 9b539263fa
			
		
	
	
		9b539263fa
		
	
	
	
	
		
			
			Signed-off-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> Message-id: 1445864527-14520-15-git-send-email-edgar.iglesias@gmail.com Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			1001 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1001 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  ARM helper routines
 | |
|  *
 | |
|  *  Copyright (c) 2005-2007 CodeSourcery, LLC
 | |
|  *
 | |
|  * This library is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU Lesser General Public
 | |
|  * License as published by the Free Software Foundation; either
 | |
|  * version 2 of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This library is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 | |
|  * Lesser General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU Lesser General Public
 | |
|  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 | |
|  */
 | |
| #include "cpu.h"
 | |
| #include "exec/helper-proto.h"
 | |
| #include "internals.h"
 | |
| #include "exec/cpu_ldst.h"
 | |
| 
 | |
| #define SIGNBIT (uint32_t)0x80000000
 | |
| #define SIGNBIT64 ((uint64_t)1 << 63)
 | |
| 
 | |
| static void raise_exception(CPUARMState *env, uint32_t excp,
 | |
|                             uint32_t syndrome, uint32_t target_el)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
| 
 | |
|     assert(!excp_is_internal(excp));
 | |
|     cs->exception_index = excp;
 | |
|     env->exception.syndrome = syndrome;
 | |
|     env->exception.target_el = target_el;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| static int exception_target_el(CPUARMState *env)
 | |
| {
 | |
|     int target_el = MAX(1, arm_current_el(env));
 | |
| 
 | |
|     /* No such thing as secure EL1 if EL3 is aarch32, so update the target EL
 | |
|      * to EL3 in this case.
 | |
|      */
 | |
|     if (arm_is_secure(env) && !arm_el_is_aa64(env, 3) && target_el == 1) {
 | |
|         target_el = 3;
 | |
|     }
 | |
| 
 | |
|     return target_el;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(neon_tbl)(CPUARMState *env, uint32_t ireg, uint32_t def,
 | |
|                           uint32_t rn, uint32_t maxindex)
 | |
| {
 | |
|     uint32_t val;
 | |
|     uint32_t tmp;
 | |
|     int index;
 | |
|     int shift;
 | |
|     uint64_t *table;
 | |
|     table = (uint64_t *)&env->vfp.regs[rn];
 | |
|     val = 0;
 | |
|     for (shift = 0; shift < 32; shift += 8) {
 | |
|         index = (ireg >> shift) & 0xff;
 | |
|         if (index < maxindex) {
 | |
|             tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
 | |
|             val |= tmp << shift;
 | |
|         } else {
 | |
|             val |= def & (0xff << shift);
 | |
|         }
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| #if !defined(CONFIG_USER_ONLY)
 | |
| 
 | |
| /* try to fill the TLB and return an exception if error. If retaddr is
 | |
|  * NULL, it means that the function was called in C code (i.e. not
 | |
|  * from generated code or from helper.c)
 | |
|  */
 | |
| void tlb_fill(CPUState *cs, target_ulong addr, int is_write, int mmu_idx,
 | |
|               uintptr_t retaddr)
 | |
| {
 | |
|     bool ret;
 | |
|     uint32_t fsr = 0;
 | |
|     ARMMMUFaultInfo fi = {};
 | |
| 
 | |
|     ret = arm_tlb_fill(cs, addr, is_write, mmu_idx, &fsr, &fi);
 | |
|     if (unlikely(ret)) {
 | |
|         ARMCPU *cpu = ARM_CPU(cs);
 | |
|         CPUARMState *env = &cpu->env;
 | |
|         uint32_t syn, exc;
 | |
|         unsigned int target_el;
 | |
|         bool same_el;
 | |
| 
 | |
|         if (retaddr) {
 | |
|             /* now we have a real cpu fault */
 | |
|             cpu_restore_state(cs, retaddr);
 | |
|         }
 | |
| 
 | |
|         target_el = exception_target_el(env);
 | |
|         if (fi.stage2) {
 | |
|             target_el = 2;
 | |
|             env->cp15.hpfar_el2 = extract64(fi.s2addr, 12, 47) << 4;
 | |
|         }
 | |
|         same_el = arm_current_el(env) == target_el;
 | |
|         /* AArch64 syndrome does not have an LPAE bit */
 | |
|         syn = fsr & ~(1 << 9);
 | |
| 
 | |
|         /* For insn and data aborts we assume there is no instruction syndrome
 | |
|          * information; this is always true for exceptions reported to EL1.
