, int group)
 | |
| {
 | |
|     /* Drop the priority of the currently active interrupt in the
 | |
|      * specified group.
 | |
|      *
 | |
|      * Note that we can guarantee (because of the requirement to nest
 | |
|      * GICC_IAR reads [which activate an interrupt and raise priority]
 | |
|      * with GICC_EOIR writes [which drop the priority for the interrupt])
 | |
|      * that the interrupt we're being called for is the highest priority
 | |
|      * active interrupt, meaning that it has the lowest set bit in the
 | |
|      * APR registers.
 | |
|      *
 | |
|      * If the guest does not honour the ordering constraints then the
 | |
|      * behaviour of the GIC is UNPREDICTABLE, which for us means that
 | |
|      * the values of the APR registers might become incorrect and the
 | |
|      * running priority will be wrong, so interrupts that should preempt
 | |
|      * might not do so, and interrupts that should not preempt might do so.
 | |
|      */
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < GIC_NR_APRS; i++) {
 | |
|         uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
 | |
|         if (!*papr) {
 | |
|             continue;
 | |
|         }
 | |
|         /* Clear lowest set bit */
 | |
|         *papr &= *papr - 1;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
 | |
| }
 | |
| 
 | |
| uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
 | |
| {
 | |
|     int ret, irq, src;
 | |
|     int cm = 1 << cpu;
 | |
| 
 | |
|     /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
 | |
|      * for the case where this GIC supports grouping and the pending interrupt
 | |
|      * is in the wrong group.
 | |
|      */
 | |
|     irq = gic_get_current_pending_irq(s, cpu, attrs);
 | |
| 
 | |
|     if (irq >= GIC_MAXIRQ) {
 | |
|         DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
 | |
|         return irq;
 | |
|     }
 | |
| 
 | |
|     if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
 | |
|         DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
 | |
|         return 1023;
 | |
|     }
 | |
| 
 | |
|     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|         /* Clear pending flags for both level and edge triggered interrupts.
 | |
|          * Level triggered IRQs will be reasserted once they become inactive.
 | |
|          */
 | |
|         GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
 | |
|         ret = irq;
 | |
|     } else {
 | |
|         if (irq < GIC_NR_SGIS) {
 | |
|             /* Lookup the source CPU for the SGI and clear this in the
 | |
|              * sgi_pending map.  Return the src and clear the overall pending
 | |
|              * state on this CPU if the SGI is not pending from any CPUs.
 | |
|              */
 | |
|             assert(s->sgi_pending[irq][cpu] != 0);
 | |
|             src = ctz32(s->sgi_pending[irq][cpu]);
 | |
|             s->sgi_pending[irq][cpu] &= ~(1 << src);
 | |
|             if (s->sgi_pending[irq][cpu] == 0) {
 | |
|                 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
 | |
|             }
 | |
|             ret = irq | ((src & 0x7) << 10);
 | |
|         } else {
 | |
|             /* Clear pending state for both level and edge triggered
 | |
|              * interrupts. (level triggered interrupts with an active line
 | |
|              * remain pending, see gic_test_pending)
 | |
|              */
 | |
|             GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
 | |
|             ret = irq;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     gic_activate_irq(s, cpu, irq);
 | |
|     gic_update(s);
 | |
|     DPRINTF("ACK %d\n", irq);
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
 | |
|                       MemTxAttrs attrs)
 | |
| {
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
 | |
|             return; /* Ignore Non-secure access of Group0 IRQ */
 | |
|         }
 | |
|         val = 0x80 | (val >> 1); /* Non-secure view */
 | |
|     }
 | |
| 
 | |
|     if (irq < GIC_INTERNAL) {
 | |
|         s->priority1[irq][cpu] = val;
 | |
|     } else {
 | |
|         s->priority2[(irq) - GIC_INTERNAL] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
 | |
|                                  MemTxAttrs attrs)
 | |
| {
 | |
|     uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
 | |
| 
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
 | |
|             return 0; /* Non-secure access cannot read priority of Group0 IRQ */
 | |
|         }
 | |
|         prio = (prio << 1) & 0xff; /* Non-secure view */
 | |
|     }
 | |
|     return prio;
 | |
| }
 | |
| 
 | |
| static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
 | |
|                                   MemTxAttrs attrs)
 | |
| {
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         if (s->priority_mask[cpu] & 0x80) {
 | |
|             /* Priority Mask in upper half */
 | |
|             pmask = 0x80 | (pmask >> 1);
 | |
|         } else {
 | |
|             /* Non-secure write ignored if priority mask is in lower half */
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     s->priority_mask[cpu] = pmask;
 | |
| }
 | |
| 
 | |
| static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
 | |
| {
 | |
|     uint32_t pmask = s->priority_mask[cpu];
 | |
| 
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         if (pmask & 0x80) {
 | |
|             /* Priority Mask in upper half, return Non-secure view */
 | |
|             pmask = (pmask << 1) & 0xff;
 | |
|         } else {
 | |
|             /* Priority Mask in lower half, RAZ */
 | |
|             pmask = 0;
 | |
|         }
 | |
|     }
 | |
|     return pmask;
 | |
| }
 | |
| 
 | |
| static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
 | |
| {
 | |
|     uint32_t ret = s->cpu_ctlr[cpu];
 | |
| 
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         /* Construct the NS banked view of GICC_CTLR from the correct
 | |
|          * bits of the S banked view. We don't need to move the bypass
 | |
|          * control bits because we don't implement that (IMPDEF) part
 | |
|          * of the GIC architecture.
