 d39594e9d9
			
		
	
	
		d39594e9d9
		
	
	
	
	
		
			
			Clean up includes so that osdep.h is included first and headers which it implies are not included manually. This commit was created with scripts/clean-includes. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1453832250-766-10-git-send-email-peter.maydell@linaro.org
		
			
				
	
	
		
			491 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			491 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  vm86 linux syscall support
 | |
|  *
 | |
|  *  Copyright (c) 2003 Fabrice Bellard
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or modify
 | |
|  *  it under the terms of the GNU General Public License as published by
 | |
|  *  the Free Software Foundation; either version 2 of the License, or
 | |
|  *  (at your option) any later version.
 | |
|  *
 | |
|  *  This program is distributed in the hope that it will be useful,
 | |
|  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  *  GNU General Public License for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License
 | |
|  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "qemu/osdep.h"
 | |
| 
 | |
| #include "qemu.h"
 | |
| 
 | |
| //#define DEBUG_VM86
 | |
| 
 | |
| #ifdef DEBUG_VM86
 | |
| #  define LOG_VM86(...) qemu_log(__VA_ARGS__);
 | |
| #else
 | |
| #  define LOG_VM86(...) do { } while (0)
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define set_flags(X,new,mask) \
 | |
| ((X) = ((X) & ~(mask)) | ((new) & (mask)))
 | |
| 
 | |
| #define SAFE_MASK	(0xDD5)
 | |
| #define RETURN_MASK	(0xDFF)
 | |
| 
 | |
| static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
 | |
| {
 | |
|     return (((uint8_t *)bitmap)[nr >> 3] >> (nr & 7)) & 1;
 | |
| }
 | |
| 
 | |
| static inline void vm_putw(CPUX86State *env, uint32_t segptr,
 | |
|                            unsigned int reg16, unsigned int val)
 | |
| {
 | |
|     cpu_stw_data(env, segptr + (reg16 & 0xffff), val);
 | |
| }
 | |
| 
 | |
| static inline void vm_putl(CPUX86State *env, uint32_t segptr,
 | |
|                            unsigned int reg16, unsigned int val)
 | |
| {
 | |
|     cpu_stl_data(env, segptr + (reg16 & 0xffff), val);
 | |
| }
 | |
| 
 | |
| static inline unsigned int vm_getb(CPUX86State *env,
 | |
|                                    uint32_t segptr, unsigned int reg16)
 | |
| {
 | |
|     return cpu_ldub_data(env, segptr + (reg16 & 0xffff));
 | |
| }
 | |
| 
 | |
| static inline unsigned int vm_getw(CPUX86State *env,
 | |
|                                    uint32_t segptr, unsigned int reg16)
 | |
| {
 | |
|     return cpu_lduw_data(env, segptr + (reg16 & 0xffff));
 | |
| }
 | |
| 
 | |
| static inline unsigned int vm_getl(CPUX86State *env,
 | |
|                                    uint32_t segptr, unsigned int reg16)
 | |
| {
 | |
|     return cpu_ldl_data(env, segptr + (reg16 & 0xffff));
 | |
| }
 | |
| 
 | |
| void save_v86_state(CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
|     struct target_vm86plus_struct * target_v86;
 | |
| 
 | |
|     if (!lock_user_struct(VERIFY_WRITE, target_v86, ts->target_v86, 0))
 | |
|         /* FIXME - should return an error */
 | |
|         return;
 | |
|     /* put the VM86 registers in the userspace register structure */
 | |
|     target_v86->regs.eax = tswap32(env->regs[R_EAX]);
 | |
|     target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
 | |
|     target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
 | |
|     target_v86->regs.edx = tswap32(env->regs[R_EDX]);
 | |
|     target_v86->regs.esi = tswap32(env->regs[R_ESI]);
 | |
|     target_v86->regs.edi = tswap32(env->regs[R_EDI]);
 | |
|     target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
 | |
|     target_v86->regs.esp = tswap32(env->regs[R_ESP]);
 | |
|     target_v86->regs.eip = tswap32(env->eip);
 | |
