 79e2b9aecc
			
		
	
	
		79e2b9aecc
		
	
	
	
	
		
			
			Note that even after this patch, most callers of address_space_* functions must still be under the big QEMU lock, otherwise the memory region returned by address_space_translate can disappear as soon as address_space_translate returns. This will be fixed in the next part of this series. Reviewed-by: Fam Zheng <famz@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
		
			
				
	
	
		
			401 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Common CPU TLB handling
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| 
 | |
| #include "config.h"
 | |
| #include "cpu.h"
 | |
| #include "exec/exec-all.h"
 | |
| #include "exec/memory.h"
 | |
| #include "exec/address-spaces.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| 
 | |
| #include "exec/cputlb.h"
 | |
| 
 | |
| #include "exec/memory-internal.h"
 | |
| #include "exec/ram_addr.h"
 | |
| #include "tcg/tcg.h"
 | |
| 
 | |
| //#define DEBUG_TLB
 | |
| //#define DEBUG_TLB_CHECK
 | |
| 
 | |
| /* statistics */
 | |
| int tlb_flush_count;
 | |
| 
 | |
| /* NOTE:
 | |
|  * If flush_global is true (the usual case), flush all tlb entries.
 | |
|  * If flush_global is false, flush (at least) all tlb entries not
 | |
|  * marked global.
 | |
|  *
 | |
|  * Since QEMU doesn't currently implement a global/not-global flag
 | |
|  * for tlb entries, at the moment tlb_flush() will also flush all
 | |
|  * tlb entries in the flush_global == false case. This is OK because
 | |
|  * CPU architectures generally permit an implementation to drop
 | |
|  * entries from the TLB at any time, so flushing more entries than
 | |
|  * required is only an efficiency issue, not a correctness issue.
 | |
|  */
 | |
| void tlb_flush(CPUState *cpu, int flush_global)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush:\n");
 | |
| #endif
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     cpu->current_tb = NULL;
 | |
| 
 | |
|     memset(env->tlb_table, -1, sizeof(env->tlb_table));
 | |
|     memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
 | |
|     memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
 | |
| 
 | |
|     env->vtlb_index = 0;
 | |
|     env->tlb_flush_addr = -1;
 | |
|     env->tlb_flush_mask = 0;
 | |
|     tlb_flush_count++;
 | |
| }
 | |
| 
 | |
| static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
 | |
| {
 | |
|     if (addr == (tlb_entry->addr_read &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_write &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
 | |
|         addr == (tlb_entry->addr_code &
 | |
|                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
 | |
|         memset(tlb_entry, -1, sizeof(*tlb_entry));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void tlb_flush_page(CPUState *cpu, target_ulong addr)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     int i;
 | |
|     int mmu_idx;
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
 | |
| #endif
 | |
|     /* Check if we need to flush due to large pages.  */
 | |
|     if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
 | |
| #if defined(DEBUG_TLB)
 | |
|         printf("tlb_flush_page: forced full flush ("
 | |
|                TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
 | |
|                env->tlb_flush_addr, env->tlb_flush_mask);
 | |
| #endif
 | |
|         tlb_flush(cpu, 1);
 | |
|         return;
 | |
|     }
 | |
|     /* must reset current TB so that interrupts cannot modify the
 | |
|        links while we are modifying them */
 | |
|     cpu->current_tb = NULL;
 | |
| 
 | |
|     addr &= TARGET_PAGE_MASK;
 | |
|     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
 | |
|     }
 | |
| 
 | |
|     /* check whether there are entries that need to be flushed in the vtlb */
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         int k;
 | |
|         for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | |
|             tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     tb_flush_jmp_cache(cpu, addr);
 | |
| }
 | |
| 
 | |
| /* update the TLBs so that writes to code in the virtual page 'addr'
 | |
|    can be detected */
 | |
| void tlb_protect_code(ram_addr_t ram_addr)
 | |
| {
 | |
|     cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
 | |
|                                     DIRTY_MEMORY_CODE);
 | |
| }
 | |
| 
 | |
| /* update the TLB so that writes in physical page 'phys_addr' are no longer
 | |
|    tested for self modifying code */
 | |