 | |
|          */
 | |
|         ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
 | |
|     }
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
 | |
|                                 MemTxAttrs attrs)
 | |
| {
 | |
|     uint32_t mask;
 | |
| 
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         /* The NS view can only write certain bits in the register;
 | |
|          * the rest are unchanged
 | |
|          */
 | |
|         mask = GICC_CTLR_EN_GRP1;
 | |
|         if (s->revision == 2) {
 | |
|             mask |= GICC_CTLR_EOIMODE_NS;
 | |
|         }
 | |
|         s->cpu_ctlr[cpu] &= ~mask;
 | |
|         s->cpu_ctlr[cpu] |= (value << 1) & mask;
 | |
|     } else {
 | |
|         if (s->revision == 2) {
 | |
|             mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
 | |
|         } else {
 | |
|             mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
 | |
|         }
 | |
|         s->cpu_ctlr[cpu] = value & mask;
 | |
|     }
 | |
|     DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
 | |
|             "Group1 Interrupts %sabled\n", cpu,
 | |
|             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
 | |
|             (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
 | |
| }
 | |
| 
 | |
| static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
 | |
| {
 | |
|     if (s->security_extn && !attrs.secure) {
 | |
|         if (s->running_priority[cpu] & 0x80) {
 | |
|             /* Running priority in upper half of range: return the Non-secure
 | |
|              * view of the priority.
 | |
|              */
 | |
|             return s->running_priority[cpu] << 1;
 | |
|         } else {
 | |
|             /* Running priority in lower half of range: RAZ */
 | |
|             return 0;
 | |
|         }
 | |
|     } else {
 | |
|         return s->running_priority[cpu];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
 | |
| {
 | |
|     int cm = 1 << cpu;
 | |
|     int group;
 | |
| 
 | |
|     DPRINTF("EOI %d\n", irq);
 | |
|     if (irq >= s->num_irq) {
 | |
|         /* This handles two cases:
 | |
|          * 1. If software writes the ID of a spurious interrupt [ie 1023]
 | |
|          * to the GICC_EOIR, the GIC ignores that write.
 | |
|          * 2. If software writes the number of a non-existent interrupt
 | |
|          * this must be a subcase of "value written does not match the last
 | |
|          * valid interrupt value read from the Interrupt Acknowledge
 | |
|          * register" and so this is UNPREDICTABLE. We choose to ignore it.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
|     if (s->running_priority[cpu] == 0x100) {
 | |
|         return; /* No active IRQ.  */
 | |
|     }
 | |
| 
 | |
|     if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|         /* Mark level triggered interrupts as pending if they are still
 | |
|            raised.  */
 | |
|         if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
 | |
|             && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
 | |
|             DPRINTF("Set %d pending mask %x\n", irq, cm);
 | |
|             GIC_SET_PENDING(irq, cm);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
 | |
| 
 | |
|     if (s->security_extn && !attrs.secure && !group) {
 | |
|         DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
 | |
|      * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
 | |
|      * i.e. go ahead and complete the irq anyway.