 | |
|          */
 | |
|         if (is_write == 2) {
 | |
|             syn = syn_insn_abort(same_el, 0, fi.s1ptw, syn);
 | |
|             exc = EXCP_PREFETCH_ABORT;
 | |
|         } else {
 | |
|             syn = syn_data_abort(same_el, 0, 0, fi.s1ptw, is_write == 1, syn);
 | |
|             if (is_write == 1 && arm_feature(env, ARM_FEATURE_V6)) {
 | |
|                 fsr |= (1 << 11);
 | |
|             }
 | |
|             exc = EXCP_DATA_ABORT;
 | |
|         }
 | |
| 
 | |
|         env->exception.vaddress = addr;
 | |
|         env->exception.fsr = fsr;
 | |
|         raise_exception(env, exc, syn, target_el);
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a + b;
 | |
|     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
 | |
|         env->QF = 1;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a + b;
 | |
|     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
 | |
|         env->QF = 1;
 | |
|         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a - b;
 | |
|     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
 | |
|         env->QF = 1;
 | |
|         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
 | |
| {
 | |
|     uint32_t res;
 | |
|     if (val >= 0x40000000) {
 | |
|         res = ~SIGNBIT;
 | |
|         env->QF = 1;
 | |
|     } else if (val <= (int32_t)0xc0000000) {
 | |
|         res = SIGNBIT;
 | |
|         env->QF = 1;
 | |
|     } else {
 | |
|         res = val << 1;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a + b;
 | |
|     if (res < a) {
 | |
|         env->QF = 1;
 | |
|         res = ~0;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
 | |
| {
 | |
|     uint32_t res = a - b;
 | |
|     if (res > a) {
 | |
|         env->QF = 1;
 | |
|         res = 0;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Signed saturation.  */
 | |
| static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
 | |
| {
 | |
|     int32_t top;
 | |
|     uint32_t mask;
 | |
| 
 | |
|     top = val >> shift;
 | |
|     mask = (1u << shift) - 1;
 | |
|     if (top > 0) {
 | |
|         env->QF = 1;
 | |
|         return mask;
 | |
|     } else if (top < -1) {
 | |
|         env->QF = 1;
 | |
|         return ~mask;
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Unsigned saturation.  */
 | |
| static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
 | |
| {
 | |
|     uint32_t max;
 | |
| 
 | |
|     max = (1u << shift) - 1;
 | |
|     if (val < 0) {
 | |
|         env->QF = 1;
 | |
|         return 0;
 | |
|     } else if (val > max) {
 | |
|         env->QF = 1;
 | |
|         return max;
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| /* Signed saturate.  */
 | |
| uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     return do_ssat(env, x, shift);
 | |
| }
 | |
| 
 | |
| /* Dual halfword signed saturate.  */
 | |
| uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     uint32_t res;
 | |
| 
 | |
|     res = (uint16_t)do_ssat(env, (int16_t)x, shift);
 | |
|     res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Unsigned saturate.  */
 | |
| uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     return do_usat(env, x, shift);
 | |
| }
 | |
| 
 | |
| /* Dual halfword unsigned saturate.  */
 | |
| uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
 | |
| {
 | |
|     uint32_t res;
 | |
| 
 | |
|     res = (uint16_t)do_usat(env, (int16_t)x, shift);
 | |
|     res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| /* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
 | |
|  * The function returns the target EL (1-3) if the instruction is to be trapped;
 | |
|  * otherwise it returns 0 indicating it is not trapped.
 | |
|  */
 | |
| static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
|     uint64_t mask;
 | |
| 
 | |
|     /* If we are currently in EL0 then we need to check if SCTLR is set up for
 | |
|      * WFx instructions being trapped to EL1. These trap bits don't exist in v7.