| void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
 | |
|                              target_ulong vaddr)
 | |
| {
 | |
|     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
 | |
| }
 | |
| 
 | |
| static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
 | |
| {
 | |
|     return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
 | |
| }
 | |
| 
 | |
| void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
 | |
|                            uintptr_t length)
 | |
| {
 | |
|     uintptr_t addr;
 | |
| 
 | |
|     if (tlb_is_dirty_ram(tlb_entry)) {
 | |
|         addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
 | |
|         if ((addr - start) < length) {
 | |
|             tlb_entry->addr_write |= TLB_NOTDIRTY;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
 | |
| {
 | |
|     ram_addr_t ram_addr;
 | |
| 
 | |
|     if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
 | |
|         fprintf(stderr, "Bad ram pointer %p\n", ptr);
 | |
|         abort();
 | |
|     }
 | |
|     return ram_addr;
 | |
| }
 | |
| 
 | |
| void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
 | |
| {
 | |
|     CPUState *cpu;
 | |
|     CPUArchState *env;
 | |
| 
 | |
|     CPU_FOREACH(cpu) {
 | |
|         int mmu_idx;
 | |
| 
 | |
|         env = cpu->env_ptr;
 | |
|         for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|             unsigned int i;
 | |
| 
 | |
|             for (i = 0; i < CPU_TLB_SIZE; i++) {
 | |
|                 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
 | |
|                                       start1, length);
 | |
|             }
 | |
| 
 | |
|             for (i = 0; i < CPU_VTLB_SIZE; i++) {
 | |
|                 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
 | |
|                                       start1, length);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
 | |
| {
 | |
|     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
 | |
|         tlb_entry->addr_write = vaddr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* update the TLB corresponding to virtual page vaddr
 | |
|    so that it is no longer dirty */
 | |
| void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
 | |
| {
 | |
|     int i;
 | |
|     int mmu_idx;
 | |
| 
 | |
|     vaddr &= TARGET_PAGE_MASK;
 | |
|     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
 | |
|     }
 | |
| 
 | |
|     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
 | |
|         int k;
 | |
|         for (k = 0; k < CPU_VTLB_SIZE; k++) {
 | |
|             tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Our TLB does not support large pages, so remember the area covered by
 | |
|    large pages and trigger a full TLB flush if these are invalidated.  */
 | |
| static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
 | |
|                                target_ulong size)
 | |
| {
 | |
|     target_ulong mask = ~(size - 1);
 | |
| 
 | |
|     if (env->tlb_flush_addr == (target_ulong)-1) {
 | |
|         env->tlb_flush_addr = vaddr & mask;
 | |
|         env->tlb_flush_mask = mask;
 | |
|         return;
 | |
|     }
 | |
|     /* Extend the existing region to include the new page.
 | |
|        This is a compromise between unnecessary flushes and the cost
 | |
|        of maintaining a full variable size TLB.  */
 | |
|     mask &= env->tlb_flush_mask;
 | |
|     while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
 | |
|         mask <<= 1;
 | |
|     }
 | |
|     env->tlb_flush_addr &= mask;
 | |
|     env->tlb_flush_mask = mask;
 | |
| }
 | |
| 
 | |
| /* Add a new TLB entry. At most one entry for a given virtual address
 | |
|  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
 | |
|  * supplied size is only used by tlb_flush_page.
 | |
|  *
 | |
|  * Called from TCG-generated code, which is under an RCU read-side
 | |
|  * critical section.
 | |
|  */
 | |
| void tlb_set_page(CPUState *cpu, target_ulong vaddr,
 | |
|                   hwaddr paddr, int prot,
 | |
|                   int mmu_idx, target_ulong size)
 | |
| {
 | |
|     CPUArchState *env = cpu->env_ptr;
 | |
|     MemoryRegionSection *section;
 | |
|     unsigned int index;
 | |
|     target_ulong address;
 | |
|     target_ulong code_address;
 | |
|     uintptr_t addend;
 | |
|     CPUTLBEntry *te;
 | |
|     hwaddr iotlb, xlat, sz;
 | |
|     unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
 | |
| 
 | |
|     assert(size >= TARGET_PAGE_SIZE);
 | |
|     if (size != TARGET_PAGE_SIZE) {