 | |
|      */
 | |
| 
 | |
|     gic_drop_prio(s, cpu, group);
 | |
|     GIC_CLEAR_ACTIVE(irq, cm);
 | |
|     gic_update(s);
 | |
| }
 | |
| 
 | |
| static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
 | |
| {
 | |
|     GICState *s = (GICState *)opaque;
 | |
|     uint32_t res;
 | |
|     int irq;
 | |
|     int i;
 | |
|     int cpu;
 | |
|     int cm;
 | |
|     int mask;
 | |
| 
 | |
|     cpu = gic_get_current_cpu(s);
 | |
|     cm = 1 << cpu;
 | |
|     if (offset < 0x100) {
 | |
|         if (offset == 0) {      /* GICD_CTLR */
 | |
|             if (s->security_extn && !attrs.secure) {
 | |
|                 /* The NS bank of this register is just an alias of the
 | |
|                  * EnableGrp1 bit in the S bank version.
 | |
|                  */
 | |
|                 return extract32(s->ctlr, 1, 1);
 | |
|             } else {
 | |
|                 return s->ctlr;
 | |
|             }
 | |
|         }
 | |
|         if (offset == 4)
 | |
|             /* Interrupt Controller Type Register */
 | |
|             return ((s->num_irq / 32) - 1)
 | |
|                     | ((s->num_cpu - 1) << 5)
 | |
|                     | (s->security_extn << 10);
 | |
|         if (offset < 0x08)
 | |
|             return 0;
 | |
|         if (offset >= 0x80) {
 | |
|             /* Interrupt Group Registers: these RAZ/WI if this is an NS
 | |
|              * access to a GIC with the security extensions, or if the GIC
 | |
|              * doesn't have groups at all.
 | |
|              */
 | |
|             res = 0;
 | |
|             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 | |
|                 /* Every byte offset holds 8 group status bits */
 | |
|                 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
 | |
|                 if (irq >= s->num_irq) {
 | |
|                     goto bad_reg;
 | |
|                 }
 | |
|                 for (i = 0; i < 8; i++) {
 | |
|                     if (GIC_TEST_GROUP(irq + i, cm)) {
 | |
|                         res |= (1 << i);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             return res;
 | |
|         }
 | |
|         goto bad_reg;
 | |
|     } else if (offset < 0x200) {
 | |
|         /* Interrupt Set/Clear Enable.  */
 | |
|         if (offset < 0x180)
 | |
|             irq = (offset - 0x100) * 8;
 | |
|         else
 | |
|             irq = (offset - 0x180) * 8;
 | |
|         irq += GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         res = 0;
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             if (GIC_TEST_ENABLED(irq + i, cm)) {
 | |
|                 res |= (1 << i);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x300) {
 | |
|         /* Interrupt Set/Clear Pending.  */
 | |
|         if (offset < 0x280)
 | |
|             irq = (offset - 0x200) * 8;
 | |
|         else
 | |
|             irq = (offset - 0x280) * 8;
 | |
|         irq += GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         res = 0;
 | |
|         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             if (gic_test_pending(s, irq + i, mask)) {
 | |
|                 res |= (1 << i);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x400) {
 | |
|         /* Interrupt Active.  */
 | |
|         irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         res = 0;
 | |
|         mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             if (GIC_TEST_ACTIVE(irq + i, mask)) {
 | |
|                 res |= (1 << i);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x800) {
 | |
|         /* Interrupt Priority.  */
 | |
|         irq = (offset - 0x400) + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         res = gic_get_priority(s, cpu, irq, attrs);
 | |
|     } else if (offset < 0xc00) {
 | |
|         /* Interrupt CPU Target.  */
 | |
|         if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
 | |
|             /* For uniprocessor GICs these RAZ/WI */
 | |
|             res = 0;
 | |
|         } else {
 | |
|             irq = (offset - 0x800) + GIC_BASE_IRQ;
 | |
|             if (irq >= s->num_irq) {
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|             if (irq >= 29 && irq <= 31) {
 | |
|                 res = cm;
 | |
|             } else {
 | |
|                 res = GIC_TARGET(irq);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0xf00) {
 | |
|         /* Interrupt Configuration.  */
 | |
|         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         res = 0;
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             if (GIC_TEST_MODEL(irq + i))
 | |
|                 res |= (1 << (i * 2));
 | |
|             if (GIC_TEST_EDGE_TRIGGER(irq + i))
 | |
|                 res |= (2 << (i * 2));
 | |
|         }
 | |
|     } else if (offset < 0xf10) {