 | |
|      */
 | |
|     if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
 | |
|         int target_el;
 | |
| 
 | |
|         mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
 | |
|         if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
 | |
|             /* Secure EL0 and Secure PL1 is at EL3 */
 | |
|             target_el = 3;
 | |
|         } else {
 | |
|             target_el = 1;
 | |
|         }
 | |
| 
 | |
|         if (!(env->cp15.sctlr_el[target_el] & mask)) {
 | |
|             return target_el;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
 | |
|      * No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
 | |
|      * bits will be zero indicating no trap.
 | |
|      */
 | |
|     if (cur_el < 2 && !arm_is_secure(env)) {
 | |
|         mask = (is_wfe) ? HCR_TWE : HCR_TWI;
 | |
|         if (env->cp15.hcr_el2 & mask) {
 | |
|             return 2;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
 | |
|     if (cur_el < 3) {
 | |
|         mask = (is_wfe) ? SCR_TWE : SCR_TWI;
 | |
|         if (env->cp15.scr_el3 & mask) {
 | |
|             return 3;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void HELPER(wfi)(CPUARMState *env)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
|     int target_el = check_wfx_trap(env, false);
 | |
| 
 | |
|     if (cpu_has_work(cs)) {
 | |
|         /* Don't bother to go into our "low power state" if
 | |
|          * we would just wake up immediately.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (target_el) {
 | |
|         env->pc -= 4;
 | |
|         raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0), target_el);
 | |
|     }
 | |
| 
 | |
|     cs->exception_index = EXCP_HLT;
 | |
|     cs->halted = 1;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| void HELPER(wfe)(CPUARMState *env)
 | |
| {
 | |
|     /* This is a hint instruction that is semantically different
 | |
|      * from YIELD even though we currently implement it identically.
 | |
|      * Don't actually halt the CPU, just yield back to top
 | |
|      * level loop. This is not going into a "low power state"
 | |
|      * (ie halting until some event occurs), so we never take
 | |
|      * a configurable trap to a different exception level.
 | |
|      */
 | |
|     HELPER(yield)(env);
 | |
| }
 | |
| 
 | |
| void HELPER(yield)(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     CPUState *cs = CPU(cpu);
 | |
| 
 | |
|     /* This is a non-trappable hint instruction that generally indicates
 | |
|      * that the guest is currently busy-looping. Yield control back to the
 | |
|      * top level loop so that a more deserving VCPU has a chance to run.
 | |
|      */
 | |
|     cs->exception_index = EXCP_YIELD;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| /* Raise an internal-to-QEMU exception. This is limited to only
 | |
|  * those EXCP values which are special cases for QEMU to interrupt
 | |
|  * execution and not to be used for exceptions which are passed to
 | |
|  * the guest (those must all have syndrome information and thus should
 | |
|  * use exception_with_syndrome).
 | |
|  */
 | |
| void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
 | |
| {
 | |
|     CPUState *cs = CPU(arm_env_get_cpu(env));
 | |
| 
 | |
|     assert(excp_is_internal(excp));
 | |
|     cs->exception_index = excp;
 | |
|     cpu_loop_exit(cs);
 | |
| }
 | |
| 
 | |
| /* Raise an exception with the specified syndrome register value */
 | |
| void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
 | |
|                                      uint32_t syndrome, uint32_t target_el)
 | |
| {
 | |
|     raise_exception(env, excp, syndrome, target_el);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(cpsr_read)(CPUARMState *env)
 | |
| {
 | |
|     return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
 | |
| }
 | |
| 
 | |
| void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
 | |
| {
 | |
|     cpsr_write(env, val, mask);
 | |
| }
 | |
| 
 | |
| /* Access to user mode registers from privileged modes.  */
 | |
| uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
 | |
| {
 | |
|     uint32_t val;
 | |
| 
 | |
|     if (regno == 13) {
 | |
|         val = env->banked_r13[0];
 | |
|     } else if (regno == 14) {
 | |
|         val = env->banked_r14[0];
 | |
|     } else if (regno >= 8
 | |
|                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
 | |
|         val = env->usr_regs[regno - 8];
 | |
|     } else {
 | |
|         val = env->regs[regno];
 | |
|     }
 | |
|     return val;
 | |
| }
 | |
| 
 | |
| void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
 | |
| {
 | |
|     if (regno == 13) {
 | |
|         env->banked_r13[0] = val;
 | |
|     } else if (regno == 14) {
 | |
|         env->banked_r14[0] = val;
 | |
|     } else if (regno >= 8
 | |
|                && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
 | |
|         env->usr_regs[regno - 8] = val;
 | |
|     } else {
 | |
|         env->regs[regno] = val;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
|     int target_el;
 | |
| 
 | |
|     if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
 | |
|         && extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
 | |
|         raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
 | |
|     }
 | |
| 
 | |
|     if (!ri->accessfn) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     switch (ri->accessfn(env, ri)) {
 | |
|     case CP_ACCESS_OK:
 | |
|         return;
 | |
|     case CP_ACCESS_TRAP:
 | |
|         target_el = exception_target_el(env);
 | |
|         break;
 | |
|     case CP_ACCESS_TRAP_EL2:
 | |
|         /* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
 | |
|          * a bug in the access function.
