 0f4a9e45ec
			
		
	
	
		0f4a9e45ec
		
	
	
	
	
		
			
			Introduces reusable definitions for CPU affinity masks/shifts and gets rid of hardcoded magic numbers. Signed-off-by: Pavel Fedin <p.fedin@samsung.com> Message-id: 7e6def4d0d91ae64615cdd2035b94d408d0a23c6.1441366248.git.p.fedin@samsung.com [PMM: folded overlong line] Reviewed-by: Peter Maydell <peter.maydell@linaro.org> Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
		
			
				
	
	
		
			466 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			466 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ARM implementation of KVM hooks, 64 bit specific code
 | |
|  *
 | |
|  * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2 or later.
 | |
|  * See the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <sys/types.h>
 | |
| #include <sys/ioctl.h>
 | |
| #include <sys/mman.h>
 | |
| 
 | |
| #include <linux/kvm.h>
 | |
| 
 | |
| #include "config-host.h"
 | |
| #include "qemu-common.h"
 | |
| #include "qemu/timer.h"
 | |
| #include "sysemu/sysemu.h"
 | |
| #include "sysemu/kvm.h"
 | |
| #include "kvm_arm.h"
 | |
| #include "cpu.h"
 | |
| #include "internals.h"
 | |
| #include "hw/arm/arm.h"
 | |
| 
 | |
| static inline void set_feature(uint64_t *features, int feature)
 | |
| {
 | |
|     *features |= 1ULL << feature;
 | |
| }
 | |
| 
 | |
| bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
 | |
| {
 | |
|     /* Identify the feature bits corresponding to the host CPU, and
 | |
|      * fill out the ARMHostCPUClass fields accordingly. To do this
 | |
|      * we have to create a scratch VM, create a single CPU inside it,
 | |
|      * and then query that CPU for the relevant ID registers.
 | |
|      * For AArch64 we currently don't care about ID registers at
 | |
|      * all; we just want to know the CPU type.
 | |
|      */
 | |
|     int fdarray[3];
 | |
|     uint64_t features = 0;
 | |
|     /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
 | |
|      * we know these will only support creating one kind of guest CPU,
 | |
|      * which is its preferred CPU type. Fortunately these old kernels
 | |
|      * support only a very limited number of CPUs.
 | |
|      */
 | |
|     static const uint32_t cpus_to_try[] = {
 | |
|         KVM_ARM_TARGET_AEM_V8,
 | |
|         KVM_ARM_TARGET_FOUNDATION_V8,
 | |
|         KVM_ARM_TARGET_CORTEX_A57,
 | |
|         QEMU_KVM_ARM_TARGET_NONE
 | |
|     };
 | |
|     struct kvm_vcpu_init init;
 | |
| 
 | |
|     if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     ahcc->target = init.target;
 | |
|     ahcc->dtb_compatible = "arm,arm-v8";
 | |
| 
 | |
|     kvm_arm_destroy_scratch_host_vcpu(fdarray);
 | |
| 
 | |
|    /* We can assume any KVM supporting CPU is at least a v8
 | |
|      * with VFPv4+Neon; this in turn implies most of the other
 | |
|      * feature bits.
 | |
|      */
 | |
|     set_feature(&features, ARM_FEATURE_V8);
 | |
|     set_feature(&features, ARM_FEATURE_VFP4);
 | |
|     set_feature(&features, ARM_FEATURE_NEON);
 | |
|     set_feature(&features, ARM_FEATURE_AARCH64);
 | |
| 
 | |
|     ahcc->features = features;
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| #define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
 | |
| 
 | |
| int kvm_arch_init_vcpu(CPUState *cs)
 | |
| {
 | |
|     int ret;
 | |
|     uint64_t mpidr;
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
| 
 | |
|     if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
 | |
|         !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
 | |
|         fprintf(stderr, "KVM is not supported for this guest CPU type\n");
 | |
|         return -EINVAL;
 | |
|     }
 | |
| 
 | |
|     /* Determine init features for this CPU */
 | |
|     memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
 | |
|     if (cpu->start_powered_off) {
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
 | |
|     }
 | |
|     if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
 | |
|         cpu->psci_version = 2;
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
 | |
|     }
 | |
|     if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
 | |
|         cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
 | |
|     }
 | |
| 
 | |
|     /* Do KVM_ARM_VCPU_INIT ioctl */
 | |
|     ret = kvm_arm_vcpu_init(cs);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /*
 | |
|      * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
 | |
|      * Currently KVM has its own idea about MPIDR assignment, so we
 | |