 | |
|         goto bad_reg;
 | |
|     } else if (offset < 0xf30) {
 | |
|         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|             goto bad_reg;
 | |
|         }
 | |
| 
 | |
|         if (offset < 0xf20) {
 | |
|             /* GICD_CPENDSGIRn */
 | |
|             irq = (offset - 0xf10);
 | |
|         } else {
 | |
|             irq = (offset - 0xf20);
 | |
|             /* GICD_SPENDSGIRn */
 | |
|         }
 | |
| 
 | |
|         res = s->sgi_pending[irq][cpu];
 | |
|     } else if (offset < 0xfe0) {
 | |
|         goto bad_reg;
 | |
|     } else /* offset >= 0xfe0 */ {
 | |
|         if (offset & 3) {
 | |
|             res = 0;
 | |
|         } else {
 | |
|             res = gic_id[(offset - 0xfe0) >> 2];
 | |
|         }
 | |
|     }
 | |
|     return res;
 | |
| bad_reg:
 | |
|     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                   "gic_dist_readb: Bad offset %x\n", (int)offset);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
 | |
|                                  unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         *data = gic_dist_readb(opaque, offset, attrs);
 | |
|         return MEMTX_OK;
 | |
|     case 2:
 | |
|         *data = gic_dist_readb(opaque, offset, attrs);
 | |
|         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
 | |
|         return MEMTX_OK;
 | |
|     case 4:
 | |
|         *data = gic_dist_readb(opaque, offset, attrs);
 | |
|         *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
 | |
|         *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
 | |
|         *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void gic_dist_writeb(void *opaque, hwaddr offset,
 | |
|                             uint32_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     GICState *s = (GICState *)opaque;
 | |
|     int irq;
 | |
|     int i;
 | |
|     int cpu;
 | |
| 
 | |
|     cpu = gic_get_current_cpu(s);
 | |
|     if (offset < 0x100) {
 | |
|         if (offset == 0) {
 | |
|             if (s->security_extn && !attrs.secure) {
 | |
|                 /* NS version is just an alias of the S version's bit 1 */
 | |
|                 s->ctlr = deposit32(s->ctlr, 1, 1, value);
 | |
|             } else if (gic_has_groups(s)) {
 | |
|                 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
 | |
|             } else {
 | |
|                 s->ctlr = value & GICD_CTLR_EN_GRP0;
 | |
|             }
 | |
|             DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
 | |
|                     s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
 | |
|                     s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
 | |
|         } else if (offset < 4) {
 | |
|             /* ignored.  */
 | |
|         } else if (offset >= 0x80) {
 | |
|             /* Interrupt Group Registers: RAZ/WI for NS access to secure
 | |
|              * GIC, or for GICs without groups.
 | |
|              */
 | |
|             if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
 | |
|                 /* Every byte offset holds 8 group status bits */
 | |
|                 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
 | |
|                 if (irq >= s->num_irq) {
 | |
|                     goto bad_reg;
 | |
|                 }
 | |
|                 for (i = 0; i < 8; i++) {
 | |
|                     /* Group bits are banked for private interrupts */
 | |
|                     int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
 | |
|                     if (value & (1 << i)) {
 | |
|                         /* Group1 (Non-secure) */
 | |
|                         GIC_SET_GROUP(irq + i, cm);
 | |
|                     } else {
 | |
|                         /* Group0 (Secure) */
 | |
|                         GIC_CLEAR_GROUP(irq + i, cm);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } else {
 | |
|             goto bad_reg;
 | |
|         }
 | |
|     } else if (offset < 0x180) {
 | |
|         /* Interrupt Set Enable.  */
 | |
|         irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         if (irq < GIC_NR_SGIS) {
 | |
|             value = 0xff;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             if (value & (1 << i)) {
 | |
|                 int mask =
 | |
|                     (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
 | |
|                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
 | |
| 
 | |
|                 if (!GIC_TEST_ENABLED(irq + i, cm)) {
 | |
|                     DPRINTF("Enabled IRQ %d\n", irq + i);
 | |
|                 }
 | |
|                 GIC_SET_ENABLED(irq + i, cm);
 | |
|                 /* If a raised level triggered IRQ enabled then mark
 | |
|                    is as pending.  */
 | |
|                 if (GIC_TEST_LEVEL(irq + i, mask)