|     target_v86->regs.cs = tswap16(env->segs[R_CS].selector);
 | |
|     target_v86->regs.ss = tswap16(env->segs[R_SS].selector);
 | |
|     target_v86->regs.ds = tswap16(env->segs[R_DS].selector);
 | |
|     target_v86->regs.es = tswap16(env->segs[R_ES].selector);
 | |
|     target_v86->regs.fs = tswap16(env->segs[R_FS].selector);
 | |
|     target_v86->regs.gs = tswap16(env->segs[R_GS].selector);
 | |
|     set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
 | |
|     target_v86->regs.eflags = tswap32(env->eflags);
 | |
|     unlock_user_struct(target_v86, ts->target_v86, 1);
 | |
|     LOG_VM86("save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
 | |
|              env->eflags, env->segs[R_CS].selector, env->eip);
 | |
| 
 | |
|     /* restore 32 bit registers */
 | |
|     env->regs[R_EAX] = ts->vm86_saved_regs.eax;
 | |
|     env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
 | |
|     env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
 | |
|     env->regs[R_EDX] = ts->vm86_saved_regs.edx;
 | |
|     env->regs[R_ESI] = ts->vm86_saved_regs.esi;
 | |
|     env->regs[R_EDI] = ts->vm86_saved_regs.edi;
 | |
|     env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
 | |
|     env->regs[R_ESP] = ts->vm86_saved_regs.esp;
 | |
|     env->eflags = ts->vm86_saved_regs.eflags;
 | |
|     env->eip = ts->vm86_saved_regs.eip;
 | |
| 
 | |
|     cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
 | |
|     cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
 | |
|     cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
 | |
|     cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
 | |
|     cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
 | |
|     cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
 | |
| }
 | |
| 
 | |
| /* return from vm86 mode to 32 bit. The vm86() syscall will return
 | |
|    'retval' */
 | |
| static inline void return_to_32bit(CPUX86State *env, int retval)
 | |
| {
 | |
|     LOG_VM86("return_to_32bit: ret=0x%x\n", retval);
 | |
|     save_v86_state(env);
 | |
|     env->regs[R_EAX] = retval;
 | |
| }
 | |
| 
 | |
| static inline int set_IF(CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
| 
 | |
|     ts->v86flags |= VIF_MASK;
 | |
|     if (ts->v86flags & VIP_MASK) {
 | |
|         return_to_32bit(env, TARGET_VM86_STI);
 | |
|         return 1;
 | |
|     }
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline void clear_IF(CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
| 
 | |
|     ts->v86flags &= ~VIF_MASK;
 | |
| }
 | |
| 
 | |
| static inline void clear_TF(CPUX86State *env)
 | |
| {
 | |
|     env->eflags &= ~TF_MASK;
 | |
| }
 | |
| 
 | |
| static inline void clear_AC(CPUX86State *env)
 | |
| {
 | |
|     env->eflags &= ~AC_MASK;
 | |
| }
 | |
| 
 | |
| static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
| 
 | |
|     set_flags(ts->v86flags, eflags, ts->v86mask);
 | |
|     set_flags(env->eflags, eflags, SAFE_MASK);
 | |
|     if (eflags & IF_MASK)
 | |
|         return set_IF(env);
 | |
|     else
 | |
|         clear_IF(env);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
| 
 | |
|     set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
 | |
|     set_flags(env->eflags, flags, SAFE_MASK);
 | |
|     if (flags & IF_MASK)
 | |
|         return set_IF(env);
 | |
|     else
 | |
|         clear_IF(env);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned int get_vflags(CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
|     unsigned int flags;
 | |
| 
 | |
|     flags = env->eflags & RETURN_MASK;
 | |
|     if (ts->v86flags & VIF_MASK)
 | |
|         flags |= IF_MASK;
 | |
|     flags |= IOPL_MASK;
 | |
|     return flags | (ts->v86flags & ts->v86mask);
 | |
| }
 | |
| 
 | |
| #define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
 | |
| 
 | |