 | |
|          */
 | |
|         assert(!arm_is_secure(env) && arm_current_el(env) != 3);
 | |
|         target_el = 2;
 | |
|         break;
 | |
|     case CP_ACCESS_TRAP_EL3:
 | |
|         target_el = 3;
 | |
|         break;
 | |
|     case CP_ACCESS_TRAP_UNCATEGORIZED:
 | |
|         target_el = exception_target_el(env);
 | |
|         syndrome = syn_uncategorized();
 | |
|         break;
 | |
|     case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
 | |
|         target_el = 2;
 | |
|         syndrome = syn_uncategorized();
 | |
|         break;
 | |
|     case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
 | |
|         target_el = 3;
 | |
|         syndrome = syn_uncategorized();
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     raise_exception(env, EXCP_UDEF, syndrome, target_el);
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
| 
 | |
|     ri->writefn(env, ri, value);
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
| 
 | |
|     return ri->readfn(env, ri);
 | |
| }
 | |
| 
 | |
| void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
| 
 | |
|     ri->writefn(env, ri, value);
 | |
| }
 | |
| 
 | |
| uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
 | |
| {
 | |
|     const ARMCPRegInfo *ri = rip;
 | |
| 
 | |
|     return ri->readfn(env, ri);
 | |
| }
 | |
| 
 | |
| void HELPER(msr_i_pstate)(CPUARMState *env, uint32_t op, uint32_t imm)
 | |
| {
 | |
|     /* MSR_i to update PSTATE. This is OK from EL0 only if UMA is set.
 | |
|      * Note that SPSel is never OK from EL0; we rely on handle_msr_i()
 | |
|      * to catch that case at translate time.
 | |
|      */
 | |
|     if (arm_current_el(env) == 0 && !(env->cp15.sctlr_el[1] & SCTLR_UMA)) {
 | |
|         uint32_t syndrome = syn_aa64_sysregtrap(0, extract32(op, 0, 3),
 | |
|                                                 extract32(op, 3, 3), 4,
 | |
|                                                 imm, 0x1f, 0);
 | |
|         raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
 | |
|     }
 | |
| 
 | |
|     switch (op) {
 | |
|     case 0x05: /* SPSel */
 | |
|         update_spsel(env, imm);
 | |
|         break;
 | |
|     case 0x1e: /* DAIFSet */
 | |
|         env->daif |= (imm << 6) & PSTATE_DAIF;
 | |
|         break;
 | |
|     case 0x1f: /* DAIFClear */
 | |
|         env->daif &= ~((imm << 6) & PSTATE_DAIF);
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(clear_pstate_ss)(CPUARMState *env)
 | |
| {
 | |
|     env->pstate &= ~PSTATE_SS;
 | |
| }
 | |
| 
 | |
| void HELPER(pre_hvc)(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int cur_el = arm_current_el(env);
 | |
|     /* FIXME: Use actual secure state.  */
 | |
|     bool secure = false;
 | |
|     bool undef;
 | |
| 
 | |
|     if (arm_is_psci_call(cpu, EXCP_HVC)) {
 | |
|         /* If PSCI is enabled and this looks like a valid PSCI call then
 | |
|          * that overrides the architecturally mandated HVC behaviour.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL2)) {
 | |
|         /* If EL2 doesn't exist, HVC always UNDEFs */
 | |
|         undef = true;
 | |
|     } else if (arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         /* EL3.HCE has priority over EL2.HCD. */
 | |
|         undef = !(env->cp15.scr_el3 & SCR_HCE);
 | |
|     } else {
 | |
|         undef = env->cp15.hcr_el2 & HCR_HCD;
 | |
|     }
 | |
| 
 | |
|     /* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
 | |
|      * For ARMv8/AArch64, HVC is allowed in EL3.