|      * override our defaults with what we get from KVM.
 | |
|      */
 | |
|     ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
 | |
| 
 | |
|     return kvm_arm_init_cpreg_list(cpu);
 | |
| }
 | |
| 
 | |
| bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
 | |
| {
 | |
|     /* Return true if the regidx is a register we should synchronize
 | |
|      * via the cpreg_tuples array (ie is not a core reg we sync by
 | |
|      * hand in kvm_arch_get/put_registers())
 | |
|      */
 | |
|     switch (regidx & KVM_REG_ARM_COPROC_MASK) {
 | |
|     case KVM_REG_ARM_CORE:
 | |
|         return false;
 | |
|     default:
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| typedef struct CPRegStateLevel {
 | |
|     uint64_t regidx;
 | |
|     int level;
 | |
| } CPRegStateLevel;
 | |
| 
 | |
| /* All system registers not listed in the following table are assumed to be
 | |
|  * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
 | |
|  * often, you must add it to this table with a state of either
 | |
|  * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
 | |
|  */
 | |
| static const CPRegStateLevel non_runtime_cpregs[] = {
 | |
|     { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
 | |
| };
 | |
| 
 | |
| int kvm_arm_cpreg_level(uint64_t regidx)
 | |
| {
 | |
|     int i;
 | |
| 
 | |
|     for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
 | |
|         const CPRegStateLevel *l = &non_runtime_cpregs[i];
 | |
|         if (l->regidx == regidx) {
 | |
|             return l->level;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return KVM_PUT_RUNTIME_STATE;
 | |
| }
 | |
| 
 | |
| #define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| #define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| #define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
 | |
|                  KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
 | |
| 
 | |
| int kvm_arch_put_registers(CPUState *cs, int level)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     uint32_t fpr;
 | |
|     uint64_t val;
 | |
|     int i;
 | |
|     int ret;
 | |
|     unsigned int el;
 | |
| 
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
 | |
|      * AArch64 registers before pushing them out to 64-bit KVM.
 | |
|      */
 | |
|     if (!is_a64(env)) {
 | |
|         aarch64_sync_32_to_64(env);
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(regs.regs[i]);
 | |
|         reg.addr = (uintptr_t) &env->xregs[i];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 | |
|      * QEMU side we keep the current SP in xregs[31] as well.
 | |
|      */
 | |
|     aarch64_save_sp(env, 1);
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.sp);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[0];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(sp_el1);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
 | |
|     if (is_a64(env)) {
 | |
|         val = pstate_read(env);
 | |
|     } else {
 | |
|         val = cpsr_read(env);
 | |
|     }
 | |
|     reg.id = AARCH64_CORE_REG(regs.pstate);
 | |
|     reg.addr = (uintptr_t) &val;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pc);
 | |
|     reg.addr = (uintptr_t) &env->pc;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(elr_el1);
 | |
|     reg.addr = (uintptr_t) &env->elr_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Saved Program State Registers
 | |
|      *
 | |
|      * Before we restore from the banked_spsr[] array we need to
 | |
|      * ensure that any modifications to env->spsr are correctly
 | |
|      * reflected in the banks.
 | |
|      */
 | |
|     el = arm_current_el(env);
 | |
|     if (el > 0 && !is_a64(env)) {
 | |
|         i = bank_number(env->uncached_cpsr & CPSR_M);
 | |
|         env->banked_spsr[i] = env->spsr;
 | |
|     }
 | |
| 
 | |
|     /* KVM 0-4 map to QEMU banks 1-5 */
 | |
|     for (i = 0; i < KVM_NR_SPSR; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(spsr[i]);
 | |
|         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     /* Advanced SIMD and FP registers
 | |
|      * We map Qn = regs[2n+1]:regs[2n]
 | |
|      */
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         int rd = i << 1;
 | |
|         uint64_t fp_val[2];
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|         fp_val[0] = env->vfp.regs[rd + 1];
 | |
|         fp_val[1] = env->vfp.regs[rd];
 | |
| #else
 | |
|         fp_val[1] = env->vfp.regs[rd + 1];
 | |
|         fp_val[0] = env->vfp.regs[rd];