 | |
|                         && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
 | |
|                     DPRINTF("Set %d pending mask %x\n", irq + i, mask);
 | |
|                     GIC_SET_PENDING(irq + i, mask);
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x200) {
 | |
|         /* Interrupt Clear Enable.  */
 | |
|         irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         if (irq < GIC_NR_SGIS) {
 | |
|             value = 0;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             if (value & (1 << i)) {
 | |
|                 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
 | |
| 
 | |
|                 if (GIC_TEST_ENABLED(irq + i, cm)) {
 | |
|                     DPRINTF("Disabled IRQ %d\n", irq + i);
 | |
|                 }
 | |
|                 GIC_CLEAR_ENABLED(irq + i, cm);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x280) {
 | |
|         /* Interrupt Set Pending.  */
 | |
|         irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         if (irq < GIC_NR_SGIS) {
 | |
|             value = 0;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             if (value & (1 << i)) {
 | |
|                 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x300) {
 | |
|         /* Interrupt Clear Pending.  */
 | |
|         irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         if (irq < GIC_NR_SGIS) {
 | |
|             value = 0;
 | |
|         }
 | |
| 
 | |
|         for (i = 0; i < 8; i++) {
 | |
|             /* ??? This currently clears the pending bit for all CPUs, even
 | |
|                for per-CPU interrupts.  It's unclear whether this is the
 | |
|                corect behavior.  */
 | |
|             if (value & (1 << i)) {
 | |
|                 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0x400) {
 | |
|         /* Interrupt Active.  */
 | |
|         goto bad_reg;
 | |
|     } else if (offset < 0x800) {
 | |
|         /* Interrupt Priority.  */
 | |
|         irq = (offset - 0x400) + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         gic_set_priority(s, cpu, irq, value, attrs);
 | |
|     } else if (offset < 0xc00) {
 | |
|         /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
 | |
|          * annoying exception of the 11MPCore's GIC.
 | |
|          */
 | |
|         if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
 | |
|             irq = (offset - 0x800) + GIC_BASE_IRQ;
 | |
|             if (irq >= s->num_irq) {
 | |
|                 goto bad_reg;
 | |
|             }
 | |
|             if (irq < 29) {
 | |
|                 value = 0;
 | |
|             } else if (irq < GIC_INTERNAL) {
 | |
|                 value = ALL_CPU_MASK;
 | |
|             }
 | |
|             s->irq_target[irq] = value & ALL_CPU_MASK;
 | |
|         }
 | |
|     } else if (offset < 0xf00) {
 | |
|         /* Interrupt Configuration.  */
 | |
|         irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
 | |
|         if (irq >= s->num_irq)
 | |
|             goto bad_reg;
 | |
|         if (irq < GIC_NR_SGIS)
 | |
|             value |= 0xaa;
 | |
|         for (i = 0; i < 4; i++) {
 | |
|             if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|                 if (value & (1 << (i * 2))) {
 | |
|                     GIC_SET_MODEL(irq + i);
 | |
|                 } else {
 | |
|                     GIC_CLEAR_MODEL(irq + i);
 | |
|                 }
 | |
|             }
 | |
|             if (value & (2 << (i * 2))) {
 | |
|                 GIC_SET_EDGE_TRIGGER(irq + i);
 | |
|             } else {
 | |
|                 GIC_CLEAR_EDGE_TRIGGER(irq + i);
 | |
|             }
 | |
|         }
 | |
|     } else if (offset < 0xf10) {
 | |
|         /* 0xf00 is only handled for 32-bit writes.  */
 | |
|         goto bad_reg;
 | |
|     } else if (offset < 0xf20) {
 | |
|         /* GICD_CPENDSGIRn */
 | |
|         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         irq = (offset - 0xf10);
 | |
| 
 | |
|         s->sgi_pending[irq][cpu] &= ~value;
 | |
|         if (s->sgi_pending[irq][cpu] == 0) {
 | |
|             GIC_CLEAR_PENDING(irq, 1 << cpu);
 | |
|         }
 | |
|     } else if (offset < 0xf30) {
 | |
|         /* GICD_SPENDSGIRn */
 | |
|         if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
 | |
|             goto bad_reg;
 | |
|         }
 | |
|         irq = (offset - 0xf20);
 | |
| 
 | |
|         GIC_SET_PENDING(irq, 1 << cpu);
 | |
|         s->sgi_pending[irq][cpu] |= value;
 | |
|     } else {
 | |
|         goto bad_reg;
 | |
|     }
 | |
|     gic_update(s);
 | |
|     return;
 | |
| bad_reg:
 | |
|     qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                   "gic_dist_writeb: Bad offset %x\n", (int)offset);
 | |
| }
 | |
| 
 | |