 | |
|      * Note that we've already trapped HVC from EL0 at translation
 | |
|      * time.
 | |
|      */
 | |
|     if (secure && (!is_a64(env) || cur_el == 1)) {
 | |
|         undef = true;
 | |
|     }
 | |
| 
 | |
|     if (undef) {
 | |
|         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                         exception_target_el(env));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
|     int cur_el = arm_current_el(env);
 | |
|     bool secure = arm_is_secure(env);
 | |
|     bool smd = env->cp15.scr_el3 & SCR_SMD;
 | |
|     /* On ARMv8 AArch32, SMD only applies to NS state.
 | |
|      * On ARMv7 SMD only applies to NS state and only if EL2 is available.
 | |
|      * For ARMv7 non EL2, we force SMD to zero so we don't need to re-check
 | |
|      * the EL2 condition here.
 | |
|      */
 | |
|     bool undef = is_a64(env) ? smd : (!secure && smd);
 | |
| 
 | |
|     if (arm_is_psci_call(cpu, EXCP_SMC)) {
 | |
|         /* If PSCI is enabled and this looks like a valid PSCI call then
 | |
|          * that overrides the architecturally mandated SMC behaviour.
 | |
|          */
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (!arm_feature(env, ARM_FEATURE_EL3)) {
 | |
|         /* If we have no EL3 then SMC always UNDEFs */
 | |
|         undef = true;
 | |
|     } else if (!secure && cur_el == 1 && (env->cp15.hcr_el2 & HCR_TSC)) {
 | |
|         /* In NS EL1, HCR controlled routing to EL2 has priority over SMD. */
 | |
|         raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
 | |
|     }
 | |
| 
 | |
|     if (undef) {
 | |
|         raise_exception(env, EXCP_UDEF, syn_uncategorized(),
 | |
|                         exception_target_el(env));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void HELPER(exception_return)(CPUARMState *env)
 | |
| {
 | |
|     int cur_el = arm_current_el(env);
 | |
|     unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
 | |
|     uint32_t spsr = env->banked_spsr[spsr_idx];
 | |
|     int new_el;
 | |
| 
 | |
|     aarch64_save_sp(env, cur_el);
 | |
| 
 | |
|     env->exclusive_addr = -1;
 | |
| 
 | |
|     /* We must squash the PSTATE.SS bit to zero unless both of the
 | |
|      * following hold:
 | |
|      *  1. debug exceptions are currently disabled
 | |
|      *  2. singlestep will be active in the EL we return to
 | |
|      * We check 1 here and 2 after we've done the pstate/cpsr write() to
 | |
|      * transition to the EL we're going to.
 | |
|      */
 | |
|     if (arm_generate_debug_exceptions(env)) {
 | |
|         spsr &= ~PSTATE_SS;
 | |
|     }
 | |
| 
 | |
|     if (spsr & PSTATE_nRW) {
 | |
|         /* TODO: We currently assume EL1/2/3 are running in AArch64.  */
 | |
|         env->aarch64 = 0;
 | |
|         new_el = 0;
 | |
|         env->uncached_cpsr = 0x10;
 | |
|         cpsr_write(env, spsr, ~0);
 | |
|         if (!arm_singlestep_active(env)) {
 | |
|             env->uncached_cpsr &= ~PSTATE_SS;
 | |
|         }
 | |
|         aarch64_sync_64_to_32(env);
 | |
| 
 | |
|         env->regs[15] = env->elr_el[1] & ~0x1;
 | |
|     } else {
 | |
|         new_el = extract32(spsr, 2, 2);
 | |
|         if (new_el > cur_el
 | |
|             || (new_el == 2 && !arm_feature(env, ARM_FEATURE_EL2))) {
 | |
|             /* Disallow return to an EL which is unimplemented or higher
 | |
|              * than the current one.