 | |
| #endif
 | |
|         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 | |
|         reg.addr = (uintptr_t)(&fp_val);
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.addr = (uintptr_t)(&fpr);
 | |
|     fpr = vfp_get_fpsr(env);
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     fpr = vfp_get_fpcr(env);
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     if (!write_list_to_kvmstate(cpu, level)) {
 | |
|         return EINVAL;
 | |
|     }
 | |
| 
 | |
|     kvm_arm_sync_mpstate_to_kvm(cpu);
 | |
| 
 | |
|     return ret;
 | |
| }
 | |
| 
 | |
| int kvm_arch_get_registers(CPUState *cs)
 | |
| {
 | |
|     struct kvm_one_reg reg;
 | |
|     uint64_t val;
 | |
|     uint32_t fpr;
 | |
|     unsigned int el;
 | |
|     int i;
 | |
|     int ret;
 | |
| 
 | |
|     ARMCPU *cpu = ARM_CPU(cs);
 | |
|     CPUARMState *env = &cpu->env;
 | |
| 
 | |
|     for (i = 0; i < 31; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(regs.regs[i]);
 | |
|         reg.addr = (uintptr_t) &env->xregs[i];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.sp);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[0];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(sp_el1);
 | |
|     reg.addr = (uintptr_t) &env->sp_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pstate);
 | |
|     reg.addr = (uintptr_t) &val;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     env->aarch64 = ((val & PSTATE_nRW) == 0);
 | |
|     if (is_a64(env)) {
 | |
|         pstate_write(env, val);
 | |
|     } else {
 | |
|         env->uncached_cpsr = val & CPSR_M;
 | |
|         cpsr_write(env, val, 0xffffffff);
 | |
|     }
 | |
| 
 | |
|     /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
 | |
|      * QEMU side we keep the current SP in xregs[31] as well.
 | |
|      */
 | |
|     aarch64_restore_sp(env, 1);
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(regs.pc);
 | |
|     reg.addr = (uintptr_t) &env->pc;
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
 | |
|      * incoming AArch64 regs received from 64-bit KVM.
 | |
|      * We must perform this after all of the registers have been acquired from
 | |
|      * the kernel.
 | |
|      */
 | |
|     if (!is_a64(env)) {
 | |
|         aarch64_sync_64_to_32(env);
 | |
|     }
 | |
| 
 | |
|     reg.id = AARCH64_CORE_REG(elr_el1);
 | |
|     reg.addr = (uintptr_t) &env->elr_el[1];
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
| 
 | |
|     /* Fetch the SPSR registers
 | |
|      *
 | |
|      * KVM SPSRs 0-4 map to QEMU banks 1-5
 | |
|      */
 | |
|     for (i = 0; i < KVM_NR_SPSR; i++) {
 | |
|         reg.id = AARCH64_CORE_REG(spsr[i]);
 | |
|         reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     el = arm_current_el(env);
 | |
|     if (el > 0 && !is_a64(env)) {
 | |
|         i = bank_number(env->uncached_cpsr & CPSR_M);
 | |
|         env->spsr = env->banked_spsr[i];
 | |
|     }
 | |
| 
 | |
|     /* Advanced SIMD and FP registers
 | |
|      * We map Qn = regs[2n+1]:regs[2n]
 | |
|      */
 | |
|     for (i = 0; i < 32; i++) {
 | |
|         uint64_t fp_val[2];
 | |
|         reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
 | |
|         reg.addr = (uintptr_t)(&fp_val);
 | |
|         ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|         if (ret) {
 | |
|             return ret;
 | |
|         } else {
 | |
|             int rd = i << 1;
 | |
| #ifdef HOST_WORDS_BIGENDIAN
 | |
|             env->vfp.regs[rd + 1] = fp_val[0];
 | |
|             env->vfp.regs[rd] = fp_val[1];
 | |
| #else
 | |
|             env->vfp.regs[rd + 1] = fp_val[1];
 | |
|             env->vfp.regs[rd] = fp_val[0];
 | |
| #endif
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     reg.addr = (uintptr_t)(&fpr);
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     vfp_set_fpsr(env, fpr);
 | |
| 
 | |
|     reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
 | |
|     ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
 | |
|     if (ret) {
 | |
|         return ret;
 | |
|     }
 | |
|     vfp_set_fpcr(env, fpr);
 | |
| 
 | |
|     if (!write_kvmstate_to_list(cpu)) {
 | |
|         return EINVAL;
 | |
|     }
 | |
|     /* Note that it's OK to have registers which aren't in CPUState,
 | |
|      * so we can ignore a failure return here.
 | |
|      */
 | |
|     write_list_to_cpustate(cpu);
 | |
| 
 | |
|     kvm_arm_sync_mpstate_to_qemu(cpu);
 | |
| 
 | |
|     /* TODO: other registers */
 | |
|     return ret;
 | |
| }
 |