| static void gic_dist_writew(void *opaque, hwaddr offset,
 | |
|                             uint32_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     gic_dist_writeb(opaque, offset, value & 0xff, attrs);
 | |
|     gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
 | |
| }
 | |
| 
 | |
| static void gic_dist_writel(void *opaque, hwaddr offset,
 | |
|                             uint32_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     GICState *s = (GICState *)opaque;
 | |
|     if (offset == 0xf00) {
 | |
|         int cpu;
 | |
|         int irq;
 | |
|         int mask;
 | |
|         int target_cpu;
 | |
| 
 | |
|         cpu = gic_get_current_cpu(s);
 | |
|         irq = value & 0x3ff;
 | |
|         switch ((value >> 24) & 3) {
 | |
|         case 0:
 | |
|             mask = (value >> 16) & ALL_CPU_MASK;
 | |
|             break;
 | |
|         case 1:
 | |
|             mask = ALL_CPU_MASK ^ (1 << cpu);
 | |
|             break;
 | |
|         case 2:
 | |
|             mask = 1 << cpu;
 | |
|             break;
 | |
|         default:
 | |
|             DPRINTF("Bad Soft Int target filter\n");
 | |
|             mask = ALL_CPU_MASK;
 | |
|             break;
 | |
|         }
 | |
|         GIC_SET_PENDING(irq, mask);
 | |
|         target_cpu = ctz32(mask);
 | |
|         while (target_cpu < GIC_NCPU) {
 | |
|             s->sgi_pending[irq][target_cpu] |= (1 << cpu);
 | |
|             mask &= ~(1 << target_cpu);
 | |
|             target_cpu = ctz32(mask);
 | |
|         }
 | |
|         gic_update(s);
 | |
|         return;
 | |
|     }
 | |
|     gic_dist_writew(opaque, offset, value & 0xffff, attrs);
 | |
|     gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
 | |
| }
 | |
| 
 | |
| static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
 | |
|                                   unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (size) {
 | |
|     case 1:
 | |
|         gic_dist_writeb(opaque, offset, data, attrs);
 | |
|         return MEMTX_OK;
 | |
|     case 2:
 | |
|         gic_dist_writew(opaque, offset, data, attrs);
 | |
|         return MEMTX_OK;
 | |
|     case 4:
 | |
|         gic_dist_writel(opaque, offset, data, attrs);
 | |
|         return MEMTX_OK;
 | |
|     default:
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
 | |
| {
 | |
|     /* Return the Nonsecure view of GICC_APR<regno>. This is the
 | |
|      * second half of GICC_NSAPR.
 | |
|      */
 | |
|     switch (GIC_MIN_BPR) {
 | |
|     case 0:
 | |
|         if (regno < 2) {
 | |
|             return s->nsapr[regno + 2][cpu];
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         if (regno == 0) {
 | |
|             return s->nsapr[regno + 1][cpu];
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         if (regno == 0) {
 | |
|             return extract32(s->nsapr[0][cpu], 16, 16);
 | |
|         }
 | |
|         break;
 | |
|     case 3:
 | |
|         if (regno == 0) {
 | |
|             return extract32(s->nsapr[0][cpu], 8, 8);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
 | |
|                                          uint32_t value)
 | |
| {
 | |
|     /* Write the Nonsecure view of GICC_APR<regno>. */
 | |
|     switch (GIC_MIN_BPR) {
 | |
|     case 0:
 | |
|         if (regno < 2) {
 | |
|             s->nsapr[regno + 2][cpu] = value;
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         if (regno == 0) {
 | |
|             s->nsapr[regno + 1][cpu] = value;
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         if (regno == 0) {
 | |
|             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
 | |
|         }
 | |
|         break;
 | |
|     case 3:
 | |
|         if (regno == 0) {
 | |
|             s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
 | |
|                                 uint64_t *data, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case 0x00: /* Control */
 | |
|         *data = gic_get_cpu_control(s, cpu, attrs);
 | |
|         break;
 | |
|     case 0x04: /* Priority mask */
 | |
|         *data = gic_get_priority_mask(s, cpu, attrs);
 | |
|         break;
 | |
|     case 0x08: /* Binary Point */
 | |
|         if (s->security_extn && !attrs.secure) {
 | |
|             /* BPR is banked. Non-secure copy stored in ABPR. */
 | |
|             *data = s->abpr[cpu];
 | |
|         } else {
 | |
|             *data = s->bpr[cpu];
 | |
|         }
 | |
|         break;
 | |
|     case 0x0c: /* Acknowledge */
 | |
|         *data = gic_acknowledge_irq(s, cpu, attrs);
 | |
|         break;
 | |
|     case 0x14: /* Running Priority */
 | |
|         *data = gic_get_running_priority(s, cpu, attrs);
 | |
|         break;
 | |
|     case 0x18: /* Highest Pending Interrupt */
 | |
|         *data = gic_get_current_pending_irq(s, cpu, attrs);