| /* handle VM86 interrupt (NOTE: the CPU core currently does not
 | |
|    support TSS interrupt revectoring, so this code is always executed) */
 | |
| static void do_int(CPUX86State *env, int intno)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
|     uint32_t int_addr, segoffs, ssp;
 | |
|     unsigned int sp;
 | |
| 
 | |
|     if (env->segs[R_CS].selector == TARGET_BIOSSEG)
 | |
|         goto cannot_handle;
 | |
|     if (is_revectored(intno, &ts->vm86plus.int_revectored))
 | |
|         goto cannot_handle;
 | |
|     if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
 | |
|                                        &ts->vm86plus.int21_revectored))
 | |
|         goto cannot_handle;
 | |
|     int_addr = (intno << 2);
 | |
|     segoffs = cpu_ldl_data(env, int_addr);
 | |
|     if ((segoffs >> 16) == TARGET_BIOSSEG)
 | |
|         goto cannot_handle;
 | |
|     LOG_VM86("VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
 | |
|              intno, segoffs >> 16, segoffs & 0xffff);
 | |
|     /* save old state */
 | |
|     ssp = env->segs[R_SS].selector << 4;
 | |
|     sp = env->regs[R_ESP] & 0xffff;
 | |
|     vm_putw(env, ssp, sp - 2, get_vflags(env));
 | |
|     vm_putw(env, ssp, sp - 4, env->segs[R_CS].selector);
 | |
|     vm_putw(env, ssp, sp - 6, env->eip);
 | |
|     ADD16(env->regs[R_ESP], -6);
 | |
|     /* goto interrupt handler */
 | |
|     env->eip = segoffs & 0xffff;
 | |
|     cpu_x86_load_seg(env, R_CS, segoffs >> 16);
 | |
|     clear_TF(env);
 | |
|     clear_IF(env);
 | |
|     clear_AC(env);
 | |
|     return;
 | |
|  cannot_handle:
 | |
|     LOG_VM86("VM86: return to 32 bits int 0x%x\n", intno);
 | |
|     return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
 | |
| }
 | |
| 
 | |
| void handle_vm86_trap(CPUX86State *env, int trapno)
 | |
| {
 | |
|     if (trapno == 1 || trapno == 3) {
 | |
|         return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
 | |
|     } else {
 | |
|         do_int(env, trapno);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #define CHECK_IF_IN_TRAP() \
 | |
|       if ((ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) && \
 | |
|           (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_TFpendig)) \
 | |
| 		newflags |= TF_MASK
 | |
| 
 | |
| #define VM86_FAULT_RETURN \
 | |
|         if ((ts->vm86plus.vm86plus.flags & TARGET_force_return_for_pic) && \
 | |
|             (ts->v86flags & (IF_MASK | VIF_MASK))) \
 | |
|             return_to_32bit(env, TARGET_VM86_PICRETURN); \
 | |
|         return
 | |
| 
 | |
| void handle_vm86_fault(CPUX86State *env)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
|     uint32_t csp, ssp;
 | |
|     unsigned int ip, sp, newflags, newip, newcs, opcode, intno;
 | |
|     int data32, pref_done;
 | |
| 
 | |
|     csp = env->segs[R_CS].selector << 4;
 | |
|     ip = env->eip & 0xffff;
 | |
| 
 | |
|     ssp = env->segs[R_SS].selector << 4;
 | |
|     sp = env->regs[R_ESP] & 0xffff;
 | |
| 
 | |
|     LOG_VM86("VM86 exception %04x:%08x\n",
 | |
|              env->segs[R_CS].selector, env->eip);
 | |
| 
 | |
|     data32 = 0;
 | |
|     pref_done = 0;
 | |
|     do {
 | |
|         opcode = vm_getb(env, csp, ip);
 | |
|         ADD16(ip, 1);
 | |
|         switch (opcode) {
 | |
|         case 0x66:      /* 32-bit data */     data32=1; break;
 | |
|         case 0x67:      /* 32-bit address */  break;
 | |
|         case 0x2e:      /* CS */              break;
 | |
|         case 0x3e:      /* DS */              break;
 | |
|         case 0x26:      /* ES */              break;
 | |
|         case 0x36:      /* SS */              break;
 | |
|         case 0x65:      /* GS */              break;
 | |
|         case 0x64:      /* FS */              break;
 | |
|         case 0xf2:      /* repnz */	      break;
 | |