 | |
|         tlb_add_large_page(env, vaddr, size);
 | |
|     }
 | |
| 
 | |
|     sz = size;
 | |
|     section = address_space_translate_for_iotlb(cpu, paddr, &xlat, &sz);
 | |
|     assert(sz >= TARGET_PAGE_SIZE);
 | |
| 
 | |
| #if defined(DEBUG_TLB)
 | |
|     qemu_log_mask(CPU_LOG_MMU,
 | |
|            "tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
 | |
|            " prot=%x idx=%d\n",
 | |
|            vaddr, paddr, prot, mmu_idx);
 | |
| #endif
 | |
| 
 | |
|     address = vaddr;
 | |
|     if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
 | |
|         /* IO memory case */
 | |
|         address |= TLB_MMIO;
 | |
|         addend = 0;
 | |
|     } else {
 | |
|         /* TLB_MMIO for rom/romd handled below */
 | |
|         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
 | |
|     }
 | |
| 
 | |
|     code_address = address;
 | |
|     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
 | |
|                                             prot, &address);
 | |
| 
 | |
|     index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     te = &env->tlb_table[mmu_idx][index];
 | |
| 
 | |
|     /* do not discard the translation in te, evict it into a victim tlb */
 | |
|     env->tlb_v_table[mmu_idx][vidx] = *te;
 | |
|     env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
 | |
| 
 | |
|     /* refill the tlb */
 | |
|     env->iotlb[mmu_idx][index] = iotlb - vaddr;
 | |
|     te->addend = addend - vaddr;
 | |
|     if (prot & PAGE_READ) {
 | |
|         te->addr_read = address;
 | |
|     } else {
 | |
|         te->addr_read = -1;
 | |
|     }
 | |
| 
 | |
|     if (prot & PAGE_EXEC) {
 | |
|         te->addr_code = code_address;
 | |
|     } else {
 | |
|         te->addr_code = -1;
 | |
|     }
 | |
|     if (prot & PAGE_WRITE) {
 | |
|         if ((memory_region_is_ram(section->mr) && section->readonly)
 | |
|             || memory_region_is_romd(section->mr)) {
 | |
|             /* Write access calls the I/O callback.  */
 | |
|             te->addr_write = address | TLB_MMIO;
 | |
|         } else if (memory_region_is_ram(section->mr)
 | |
|                    && cpu_physical_memory_is_clean(section->mr->ram_addr
 | |
|                                                    + xlat)) {
 | |
|             te->addr_write = address | TLB_NOTDIRTY;
 | |
|         } else {
 | |
|             te->addr_write = address;
 | |
|         }
 | |
|     } else {
 | |
|         te->addr_write = -1;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* NOTE: this function can trigger an exception */
 | |
| /* NOTE2: the returned address is not exactly the physical address: it
 | |
|  * is actually a ram_addr_t (in system mode; the user mode emulation
 | |
|  * version of this function returns a guest virtual address).
 | |
|  */
 | |
| tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
 | |
| {
 | |
|     int mmu_idx, page_index, pd;
 | |
|     void *p;
 | |
|     MemoryRegion *mr;
 | |
|     CPUState *cpu = ENV_GET_CPU(env1);
 | |
| 
 | |
|     page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
 | |
|     mmu_idx = cpu_mmu_index(env1);
 | |
|     if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
 | |
|                  (addr & TARGET_PAGE_MASK))) {
 | |
|         cpu_ldub_code(env1, addr);
 | |
|     }
 | |
|     pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
 | |
|     mr = iotlb_to_region(cpu, pd);
 | |
|     if (memory_region_is_unassigned(mr)) {
 | |
|         CPUClass *cc = CPU_GET_CLASS(cpu);
 | |
| 
 | |
|         if (cc->do_unassigned_access) {
 | |
|             cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
 | |
|         } else {
 | |
|             cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
 | |
|                       TARGET_FMT_lx "\n", addr);
 | |
|         }
 | |
|     }
 | |
|     p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
 | |
|     return qemu_ram_addr_from_host_nofail(p);
 | |
| }
 | |
| 
 | |
| #define MMUSUFFIX _mmu
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 | |
| #undef MMUSUFFIX
 | |
| 
 | |
| #define MMUSUFFIX _cmmu
 | |
| #undef GETPC_ADJ
 | |
| #define GETPC_ADJ 0
 | |
| #undef GETRA
 | |
| #define GETRA() ((uintptr_t)0)
 | |
| #define SOFTMMU_CODE_ACCESS
 | |
| 
 | |
| #define SHIFT 0
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 1
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 2
 | |
| #include "softmmu_template.h"
 | |
| 
 | |
| #define SHIFT 3
 | |
| #include "softmmu_template.h"
 |