 | |
|         break;
 | |
|     case 0x1c: /* Aliased Binary Point */
 | |
|         /* GIC v2, no security: ABPR
 | |
|          * GIC v1, no security: not implemented (RAZ/WI)
 | |
|          * With security extensions, secure access: ABPR (alias of NS BPR)
 | |
|          * With security extensions, nonsecure access: RAZ/WI
 | |
|          */
 | |
|         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
 | |
|             *data = 0;
 | |
|         } else {
 | |
|             *data = s->abpr[cpu];
 | |
|         }
 | |
|         break;
 | |
|     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
 | |
|     {
 | |
|         int regno = (offset - 0xd0) / 4;
 | |
| 
 | |
|         if (regno >= GIC_NR_APRS || s->revision != 2) {
 | |
|             *data = 0;
 | |
|         } else if (s->security_extn && !attrs.secure) {
 | |
|             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
 | |
|             *data = gic_apr_ns_view(s, regno, cpu);
 | |
|         } else {
 | |
|             *data = s->apr[regno][cpu];
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case 0xe0: case 0xe4: case 0xe8: case 0xec:
 | |
|     {
 | |
|         int regno = (offset - 0xe0) / 4;
 | |
| 
 | |
|         if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
 | |
|             (s->security_extn && !attrs.secure)) {
 | |
|             *data = 0;
 | |
|         } else {
 | |
|             *data = s->nsapr[regno][cpu];
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "gic_cpu_read: Bad offset %x\n", (int)offset);
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
|     return MEMTX_OK;
 | |
| }
 | |
| 
 | |
| static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
 | |
|                                  uint32_t value, MemTxAttrs attrs)
 | |
| {
 | |
|     switch (offset) {
 | |
|     case 0x00: /* Control */
 | |
|         gic_set_cpu_control(s, cpu, value, attrs);
 | |
|         break;
 | |
|     case 0x04: /* Priority mask */
 | |
|         gic_set_priority_mask(s, cpu, value, attrs);
 | |
|         break;
 | |
|     case 0x08: /* Binary Point */
 | |
|         if (s->security_extn && !attrs.secure) {
 | |
|             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
 | |
|         } else {
 | |
|             s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
 | |
|         }
 | |
|         break;
 | |
|     case 0x10: /* End Of Interrupt */
 | |
|         gic_complete_irq(s, cpu, value & 0x3ff, attrs);
 | |
|         return MEMTX_OK;
 | |
|     case 0x1c: /* Aliased Binary Point */
 | |
|         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
 | |
|             /* unimplemented, or NS access: RAZ/WI */
 | |
|             return MEMTX_OK;
 | |
|         } else {
 | |
|             s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
 | |
|         }
 | |
|         break;
 | |
|     case 0xd0: case 0xd4: case 0xd8: case 0xdc:
 | |
|     {
 | |
|         int regno = (offset - 0xd0) / 4;
 | |
| 
 | |
|         if (regno >= GIC_NR_APRS || s->revision != 2) {
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         if (s->security_extn && !attrs.secure) {
 | |
|             /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
 | |
|             gic_apr_write_ns_view(s, regno, cpu, value);
 | |
|         } else {
 | |
|             s->apr[regno][cpu] = value;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case 0xe0: case 0xe4: case 0xe8: case 0xec:
 | |
|     {
 | |
|         int regno = (offset - 0xe0) / 4;
 | |
| 
 | |
|         if (regno >= GIC_NR_APRS || s->revision != 2) {
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
 | |
|             return MEMTX_OK;
 | |
|         }
 | |
|         s->nsapr[regno][cpu] = value;
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         qemu_log_mask(LOG_GUEST_ERROR,
 | |
|                       "gic_cpu_write: Bad offset %x\n", (int)offset);
 | |
|         return MEMTX_ERROR;
 | |
|     }
 | |
|     gic_update(s);
 | |
|     return MEMTX_OK;
 | |
| }
 | |
| 
 | |
| /* Wrappers to read/write the GIC CPU interface for the current CPU */
 | |
| static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
 | |
|                                     unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     GICState *s = (GICState *)opaque;
 | |
|     return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
 | |
| }
 | |
| 
 | |
| static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
 | |
|                                      uint64_t value, unsigned size,
 | |
|                                      MemTxAttrs attrs)
 | |
| {
 | |
|     GICState *s = (GICState *)opaque;
 | |
|     return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
 | |
| }
 | |
| 
 | |
| /* Wrappers to read/write the GIC CPU interface for a specific CPU.