|         case 0xf3:      /* rep */             break;
 | |
|         default: pref_done = 1;
 | |
|         }
 | |
|     } while (!pref_done);
 | |
| 
 | |
|     /* VM86 mode */
 | |
|     switch(opcode) {
 | |
|     case 0x9c: /* pushf */
 | |
|         if (data32) {
 | |
|             vm_putl(env, ssp, sp - 4, get_vflags(env));
 | |
|             ADD16(env->regs[R_ESP], -4);
 | |
|         } else {
 | |
|             vm_putw(env, ssp, sp - 2, get_vflags(env));
 | |
|             ADD16(env->regs[R_ESP], -2);
 | |
|         }
 | |
|         env->eip = ip;
 | |
|         VM86_FAULT_RETURN;
 | |
| 
 | |
|     case 0x9d: /* popf */
 | |
|         if (data32) {
 | |
|             newflags = vm_getl(env, ssp, sp);
 | |
|             ADD16(env->regs[R_ESP], 4);
 | |
|         } else {
 | |
|             newflags = vm_getw(env, ssp, sp);
 | |
|             ADD16(env->regs[R_ESP], 2);
 | |
|         }
 | |
|         env->eip = ip;
 | |
|         CHECK_IF_IN_TRAP();
 | |
|         if (data32) {
 | |
|             if (set_vflags_long(newflags, env))
 | |
|                 return;
 | |
|         } else {
 | |
|             if (set_vflags_short(newflags, env))
 | |
|                 return;
 | |
|         }
 | |
|         VM86_FAULT_RETURN;
 | |
| 
 | |
|     case 0xcd: /* int */
 | |
|         intno = vm_getb(env, csp, ip);
 | |
|         ADD16(ip, 1);
 | |
|         env->eip = ip;
 | |
|         if (ts->vm86plus.vm86plus.flags & TARGET_vm86dbg_active) {
 | |
|             if ( (ts->vm86plus.vm86plus.vm86dbg_intxxtab[intno >> 3] >>
 | |
|                   (intno &7)) & 1) {
 | |
|                 return_to_32bit(env, TARGET_VM86_INTx + (intno << 8));
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         do_int(env, intno);
 | |
|         break;
 | |
| 
 | |
|     case 0xcf: /* iret */
 | |
|         if (data32) {
 | |
|             newip = vm_getl(env, ssp, sp) & 0xffff;
 | |
|             newcs = vm_getl(env, ssp, sp + 4) & 0xffff;
 | |
|             newflags = vm_getl(env, ssp, sp + 8);
 | |
|             ADD16(env->regs[R_ESP], 12);
 | |
|         } else {
 | |
|             newip = vm_getw(env, ssp, sp);
 | |
|             newcs = vm_getw(env, ssp, sp + 2);
 | |
|             newflags = vm_getw(env, ssp, sp + 4);
 | |
|             ADD16(env->regs[R_ESP], 6);
 | |
|         }
 | |
|         env->eip = newip;
 | |
|         cpu_x86_load_seg(env, R_CS, newcs);
 | |
|         CHECK_IF_IN_TRAP();
 | |
|         if (data32) {
 | |
|             if (set_vflags_long(newflags, env))
 | |
|                 return;
 | |
|         } else {
 | |
|             if (set_vflags_short(newflags, env))
 | |
|                 return;
 | |
|         }
 | |
|         VM86_FAULT_RETURN;
 | |
| 
 | |
|     case 0xfa: /* cli */
 | |
|         env->eip = ip;
 | |
|         clear_IF(env);
 | |
|         VM86_FAULT_RETURN;
 | |
| 
 | |
|     case 0xfb: /* sti */
 | |
|         env->eip = ip;
 | |
|         if (set_IF(env))
 | |
|             return;
 | |
|         VM86_FAULT_RETURN;
 | |
| 
 | |
|     default:
 | |
|         /* real VM86 GPF exception */
 | |
|         return_to_32bit(env, TARGET_VM86_UNKNOWN);
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int do_vm86(CPUX86State *env, long subfunction, abi_ulong vm86_addr)
 | |
| {
 | |
|     CPUState *cs = CPU(x86_env_get_cpu(env));
 | |
|     TaskState *ts = cs->opaque;
 | |
|     struct target_vm86plus_struct * target_v86;
 | |
|     int ret;
 | |
| 
 | |
|     switch (subfunction) {
 | |
|     case TARGET_VM86_REQUEST_IRQ:
 | |
|     case TARGET_VM86_FREE_IRQ:
 | |
|     case TARGET_VM86_GET_IRQ_BITS:
 | |
|     case TARGET_VM86_GET_AND_RESET_IRQ:
 | |
|         gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
 | |
|         ret = -TARGET_EINVAL;
 | |
|         goto out;
 | |
|     case TARGET_VM86_PLUS_INSTALL_CHECK:
 | |