 | |
|              */
 | |
|             goto illegal_return;
 | |
|         }
 | |
|         if (extract32(spsr, 1, 1)) {
 | |
|             /* Return with reserved M[1] bit set */
 | |
|             goto illegal_return;
 | |
|         }
 | |
|         if (new_el == 0 && (spsr & PSTATE_SP)) {
 | |
|             /* Return to EL0 with M[0] bit set */
 | |
|             goto illegal_return;
 | |
|         }
 | |
|         env->aarch64 = 1;
 | |
|         pstate_write(env, spsr);
 | |
|         if (!arm_singlestep_active(env)) {
 | |
|             env->pstate &= ~PSTATE_SS;
 | |
|         }
 | |
|         aarch64_restore_sp(env, new_el);
 | |
|         env->pc = env->elr_el[cur_el];
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| illegal_return:
 | |
|     /* Illegal return events of various kinds have architecturally
 | |
|      * mandated behaviour:
 | |
|      * restore NZCV and DAIF from SPSR_ELx
 | |
|      * set PSTATE.IL
 | |
|      * restore PC from ELR_ELx
 | |
|      * no change to exception level, execution state or stack pointer
 | |
|      */
 | |
|     env->pstate |= PSTATE_IL;
 | |
|     env->pc = env->elr_el[cur_el];
 | |
|     spsr &= PSTATE_NZCV | PSTATE_DAIF;
 | |
|     spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
 | |
|     pstate_write(env, spsr);
 | |
|     if (!arm_singlestep_active(env)) {
 | |
|         env->pstate &= ~PSTATE_SS;
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* Return true if the linked breakpoint entry lbn passes its checks */
 | |
| static bool linked_bp_matches(ARMCPU *cpu, int lbn)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t bcr = env->cp15.dbgbcr[lbn];
 | |
|     int brps = extract32(cpu->dbgdidr, 24, 4);
 | |
|     int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
 | |
|     int bt;
 | |
|     uint32_t contextidr;
 | |
| 
 | |
|     /* Links to unimplemented or non-context aware breakpoints are
 | |
|      * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
 | |
|      * as if linked to an UNKNOWN context-aware breakpoint (in which
 | |
|      * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
 | |
|      * We choose the former.
 | |
|      */
 | |
|     if (lbn > brps || lbn < (brps - ctx_cmps)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bcr = env->cp15.dbgbcr[lbn];
 | |
| 
 | |
|     if (extract64(bcr, 0, 1) == 0) {
 | |
|         /* Linked breakpoint disabled : generate no events */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     bt = extract64(bcr, 20, 4);
 | |
| 
 | |
|     /* We match the whole register even if this is AArch32 using the
 | |
|      * short descriptor format (in which case it holds both PROCID and ASID),
 | |
|      * since we don't implement the optional v7 context ID masking.
 | |
|      */
 | |
|     contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
 | |
| 
 | |
|     switch (bt) {
 | |
|     case 3: /* linked context ID match */
 | |
|         if (arm_current_el(env) > 1) {
 | |
|             /* Context matches never fire in EL2 or (AArch64) EL3 */
 | |
|             return false;
 | |
|         }
 | |
|         return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
 | |
|     case 5: /* linked address mismatch (reserved in AArch64) */
 | |
|     case 9: /* linked VMID match (reserved if no EL2) */
 | |
|     case 11: /* linked context ID and VMID match (reserved if no EL2) */
 | |
|     default:
 | |
|         /* Links to Unlinked context breakpoints must generate no
 | |
|          * events; we choose to do the same for reserved values too.