 | |
|  * These just decode the opaque pointer into GICState* + cpu id.
 | |
|  */
 | |
| static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
 | |
|                                    unsigned size, MemTxAttrs attrs)
 | |
| {
 | |
|     GICState **backref = (GICState **)opaque;
 | |
|     GICState *s = *backref;
 | |
|     int id = (backref - s->backref);
 | |
|     return gic_cpu_read(s, id, addr, data, attrs);
 | |
| }
 | |
| 
 | |
| static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
 | |
|                                     uint64_t value, unsigned size,
 | |
|                                     MemTxAttrs attrs)
 | |
| {
 | |
|     GICState **backref = (GICState **)opaque;
 | |
|     GICState *s = *backref;
 | |
|     int id = (backref - s->backref);
 | |
|     return gic_cpu_write(s, id, addr, value, attrs);
 | |
| }
 | |
| 
 | |
| static const MemoryRegionOps gic_ops[2] = {
 | |
|     {
 | |
|         .read_with_attrs = gic_dist_read,
 | |
|         .write_with_attrs = gic_dist_write,
 | |
|         .endianness = DEVICE_NATIVE_ENDIAN,
 | |
|     },
 | |
|     {
 | |
|         .read_with_attrs = gic_thiscpu_read,
 | |
|         .write_with_attrs = gic_thiscpu_write,
 | |
|         .endianness = DEVICE_NATIVE_ENDIAN,
 | |
|     }
 | |
| };
 | |
| 
 | |
| static const MemoryRegionOps gic_cpu_ops = {
 | |
|     .read_with_attrs = gic_do_cpu_read,
 | |
|     .write_with_attrs = gic_do_cpu_write,
 | |
|     .endianness = DEVICE_NATIVE_ENDIAN,
 | |
| };
 | |
| 
 | |
| /* This function is used by nvic model */
 | |
| void gic_init_irqs_and_distributor(GICState *s)
 | |
| {
 | |
|     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
 | |
| }
 | |
| 
 | |
| static void arm_gic_realize(DeviceState *dev, Error **errp)
 | |
| {
 | |
|     /* Device instance realize function for the GIC sysbus device */
 | |
|     int i;
 | |
|     GICState *s = ARM_GIC(dev);
 | |
|     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
 | |
|     ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
 | |
|     Error *local_err = NULL;
 | |
| 
 | |
|     agc->parent_realize(dev, &local_err);
 | |
|     if (local_err) {
 | |
|         error_propagate(errp, local_err);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
 | |
|     gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
 | |
| 
 | |
|     /* Extra core-specific regions for the CPU interfaces. This is
 | |
|      * necessary for "franken-GIC" implementations, for example on
 | |
|      * Exynos 4.
 | |
|      * NB that the memory region size of 0x100 applies for the 11MPCore
 | |
|      * and also cores following the GIC v1 spec (ie A9).
 | |
|      * GIC v2 defines a larger memory region (0x1000) so this will need
 | |
|      * to be extended when we implement A15.
 | |
|      */
 | |
|     for (i = 0; i < s->num_cpu; i++) {
 | |
|         s->backref[i] = s;
 | |
|         memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
 | |
|                               &s->backref[i], "gic_cpu", 0x100);
 | |
|         sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void arm_gic_class_init(ObjectClass *klass, void *data)
 | |
| {
 | |
|     DeviceClass *dc = DEVICE_CLASS(klass);
 | |
|     ARMGICClass *agc = ARM_GIC_CLASS(klass);
 | |
| 
 | |
|     agc->parent_realize = dc->realize;
 | |
|     dc->realize = arm_gic_realize;
 | |
| }
 | |
| 
 | |
| static const TypeInfo arm_gic_info = {
 | |
|     .name = TYPE_ARM_GIC,
 | |
|     .parent = TYPE_ARM_GIC_COMMON,
 | |
|     .instance_size = sizeof(GICState),
 | |
|     .class_init = arm_gic_class_init,
 | |
|     .class_size = sizeof(ARMGICClass),
 | |
| };
 | |
| 
 | |
| static void arm_gic_register_types(void)
 | |
| {
 | |
|     type_register_static(&arm_gic_info);
 | |
| }
 | |
| 
 | |
| type_init(arm_gic_register_types)
 |