|         /* NOTE: on old vm86 stuff this will return the error
 | |
|            from verify_area(), because the subfunction is
 | |
|            interpreted as (invalid) address to vm86_struct.
 | |
|            So the installation check works.
 | |
|             */
 | |
|         ret = 0;
 | |
|         goto out;
 | |
|     }
 | |
| 
 | |
|     /* save current CPU regs */
 | |
|     ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
 | |
|     ts->vm86_saved_regs.ebx = env->regs[R_EBX];
 | |
|     ts->vm86_saved_regs.ecx = env->regs[R_ECX];
 | |
|     ts->vm86_saved_regs.edx = env->regs[R_EDX];
 | |
|     ts->vm86_saved_regs.esi = env->regs[R_ESI];
 | |
|     ts->vm86_saved_regs.edi = env->regs[R_EDI];
 | |
|     ts->vm86_saved_regs.ebp = env->regs[R_EBP];
 | |
|     ts->vm86_saved_regs.esp = env->regs[R_ESP];
 | |
|     ts->vm86_saved_regs.eflags = env->eflags;
 | |
|     ts->vm86_saved_regs.eip  = env->eip;
 | |
|     ts->vm86_saved_regs.cs = env->segs[R_CS].selector;
 | |
|     ts->vm86_saved_regs.ss = env->segs[R_SS].selector;
 | |
|     ts->vm86_saved_regs.ds = env->segs[R_DS].selector;
 | |
|     ts->vm86_saved_regs.es = env->segs[R_ES].selector;
 | |
|     ts->vm86_saved_regs.fs = env->segs[R_FS].selector;
 | |
|     ts->vm86_saved_regs.gs = env->segs[R_GS].selector;
 | |
| 
 | |
|     ts->target_v86 = vm86_addr;
 | |
|     if (!lock_user_struct(VERIFY_READ, target_v86, vm86_addr, 1))
 | |
|         return -TARGET_EFAULT;
 | |
|     /* build vm86 CPU state */
 | |
|     ts->v86flags = tswap32(target_v86->regs.eflags);
 | |
|     env->eflags = (env->eflags & ~SAFE_MASK) |
 | |
|         (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
 | |
| 
 | |
|     ts->vm86plus.cpu_type = tswapal(target_v86->cpu_type);
 | |
|     switch (ts->vm86plus.cpu_type) {
 | |
|     case TARGET_CPU_286:
 | |
|         ts->v86mask = 0;
 | |
|         break;
 | |
|     case TARGET_CPU_386:
 | |
|         ts->v86mask = NT_MASK | IOPL_MASK;
 | |
|         break;
 | |
|     case TARGET_CPU_486:
 | |
|         ts->v86mask = AC_MASK | NT_MASK | IOPL_MASK;
 | |
|         break;
 | |
|     default:
 | |
|         ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
 | |
|     env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
 | |
|     env->regs[R_EDX] = tswap32(target_v86->regs.edx);
 | |
|     env->regs[R_ESI] = tswap32(target_v86->regs.esi);
 | |
|     env->regs[R_EDI] = tswap32(target_v86->regs.edi);
 | |
|     env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
 | |
|     env->regs[R_ESP] = tswap32(target_v86->regs.esp);
 | |
|     env->eip = tswap32(target_v86->regs.eip);
 | |
|     cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
 | |
|     cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
 | |
|     cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
 | |
|     cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
 | |
|     cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
 | |
|     cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
 | |
|     ret = tswap32(target_v86->regs.eax); /* eax will be restored at
 | |
|                                             the end of the syscall */
 | |
|     memcpy(&ts->vm86plus.int_revectored,
 | |
|            &target_v86->int_revectored, 32);
 | |
|     memcpy(&ts->vm86plus.int21_revectored,
 | |
|            &target_v86->int21_revectored, 32);
 | |
|     ts->vm86plus.vm86plus.flags = tswapal(target_v86->vm86plus.flags);
 | |
|     memcpy(&ts->vm86plus.vm86plus.vm86dbg_intxxtab,
 | |
|            target_v86->vm86plus.vm86dbg_intxxtab, 32);
 | |
|     unlock_user_struct(target_v86, vm86_addr, 0);
 | |
| 
 | |
|     LOG_VM86("do_vm86: cs:ip=%04x:%04x\n",
 | |
|              env->segs[R_CS].selector, env->eip);
 | |
|     /* now the virtual CPU is ready for vm86 execution ! */
 | |
|  out:
 | |
|     return ret;
 | |
| }
 |