 | |
|          */
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     uint64_t cr;
 | |
|     int pac, hmc, ssc, wt, lbn;
 | |
|     /* Note that for watchpoints the check is against the CPU security
 | |
|      * state, not the S/NS attribute on the offending data access.
 | |
|      */
 | |
|     bool is_secure = arm_is_secure(env);
 | |
|     int access_el = arm_current_el(env);
 | |
| 
 | |
|     if (is_wp) {
 | |
|         CPUWatchpoint *wp = env->cpu_watchpoint[n];
 | |
| 
 | |
|         if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
 | |
|             return false;
 | |
|         }
 | |
|         cr = env->cp15.dbgwcr[n];
 | |
|         if (wp->hitattrs.user) {
 | |
|             /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
 | |
|              * match watchpoints as if they were accesses done at EL0, even if
 | |
|              * the CPU is at EL1 or higher.
 | |
|              */
 | |
|             access_el = 0;
 | |
|         }
 | |
|     } else {
 | |
|         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 | |
| 
 | |
|         if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
 | |
|             return false;
 | |
|         }
 | |
|         cr = env->cp15.dbgbcr[n];
 | |
|     }
 | |
|     /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
 | |
|      * enabled and that the address and access type match; for breakpoints
 | |
|      * we know the address matched; check the remaining fields, including
 | |
|      * linked breakpoints. We rely on WCR and BCR having the same layout
 | |
|      * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
 | |
|      * Note that some combinations of {PAC, HMC, SSC} are reserved and
 | |
|      * must act either like some valid combination or as if the watchpoint
 | |
|      * were disabled. We choose the former, and use this together with
 | |
|      * the fact that EL3 must always be Secure and EL2 must always be
 | |
|      * Non-Secure to simplify the code slightly compared to the full
 | |
|      * table in the ARM ARM.
 | |
|      */
 | |
|     pac = extract64(cr, 1, 2);
 | |
|     hmc = extract64(cr, 13, 1);
 | |
|     ssc = extract64(cr, 14, 2);
 | |
| 
 | |
|     switch (ssc) {
 | |
|     case 0:
 | |
|         break;
 | |
|     case 1:
 | |
|     case 3:
 | |
|         if (is_secure) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case 2:
 | |
|         if (!is_secure) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     switch (access_el) {
 | |
|     case 3:
 | |
|     case 2:
 | |
|         if (!hmc) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         if (extract32(pac, 0, 1) == 0) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     case 0:
 | |
|         if (extract32(pac, 1, 1) == 0) {
 | |
|             return false;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         g_assert_not_reached();
 | |
|     }
 | |
| 
 | |
|     wt = extract64(cr, 20, 1);
 | |
|     lbn = extract64(cr, 16, 4);
 | |
| 
 | |
|     if (wt && !linked_bp_matches(cpu, lbn)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| static bool check_watchpoints(ARMCPU *cpu)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     int n;
 | |
| 
 | |
|     /* If watchpoints are disabled globally or we can't take debug
 | |
|      * exceptions here then watchpoint firings are ignored.
 | |
|      */
 | |
|     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 | |
|         || !arm_generate_debug_exceptions(env)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
 | |
|         if (bp_wp_matches(cpu, n, true)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| static bool check_breakpoints(ARMCPU *cpu)
 | |
| {
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     int n;
 | |
| 
 | |
|     /* If breakpoints are disabled globally or we can't take debug
 | |
|      * exceptions here then breakpoint firings are ignored.
 | |
|      */
 | |
|     if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
 | |
|         || !arm_generate_debug_exceptions(env)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
 | |
|         if (bp_wp_matches(cpu, n, false)) {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void HELPER(check_breakpoints)(CPUARMState *env)
 | |
| {
 | |
|     ARMCPU *cpu = arm_env_get_cpu(env);
 | |
| 
 | |
|     if (check_breakpoints(cpu)) {
 | |
|         HELPER(exception_internal(env, EXCP_DEBUG));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void arm_debug_excp_handler(CPUState *cs)
 | |
| {
 | |
|     /* Called by core code when a watchpoint or breakpoint fires;
 | |
|      * need to check which one and raise the appropriate exception.
 | |
|      */
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
|     CPUWatchpoint *wp_hit = cs->watchpoint_hit;
 | |
| 
 | |
|     if (wp_hit) {
 | |
|         if (wp_hit->flags & BP_CPU) {
 | |
|             cs->watchpoint_hit = NULL;
 | |
|             if (check_watchpoints(cpu)) {
 | |
|                 bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
 | |
|                 bool same_el = arm_debug_target_el(env) == arm_current_el(env);
 | |
| 
 | |
|                 if (extended_addresses_enabled(env)) {
 | |
|                     env->exception.fsr = (1 << 9) | 0x22;
 | |
|                 } else {
 | |
|                     env->exception.fsr = 0x2;
 | |
|                 }
 | |
|                 env->exception.vaddress = wp_hit->hitaddr;
 | |
|                 raise_exception(env, EXCP_DATA_ABORT,
 | |
|                                 syn_watchpoint(same_el, 0, wnr),
 | |
|                                 arm_debug_target_el(env));
 | |
|             } else {
 | |
|                 cpu_resume_from_signal(cs, NULL);
 | |
|             }
 | |
|         }
 | |
|     } else {
 | |
|         uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
 | |
|         bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
 | |
| 
 | |
|         if (cpu_breakpoint_test(cs, pc, BP_GDB)) {
 | |
|             return;
 | |
|         }
 | |
| 
 | |
|         if (extended_addresses_enabled(env)) {
 | |
|             env->exception.fsr = (1 << 9) | 0x22;
 | |
|         } else {
 | |
|             env->exception.fsr = 0x2;
 | |
|         }
 | |
|         /* FAR is UNKNOWN, so doesn't need setting */
 | |
|         raise_exception(env, EXCP_PREFETCH_ABORT,
 | |
|                         syn_breakpoint(same_el),
 | |
|                         arm_debug_target_el(env));
 | |
|     }
 | |
| }
 | |
| 
 | |
| /* ??? Flag setting arithmetic is awkward because we need to do comparisons.
 | |
|    The only way to do that in TCG is a conditional branch, which clobbers
 | |
|    all our temporaries.  For now implement these as helper functions.  */
 | |
| 
 | |
| /* Similarly for variable shift instructions.  */
 | |
| 
 | |
| uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift = i & 0xff;
 | |
|     if (shift >= 32) {
 | |
|         if (shift == 32)
 | |
|             env->CF = x & 1;
 | |
|         else
 | |
|             env->CF = 0;
 | |
|         return 0;
 | |
|     } else if (shift != 0) {
 | |
|         env->CF = (x >> (32 - shift)) & 1;
 | |
|         return x << shift;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift = i & 0xff;
 | |
|     if (shift >= 32) {
 | |
|         if (shift == 32)
 | |
|             env->CF = (x >> 31) & 1;
 | |
|         else
 | |
|             env->CF = 0;
 | |
|         return 0;
 | |
|     } else if (shift != 0) {
 | |
|         env->CF = (x >> (shift - 1)) & 1;
 | |
|         return x >> shift;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift = i & 0xff;
 | |
|     if (shift >= 32) {
 | |
|         env->CF = (x >> 31) & 1;
 | |
|         return (int32_t)x >> 31;
 | |
|     } else if (shift != 0) {
 | |
|         env->CF = (x >> (shift - 1)) & 1;
 | |
|         return (int32_t)x >> shift;
 | |
|     }
 | |
|     return x;
 | |
| }
 | |
| 
 | |
| uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
 | |
| {
 | |
|     int shift1, shift;
 | |
|     shift1 = i & 0xff;
 | |
|     shift = shift1 & 0x1f;
 | |
|     if (shift == 0) {
 | |
|         if (shift1 != 0)
 | |
|             env->CF = (x >> 31) & 1;
 | |
|         return x;
 | |
|     } else {
 | |
|         env->CF = (x >> (shift - 1)) & 1;
 | |
|         return ((uint32_t)x >> shift) | (x << (32 - shift));
 | |
|     }
 | |
| }
 |